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We consider the inflationary model in which the inflaton ϕ couples to another scalar field χ via the
interaction g2ðϕ − ϕ0Þ2χ2 with a small coupling constant g (g2 ∼ 10−7). We assume that there is a sequence
of “trapping points” ϕ0i along the inflationary trajectory where particles of the χ field become massless and
are rather effectively produced. We calculate the power spectrum of inflaton field fluctuations originating
from a backreaction of χ particles produced using the Schwinger’s “in-in” formalism. We show that the
primary curvature power spectrum produced by these backreaction effects is blue, which leads to a strong
overproduction of primordial black holes (PBHs) in the subsequent radiation era.
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I. INTRODUCTION

In many recent works a large class of inflationary models
has been considered in which a generation of inflaton field
fluctuations in a course of inflation is implemented (partly, at
least) through an interaction between inflaton and other
quantum fields. In particular, in [1–9] the interaction
of the type

Lint ¼ −
g2

2
ðϕ − ϕ0Þ2χ2 ð1Þ

has been thoroughly exploited. Here, ϕ is the inflaton field,
and χ is some other scalar field. It has been shown that the
interaction of this type leads to a particle creation during
inflation because when ϕ, in a process of slow roll, comes
nearer to ϕ0, the particles of the χ field become massless
and are effectively produced. During the short time interval
of χ-particle production, a feature in the power spectrum of
scalar curvature fluctuations is generated. In early works [2]
(and, also, in [4]) the process has been studied in the mean-
field approximation (i.e., the variance hχ2i, solely, has been
used to quantify the backreaction of χ particles, produced
during inflation, on the inflaton field). In subsequent works
the calculations were refined, going beyond the mean-field
treatment. Methods used for the calculation include (i) the
analytic description of particle creation with the coupling (1)
developed in the theory of preheating after inflation [10,11],
(ii) cosmological perturbation theory for the field equations
(see, e.g., [12]) (the method is used in [6,7]) and
(iii) Schwinger’s “in-in” formalism generalized to compute
cosmological perturbations (this method is used in [8,9]).
In the present work we calculate the power spectrum of

inflaton field fluctuations originating from a backreaction of
χ particles produced during inflation, via the coupling (1), on

the inflaton field.We studied, in contrast with [5–7], only the
case of weak coupling, g2 ∼ 10−7, and, exclusively, the
region of small scales, k=H ≫ 1 (k is the comoving wave
number,H is the Hubble parameter during inflation, and the
scale factor a is equal to 1 at the initial time of the inflation
era). If g2 is so small, the “trapped inflation” scenario [3,5] is
ineffective [6], but just for this region of g2 values, the
interesting phenomenon was predicted in [8]. Namely,
authors of [8] (see also [13]) argued that in a case of closely
spaced trapping points, i.e., if we have a sequence of points
ϕ0;i (i ¼ 1;…; n) where particles χi become massless, the
total (accumulative) power spectrum of inflaton fluctuations
at small scales would be blue. This conclusion is important
because such small scale fluctuationsmight effect primordial
black hole (PBH) formation when the fluctuations cross the
horizon inside after the end of inflation.
The approach used in the present work is, technically,

rather similar to those of Refs. [14–16]. In these works the
original scenario of stochastic inflation [17] had been
reformulated using functional methods. In [14–16], as in
[17], the Fourier components of the inflaton field, as a
whole, are split into long-wavelength modes (with wave-
lengths a=k longer than the horizon scale H−1) and short-
wavelength ones. This splitting is performed now at the
action level, and short wavelengths are integrated out via a
path integral over the subhorizon part of the whole field.
The long-wavelength modes of the field are assumed to be
classical, but long-short couplings (due to a time depend-
ence of the window function, in particular) yield the
semiclassical correction to their equation of motion. In
our case, the key difference with this approach is that,
instead of the short-wavelength part of the inflaton field, we
have the independent field χ interacting with the inflaton
field. Furthermore, in our case the inflaton field is not
coarse-grained by the splitting of its own modes; the
semiclassical corrections to the equation of motion for
modes of the inflaton field arise due to loops of the χ field
only. This approach, in application to calculations of the
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power spectrum of inflaton fluctuations, is justified if the
correction to this spectrum from these loops is formed at
around a time when the corresponding mode exits the
horizon.
For concrete calculations, in this paper we use the closed-

time-path (CTP) functional formalism of Schwinger and
Keldysh [18]. The application of this formalism to cosmo-
logical problems had been suggested in pioneering works by
Calzetta and Hu [19] and Jordan [20]. It is well known (see,
e.g., [21,22]) that this formalism is especially useful for
studying cosmological backreaction problems. Most impor-
tantly, this approach, which operates with the in-in effective
action, yields the real and causal equations of motion
describing a time evolution of the system (inflaton scalar
field, in our case). Furthermore, the CTP functional formal-
ism is closely related to the influence functional formalismof
Feynman and Vernon [23] because in both methods the full
quantum system can be divided into two parts: the distin-
guished subsystem (the “open system” or, simply, the
“system”) and the remaining degrees of freedom (the
“environment”; in our case, this is the χ field). We are
interested in the state of the system as influenced by the
overall effect of the environment, so the environmental
degrees of freedom must be integrated out. It is easy to
verify that integrating out these variables in a CTP path
integral, the generating CTP functional can be expressed in
terms of the influence functional of Feynman and Vernon.
Correspondingly, in the semiclassical approximation, the
effective CTP action is expressed through the influence
action.
The influence of the environment on the (open) system

is, by definition, the backreaction effect. The influence
action is, in general, complex; its real part contains the
dissipational kernel, which yields the dissipative terms in
the effective equations of motion. The imaginary part
contains the noise kernel accounting for the fluctuations
induced on the system through its coupling to the envi-
ronment (here we use the terminology of [21,22]).
As is well known, the dynamical evolution of the (open)

system is not deterministic; even in the semiclassical
approximation, it is, in general, stochastic [21,22]. This
is well illustrated by the quantum Brownian model [24,25],
in which the Feynman-Vernon idea of a stochastic force
from the environment acting on the system was exploited.
In this approach, the time evolution of the system’s degrees
of freedom is described by the Langevin equation.
The kernels of the influence action of two interacting

quantum fields in de Sitter space was found in a pioneering
work by Hu, Paz and Zhang [26]. Later, similar influence
actions and functionals were considered in [27,28] (in
Minkowski space), in [29], in warm inflation models (see
[30] and references therein), and in works on effective field
theory [31].
Naturally, the backreaction of the environment on the

open system cannot be too strong, so as to make the
separation scheme meaningless. In our case the open

system is the inflaton field; i.e., we consider the scenario
of effective single field inflation. The backreaction is
significant during the time Δt when the χ field is light,
so the condition for a reasonable separation isHΔt≲ 1 [7],
where H is the Hubble parameter during inflation.
If the environmental scalar field is minimally coupled to

gravity and nearly massless (and this is just the case
considered in the present work), an additional problem
connected with infrared divergences arises. The kernels of
the influence action are expressed through the momentum
integrals. In particular, a one-loop contribution from inte-
grating out the environment field is given by momentum
integrals over the product of fourmode functions of this field.
These integrals are divergent in the massless limit (see,
e.g., [32]).
The main feature of massless, minimally coupled

(MMC) scalar fields is the absence of normalizable de
Sitter invariant states; in other words, there is no de Sitter–
invariant Fock vacuum state [33,34]. In particular, the
Bunch-Davies vacuum breaks the de Sitter invariance,
when m ¼ ξ ¼ 0. The consequences of this breaking that
are important for us include the following: (i) the mean
squared fluctuations of the MMC field grow linearly with
time during inflation [35], and (ii) the de Sitter–invariant
two-point function (propagator) becomes infrared divergent
in the limit m ¼ ξ ¼ 0 [36].
For a regularization of the infrared divergence we use, in

the mode expansion of the χ field, the comoving infrared
cutoff Λ [37,38]. We put Λ ¼ H; this cutoff value is very
natural [39–41] if we want to set initial conditions for all
modes at the beginning of inflation because the physics
inside of the initial Hubble radiusH−1 cannot determine the
initial conditions for super-Hubble modes (clearly, there is
no causal process for preparing the initial state in a space
box having a size larger than the horizon).
As a result of our work, we obtain a qualitative

confirmation of the main conclusion of [8] about the
blueness of the power spectrum at small scales. Our
calculation, however, differs from those of [8] in some
important ways. In particular, we were not able to derive
and use their basic formula for the power spectrum.
Furthermore, our results are quite sensitive to a value of
the infrared cutoff parameter Λ (see below), while we do
not see anything similar in the formulas of [8]; in particular,
their final expression for the noise-driven power spectrum
does not contain the infrared cutoff explicitly.
The plan of the paper is as follows. In the second section

we formulate our theoretical approach and obtain the
equation for the amplitude of inflaton field fluctuations
needed for a power spectrum calculation. The third section
contains the derivation of the power spectrum formula. In
the last section we present the results of our power
spectrum calculations and the main conclusions about
constraints on the parameters of the model following from
PBH overproduction predictions.
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II. EFFECTIVE ACTION AND
LANGEVIN EQUATION

As stated in the Introduction, we use the CTP
formalism of Schwinger and Keldysh [18] and the influ-
ence functional method of Feynman and Vernon [23]. Our
Lagrangian is

L ¼ 1

2
gμν∂μϕ∂νϕþ 1

2
gμν∂μχ∂νχ − VðϕÞ − g2

2
ϕ2χ2;

ϕ ¼ Φ − Φ0: ð2Þ

The splitting between the system and the environment in
our case is as follows: the system sector contains all the
modes of the inflaton field ϕ, and the environment
contains the modes of the massless scalar χ field
with physical wavelengths shorter than the critical
length λc ¼ 2π=Λ at the initial conformal time ηi. We
set aðηiÞ ¼ 1, so a physical length λphys ¼ aðηÞλ coin-
cides with the comoving length λ at η ¼ ηi. We
approximate the space-time during inflation by a de
Sitter metric,

ds2 ¼ a2ðηÞðdη2 − d~x2Þ; aðηÞ ¼ −1
Hη

: ð3Þ

The generating CTP functional is defined by introducing
sources for the ϕ field modes only:

eiWCTP½Jþ;J−� ¼
Z

dϕfdϕ
þ
i dϕ

−
i

×
Z

ϕf

ϕþ
i

Dϕþ
Z

ϕf

ϕ−
i

Dϕ−

× eiðS0½ϕþ�−S0½ϕ−�þJþϕþ−J−ϕ−þSIF½ϕþ;ϕ−;∞�Þ

· ρϕðϕþ
i ;ϕ

−
i ; tiÞ: ð4Þ

Here, ρϕ is the initial density matrix for the ϕ field.
The expressions for free field actions and for the action

describing the interaction of the fields are given by

Sint½ϕ; χ� ¼ −
g2

2

Z
d4xa4ðηÞϕ2χ2; ð5Þ

S0½ϕ� ¼
Z

d4xa2ðηÞ
�
ϕ02

2
−
ð∇ϕÞ2

2
− a2ðηÞVðϕÞ

�
; ð6Þ

S0½χ� ¼
Z

d4xa2ðηÞ
�
χ02

2
−
ð∇χÞ2
2

�
: ð7Þ

The influence action is expressed by the formula

eiSIF½ϕþ;ϕ−;tf � ¼
Z

dχfdχ
þ
i dχ

−
i

×
Z

χf

χþi

Dχþ
Z

χf

χ−i

Dχ−

× eiðS0½χþ�þSint½ϕþ;χþ�−S0½χ−�−Sint½ϕ−;χ−�Þ

· ρχðχþi ; χ−i ; tiÞ; ð8Þ

where ρχ is the initial density matrix for the χ field. The
CTP or in-in effective action containing all quantal cor-
rections to the field expectation value is given by

Γðϕþ;ϕ−Þ ¼ WCTP½Jþ; J−� − Jþϕþ þ J−ϕ−; ð9Þ

ϕ� ¼ δWCTP½Jþ; J−�
δJ�

: ð10Þ

In the semiclassical approximation, when loops of the ϕ
field can be neglected and the density matrix ρϕ is diagonal,
the expectation values of the ϕ field modes are described, as
follows from Eqs. (4) and (9), by the CTP effective action

ΓCTP½ϕþ;ϕ−� ∼ S0½ϕþ� − S0½ϕ−� þ SIF½ϕþ;ϕ−�: ð11Þ

Here we suppose that an evolution of the system field
becomes semiclassical (for long-wavelength modes) due to
the interaction with the environment (see [42–44] and [45]
and references therein). The imaginary part of the influence
action drives the system to this semiclassical behavior, in
the course of fast inflationary expansion. The time of
decoherence is proportional to a4g4 [26].
In the CTP formalism, the time integration in the

expressions for actions S is carried out along the closed
path going from the initial time to þ∞ and back. Field
values generally are not considered to be the same on the
forward and backward parts of the contour, which is
equivalent to doubling of degrees of freedom, i.e., consid-
ering two fields, ψþ and ψ−. In formulas below we will use
the linear transformation (Keldysh rotation), which leads to
two new fields ϕc and ϕΔ, defined by

ϕc ¼
1

2
ðϕþ þ ϕ−Þ; ϕΔ ¼ ϕþ − ϕ−: ð12Þ

The influence action SIF is calculated perturbatively (see,
e.g., [27,46–48]); we keep the terms proportional to g2 and
g4. The inclusion of the terms of order g4 is crucial because
this is the lowest order at which an imaginary part of the
action appears. Just this part determines the stochastic
forces in the equation of motion for the system field. The
influence action SIF½ϕc;ϕΔ� is given by the following
formulas, separately for its real and imaginary parts:
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ImSIF ¼ g4
Z

d4x
Z

d4x0ϕΔðxÞϕcðxÞϕΔðx0Þϕcðx0Þ

× ReGΛ2þþðx; x0Þ; ð13Þ

ReG2þþðx; x0Þ ¼ −
1

2
fhχðxÞχðx0Þi2 þ hχðx0ÞχðxÞi2g; ð14Þ

ReSIF ¼ g2
Z

d4xϕcðxÞϕΔðxÞiGΛþþðx; xÞa4ðηÞ

−
g4

2

Z
d4x

Z
d4x0ϕΔðxÞϕcðxÞ½ϕ2

Δðx0Þ þ 4ϕ2
cðx0Þ�

· ImGΛ2þþðx; x0Þ · θðη − η0Þ; ð15Þ

ImG2þþðx; x0Þ ¼ −ðθðη − η0Þ − θðη0 − ηÞÞ

×
1

2i
fhχðxÞχðx0Þi2 − hχðx0ÞχðxÞi2g: ð16Þ

In these relations, the function Gþþðx; x0Þ is the real time
propagator [49,50] of the χ particles on the contour,

Gþþðx; x0Þ ¼ ihTχðxÞχðx0Þi: ð17Þ

The upper index Λ in the propagator symbols in Eqs. (13)
and (15) signifies a necessity of the cutoff in integration
over inner momenta.
The real part of the square of the propagator needed for a

calculation of the imaginary part of SIF can be obtained if
mode functions of the χ field, χ~qðη; ~xÞ, are known:

ReGΛ2þþðη;η0; ~kÞ¼−ð2πÞ3
Z
q>Λ

d3q
Z
q0>Λ

d3q0δð~qþ ~q0− ~kÞ

·RefχqðηÞχ�qðη0Þχq0 ðηÞχ�q0 ðη0Þg; ð18Þ

χ~qðη; ~xÞ ¼ χqðηÞei~q ~x: ð19Þ

For the environment χ field we assume the Bunch-Davies
vacuum, i.e.,

χqðηÞ ¼
1

ð2πÞ3=2
e−ikη

aðηÞ ffiffiffiffiffiffi
2q

p
�
1 −

i
qη

�
: ð20Þ

The integration in (18), using (20), reduces to calculations
of integrals of the form [51]

Z
q>Λ

d3q
Z
q0>Λ

d3q0δð~qþ ~q0 − 2~k0Þ ·
cos½ðqþ q0Þðη − η0Þ�

qnqm

¼ π

kmþn−3
0

�Z
∞

Λ
k0
þ2

du
un−1

Z
uþ2

u−2

dz
zm−1 cosðk0ðη − η0Þðuþ zÞÞ

þ
Z Λ

k0
þ2

Λ
k0

du
un−1

Z
uþ2

Λ
k0

dz
zm−1 cosðk0ðη − η0Þðuþ zÞÞ

�
:

ð21Þ

The semiclassical equation of motion for the system field
is obtained by extremizing the CTP effective action ΓCTP,

δΓCTP

δϕΔ

����
ϕΔ¼0

¼ 0: ð22Þ

This is the average equation ofmotion; it has to be interpreted
as an average over random (stochastic) forces. Such an
interpretation was suggested many years ago, in studies of
quantumBrownianmotion [24] by the Feynman and Vernon
method. To take these stochastic forces into account, one
must keep in mind the imaginary part of the effective action
[Eq. (13)] which is, to lowest order, quadratic in ϕΔ and, for
this reason, does not contribute to the average equation. A
standard trick for this aim is the use of the Hubbard-
Stratonovich transformation [52], which introduces an aux-
iliary random field ξðxÞ. Namely, the imaginary part of the
effective action is rewritten in the form

e−ImSIF ¼
Z

DξP½ξ�e−i
R

d4xϕcðxÞϕΔðxÞξðxÞ

≡ he−i
R

d4xϕcðxÞϕΔðxÞξðxÞiξ: ð23Þ

Here,P½ξ� is a normalized probability distribution on a space
of functions ξðxÞ,

P½ξ� ¼ Ne−
1
2

R
d4x

R
d4x0ξðxÞν−1ðx;x0Þξðx0Þ: ð24Þ

The kernel ν−1ðx; x0Þ is defined by the relation

νðx;x0Þ¼g4a4ðηÞa4ðη0ÞReGΛ2þþðx;x0Þ¼ hξðxÞξðx0Þiξ: ð25Þ

After this transformation one obtains the stochastic effective
action

ΓCTP½ϕc;ϕΔ� ¼ ReΓCTP½ϕc;ϕΔ� −
Z

d4xϕcðxÞϕΔðxÞξðxÞ:

ð26Þ

Statistical averages are defined as functional integrals over
the ξðxÞ field, i.e., the averages over all realizations of ξðxÞ,
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hð…Þiξ ¼
Z

D½ξ�PðξÞð…Þ: ð27Þ

It follows from Eqs. (13) and (25) that a correlation of the
random forces is determined by an imaginary part of the
influence action.
The functional variation of the stochastic effective action

leads to the stochastic Langevin equation for the system
(inflaton) field [8]. Decomposing ϕ on the mean field and
the classical perturbation

ϕðη; ~xÞ ¼ ϕ0ðηÞ þ δϕðη; ~xÞ; ð28Þ

one obtains, finally, the linearized Langevin equation for
the inflaton perturbation

δϕ00ð~k; ηÞ þ 2aHδϕ0ð~k; ηÞ þ k2δϕð~k; ηÞ þ a2m2
ϕδϕð~k; ηÞ

¼ g2

a2
ϕ0ξ; ð29Þ

m2
ϕ ¼ d2V

dϕ2
0

þ g2hχ2i: ð30Þ

Here, the hχ2i factor arises from the relation

GΛþþðx; x0Þ ¼ ihTχþðxÞχþðx0Þi !x→x0
ihχ2i: ð31Þ

Equation (29) contains, in its right-hand side, the term
proportional to ξðxÞ [this term is absent in the average
Eq. (22)], which is the fluctuation induced by the (colored)
stochastic noise.
Note that deriving the stochastic Langevin equation (29),

we neglected the dissipative term, proportional to
g4ImGΛ2þþ, hoping that it does not lead to a large error
due to a small value of g2.

III. NOISE-DRIVEN POWER SPECTRUM
OF INFLATON FLUCTUATIONS

The power spectrum of the quantum field fluctua-
tions δϕ is the function Pϕðk; ηÞ, which is given by the
relations

hδϕð~x; ηÞδϕð~xþ ~r; ηÞi ¼
Z

d3k
ð2πÞ3 Pϕðk; ηÞe−i~k ~r; ð32Þ

Pϕðk; ηÞ≡ 2π2k−3Δ2
ϕðk; ηÞ: ð33Þ

The particular solution of Eq. (29) in a case when mϕ ≈ 0

is given by the formulas (see, e.g., [51])

δϕðpÞðk; ηÞ ¼ −
Z

η

ηi

dη0gðk; η; η0Þξðk; η0Þϕ0ðη0Þ; ð34Þ

gðk; η; η0Þ ¼ 1

aðηÞaðη0Þ
�
sin kðη − η0Þ

k
·

�
1þ 1

k2ηη0

�

−
cos kðη − η0Þ

k2ηη0
ðη − η0Þ

�
: ð35Þ

Using Eq. (34), the spectrum quantity Δ2
ϕðk; ηÞ is

obtained from the integral

2π2

k3
Δ2

ϕðk; ηÞδð~k − ~k0Þ

¼
Z

η

ηi

dη0
Z

η

ηi

dη00ϕ0ðη0Þϕ0ðη00Þhξðk; η0Þξðk0; η00Þiξ
× gðk; η; η0Þgðk0; η; η00Þ: ð36Þ

The ξ correlator in rhs of Eq. (36) is expressed through
the Fourier transform of the ξ correlator in ð~x; ηÞ space
[Eq. (25)],

hξðk; η0Þξðk0; η00Þiξ ¼ ð2πÞ3δð~k − ~k0Þg4a4ðη0Þa4ðη00Þ
× ReGΛ2þþðη0; η00; kÞ: ð37Þ

Using this equation, the noise-driven power spectrum can
be expressed as

Δ2
ϕðkÞ¼−

g4k3

π2

Z
η

ηi

dη0
Z

η

ηi

dη00a4ðη0Þa4ðη00Þϕ0ðη0Þ

×ϕ0ðη00Þgðk;η;η0Þgðk;η;η00ÞReGΛ2þþðη0;η00;~kÞ: ð38Þ

The spectrum in Eq. (38) is, in general, not scale
invariant due to a finite duration of the inflation stage
and, also, due to existence of the (infrared) cutoff Λ.
Really, one can rewrite Eq. (38) in a form [51,53]

Δ2
ϕðkÞ ¼ −

g4

π2

Z
kη

kηi

dz0

ðz0Þ4
Z

kη

kηi

dz00

ðz00Þ4 ϕ0ðη0Þϕ0ðη00Þfðkη; z0Þ

× fðkη; z00ÞF
�
z0; z00;

Λ
k

�
; ð39Þ

fðkη; z0Þ≡ k3H−2gðk; η; η0Þ
¼ ðz0kηþ 1Þ sinðkη − z0Þ
− ðkη − z0Þ cosðkη − z0Þ; ð40Þ

F

�
z0; z00;

Λ
k

�
≡ k3H−4ReGΛ2þþðη0; η00; ~kÞ: ð41Þ

Note, once more, that this relatively simple spectrum
formula is obtained in a massless limit: it is assumed that
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bothmϕ andmχ are close to zero (m2
ϕ;χ ≪ H2). In this case,

the corresponding mode functions are given by for-
mula (20). It was shown in [8] that the approximation of
massless fields is justified if HΔt ≅ 1, where Δt is a time
scale on which the particle production happens, Δt ∼
ðg _ϕÞ−1=2 [3,5,11]. The number density of the χ particles
produced is estimated as mχhχ2i, and, for a massless field,
hχ2i ≅ H3t=ð4π2Þ [35]. The effective mass of χ is equal to
g2ϕ2

0, as follows from the coupling term in Lagrangian (2),

m2
χ ¼ g2ϕ2

0 ≈ g2 _ϕ2ðt0 − tÞ2: ð42Þ

Here we assume, for simplicity, that _ϕ is approximately
constant during the slow-roll period of inflation. Near the
moment t ¼ t0 (t0 is the time when the inflaton field
reaches the trapping point) the χ particles are almost
massless and the particle production process is effective.
It follows from Eq. (42) that, if HΔt ≅ 1, m2

χ ≪ H2 inside
the time interval Δt, and the number density of the χ
particles is nχ ∼mχhχ2i ∼H3 ∼ ðΔtÞ−3. The effective mass
of ϕ is about g2hχ2i, which is also rather small due to the
smallness of the coupling constant.
It follows from these arguments that for a calculation of

the noise-driven power spectrum using Eq. (38), we must
limit ourselves (for each trapping point) by the integration
over those η’s which correspond to cosmic times t close to
t0. Following [8], we approximate ϕ0ðηÞ by the relation

ϕ0ðηÞ ¼
v
H
ln

η

η0
; ð43Þ

where η0 is the conformal time corresponding to t0, i.e.,
η0 ¼ −1=aðt0ÞH, and v is the slow-roll velocity of ϕ0,
v ¼ j _ϕj. Using this approximation, the integration region in
(38) for each trapping point reduces to the interval

η0eHΔt=2 < η0; η00 < η0e−HΔt=2: ð44Þ

IV. RESULTS AND DISCUSSIONS

Calculating the power spectrum in which we are inter-
ested, mostly, in the region of rather large comoving wave
numbers, k ≫ H. It appears that the spectrum expression is
rather sensitive to a value of Λ, if k ≫ Λ. The cutoff value
enters the spectrum expression through the factor ReGΛ2þþ,
in which the leading term at large ratio k=Λ is proportional
to ðk=ΛÞ2 [51]:

ReGΛ2þþðη0;η00; ~kÞ∼
H4

k3

�
k
2Λ

�
2

cos

�
2Λ
k
ðkη0−kη00Þ

�
: ð45Þ

As discussed in the Introduction (see also [54]), an
infrared cutoff is necessary to avoid an infrared singularity
in the free propagator associated with a minimally coupled
massless scalar field in de Sitter geometry. We assume,
following [36], that the reasonable cutoff value Λ is close
to H.
The results of the power spectrum calculation (for one

trap and different values of g2 and Λ) are shown in Figs. 1
and 2. Note that the peak value of the power spectrum shifts
with a change of the trap position η0 in such a way that
kpeakη0 ∼ 1. This means that the power spectrum is formed
in the near-horizon region, where the inflaton field can be
considered as classical, and, therefore, our semiclassical
approach is justified.
The accumulative power spectra for a series of equally

spaced traps (with interval ΔN, in e-foldings, between
them) are shown in Figs. 3 and 4. It is seen that the
accumulative power spectrum is blue. As seen from Fig. 4,
it is more or less wiggly, depending on the relation between
ΔN and HΔt (we always assume ΔN ≥ HΔt).
The resulting power spectrum obtained from Figs. 3 and

4 (approximating the curves by its envelope) can be
described by the following formula:
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FIG. 1. Curvature perturbation power spectra generated by a single trap at N ¼ 10 (N is the e-fold number, counting from the
beginning of inflation). Left panel: g2 ¼ 10−9 (HΔt ¼ 0.3, upper curve); g2 ¼ 10−5 (HΔt ¼ 3, lower curve). For both curves, Λ ¼ H.
Right panel: g2 ¼ 10−7 (HΔt ¼ 1). Upper curve: Λ ¼ 0.1H. Lower curve: Λ ¼ H.
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PζðkÞ¼
�
H
v

�
2

Δ2
ϕ≈αg2

�
k
H

�
2

; α≈5×10−14: ð46Þ

This form of the k dependence of PζðkÞ is similar to the
analogous dependence predicted in [8] (see [55] where the
numerical results of [8] were parametrized).
Now it is convenient to rescale the scale factor

and, correspondingly, the comoving wave number, set-
ting a ¼ 1 at the present time (rather than a ¼ 1 at the
initial time of the inflation era, as was set before). After
this rescaling Eq. (46) is rewritten as

PζðkÞ ≈ αg2
�

k
Hastart

�
2

; α ≈ 5 × 10−14; ð47Þ

where astart is a scale factor at the beginning of inflation.
It is related to a scale factor at the end of inflation, aend,
by the formula

aend
astart

¼ eNinf ; ð48Þ

where Ninf is the total number of e-folds during
inflation. The value of aend can be easily estimated
by the approximate equation

aend ¼ aeq
Teqffiffiffiffiffiffiffiffiffiffiffiffi
MPlH

p ; ð49Þ

where aeq and Teq are the scale factor and temperature of
the Universe at the time of the matter-radiation equality
(Teq ∼ 3 eV). As a result, the spectrum amplitude contains
the factor expð2NinflÞ=H. Observations at cosmologically
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FIG. 2. Curvature perturbation power spectra generated by a single trap at N ¼ 20. Left panel: g2 ¼ 10−9 (HΔt ¼ 0.3, upper
curve); g2 ¼ 10−5 (HΔt ¼ 3, lower curve). For both curves,Λ ¼ H. Right panel: g2 ¼ 10−7 (HΔt ¼ 1). Upper curve:Λ ¼ 0.1H. Lower
curve: Λ ¼ H.
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FIG. 3. Curvature perturbation power spectra generated by a
series of traps. Upper curve: g2 ¼ 10−7 (HΔt ¼ 1), ΔN ¼ 1.
Lower curve: g2 ¼ 10−9 (HΔt ¼ 3), ΔN ¼ 3. For both cases,
Λ ¼ H. Arrows show, for each curve, the position of k at which
g2ðk=ΛÞ ¼ 1.
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FIG. 4. Curvature perturbation power spectra generated by a
series of traps, for g2 ¼ 10−5 (HΔt ¼ 0.3), Λ ¼ H. The thin
curve is for ΔN ¼ 1; the thick one is for ΔN ¼ 0.3. Arrows show
the position of k at which g2ðk=ΛÞ ¼ 1.
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large scales (k≲ 10 Mpc−1) show (see, e.g., [56]) that
the amplitude of the primary power spectrum does not
exceed ∼10−9. To match this condition, the duration of
inflation in ourmodelmust not be too long (Ninf ≲ 70 ÷ 75)
and the energy scale of inflation must be rather
high (H ≳ 108 ÷ 1010 GeV).
It is important to check when (at which values of k and/or

PBH mass) the resulting power spectrum (47) reaches
values that are prohibited by the PBH overproduction. In
this work we assume that, roughly, PBHs are overproduced
when, for some value of k, PζðkÞ > PPBH

ζ where PPBH
ζ ∼

10−2 is the PBH production threshold (see, e.g., [57,58]).
Then, having the relation between k and horizon mass [58],

k ≈ 2 × 1023ðMh½g�Þ−1=2 Mpc−1; ð50Þ

and, assuming that, approximately, the PBH mass is of
order of the horizon mass, MBH ≈MhðkÞ, we obtain, from
Eq. (47), the corresponding border value of MBH,

MðbÞ
BH ≈

3 × 1014 GeV
H

· e2Ninf ·
αg2

PPBH
ζ

g: ð51Þ

Clearly, the production of PBHswithmassesMBH < MðbÞ
BH

is prohibited by the present constraints [57–60] if the power
spectrum grows with k as strongly as Eq. (47) predicts.
The resulting dependence of MðbÞ

BH on g2, Ninf and H is
shown in Fig. 5. It is seen that the inadmissibly large PBH
overproduction in the inflation model considered in the
present paper is predicted for all reasonable values of
parameters Ninf , H and for some interval of values of the
coupling constant g2. This is themain conclusion of the paper.
The model of inflation with trapping points (in a

particular case of the weak coupling constant g2) can
survive if, for some reason, the growth of the power
spectrum with an increase of k becomes gradually slower
and, finally, stops at some value Pζ;max < 10−2. One can
imagine two reasons, at least, for such a behavior: (i) an
account of the dissipation term in the influence action SIF
will, in general, lead to a damping of the power of high-k
modes [8] and (ii) an account of higher order terms in the
perturbative expansion (these terms correspond to diagrams
with two or more χ loops) also can change a form of the
spectrum. Our calculations based on perturbation theory are
reliable if g2ðk=ΛÞ≲; 1 (the corresponding value of k is
denoted by arrows in Figs. 3 and 4). So, parts of the
spectrum curves in these figures which are to the right of
the arrows have to be considered as extrapolations (hoping
that the accounting of higher order terms in g2 does not
slow down the growth of the spectrum).
Note, in the end, that our numerical results for the power

spectrum depend rather strongly on a choice of the infrared
cutoff value Λ (see Figs. 1 and 2). Another thing that is
worth mentioning is that power spectra from individual
trapping points are overlapped weakly, so the envelope
curve of the accumulative spectrum almost does not depend
on the spacing (see Figs. 3 and 4).
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