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We analyze the classical and quantum dynamics of a Bianchi I model in the presence of a small negative
cosmological constant characterizing its evolution in term of the dust-time dualism. We demonstrate that in
a canonical metric approach, the cosmological singularity is removed in correspondence to a positive
defined value of the dust energy density. Furthermore, the quantum big bounce is connected to the
Universe’s turning point via a well-defined semiclassical limit. Then we can reliably infer that the proposed
scenario is compatible with a cyclical universe picture. We also show how, when the contribution of the dust
energy density is sufficiently high, the proposed scenario can be extended to the Bianchi IX cosmology and
therefore how it can be regarded as a paradigm for the generic cosmological model. Finally, we investigate
the origin of the observed cutoff on the cosmological dynamics, demonstrating how the big-bounce
evolution can be mimicked by the same semiclassical scenario, where the negative cosmological constant is
replaced via a polymer discretization of the Universe’s volume. A direct proportionality law between these
two parameters is then established.
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I. INTRODUCTION

The Wheeler-DeWitt (WDW) approach [1–3] to quan-
tum cosmology [4,5] has two main relevant shortcomings,
i.e., the absence of a unique definition of time [6] and the
difficulty in removing or properly interpreting the primor-
dial singularity [7–9].
Such a problem, mainly characterizing all the canonical

metric approaches, is essentially addressed by the loop
quantum cosmology [10–12], where, adopting a scalar field
as a relational time, it is shown that the existence of a big
bounce removes the singularity.
However, this important result does not overcome some

subtleties concerning its derivation that are relevant on a
general ground too. First of all, it is not clear if the choice of
any relation time and, in particular, the scalar field one, is
suitable to describe the early Universe quantum dynamics
[13,14]. Then attention is called to the question concerning
whether or not the symmetry preservation, characterizing
loop quantum cosmology, is the correct quantization
procedure of a cosmological model [15].
The present paper analyzes a cosmological model that

contains features of interest to the deep understanding of

the two points mentioned above. In fact, we consider a
canonical minisuperspace model using a dust fluid as
external time, according to the time-dust dualism discussed
in [16]. The very important feature of the obtained quantum
cosmology is the emergence of a nonsingular cyclical
universe, which is characterized by a quantum big bounce
and a classical turning point, associated with the existence
of a small negative cosmological constant, i.e., small
enough to ensure that such a recollapsing feature is in
the far future of the actual Universe.
An important aspect of such a cosmological scenario,

which legitimizes the idea of a cyclical universe, is the
possibility to link the quantum evolution to the standard
isotropic behavior via a well-defined classical limit (see
also [17–19] for this problem in alternative theories of
gravity). In fact the presence of a negative cosmological
constant induces a harmonic oscillator morphology in the
system Hamiltonian (a part of a global minus sign), and this
is responsible both for the existence of a classical limit and
of the positive nature of the dust energy density. This latter
fact solves, in our cosmological implementation, the basic
problem of the approach discussed in [16].
In more detail, we consider the evolutionary quantum

dynamics of a Bianchi I model in the presence of a negative
cosmological constant, as represented in Misner-like var-
iables [20,21]. Clearly, the classical limit corresponds to an
increasingly isotropic universe, although we do not address
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here the role of the matter and then the reproduction of
standard cosmology. This is because we aim to determine a
cosmological behavior able to mimic a very general
cosmological scenario near the singularity, according to
the idea that the natural isotropization mechanism must be
recognized in the inflationary scenario [22].
To this end, we investigate the implications of our

dynamical model on the evolution of the Bianchi IX
cosmology, which is, accordingly to the Belinski-
Khalatnikov-Lifshitz (BKL) conjecture, the prototype for
the evolution of a generic inhomogeneous universe on a
sufficiently small spatial scale [23]. We demonstrate that,
along the dynamics of the stable expectation values of the
configurational variables, the presence of the Bianchi IX
potential can be neglected, as soon as the value of the dust
energy density is sufficiently large. Thus, for such a
(nonsevere) restriction, the Bianchi I and Bianchi IX model
quantum dynamics overlap near the primordial singularity
and our result acquires a high degree of generality, i.e., our
picture of a cyclical universe could have a very general
implementation in the generic cosmological problem.
Finally, we investigate which ingredient of our model is
relevant in determining a cutoff physics and we show that
there exists a direct relation between the negative cosmo-
logical constant presence and an effective semiclassical
polymer dynamics [24,25], in which that constant is
removed but the discrete nature of the universe volume
is included.
In summary, the present paper discusses a cosmological

scenario containing a number of very peculiar properties,
suggesting that its features are physically meaningful and
are not formal coincidences. In particular, we stress how, in
the present canonical evolutionary quantum context, the
emergence of a big bounce and of a cyclical universe is all
natural and general in its structure, so much so as to
encourage more general implementations.
This paper is organized as follows.
In Sec. II we describe the Bianchi I model in the presence

of a negative cosmological constant from the classical and
the quantum point of view. The first part of the section is
devoted to analyzing the classical trajectories of the
Misner-like variables near the singularities while in the
second part we compare these classical behaviors with
the related quantum expectation values.
In Sec. III we generalize, in a qualitative way, the

properties found for the Bianchi I model to the more
general Bianchi IX model, shedding light on the role played
by the potential term.
Section IV is dedicated to the cosmological interpreta-

tion of the results obtained in the previous section, giving,
in particular, a phenomenological explanation of how to
extend the features of the Bianchi I and Bianchi IX model
to the generic inhomogeneous Universe.
Then, in Sec. V, we see how the role of the negative

cosmological constant is related to a cutoff physics, making

use of a polymer quantization for the variable connected to
the universe volume.
Brief concluding remarks complete the paper.

II. BIANCHI I QUANTUM DYNAMICS IN
THE KUCHAŘ AND TORRE APPROACH

The cosmological scenario we are going to implement
can be applied also to the isotropic universe [26], as soon as
the role played here by the anisotropy variables is supplied
by a massless (or even self-consistent) scalar field. Indeed,
the kinetic term in the Hamiltonian of a scalar field on the
isotropic universe dynamics is all isomorphic to that of an
anisotropic variable in the Misner representation (i.e., βþ or
β−) in the Hamiltonian of a Bianchi model, in particular, for
types I and IX we address in this paper. The motivation to
consider the present more general scheme rather than the
isotropic universe must be individualized in the natural
presence of the anisotropy terms near the cosmological
singularity, in comparison to the necessity of postulating
the presence of a kinetic scalar field contribution asymp-
totically to the singularity (a reasonable but not rigorously
proved feature associated to the preinflationary inflaton
dynamics [5]). Furthermore, the morphology of the Bianchi
I and IX models outlines a high degree of generality with
respect to the Robertson-Walker geometry since, as shown
in [23], the generic cosmological solution, near the singu-
larity, is an infinite series of Kasner epochs (periods of time
in which the dynamics is Bianchi I-like), one for each space
point (physically for each cosmological horizon). Such a
basic result, known as the BKL conjecture, suggests that
the analysis here addressed can be implemented to a very
general picture and we can infer that the discussed scenario
removes the cosmological singularity for a generic inho-
mogeneous universe, as far as its evolution admits the
Bianchi IX oscillatory regime as a homogeneous prototype.
In what follows, we prefer to deal with minisuperspace
models, in order to avoid the nontrivial question of how the
conjecture above can be rigorously implemented on a
quantum level: the spatial decoupling of the space point
in the asymptotic dynamics of an inhomogeneous universe
towards the singularity is demonstrated in the classical
sector, on the basis of statistical arguments [27], but it
remains an open issue in a metric quantum dynamics. Let
us consider a universe described by a Bianchi I model in the
presence of a negative cosmological constant −Λ, with
Λ > 0. It is useful to describe the model with respect to the
Misner variables fα; β�g, where α expresses the isotropic
volume of the Universe (the initial singularity is reached
for α → −∞) while β� accounts for the anisotropies
of this model. In the Appendix we provide a brief
derivation to show that the associated minisuperspace
super-Hamiltonian takes the form1

1We use the ð−;þ;þ;þÞ signature of the metric and the
geometric unit system ðc ¼ G ¼ ℏ ¼ 1Þ.
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H ¼ e−3α

24π
½−p2

α þ p2þ þ p2
−� − πe3αΛ; ð1Þ

where fpα; pþ; p−g are the conjugated momenta related to
the Misner variables. In view of a later quantization of the
model, it is convenient to introduce the auxiliary variable ρ
such that

ρ ¼ e
3
2
α → pρ ¼

2

3
e−

3
2
αpα: ð2Þ

In terms of these new conjugated variables the super-
Hamiltonian (1) takes the form

H ¼ −
3

32π
p2
ρ þ

p2þ þ p2
−

24πρ2
− πρ2Λ: ð3Þ

We now perform a canonical quantization of the system,
after the definition of a suitable Hilbert space, by replacing
the space-phase variables with multiplicative operators
for variables fρ; βþ; β−g and differential operators for
fpρ; pþ; p−g, so that

pi → −i
d
dqi

; qi ¼ fρ; βþ; β−g: ð4Þ

If now we introduce the wave function of the Universe
ψðρ; β�Þ we can apply to it the quantum version of the
super-Hamiltonian (3) in order to obtain the Wheeler-
deWitt operator

Ĥψðρ; β�Þ ¼
�

3

32π
∂2
ρ −

∂2þ þ ∂2
−

24πρ2
− πρ2Λ

�
ψðρ; β�Þ: ð5Þ

A. Evolutionary quantum cosmology

Here we take into account the evolutionary quantum
theory, as it is analyzed in [16,28]. In these works it is
considered a system of normal Gaussian coordinates
Xμ ¼ ðT; XiÞ, or in other words a synchronous reference
system, for which the line element of the metric takes the
form

ds2 ¼ −dT2 þ hijdXidXj; ð6Þ

where the indices fi; jg are summed over the spatial
directions and hij is the spatial metric. In this way four
components of the space-time metric gμν are fixed by the
Gaussian conditions,

g00 þ 1 ¼ 0; g0i ¼ 0: ð7Þ

The physical meaning of the previous conditions is more
clear in the context of the Arnowitt-Deser-Misner (ADM
[29]) formalism, for which the space-time metric gμν is

replaced by the lapse function N, the shift vector Ni, and
the spatial metric hij. In the ADM procedure we perform a
foliation of the space-time: the lapse function N represents
the proper time separation between two neighboring leaves,
while the shift vector Ni represents the displacement, with
respect to a normal projection, of the local spatial coor-
dinate system in the intersection with the successive leave.
In the ADM formalism the space-time metric takes the form

ds2 ¼ N2dt2 − hijðNi þ dxiÞðNj þ dxjÞ: ð8Þ
If we make a comparison between the line elements (6)
and (8) it is clear that the conditions (7) are equivalent to

N ¼ 1; Ni ¼ 0; ð9Þ

where the foliation of the space-time is such that t ¼ T and
xi ¼ Xi. The relations (9) tell us that everywhere the proper
time between two neighboring leaves is the same and that
there is no displacement, with respect to the normal
projection, between one leaf and another. If now we want
to implement the Gaussian conditions in the action prin-
ciples of general relativity, for example, in the vacuum case,
we can follow two ways: in the first one we impose the
conditions after the variation of the Einstein-Hilbert action,
while in the other case we adjoin them to the action, making
use of the Lagrangian multipliers technique, before the
variation.
When we proceed in the first manner, we deal with the

Einstein-Hilbert action in the vacuum

SG ¼ −
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð10Þ

and a variation of this action with respect to the space-time
metric gμν leads to the Einstein equations in vacuum,

Gμν ¼ Rμν −
1

2
gμνR ¼ 0: ð11Þ

An equivalent form of the action (10) is obtained in the
ADM formalism, for which we have

SG½hij; N; Ni� ¼
Z
R
dt

Z
Σ
d3x½ _hijPij − ðNiHG

i þ NHGÞ�;

ð12Þ
where

HG ¼ GijklPijPkl −
ffiffiffi
h

p

2k
R̄; ð13Þ

HG
i ¼ −2hik∇jPkj; ð14Þ

Gijkl ¼
kffiffiffi
h

p ðhikhjl þ hjkhil − hijhklÞ ð15Þ
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are respectively the super-Hamiltonian, the supermomen-
tum, and the supermetric, and Pij is the conjugated
momenta to the spatial metric hij. The variation with
respect to N and Ni gives the secondary constraints,

HG ¼ HG
i ¼ 0: ð16Þ

The Hamilton equations for hij and Pij, once fixed N ¼ 1

and Ni ¼ 0, provide, together with the constraints (16), the
Einstein equations in the synchronous reference frame.
The second way to proceed consists of adding the

coordinate conditions (7) in the Einstein-Hilbert action
by the multipliers M and Mi in such a way that an extra
term SF appears in the action,

S½gμν;M;Mk� ¼ SG þ SF; ð17Þ

with

SF½gμν;M;Mk� ¼ −
1

2κ

Z
d4x

�
−
1

2
M

ffiffiffiffiffiffi
−g

p ðg00 þ 1Þ

þMi
ffiffiffiffiffiffi
−g

p
g0i

�
ð18Þ

and where we defined the quantity

8<
:

M ≔ − HGffiffi
h

p ;

Mi ≔
HG

iffiffi
h

p :
ð19Þ

Clearly the variation of the action (17) introduces a source
term in the Einstein equations. The role of Lagrangian
multipliers M, Mk is clear if we write the action (17) in the
ADM formalism, in order to obtain

S½hab; N;Ni;M;Mk�

¼
Z
R
dt

Z
Σ
d3x½ _hijPij − ðNiHG

i þ NHGÞþ

−
1

2
M

ffiffiffi
h

p
ðN − N−1Þ þMi

ffiffiffi
h

p
NNi�: ð20Þ

If we perform a variation by M and Mi we obtain the
Gaussian conditions (9), while a variation with respect to N
and Ni gives Eqs. (19) and fixes the multipliers M and Mi

as functions of the canonical variables hij; Pij. If we use
Eqs. (9) and (19) to eliminate the presence of the mutipliers
N, Ni and M, Mi, the action (20) clearly reduces to the
canonical action (17).
Looking at the action (17), it is not invariant under

arbitrary transformations of space-time coordinates and this
is due to the fact that we have introduced a privileged
coordinate system, i.e., the normal Gaussian coordinates.
However, it is always possible to restore the diffeomor-
phism invariance making a parametrization of the coor-
dinates. It means that if we take the Gaussian coordinates as
functions of arbitrary coordinates xα in such a way that
Xμ ¼ ðTðxαÞ; XiðxαÞÞ the action (17) can be expressed as

S½gαβ;M;Mk; Xμ� ¼ SG þ SF ¼ −
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ −

1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
1

2
MðgαβT;αT;β þ 1Þ þMigαβT;αXi

;β

�
; ð21Þ

which is manifestly invariant under arbitrary transforma-
tions of xα.
The form of the action (21) allows us to understand the

nature of the source of the gravitational field, described by
that part of the action appearing in the second row. In [16]
this source term is defined as Gaussian reference fluid.
The variation of the action (21) by the metric gαβ gives

the Einstein equations,

Gαβ ¼ κTαβ; ð22Þ

where

Tαβ ¼ 2ffiffiffiffiffiffi−gp δSF

δgαβ
ð23Þ

is the energy-momentum tensor associated with the refer-
ence fluid. After the definition of the four-velocity vector

Uα ≔ −gαβT;β; ð24Þ

it is possible to evaluate the energy-momentum tensor in
order to give a clear physical interpretation of the presence
model,

Tαβ ¼ MUαUβ þMðαUβÞ: ð25Þ

Equation (25) is equivalent to the Eckart energy-
momentum tensor [30] that describes a heat-conducting
fluid. The absence of a stress part in the energy-momentum
tensor tells us that the Gaussian reference fluid behaves as a
dust. In particular, if we impose only the time condition
(Mi ¼ 0) Eq. (25) becomes

Tαβ ¼ MUαUβ; ð26Þ
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which describes the behavior of an incoherent dust, where
M is the rest mass density and Uα is the four-velocity.
If now we consider the canonical ADM form of the

action (21) we have

S½hij; Xμ;M;Mk� ¼
Z
R
dt

Z
Σ
d3x½ _hijPij þ _XμPμþ

− ðNiHi þ NHÞ; ð27Þ

with

H ¼ HG þHD; Hi ¼ HG
i þHD

i ; ð28Þ

where Pμ ¼ ðP;PiÞ are the conjugated momenta to
Xμ ¼ ðT; XiÞ. The quantities HD and HD

i are respectively
the super-Hamiltonian and supermomentum contribution
due to the reference fluid and, when we take into account
the case of incoherent dust, they simply become

HD ¼ P; HD
i ¼ Xj

;iPj ¼ 0: ð29Þ

As before, the variation with respect to N and Ni gives us
the constraints

H ¼ HG þHD ¼ HG þ P ¼ 0; ð30Þ

Hi ¼ HG
i þHD

i ¼ HG
i ¼ 0: ð31Þ

The quantization procedure of the system composed by
incoherent dust coupled with gravity [16] consists in
associating with the canonical variables the following
differential operators,

ĥij ¼ hij×; P̂ij ¼ −i
δ

δhij
; ð32Þ

X̂μ ¼ Xμ×; P̂μ ¼ −i
δ

δXμ ; ð33Þ

and evaluating the action of the quantum version of the
constraints (30) and (31) on the physical states identified
as the functional Ψ½Xμ; hij�, i.e., the wave function of the
Universe.
First of all, the condition HD

i ¼ Xj
;iPj ¼ 0 tells us that

δ

δXi Ψ½Xμ; hij� ¼ 0; ð34Þ

so the wave function of the Universe does not depend on
the spatial fluid variables Xi but only on the time fluid
variable T. Furthermore, the quantum version of the
constraint (31),

ĤiΨ½T; hij� ¼ 0; ð35Þ

ensures us that Ψ½T; hij� does not depend on the particular
metric representation, but only on three geometries.
Remembering the definitions of the operators (32)

and (33), the application of the constraint (30) on the
physical states Ψ½T; hij� leads us to the WDWequation that
resembles a Schrodinger-like equation,

ĤΨ½T; hij� ¼
�
ĤG − i

δ

δT

�
Ψ½T; hij� ¼ 0

→ i
δ

δT
Ψ½T; hij� ¼ ĤGΨ½T; hij�; ð36Þ

which determines the evolution of the system with respect
to the time variable T. It is easy to verify that a general
solution for Eq. (36) is

ΨðT; hijÞ ¼
Z

dEψðE; hijÞe−iET; ð37Þ

leading to the time independent eigenvalue problem

ĤGψ ¼ Eψ : ð38Þ

From Eq. (38) we can see that E is the eigenvalue of the
super-Hamiltonian, and it is associated with the dust energy
density via the relation ρdust ¼ − Effiffi

h
p . For the Bianchi I

model that we are taking into account the super-
Hamiltonian HG is of the form (3), which in the quantum
version ĤG corresponds to Eq. (5), and the eigenvalue
problem (38) takes the explicit form

�
3

32π
∂2
ρ −

∂2þ þ ∂2
−

24πρ2
− πρ2Λ

�
ψðρ; β�Þ ¼ Eψðρ; β�Þ: ð39Þ

The Kuchař and Torre approach is clearly a promising
point of view for addressing the problem of time, viewed as
a necessary weakening of the general relativity principle.
Indeed, although the general covariance is preserved via a
general reparametrization, the time evolution of the quan-
tum gravitational field comes out from the privileged
character of the Gaussian reference frame. But the real
critical point of the formulation presented above is that the
super-Hamiltonian spectrum is not positively defined and
consequently the dust fluid has to possess a nonpositive
energy density, a really unpleasant physical property, which
is a serious shortcoming of the formulation. In [28], it has
been demonstrated that real incoherent dust coupled to
gravity plays the role of a physical clock and this issue
constitutes a complementary approach to the present one.
Apart from the nontrivial question about how it is

possible to make the Gaussian frame compatible with
the energy conditions [16] (i.e., its energy-momentum
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tensor does not fulfil the condition to represent a physical
fluid), we can see that a dualism exists between a physical
clock for the gravitational field and a fluid of reference
coupled to the gravitational field dynamics; see also
[31–33]. From a more general point of view, we can infer
that the coupling of the gravitational field to a given
physical fluid is equivalent to inducing no longer vanishing
super-Hamiltonian and/or supermomentum constraints.
From a field theory point of view, we are arguing that
the quantization of the gravitational field is affected by the
choice of a specific gauge, i.e., of a real system of
reference, by restoring a time evolution. In quantum
gravity, the distinction between a real reference frame (a
physical system) having a nonzero energy-momentum
tensor and a simple system of coordinates (a mathematical
reparametrization of the dynamics) is deep: while in
general relativity the two concepts overlap, as soon as
we take the real fluid as a test system, on the quantum level,
the energy-momentum tensor of the reference frame
participates in the gravitational field dynamics via the
super-Hamiltonian spectrum.
The present study addresses the question concerning the

positive character of the dust energy density, since we
construct a quantum cosmology model for which such a
property definitely holds. It is actually relevant that from
such a regularization of the Kukhař and Torre model the
relevant issues described below come out: the emergence of
a cyclical universe, possessing a big-bounce feature and the
proper classical limit. The basic ingredient for such a
physical implementation of the clock-dust dualism is the
presence of a small negative cosmological constant (also
ensuring the Universe’s turning point), while the evolu-
tionary quantum dynamics is then crucial for the emergence
of a cyclical picture. The physical meaning of our cosmo-
logical time consists of the possibility to restate the Bianchi
I super-Hamiltonian eigenvalue as the energy density of a
physical fluid, comoving with the synchronous reference
system and, de facto, identified with the latter. In the
classical limit, our Universe possesses a dust contribution
(nonrelativistic matter) that is redshifted by the inflationary
paradigm [5,34] up to such much small values that its
present-day contribution to the Universe’s critical param-
eter is negligible; see [26] and [35–37]. In other words, our
physical dust is a valuable clock to describe the considered
model evolution, but it is today so much diluted across the
Universe that the difference with a formal system of
coordinates is no longer appreciable and the general
relativity principle is fully restored.

B. Semiclassical limit

Before dealing with the full quantum problem, it is
interesting for our purposes to study the associated classical
problem of Eq. (38), namely, the zeroth order of a WKB
expansion of the evolutionary quantum system [38]. The
constraint that we obtain is

H ¼ −
3

32π
p2
ρ þ

p2þ þ p2
−

24πρ2
− πρ2Λ ¼ E: ð40Þ

We can solve the classical dynamics by making use of the
Hamiltonian equations and the constraint (40). We can find
the solution for the isotropic variable ρ by taking into
account the Hamiltonian equations,2

(
_ρ ¼ dρ

dt ¼ ∂H
∂pρ

¼ − 3
16π

pρ _pρ ¼ dpρ

dt ¼ − ∂H
∂ρ ¼ p2

þþp2
−

12πρ3
þ 2πρΛ;

ð41Þ

in order to obtain

ρ̈þ p2þ þ p2
−

64π2ρ3
þ 3

8
ρΛ ¼ 0: ð42Þ

Recalling that pρ ¼ − 16π
3
_ρ, the super-Hamiltonian

constraint becomes

_ρ2 −
p2þ þ p2

−

64π2ρ2
þ 3

8
ρ2Λþ 3

8π
E ¼ 0: ð43Þ

It is possible to show that a solution to Eqs. (42) and (43) is
given by

ρðtÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
−E
2πΛ

�"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þΛðp2þþp2

−Þ
6E2

s
sin

� ffiffiffiffiffiffi
3Λ
2

r
tþφ

�#vuut :

ð44Þ

The solution (44) exhibits the usual initial singularity in the
past for which ρ ¼ 0 → α ¼ −∞ and furthermore a sin-
gularity in the future exists too, namely, a big crunch
singularity. The value of the integration constant φ can be
chosen in such a way that the initial singularity for the value
t ¼ 0 gives us

φ0 ¼ arcsin

0
B@∓ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Λðp2
þþp2

−Þ
6E2

q
1
CA: ð45Þ

The classical behavior of the isotropic variable ρ is
sketched in Fig. 1. Analogously, the classical dynamics
of the anisotropies β� can be solved, including the
solution (44) inside the Hamiltonian equations. This
way, we have

2In the following we label the Gaussian time variable T as t.
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8<
:

_β� ¼ ∂H
∂p�

¼ p�
12πρ2

¼¼ − Λp�
6E

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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As we can see in Fig. 2, at the classical level the
anisotropies of the model become important in magnitude
towards the singularities in the past and in the future. So the
presence of a negative cosmological constant in the semi-
classical evolution case does not mine the divergence of the
anisotropies towards the singularities, typical of the aniso-
tropic models.

C. Dynamics of the quantum expectation values

Let us consider now the full quantum evolution case
(39). The absence of a potential term for the anisotropies
suggests considering for them a plane-waves solution, so
that

ψðρ; β�Þ ¼
1

2π
eikþβþeik−β−χðρÞ; ð48Þ

where fkþ; k−g are the quantum numbers associated to
fβþ; β−g. Taking into account this shape of the wave
function in Eq. (39) brings the following differential
equation:
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Looking at Eq. (49) we can observe a formal analogy with
the problem of the three-dimensional harmonic oscillator,
where the angular momentum l is in correspondence with
the continuous values k2� ¼ −lðlþ 1Þ. Following the anal-
ogy, we choose a solution for χðρÞ of the form [39]
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The motivation of this choice is due to the fact that

the terms e
ffiffiffiffi
Λ�

p
ρ2

2 and ρ
1
2
þ

ffiffiffiffiffiffiffi
1–4k2�

p
2 represent, respectively, the

solutions of Eq. (49) in the limit ρ → ∞ and ρ → 0.
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FIG. 1. The classical trajectory for the isotropic variable ρ
exhibits a singularity in the past and another one in the future.
The solution is sketched for the parameters: Λ ¼ 0.01,
pþ ¼ p− ¼ 0.1, E ¼ −0.397.
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FIG. 2. The classical trajectory for the anisotropies β�. Next to
the singularities the anisotropies diverge. The solution is sketched
for the parameters: Λ ¼ 0.01, pþ ¼ p− ¼ 0.1, E ¼ −0.397.
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The solution (51) should take into account these two limit
behaviors. We assume a finite power series expansion for
the function ξðρÞ of the form

ξðρÞ ¼
Xk0
k¼0

ck;k0ρk; k; k0 ∈ 2N: ð52Þ

The reason is due to the fact that this is the only way to
obtain physical acceptable solutions. Indeed, if we take into
account a solution

P∞
k¼0 ckρ

k for the problem (49) we
obtain a nonconverging series and then a diverging sol-
ution. To obtain a finite solution, as is done in Eq. (52), we
must require the series to be truncated at a certain power
associated to k0. Including expansion (52) in Eq. (49) we
arrive at the following difference equation:

ckþ2;k0 ðkþ 2Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4k2�
q

þ kþ 2

�

− ck;k0
�
E� þ

ffiffiffiffiffiffi
Λ�

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4k2�

q
þ 2kþ 2

��
¼ 0: ð53Þ

In order to obtain a finite solution we must set ckþ2;k0 ¼ 0.
This restriction allows us to determine the behavior of the
eigenvalue E, making use of the definitions (50),
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In order to deal with a real eigenvalue, we consider a
restriction for the values of fkþ; k−g of the form

ðk2þ þ k2−Þ ≤
9

16
: ð55Þ

This way we obtain a spectrum for the eigenvalues that
assumes only negative real values and then the associated
dust-energy density is always positive. Finally, always
following the analogy with the three-dimensional harmonic
oscillator, we can evaluate the coefficients ck;k0 in terms of
the Γ-function,

csk;k0 ¼
ð−1Þk2ðð−1Þkþ1ÞΓ

h
1þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−16

9
ðk2þþk2−Þ

q i
ð32π2Λ

3
Þk4k0

2
!

Γ½1þk
2
�Γ
h
1þn

2
þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−16

9
ðk2þþk2−Þ

q i
ðk0
2
−k

2
Þ!

:

ð56Þ

Now we can obtain the shape of the entire wave function,
the solution to the problem of (39), that is
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where A is a normalization constant. Now we want to
perform a comparison between the classical trajectories
(44) and (47) and the expectation values of the associated
operator ρ̂ and β̂�. The states on which we evaluate them
can be constructed taking into account the wave packets
associated with the wave function (57) peaked around
classical values fk0�; k�þ; k�−g, i.e.,
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where the integrations on fkþ; k−g are restricted over the
region R ¼ fkþ; k− ∈ Rjðk2þ þ k2−Þ ≤ 9

16
g and we choose

Gaussian weights to peak the wave packets. The evolution
in time of the expectation value of the operator ρ̂ is
evaluated over such states,

hρ̂it ¼
Z

∞

0

dρ
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∞

−∞
dβ�ðΨk0�;k��

Þ�ρΨk0�;k��
: ð59Þ

As we can see in Fig. 3 we have an overlap between the
expectation value (black points) and classical trajectory
(red continuous line) only for late time t. When we
approach t ¼ 0, the expectation value moves away from
the classical trajectory and it does not exhibit a singular
behavior. As a consequence, we can argue that in the
evolutionary quantum model the singularity is avoided and
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FIG. 3. The black points represent the expectation value hρit
evaluated via numerical integration for the following choice of
the integration parameters: Λ ¼ 0.01, k0� ¼ 5, k�þ ¼ k�− ¼ 0.1,
σþ ¼ σ− ¼ 0.01, σ ¼ 0.88. The continuous red line represents
the classical trajectory evaluated with the same classical
parameters.
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is replaced by a bounce. The validity of this argument is
supported by the analysis of the uncertainty,

hΔρ2it ¼
Z

∞

0

dρ
Z

∞

−∞
dβ�ðΨk0�;k��

Þ�ρ2Ψk0�;k��
− hρ̂i2t ; ð60Þ

essentially for two reasons. The first one is, as we can see in
Fig. 4, that when we are near the singularity the uncertainty
hΔρ2i has a maximum value but it remains always small
compared to the expectation value and does not diverge in
correspondence to the singularity. Thus, we can conclude
that the expectation value (59) is a good indicator for the
system next to the singularity. The second reason is the late
time behavior. It is clear from Fig. 4 that as we get farther
away from the singularity, the uncertainty becomes smaller
and smaller and approaches 0 in the region of the overlap
between expectation value and classical trajectory, guar-
anteeing that the Universe becomes more and more
classical at late times.
The same approach can be used to compare expectation

values related to the anisotropies with the corresponding
classical trajectories. The evolution in time is

hβ̂�it ¼
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∞
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As we can see in Fig. 5 again we have an overlap
between the expectation value (black points) and the
classical trajectory (red continuous line) only for late time
t. At early times, the diverging behavior exhibited by the
anisotropies at the classical level disappears in the quantum
model. Indeed, when we approach the limit t → 0 the
anisotropies remain small and finite. As before, the validity
of this argument is supported by the analysis of the
uncertainty Δβ�, defined as

hΔβ2it¼
Z
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dρ
Z

∞
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dβ�ðΨk0�;k��

Þ�β2Ψk0�;k��
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As is shown in Fig. 6, the situation is exactly the same with
respect to the case of the variable ρ, and this bring us to
conclude in an analogous way that the (61) is a genuine
quantity to describe the system next to the singularity and
to recover the classical limit for late times. We conclude this
section by noting how all the considerations discussed here
for the initial singularity must remain valid when we
consider the Bianchi I singularity in the future. In other
words also the existing big crunch is removed in favor of a
bounce and our model acquires a cyclical feature. The
nondiverging character of the anisotropies in this scenario
can have intriguing implications for the so-called big-
bounce cosmologies [40] in view of the possibility to
minimize the effect on anisotropic evolution.

III. IMPLICATION ON THE BIANCHI IX MODEL

Now, in order to implement the properties found above to
a general one model, we analyze the Bianchi IX cosmology
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FIG. 4. The uncertainty of ρ as a function of time t that confirms
that the expectation value hρit is a genuine quantity.
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FIG. 5. The black points represent the expectation value hβ�it
evaluated via numerical integration for the following choice of
the integration parameters: Λ ¼ 0.01, k0� ¼ 5, k�þ ¼ k�− ¼ 0.1,
σþ ¼ σ− ¼ 0.01, σ ¼ 0.88. The continuous red line represents
the classical trajectory evaluated with the same classical
parameters.
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FIG. 6. The uncertainty of β as a function of time t that confirm
that the expectation value hβit is a genuine quantity.
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in the presence of a negative cosmological constant
in the context of the evolutionary model. With respect
to the configurational variables fρ; βþ; β−g the super-
Hamiltonian constraint takes the form

H ¼ −
3

32π
p2
ρ þ

p2þ þ p2
−

24πρ2
þ π

2
ρ2=3VIXðβ�Þ − πρ2Λ ¼ E;

ð63Þ

where the potential term, which accounts for the spatial
curvature of the model, reads as

VIXðβ�Þ ¼ e−8βþ − 4e−2βþ coshð2
ffiffiffi
3

p
β−Þ

þ 2e4βþ½coshð4
ffiffiffi
3

p
β−Þ − 1�: ð64Þ

This potential is obtained by selecting the three constants of
structure ðλl; λm; λnÞ ¼ ð1; 1; 1Þ in the general potential
expression in Eq. (A20). As is well known, in the context
of the Misner-like variables, it is clear that the difference
between the Bianchi I model and the Bianchi IX model is
the presence of the potential term π

2
ρ2=3VIXðβ�Þ. For this

reason we want to see if a regime exists in which the
potential term of the Bianchi IX model is negligible with
respect to the kinetic plus the cosmological constant term.
In other words, we want to see when it is possible to argue
that the properties found in the previous section for the
Bianchi I model are valid also for the Bianchi IX model.
The importance to find a regime of this kind is due to the
presence of the BKL conjecture, which allows one to
extend such a conclusion to the generic cosmological
solution. To this aim, we now assess the importance of
the potential term V�

IX ¼ π
2
ρ2=3VIXðβ�Þ evaluated at the

bounce as the dust energy E, estimated in (54), changes. As
we can see in Fig. 7, the potential term of the Bianchi IX
model becomes more and more negligible as the magnitude

of the dust energy density increases. This means that,
following the trajectory of a Bianchi IX cosmology, the
relevant contribution comes from the kinetic plus cosmo-
logical constant term because the potential is more and
more negligible as the parameter E becomes large. In this
sense we can conclude, provided that the dust energy
density is large enough to neglect the potential term, that
the Bianchi IX model in the presence of a negative
cosmological constant in the evolutionary context pos-
sesses the same qualitative features of the Bianchi I model
previously found.

IV. PHENOMENOLOGICAL CONSIDERATIONS

Let us now provide a proper cosmological interpretation
to the results we obtained in the previous sections and
outline the main merits of the proposed scenario.
We considered a cosmological model that corresponds

to type I Bianchi classification, i.e., having zero spatial
curvature, and we included in the dynamics a small
negative cosmological constant. The quantization of the
model, to account for its behavior near the cosmological
singularity, has been performed according to the Kuchař-
Torre approach, relying on a basic dualism between an
external clock and the presence of a real dust fluid in the
model evolution. The weak point of such a viable per-
spective to construct a physical time in quantum gravity
consists, in general, of the nonpositive definite nature of the
dust energy density, emerging from the implementation of
an external time (this fact reflects the nonpositive character
of the super-Hamiltonian eigenvalue). However, in the
considered model, this shortcoming of the dualism time
dust is fully overcome, since the energy of the dust is
always positive and this is a consequence of the negative
value of the cosmological constant, which, from a purely
formal point of view, allows one to compare the universe
volume quantum dynamics to a harmonic oscillator, but
having a global minus sign.
Then, studying the behavior of quantum expectation

values and uncertainties, we get the very surprising and
valuable issue of a big-bounce cosmology. What makes our
model physically meaningful is the existence of a sponta-
neous classical limit, associated with the same harmonic
structure removing the singularity. The quadratic potential
associated with the negative cosmological constant is
responsible for a localization of the physical quantum
states near the classical trajectory, as the Universe has a
sufficiently large volume.
These two important features of the model, i.e., the

presence of a big bounce near the classical location of the
singularity and the natural classical limit of the expanded
Universe, together with the turning point in the Universe’s
late time evolution that the negative cosmological constant
induces in the classical dynamics, suggest that our Bianchi
I cosmology is an intriguing candidate for a cyclic universe.
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FIG. 7. The behavior of the quantity V�
IX=jEj as a function of

jEj evaluated in correspondence to the bounce. The role of the
Bianchi IX potential term becomes more and more marginal with
the increase of the dust energy.
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This issue is in itself a remarkable scenario, but our
interest in the constructed picture is actually for the
potential degree of generality it could represent. In fact,
in Sec. III, we inferred that the behavior of the Bianchi type
I model can be extended, under suitable conditions (i.e., a
sufficiently large value of the parameter E) to the most
general Bianchi type IX cosmology, which is a good
prototype for the generic cosmological Universe. In other
words, it is a natural guess that the implementation of an
evolutionary quantum gravity in the presence of a small
negative cosmological constant can lead to a nonsingular
cyclic universe even when we are referring to it as a generic
inhomogeneous universe. According to the BKL conjecture
[41] and to its quantum implementation (the so-called long-
wavelength assumption), for each sufficiently small neigh-
bor of a space point, physically corresponding to the
cosmological horizon, the dynamical evolution is qualita-
tively that one of a Bianchi IX universe. Thus, we trace in
the present analysis the basic dynamical features that could
regularize the cosmological problem, without explicitly
including an ultraviolet cutoff in the canonical Wheeler-
DeWitt quantization of the system. Now we should shed
light on the physical mechanism at the bottom of the
dynamical picture traced above and, in this respect, we
investigate which of our ingredients is related in the model
to a cutoff physics.

V. PHYSICAL INTERPRETATION
OF THE BIG BOUNCE

In this section we show how central the presence of the
negative cosmological constant is for the appearance of the
big bounce. To this aim we analyze here an evolutionary
Bianchi I model without the negative cosmological con-
stant and we consider a cutoff polymer dynamics that
makes discrete the isotropic variable ρ in order to show how
the behavior of the quantum expectation values of the
previous section and the behavior of the polymer semi-
classical dynamics are equivalent. This equivalence testifies
the fact that the negative cosmological constant plays the
role of a cutoff physics. The model is analyzed in the same
configurational space variables fρ; βþ; β−g and the physi-
cal choice is to define the isotropic variable ρ as a discrete
variable and to leave unchanged the anisotropies fβþ; β−g.
We consider the polymer modification at a semiclassical
level. This means that we are working with a modified
super-Hamiltonian constraint obtained as the lowest order
term of a WKB expansion for ℏ → 0 of the full polymer
quantum problem [24,25]. This procedure formally consists
in the replacement

p2
ρ →

2

μ2
½1 − cosðμpρÞ�; ð65Þ

where μ is the polymer scale, or equivalently the lattice
spacing for the variable ρ. From the substitution (65) the
super-Hamiltonian becomes

Hp ¼ −
3

16πμ2
½1 − cosðμpρÞ� þ

p2þ þ p2
−

24πρ2
; ð66Þ

and again the super-Hamiltonian constraint is

Hp ¼ E: ð67Þ

As in the previous case, we can solve the semiclassical
polymer dynamics by making use of the Hamiltonian
equations

(
_ρ ¼ ∂Hp

∂pρ
¼ − 3

16πμ sinðμpρÞ

_pρ ¼ − ∂Hp

∂ρ ¼ p2
þþp2

−
12πρ3

ð68Þ

and the constraint (67). This way we obtain the following
second order differential equation:

ρ̈þ
ðp2þ þ p2

−Þð1 − 2μ2ðp2
þþp2

−Þ
9ρ2

þ 16
3
πμ2EÞ

64π2ρ3
¼ 0: ð69Þ

It is not possible to individuate an analytical solution for the
differential equation above, and then we perform a numeri-
cal integration. In order to find a link between the presence
of a negative cosmological constant and the polymer scale
we make a comparison between the classical and quantum
models analyzed in Sec. II and this new semiclassical
polymer model. We impose that the initial condition for the
numerical integration of the differential equation (69) is
exactly equal to hρi0 adopted in Fig. 3, i.e., we are arguing
that the initial condition for the semiclassical evolutionary
polymer problem matches the expectation value of the
quantum evolutionary model in the correspondence of the
bounce determined in the previous section. In order to
perform this comparison we obviously choose the same
classical values for the parameters fpþ; p−; Eg and the
same corresponding parameters fk0�; k�þ; k�−g around which
we have built the wave packets that we have used in Sec. II.
The only free parameter that we can fix is the polymer
scale μ.
As we can see in Fig. 8 it is possible to individuate a

special value for the parameter μ for which the behavior of
ρðtÞ in the semiclassical polymer approach overlaps the
expectation value hρit in the quantum evolutionary theory.
Furthermore, as is expected for every kind of polymer
approach, for late times the semiclassical polymer trajec-
tory overlaps the classical one. In this way we show that
near the singularity in the context of the evolutionary
theory, a negative cosmological constant acts the same way
as a polymer modification related to the isotropic variable,
i.e., a cutoff physics.
It is possible to deepen the connection between the

negative cosmological constant and the polymer scale
making use of several numerical integrations related to
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different choices of the parameter values and seeing, time
after time, if there is a general law. In Fig. 9 the behavior of
log μ as a function of log

ffiffiffiffi
Λ

p
is shown, where the values of

the numerical integration parameters fk0; kþ; k−g used for
evaluating the expectation value (59) (and obviously the
correspondent polymer integration parameters fpþ; p−; Eg)
are fixed for each line. As we can see, the slope of the lines is
always the same, independently from the choice of the
parameters, and it is equal to− 1

2
. It means that a universal law

exists such that

log μ ¼ logαk −
1

2
log

ffiffiffiffi
Λ

p
→ μ2

ffiffiffiffi
Λ

p
¼ α2k; ð70Þ

where the constant αk ¼ αk0;kþ;k− depends on the values
assigned to the parameters.

VI. CONCLUDING REMARKS

The main merit of the present work is in demonstrating
how a rather general scenario for a cyclical universe can be
recovered even within the metric canonical quantum
approach, as far as a well-defined evolutionary theory is
taken into account.
The basic ingredient of our approach is the small

negative cosmological constant, which is responsible for
the classical turning point, but, overall, it induces a
harmonic oscillator morphology in the quantum universe
volume dynamics. The Bianchi I cosmology we addressed
here allows the simultaneous manifestation of significant
properties, like the big bounce, the existence of a well-
defined classical limit, and the positive character of the dust
energy density, playing the role of a clock. However, what
makes the present issues intriguingly cosmologically mean-
ingful is the possibility to extend this picture to the Bianchi
IX universe. In fact, this property suggests that the
considered minisuperspace scheme can be generalized to
the generic inhomogeneous cosmological problem. As far
as we implement the long-wavelength approximation to the
inhomogeneous quantum dynamics, we can factorize the
Wheeler superspace into the local minisuperspaces, asso-
ciated with space point neighbors. From a physical point of
view, we can speak of causal regions evolving, independ-
ently of each other, according to the nonsingular cyclic
dynamics we traced above. The implementation of the
present ideas to a generic inhomogeneous universe, as well
as the characterization of the role played by the matter,
especially the radiation component, during the classical
evolution, constitutes the natural perspective of the present
analysis.
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APPENDIX: DERIVATION OF THE
SUPER-HAMILTONIAN FOR THE BIANCHI I
MODEL IN THE PRESENCE OF A NEGATIVE

COSMOLOGICAL CONSTANT

In this appendix we provide a brief derivation of the
super-Hamiltonian (1) and we study the Bianchi I and
Bianchi IX model, respectively the simplest and most
general homogenous but anisotropic model. A generic
homogeneous model with space-time metric gij has to
preserve the invariance of the spatial line element under a
suitable group of transformations. This means that the
spatial line element

k'=7,k+=k–=0.05

k'=15,k+=k–=0.05

k'=21,k+=k–=0.5

k'=20,k+=k–=0.1
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FIG. 9. The behavior of the polymer scale μ as a function of
log

ffiffiffiffi
Λ

p
. It is evident that a law exists between the polymer scale

and the negative cosmological constant, independently from the
choice of the parameters.
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FIG. 8. The black points represent the expectation value hρit
evaluated via numerical integration for the following choice of
the integration parameters: Λ ¼ 10−20, k0� ¼ 20, k�þ ¼ k�− ¼ 0.1,
σþ ¼ σ− ¼ 0.01, σ ¼ 0.88. The continuous red line represents
the classical trajectory while the green line represents the semi-
classical polymer trajectory, where the polymer scale is fixed with
the choice μ ¼ 3.08 × 105.
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dl2 ¼ hαβðt; xÞdxαdxβ; ðA1Þ

under the isometry T∶ x → x0, has to be left invariant to
the three-dimensional metric hαβðt; xÞ so that in the
transformed line element

dl2 ¼ hαβðt; x0Þdx0αdx0β ðA2Þ

the spatial metric hαβðt; x0Þ ¼ hαβðt; xÞ. If we introduce
three spatial vectors flðxÞ; mðxÞ; nðxÞg that satisfy the
homogeneity condition, the metric hαβ can be expressed
in the form

hαβ ¼ a2ðtÞlαlβ þ b2ðtÞmαmβ þ c2ðtÞnαnβ; ðA3Þ

where aðtÞ, bðtÞ, cðtÞ are three different cosmic scale
factors along the three spatial directions. Consequently, the
vacuum Einstein equations in a synchronous reference and
for a generic homogeneous cosmological model are

8>>>>>><
>>>>>>:

−Rl
l ¼ ð _abcÞ:

abc þ 1
2ðabcÞ2 ½λ2l a4 − ðλmb2 − λnc2Þ2� ¼ 0

−Rm
m ¼ ða _bcÞ:

abc þ 1
2ðabcÞ2 ½λ2mb4 − ðλla2 − λnc2Þ2� ¼ 0

−Rn
n ¼ ðab_cÞ:

abc þ 1
2ðabcÞ2 ½λ2nc4 − ðλla2 − λmb2Þ2� ¼ 0

−R0
0 ¼ ä

a þ b̈
b þ c̈

c ¼ 0:

ðA4Þ

The constants ðλl; λm; λnÞ are called constants of structure
and they can only assume the values ð−1; 0; 1Þ. The form of
Eqs. (A4) takes into account the dynamics of the homo-
geneous models that are relevant near the singularity. In
particular, we can only consider, in Eqs. (A4), the behavior
of six models, called Bianchi I, II, VI, VII, VIII, and IX,
that belong to the so-called Bianchi classification [42]. This
classification contains all the nine possible models that
respect the homogeneity constraint in the same way as K ¼
f−1; 0; 1g identifies the possible symmetry types for
homogeneous and isotropic Friedmann-Robertson-Walker
(FRW) three-spaces. In particular, three of them, the
Bianchi I, the Bianchi V, and the Bianchi IX model,
represent the anisotropic generalization of the flat, open,
and closed FRW metrics, respectively.
Let us consider now a line element for a generic

homogeneous space-time in the ADM [29] form,

ds2 ¼ NðtÞ2dt2 − hαβdxαdxβ; ðA5Þ

where NðtÞ is the lapse function and where we redefined
the three scale factors faðtÞ; bðtÞ; cðtÞg in such a way as to
have a spatial line element of the form

dl2 ¼ hαβdxαdxβ

¼ ðeql lαlβ þ eqmmαmβ þ eqnnαnβÞdxαdxβ ¼ ηabω
aωb;

ðA6Þ

where we introduced the matrix ηab ¼ diagfeql ; eqm; eqng
and a set of three invariance forms ωa ¼ ωa

αdxα

with ωa
α ¼ flα; mα; nαg.

In order to introduce the dynamical character of the
gravitational field let us consider the Einstein-Hilbert action
in the presence of a negative cosmological constant,

S ¼ −
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ; ðA7Þ

where3 κ ¼ 8πG and R is the Ricci scalar. Let us start by
studying the variation of the previous action. It means that
we have to evaluate the determinant of the space-time
metric and the Ricci scalar for the particular case of the
homogeneous space-time represented in the line element
(A5). When we do this we obtain

δSg ¼ δ

Z
t2

t1

Lðqa; _qaÞdt ¼ 0; ðA8Þ

where t1 and t2 are two fixed instants of time with t1 < t2
and the Lagrangian L is of the form

L ¼ −
8π2

ffiffiffi
η

p
κ

�
1

2N
ð _ql _qm þ _ql _qn þ _qm _qnÞ − NR̄þ NΛ

�
:

ðA9Þ

In the Lagrangian (A9) we introduce the quantity η ¼
detðηabÞ ¼ eqlþqmþqn ¼ e

P
a
qa while R̄ represents the

three-dimensional Ricci scalar and it is connected with
the constants of structure in such a way that

ηR̄ ¼ −
1

2

�X
a

λ2ae2qa −
X
a≠b

λaλbeqaþqb

�
; ðA10Þ

where the indices fa; bg take values in fl; m; ng. The
choice of the constants of structure that appear in Eq. (A10)
determines the particular homogeneous model that we can
select inside the Bianchi classification.
From the Lagrangian (A9) we can obtain the

Hamiltonian of the system performing a Legendre trans-
formation. The conjugated momenta to the generalized
coordinate qa are the following,

3For the calculation in this appendix we use the natural units
c ¼ ℏ ¼ 1.
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8>>><
>>>:

pl ¼ ∂Lg

∂ _ql ¼ − 4π2
ffiffi
η

p
kN ð _qm þ _qnÞ

pm ¼ ∂Lg

∂ _qm ¼ − 4π2
ffiffi
η

p
kN ð _qn þ _qnÞ

pn ¼ ∂Lg

∂ _qn ¼ − 4π2
ffiffi
η

p
kN ð _ql þ _qmÞ;

ðA11Þ

and taking into account the transformation

NH ¼
X

a¼l;m;n

pa _qa − Lg; ðA12Þ

whereH is the super-Hamiltonian of the system, we can put
the action in the form

Sg ¼
Z

dt

�X
a

pa _qa − NH
�

ðA13Þ

with

H¼ k
8π2

ffiffiffi
η

p
�X

a

ðpaÞ2−
1

2

�X
b
pb

�
2

−
64π4

k2
ðηR̄þηΛÞ

�
:

ðA14Þ

A very useful set of generalized coordinates is repre-
sented by the Misner variables fα; βþ; β−g [4,20], i.e.,8>><

>>:
ql ¼ 2ðαþ βþ þ ffiffiffi

3
p

β−Þ
qm ¼ 2ðαþ βþ −

ffiffiffi
3

p
β−Þ

qn ¼ 2ðα − 2βþÞ:
ðA15Þ

With respect to the Misner variables the metric ηab assumes
the form

ηab ¼ e2αðe2βÞab → detðηabÞ ¼ e6α: ðA16Þ

It is possible to show that the variable α represents
the isotropic component of the Universe, being related to
the volume, while the matrix βab ¼ diagðβþ þ ffiffiffi

3
p

β−; βþ

−
ffiffiffi
3

p
β−;−2βþÞ accounts for the anisotropy of the system.

In terms of this new variable the action (A13) takes the
form

Sg ¼
Z

ðpα _αþ pþ _βþ þ p− _β− − NHÞdt; ðA17Þ

where

H ¼ k
3ð8πÞ2 e

−3αð−p2
α þ p2þ þ p2

− þ VÞ − 8π2Λ
κ

e3α

ðA18Þ

and the scalar curvature term becomes

V ¼ −
6ð4πÞ4
k2

ηR̄ ¼ 3ð4πÞ4
k2

e4αVðβ�Þ: ðA19Þ

The potential term Vðβ�Þ accounts for spatial curvature of
the model and is given by the expression

Vðβ�Þ¼λ2l ðe−8βþ−2e
4βþ Þþλ2mðeþ4ðβþþ

ffiffi
3

p
β−Þ−2e−2ðβþ−

ffiffi
3

p
β−ÞÞ

þλ2nðeþ4ðβþ−
ffiffi
3

p
β−Þ−2e−2ðβþþ

ffiffi
3

p
β−ÞÞ: ðA20Þ

When we choose the Bianchi I model we select a
homogeneous model with the three constants of structure
equal to 0, or in order words we are taking into account a
model with zero spatial curvature. When we do this the
Hamiltonian (A18) simply becomes

HI ¼
k

3ð8πÞ2 e
−3αð−p2

α þ p2þ þ p2
−Þ −

8π2Λ
κ

e3α: ðA21Þ

If now we make explicit k ¼ 8πG in the geometrical unit,
so (c ¼ G ¼ ℏ ¼ 1), the super-Hamiltonian (A21) reduces
to the super-Hamiltonian in Eq. (1).
Finally, for λm ¼ λm ¼ λm ¼ 1 we get the Bianchi IX

model and the potential (A9).
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