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Caustic singularity formations in shift-symmetric k-essence and Horndeski theories on a fixed
Minkowski spacetime were recently argued. In n dimensions, this singularity is the (n − 2)-dimensional
plane in spacetime at which second derivatives of a field diverge and the field loses single-valued
description for its evolution. This does not necessarily imply a pathological behavior of the system but
rather invalidates the effective description. The effective theory would thus have to be replaced by another
to describe the evolution thereafter. In this paper, adopting the planar-symmetric 1þ 1-dimensional
approach employed in the original analysis, we seek all k-essence theories in which generic simple wave
solutions are free from such caustic singularities. Contrary to the previous claim, we find that not only the
standard canonical scalar but also the DBI scalar are free from caustics, as far as planar-symmetric simple
wave solutions are concerned. Addition of shift-symmetric Horndeski terms does not change the
conclusion.
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I. INTRODUCTION

The Dirac-Born-Infeld (DBI) action [1,2] is a low-energy
effective action for a Dp-brane, the form of which is
determined by T-duality and Lorentz invariance of D0-
brane. The effective description is valid no matter how large
first derivatives of a scalar field corresponding to a position
of a brane is, as long as the expression inside the square-
root [refer to Eq. (29) below for the DBI action] is non-
negative and second derivatives thereof are small. If second
and/or higher derivatives are also large, corrections of the
order of Regge slope α0 cannot be negligible, and thus, the
effective description breaks down.
When describing the motion of a Dp-brane in a radial

direction of extra dimensions, the DBI action without
antisymmetric fields is a special case of the action of so-
called k-essence theory. Such a theory is widely studied in
the context of inflation and dark energy [3,4]. Recently, k-
essence theory on a Minkowski background is analyzed by
Babichev [5] using techniques known in the field of partial
differential equations and/or fluid dynamics [6], especially
the method of characteristics. Characteristics for a given
configuration of a scalar field are hypersurfaces along
which perturbations on top of it propagate in the high-
frequency and high-momentum limit and correspond to
light cones in the case of standard canonical scalar theory.
Babichev’s analysis assumes the planar symmetry and
focuses on the so-called simple wave solutions, in which
first derivatives of the scalar field are constant along one of
the two families of characteristics. In standard canonical
scalar theory, the characteristics are always parallel to each
other, and any simple wave solutions (i.e., left or right

moving modes) travel. In generic k-essence theories,
however, one can easily construct simple wave solutions
in which different characteristics carrying different values
of first derivatives of the scalar are not parallel to each other.
Then, they intersect with each other within a finite time,
and first derivatives of the scalar are no longer single-
valued at the intersection. This means that the second and
higher derivatives of the field diverge there, and the system
exits the regime of validity of the effective description
based on the k-essence field. The conclusion of the paper
[5] states that the only caustic-free k-essence action in the
regime of its analysis may be standard canonical scalar
theory.
The present paper further proceeds with the analysis of

that work. It is shown that the DBI action is also caustic free
as far as the planar-symmetric simple wave solutions in a
fixed Minkowski background are concerned. This is con-
sistent with the previous result obtained through the so-
called “completely exceptional” condition [7–9] by Deser,
McCarthy, and Sarıoglu [10], and therefore, the present
paper fills the gap between Refs. [5,10] and extends the
consideration that addition of the higher-order Horndeski
terms does not cure the problem of intersecting character-
istics. Our result that restricts the form of the action
deserves a necessary, but not necessarily sufficient, con-
dition for the effective descriptions of Dp-branes by the
DBI action to be valid, in the sense that second derivatives
do not diverge, though the analysis is limited to special
solutions, i.e., simple wave solutions.
The rest of the present paper is organized as follows. In

Sec. II, we review the analysis of Babichev [5] in a slightly
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different reasoning. This enables us not only to define
notations but also to clarify various steps and concepts
such as the coordinate transformation from the standard
Cartesian coordinates (t, x) to the characteristic coordinates
(σþ, σ−), the high-frequency and high-momentum limit of
perturbations, categorization of all solutions based on the
Riemann invariants, and so on. In Sec. III, we then seek all
shift-symmetric k-essence theories in which any planar-
symmetric simple wave solutions do not lead to formations
of caustics. We find that not only the standard canonical
scalar but also the DBI scalar fulfill this criterion.
Section IV is devoted to a summary of the paper and some
discussions. In the Appendix, we show the equivalence
between the strategy in Ref. [10] and that in the
present paper.

II. PLANAR CAUSTIC SINGULARITY

In this section, we review the analysis of Babichev [5] in
a slightly different reasoning, aiming to clarify some
physical concepts and procedures. Let us consider a
shift-symmetric k-essence action for a scalar field ϕ in
n-dimension,

I ¼
Z

dnx
ffiffiffiffiffiffi
−g

p
LðXÞ; ð1Þ

where X ¼ − 1
2
gμν∂μϕ∂νϕ, and we consider nontrivial

cases LX ¼ dL=dX ≠ 0. We take the mostly plus signature
of the metric, ð−þ � � � þÞ and treat the metric as a fixed
background. The variation of the action with respect to ϕ
gives the equation of motion of ϕ as

ð−LXgμν þ LXX∇μϕ∇νϕÞ∇μ∇νϕ ¼ 0; ð2Þ

where LXX ¼ d2L=dX2 and ∇μ is the covariant derivative.
Let us consider a planar symmetry ϕ ¼ ϕðt; xÞ on the

Minkowski metric in the Cartesian coordinates (t, x, y, z,
� � �). In this case, the equation of motion, Eq. (2), is
expressed by a system of two equations for two unknown
functions τ≡ _ϕ and χ ≡ ϕ0 of two variables t and x,

A_τ þ 2Bτ0 þ Cχ0 ¼ 0; ð3Þ

τ0 − _χ ¼ 0; ð4Þ

where _¼ ∂=∂t, 0 ¼ ∂=∂x, and
A ¼ LX þ τ2LXX; B ¼ −τχLXX;

C ¼ −LX þ χ2LXX: ð5Þ

Equation (4) is an integrability condition, i.e., a necessary
and sufficient condition for ϕ to exist at least locally with τ
and χ given. Since X is expressed as X ¼ 1

2
ðτ2 − χ2Þ, A, B,

and C are functions of τ and χ.

In the following, we consider cases where the equation of
motion, Eq. (3), is hyperbolic with respect to ϕ, leading to a
single condition

B2 − AC ¼ LXð2XLXX þ LXÞ > 0: ð6Þ

This is equivalent to the condition that ξ� defined below are
real. This is also equivalent to the no-gradient-instability
condition c2s > 0 for perturbative modes whose length and
time scales are sufficiently shorter than those of the
background, where cs is the speed of sound defined below.
Let us consider a linear combination of Eqs. (3) and (4),

½A∂t þ ð2Bþ λÞ∂x�τ þ ½−λ∂t þ C∂x�χ ¼ 0; ð7Þ

where λ is an arbitrary function. We now choose λ so that
the two linear differential operators acted on τ and χ,
respectively, are proportional to each other. Comparing the
expressions in the square parentheses in Eq. (7), we require

2Bþ λ

A
¼ C

−λ
; ð8Þ

which leads to λ ¼ −B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − AC

p
. The two values of λ

are different, provided that the hyperbolicity condition (6)
is satisfied. Then, Eq. (7) becomes

ð∂t þ ξ�∂xÞτ þ ξ∓ð∂t þ ξ�∂xÞχ ¼ 0; ð9Þ

where

ξ� ¼ B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − AC

p

A
ð10Þ

are functions of τ and χ. Under the hyperbolicity condition
(6), the set of equations in (3) and (4) is equivalent to the set
of two equations in (9). Here, for simplicity, we have
assumed A ≠ 0. Relaxing this condition does not change
the conclusions of the following analysis.1

Given the equation of motion, (9), it is convenient to
transform the coordinates (t, x) into (σþ, σ−) which satisfy

2

∂σ� ∝ ∂t þ ξ�∂x; ð11Þ

i.e.,

1In the case of A ¼ 0, one can transform the coordinates, as
long as the hyperbolicity (6) is respected, B ≠ 0, and follow the
same analysis as presented in this section.

2In the canonical case L ¼ X, where ξ� ¼ �1, σ� are null
coordinates. The relation between ∂σ� and ∂t þ ξ�∂x is not
unique, and the directions ∂σ� are invariant under transforming
σþ to a function only of σþ or σ− to a function only of σ−, that is,
any functions fðσþÞ and gðσ−Þ can serve as the new coordinates,
as ∂=∂f ¼ f0ðσþÞ∂σþ and ∂=∂g ¼ g0ðσ−Þ∂σ− , thus equally sat-
isfying (9).
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xσ� ¼ ξ�tσ� ; ð12Þ

where xσ� ¼ ∂x=∂σ� and tσ� ¼ ∂t=∂σ�, provided that
the Jacobian tσþxσ− − tσ−xσþ ¼ ðξ− − ξþÞtσþtσ− does not
vanish,

−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − AC

p

A
tσþtσ− ≠ 0: ð13Þ

Curves generated by the vectors ∂σ� in the t − x plane are
called characteristic curves or just characteristics, and we
call them C�-characteristics.
The physical meaning of C�-characteristics becomes

clear when we consider perturbations in the high-frequency
and high-momentum limit, i.e., in the limit where the time
and length scales of perturbations are sufficiently shorter
compared with those of the background. In this limit, one
can clearly separate the perturbation from the background,
and the linearized equation of motion for perturbations π
reads

Aπ̈ þ 2B _π0 þ Cπ00 ≃ 0; ð14Þ

where the coefficients A, B, and C in this equation are their
background values. In the high-frequency and high-
momentum limit, the geometrical optics approximation
is good, and it makes perfect sense to consider a wave
of the form π ≃ eiðωt−kxÞ with slowly varying amplitude,
which leads to3

Aω2 − 2Bωkþ Ck2 ≃ 0: ð15Þ

Therefore, π has dispersion relations

ω ¼ ξ�k; ð16Þ

and the velocities of perturbations in the t-x plane are ξ�,
meaning that signals propagate along C�-characteristics.
Here, the phase and group velocities coincide as we have
taken the high-frequency and high-momentum limit. All
high-frequency and high-momentum signals of π follow the
curves ofC�-characteristics at the speed ξ�. It is also useful
to note that

ξ� ¼ v� cs
1� vcs

; ð17Þ

where

v ¼ −
χ

τ
; cs ¼

�
LX

2XLXX þ LX

�
1=2

: ð18Þ

Equation (17) shows that ξ� are the relativistic additions of
velocities v and �cs. The former v represents velocity of
fluid elements of k-essence ux=ut, where uμ ∝ gμν∂νϕ (see
footnote 4), while the latter �cs represents the speed of
sound,4 when ϕ0 ¼ 0 on the background.5

Let us now return to the nonperturbative analysis. We
can rewrite the nonperturbative Eq. (9) by using the
characteristic coordinates σ� through Eq. (11),

∂σ�τ þ ξ∓∂σ�χ ¼ 0; ð19Þ

each of which contains derivatives with respect to only one
of the independent variables σ�. As already stated, the set
of these equations is equivalent to the original set of
Eqs. (3) and (4), provided that the hyperbolicity condition
(6) is imposed. Note that ξ� are functions of τ and χ and do
not depend on their derivatives with respect to σ�. Each of
these equations can be easily integrated along each C�-
characteristic to give

Z
dX

XcsðXÞ
� ln

1þ v
1 − v

¼ Γ�ðσ∓Þ; ð20Þ

where Γ� are integration constants called Riemann invar-
iants [6]. When deriving Eq. (20), it is useful to note that

d

�Z
dX

XcsðXÞ
� ln

1þ v
1 − v

�

¼ τ

Xcs
½ð1� vcsÞdτ þ ðv� csÞdχ�; ð21Þ

and to use the relation (17).
Since the left-hand side of Eq. (20) is written entirely in

terms of τ and χ, either equation in (20) for each fixed value
of σ− or σþ defines a curve in the τ − χ plane. By definition,
σ∓ [and thus Γ�ðσ∓Þ] is constant along each C�-character-
istic for any solutions to the equations of motion (19).
Therefore, Eq. (20) defines the images of C�-character-
istics in the τ − χ plane, which we call Γ�-characteristics.
The images of characteristics in the τ − χ plane, defined by
Eq. (20), are independent of solutions in the t − x plane.6

See Figs. 1–4 for the case of L ¼ X þ 1
2
X2 as an example.

Figures 1 and 2 depict the contours in the τ − χ plane by
sweeping the values of Γþ and Γ−, respectively. Figure 3 is

3The Fourier transformation of π is not useful due to the t- and
x-dependences of the background.

4The energy-momentum tensor of k-essence is
Tμν ≡ −2ffiffiffiffi−gp δI

δgμν ¼ Lgμν þ LX∂μϕ∂νϕ. If ∂μϕ is timelike, i.e.,

uμuμ ¼ −1, where uμ ≡ ∂μϕ=
ffiffiffiffiffiffi
2X

p
, then Tμν ¼ Lðgμν þ uμuνÞþ

ð2XLX − LÞuμuν, which can be interpreted as a perfect fluid with
pressure P ¼ L and (rest frame) energy density ρ ¼ ð2XLX − LÞ.
The speed of sound is given by cs ¼ ðPX=ρXÞ1=2.5In general, one cannot take the gauge t ¼ ϕ globally main-
taining the standard form of the Minkowski metric ημν, while this
gauge is often convenient in curved spacetime.

6Each equation in (20) maps a pair (τ, χ) into one of Γ�, which
is a two-to-one mapping.
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Figs. 1 and 2 combined, but only for a few values of Γ�. As
can be seen, all the characteristic curves are not straight
lines, with the only exception the ones that pass the point
τ ¼ χ ¼ 0. Figure 4 is a solution in the t − x plane whose
image in the τ − χ plane is a segment of a Γ−-characteristic,
showing a few corresponding C�-characteristic curves.
Solutions to the equations of motion (19) fall into three

categories [6]:

(i) Firstly, a steady state is a state where both τ and χ
are constant. In a region where a solution is steady,
C�-characteristics are straight lines since ξ� are
constant.

(ii) Secondly, a simple wave is a wave whose image in
the τ − χ plane lies entirely on one of the
Γ�-characteristics. One of the Riemann invariants
Γ�, defined by Eq. (20), is constant over the whole
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FIG. 1. Family of Γþ-characteristic curves, Eq. (20), for
L ¼ X þ 1

2
X2. The origin of the integration constant Γþ is

arbitrary.
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FIG. 2. Family of Γ−-characteristic curves, Eq. (20), for
L ¼ X þ 1

2
X2. The origin of the integration constant Γ− is

arbitrary.

FIG. 3. Two families of Γ�-characteristic curves, Eq. (20), for
L ¼ X þ 1

2
X2. In the gray regions, the equation of motion is not

hyperbolic and c2s ≤ 0. In a solution valued in the blue regions,
signs of phase velocities ξ� are the same, and signals propagate
only in one direction.

FIG. 4. Simple wave solution specified by τ > −χ part of Γ− ¼
ln 2 in Fig. 2 and χ ¼ 0.7 exp ð−σ2−Þ for L ¼ X þ 1

2
X2. Two

Cþ-characteristics, along which signals propagate, intersect with
each other, and second derivatives of ϕ diverge at this point, i.e.,
caustic, since τ, χ, and thus phase velocities ξ� change along
C−-characteristics while they are constant along Cþ-character-
istics.
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t − x plane for this type of solution. Suppose that a
simple wave is specified by Γ− ¼ Γ0

−, where Γ0
− is a

constant, and an arbitrary function Γþðσ−Þ. In this
case, the set of two equations in (20) completely
determines τ and χ as functions of σ− only, meaning
that τ, χ, and ξ� are all constant along each
Cþ-characteristic. That is to say, an image of a
Cþ-characteristic is a Γþ-characteristic, and Γ0

−-
characteristic intersects with each Γþ-characteristic
only at a point in the τ − χ plane, which in turn fixes
the values of τ and χ on the Cþ-characteristic.

(iii) Finally, a general wave is a wave whose image does
not entirely lie on a Γ�-characteristic, i.e., neither of
the Riemann invariants is constant.

Among them, a simple wave solution can be immediately
constructed by specifying a constant value of Γ−ðΓþÞ and
the σ−-(σþ-)dependence of either τ or χ [they are
independent of σþðσ−Þ]. Then, both of ξ� are determined
as functions of σ−ðσþÞ, and their integrations yield
C�-characteristics, i.e., paths of signals in the t − x plane,
given initial positions.
Even among simple waves specified by Γ− ¼ Γ0

−, vari-
ous kinds of solutions can be obtained, depending on how
ξþ changes. Consider, for example, a traveling wave
constructed by choosing the Γ0

−-characteristic that is linear
in the τ − χ plane. This wave can propagate indefinitely
since Eq. (19), ξ� ¼ −τσ∓=χσ∓ , says that ξþ is the same
value for all Cþ-characteristics. This solution is, however,
realized only setting a special condition τ ¼ �χ, i.e., X ¼ 0

and v ¼ ∓1, in the case of L ¼ X þ 1
2
X2 (see Figs. 1–3).

Note that the lines τ ¼ �χ are, correspondingly, a Γ�-
characteristic for any LðXÞ as long as LXjX¼0 > 0 since
then ξ∓ ¼ ∓1 from Eq. (10).7 On the other hand, rarefac-
tion and compression waves can also be obtained choosing
a curved Γ0

−-characteristic, where ξþ takes different values
for different σ− and thus different Cþ-characteristics. In
such a situation, Cþ-characteristics may intersect with each
other within a finite time and form caustics, while τ and χ
are constant along each Cþ-characteristic. This occurrence
is depicted in Fig. 4, which shows the twoCþ-characteristic
lines intersecting, forming a caustic. At caustics, the scalar
field cannot be fundamental since its first derivatives are no
longer single valued. As a result, the second derivative _τ ¼
τσ−ð∂σ−=∂tÞ diverges since ∂σ−=∂t ¼ ξþ=½ðξþ − ξ−Þtσ− �
and tσ− → 0 at a caustic, and the same is true for τ0 ¼ _χ and
χ0. Therefore, second derivatives of ϕ diverge, and the
system should be described by another theory.8

One may speculate that higher-dimensional terms
could prevent caustic formations. Such terms often make

order of equations of motion higher than two and lead to
the Ostrogradsky ghost [11], whose Hamiltonian is not
bounded from below. Diffeomorphism invariant scalar-
tensor theory whose Euler-Lagrange equations are second
order in four spacetime dimension is Horndeski theory
[12–14]. However, as shown in [5], Horndeski theory on
a Minkowski background with above symmetries still
admits such a simple wave solution forming caustics.
This is because new terms in equations of motion are
proportional to ϕ̈ϕ00 − ð _ϕ0Þ2, and this is zero in a simple
wave as

ϕ̈ ¼ _τ ¼ dτ
dσ−

_σ−; ϕ00 ¼ τ0 ¼ dχ
dσ−

σ0−;

_ϕ0 ¼ dτ
dσ−

σ0− ¼ dχ
dσ−

_σ−; ð22Þ

along Cþ-characteristics (the same applies for C−-ones).
Terms proportional to ϵμ1μ2μλϵν1ν2νλϕ;μ1ν1ϕ;μ2ν2ϕ;μϕ;ν and
ϵμ1μ2μ3μϵν1ν2ν3νϕ;μ1ν1ϕ;μ2ν2ϕ;μ3ν3ϕ;μϕ;ν in Horndeski theory
vanish in the planar-symmetric case ϕ ¼ ϕðt; xÞ because
of the antisymmetric nature of ϵμνρσ . Therefore, addition of
Horndeski terms does not change the behavior of simple
waves in k-essence. In otherwords, a caustic-free subclass of
Horndeski theorywith the above symmetries shouldhave the
k-essence part which itself is caustic free.
The effective description by a shift-symmetric k-essence

or Horndeski field breaks down near caustics. If a theory
admits a simple wave solution that forms caustics, then, in
order make sense of the theory, one needs to assume the
existence of a UV completion (or a partial UV completion)
so that a new heavy degree of freedom kicks in before
reaching caustics. Babichev suggested such a possibility
using a nonlinear sigma model [5].

III. THEORIES WITH LINEAR
Γ�-CHARACTERISTICS

In the class of shift-symmetric k-essence theories under
consideration, let us seek theories in which any planar-
symmetric simple wave is a traveling wave and thus does
not lead to a formation of a caustic. As the analysis of
caustic formation in the previous section demonstrates, a
crucial requirement to avoid their formations for simple
wave solutions on Γ−-(Γþ-)characteristics in the τ − χ
plane is that all the Cþ-(C−-)characteristic lines are parallel
in the t − x plane. This implies that the slope ξþ (ξ−) of the
Cþ-(C−-)characteristics must stay constant with changing
σ− (σþ).

9 This in turn requires that in the τ − χ plane, all of
Γ�-characteristics are linear,

τ ¼ aχ þ b; ð23Þ
7Even if the Γ�-characteristics τ ¼ �χ are specified by

divergent integration constants Γ� → −∞, they are actually a
solution of Eq. (9) since ð∂t þ ξ�∂xÞð�χÞ∓ð∂t þ ξ�∂xÞχ ¼ 0.

8Such a breakdown of description occurs also when we model
a breaking wave in fluid dynamics [6].

9This is equivalent to the so-called completely exceptional
condition that was used in Ref. [10] to obtain the same result. The
equivalence is proven in the Appendix.
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where coefficients a and b are constants. Lines χ ¼ const,
whose slopes in the τ − χ plane are infinite, are represented
by a; b → ∞ with b=a finite, though such lines correspond
to an unphysical infinite phase and group velocities jξ�j →
∞ due to Eq. (19), ξ� ¼ −τσ∓=χσ∓ with χσ∓ ¼ 0. Note that
the conclusion of this section is the same if τ and χ are
interchanged. In the following, we demand that for any
values of b there exists a value of a such that (23) is a
simple wave solution.
The differential form of the equation of motion along σ�,

Eq. (19), is written as dτ þ ξ∓dχ ¼ 0 and leads to, with the
constraint Eq. (23) imposed,

ða2 − 1Þχ þ ab∓bcsðXÞ ¼ 0; ð24Þ

where it is understood that X in this equation is expressed
as

X ¼ 1

2
½ða2 − 1Þχ2 þ 2abχ þ b2�: ð25Þ

We thus demand that for any values of b there exists a value
of a such that Eq. (24) is identically satisfied for any χ.
Alternatively, since Eq. (24) can be rewritten as

bcsðXÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 2ð1 − a2ÞX

q
; ð26Þ

we can demand that for any values of b there exists a value
of a such that Eq. (26) is identically satisfied for any X. This
restricts the form of cs as a function of X. Once csðXÞ
satisfying this demand is obtained, the form of the
Lagrangian LðXÞ is related to cs by using its definition
Eq. (18) as

d
dX

lnLX ¼ 1

2X

�
1

c2sðXÞ
− 1

�
: ð27Þ

Equation (27) tells us that once we have cs as a function of
X, we can (at least formally) reconstruct LðXÞ.
Let us now investigate from Eq. (27) what forms of LðXÞ

are allowed when Eq. (26) is given, case by case:
(i) Firstly, in the case where b ¼ 0, csðXÞ is not

constrained, and neither is the form of LðXÞ.
(ii) Secondly, in the case where b ≠ 0 and a2 ¼ 1, we

have c2sðXÞ ¼ 1. This means lnLX ¼ const; hence,
L ¼ econst:X þ const, which reduces to (massless)
canonical scalar theory L ¼ X, by a trivial rescaling
of ϕ, plus a cosmological constant term.

(iii) Finally, in the case where b ≠ 0 and a2 ≠ 1, Eq. (26)
becomes

c2sðXÞ ¼ 1 − 2fX; ð28Þ

where f ¼ ð1 − a2Þ=b2. From Eq. (27), we have
lnLX ¼ ln constffiffiffiffiffiffiffiffiffiffi

1−2fX
p ; hence,

L ¼ −
const
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2fX

p
þ const; ð29Þ

which is nothing but the DBI Lagrangian. Indeed,
by rescaling the scalar field ϕ, the Lagrangian (29)
can be rewritten into the standard form,
L ¼ −λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X

p þ const, where λ is a constant

FIG. 5. Two families of Γ�-characteristic curves, Eq. (20), for
L ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X

p
. See caption of Fig. 1 for gray and blue regions.

FIG. 6. Simple wave solution specified by the Γ−-characteristic
passing ðχ; τÞ ¼ ð0; 2 ffiffiffi

e
p

=ð1þ eÞÞ and χ ¼ 0.6 exp ð−σ2−Þ for
L ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X

p
. In the white regions, τ, χ are almost constant,

while they vary in the gray region. Caustics do not form in
contrast to Fig. 4.
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corresponding to the brane tension and does not
contribute to the equations of motion for ϕ. Figure 5
shows several Γ�-characteristics in the case of
L ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X

p
. Actually, they are all straight lines

in the τ − χ plane. Consequently, no characteristics
intersect with each other, as can be seen in Fig. 6,
and therefore, no caustics form in any simple wave
solution in this theory.

To summarize, we have obtained all shift-symmetric
k-essence theories in which any planar-symmetric, generic
simple wave solutions do not form caustics. Such a class
consists of two theories: standard canonical scalar theory
and DBI theory. All other shift-symmetric k-essence
theories admit planar-symmetric simple wave solutions
that form caustics. Figure 7 illustrates a schematic com-
parison of a caustic-forming solution against a caustic-free
case. In the former case, the second derivative of ϕ diverges
at some finite time, from which the theory loses the ability
to describe the evolution of the system, while the latter
never suffers such a singularity, as far as simple wave
solutions are concerned.

IV. DISCUSSION

We have further proceeded the analysis of Ref. [5],
which investigated nonlinear wave solutions with 1þ 1-
dimensional planar symmetry in shift-symmetric k-essence
theory on a fixed Minkowski background. In the class of
solutions called simple wave solutions, signals propagate
with constant phase velocities along each characteristic in
one of the two families of characteristics, but different
characteristics in the family carry different values of the
first derivatives (including the phase velocity) of the field.
In generic simple wave solutions, different characteristics
in the family intersect, and thus, caustics form at the
intersection unless the initial condition is fine-tuned on
the other family of characteristics. At the intersection, i.e.,
the caustic, the scalar field fails to be single valued and
second derivatives of the field diverge. Thus, the system

exits the regime of validity of the effective description
based on the k-essence field. Thereafter, the effective
theory should be replaced by another to describe the
evolution of the system. This singularity is not ameliorated
by adding higher-dimensional terms of shift-symmetric
Horndeski theory, which is free from the Ostrogradsky
ghost. The conclusion of Ref. [5] states that the only
resolution of the singularity in the regime of its analysis
may be to choose Lagrangian to be that of the standard
canonical scalar. In the present paper, however, we have
found that the class of theories in which generic planar-
symmetric simple wave solutions do not form caustics
without the fine-tuning includes not only the standard
canonical scalar but also the DBI scalar. This is consistent
with the previous result obtained through the so-called
completely exceptional condition [7–9] by Deser,
McCarthy, and Sarıoglu [10] (see the Appendix for the
equivalence), and therefore, we have filled the gap between
Refs. [5] and [10].
It has been known that a fluid of dust, with a vanishing

speed of sound cs ¼ 0, forms caustics. This is because each
fluid element follows a geodesic without communicating
with other neighboring elements, and different geodesics
generically intersect with each other. For this reason, the
formation/avoidance of caustics is always one of important
issues in any theories with a physical degree of freedom
whose speed of sound is zero or small. Examples of such
theories include tachyon condensation [15–17], ghost
condensation [18], projectable Hořava-Lifshitz theory
[19,20], and so on. In the case of tachyon condensation,
the Sen’s effective Lagrangian resembles the DBI action
that we have found to be caustic free, but the shift
symmetry is explicitly broken. The square-root structure
of the DBI Lagrangian is multiplied by a field-dependent
tension of a decaying brane. As the tachyon condensation
proceeds, the tension approaches zero, and the first deriva-
tive of the tachyon field becomes large. As a result, the light
cone of the effective metric for open-string degrees of
freedom becomes narrower and narrower compared with
that for closed-string degrees [21] and the speed of sound
asymptotically vanishes. In realistic cosmological setups
this leads to formations of caustics, and thus, the system
exits the regime of validity of the effective description in a
relatively short time scale [22]. In ghost condensation,
apparently higher-dimensional but actually leading oper-
ators beyond the k-essence (and Horndeski) theories
inevitably kick in near the (would-be) caustics, and
effective fluid elements no longer follow geodesics.
Reference [23] found a candidate operator that may avoid
formations of caustics and provided some numerical
evidences for the caustics avoidance. In the projectable
version of Hořava-Lifshitz theory, for the avoidance of
caustics, it is necessary to take into account not only the
higher spatial derivative terms but also the renormalization
group running of the coefficient of a second derivative

FIG. 7. Time variation of second derivatives of ϕ in a simple
wave solution. They diverge in a finite time in a caustic-forming
solution, while they are constant in a caustic-free solution.

IS THE DBI SCALAR FIELD AS FRAGILE AS OTHER … PHYSICAL REVIEW D 94, 023514 (2016)

023514-7



kinetic term [24]. The result of Ref. [25] suggests that such
effects should be taken into account also near the central
region of a star.
In many (if not all) of those past examples, the

codimension-one case10 was the most dangerous regard-
ing formations of caustics, and caustics in higher codi-
mensional cases were relatively easier to resolve. Also, if
we include gravitational backreaction in three or higher
codimensions, then gravity is strong, and black holes may
form before caustics. On the other hand, gravity in the
case of codimension-one is much weaker and may be
integrable in the sense of Israel’s junction condition [27].
Hence, we expect that the conclusion in the codimension-
one case does not significantly change when we include
gravitational backreaction. For these reasons and also for
simplicity, in the present paper, we have concentrated
on the codimension-one case without taking into
account gravitational backreaction. It is nonetheless
worthwhile investigating the cases with higher codimen-
sions and the effects of gravitational backreaction in a
future work.
In shift-symmetric DBI theory, Eq. (28), the speed of

sound cs may become arbitrarily close to 0, depending on
the choice of the initial condition. The vanishing cs is
related to the so-called speed limit, the fact that the non-
negativity of the expression inside the square root in the
Lagrangian sets the upper bound on the speed of the motion
of the Dp-brane in extra dimensions. As the speed of the
brane motion approaches the speed limit, the speed of
sound cs approaches 0. Despite this fact, the nonlinear
analysis in the present paper has shown that caustics never
form in shift-symmetric DBI theory, as far as the planar-
symmetric simple wave solutions in a fixed Minkowski
background is concerned. It is beyond the scope of the
present paper to investigate whether canonical and DBI
scalar theories are caustic free or not in more general
setups.
As already stated several times, only the standard

canonical scalar and the DBI scalar fulfill the criterion
of caustic avoidance in planar-symmetric simple wave
solutions. With this result in mind, it is intriguing to note
that standard canonical scalar theory is the leading trunca-
tion of the derivative expansion of DBI theory:
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X

p þ 1 ¼ X þOðX2Þ. One may thus wonder what
would happen if we include the next-to-leading term in the
derivative expansion of DBI theory, i.e., −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X

p þ 1 ¼
X þ X2=2þOðX3Þ. This is exactly the example

considered in Sec. II. We have seen that caustics generically
form in planar-symmetric simple wave solutions. This
conclusion continues to hold up to any finite order in
derivative expansion. Nonetheless, if the infinite series in
the derivative expansion is resummed to the square-root
structure of DBI theory, planar-symmetric simple wave
solutions never form caustics. There may be deep physical
reasons behind this, but we leave such considerations to a
future work.
While the difference between the DBI Lagrangian −ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X

p
and the truncated Lagrangian X þ X2=2 is small

for small jXj, planar-symmetric caustics may still form for
small jXj in simple wave solutions of the latter theory.
This is because each component of the first derivatives of
the scalar field can be large in Lorentz signature even if X
is close to zero. The difference between two Lagrangians
comes at the order of OðX3Þ at the Lagrangian level and
can be small for small jXj. However, in the equation of
motion shown in Eq. (2), LXX is multiplied by a product of
first derivatives of the scalar field, which may be large. So,
the tiny difference in LXX of the order of OðXÞ can be
enhanced by the product of large first derivatives ∂μϕ∂νϕ.
For this reason, the difference in dynamics may be
significant even in the regime with small jXj. This
can be seen by comparing Figs. 3 and 5 for different
behaviors of Γ�-characteristics in the vicinity of τ ¼ �χ,
which correspond to small jXj but with large values of jτj
and jχj.
As already emphasized, the present paper has dealt with

simple wave solutions. In a general wave solution, char-
acteristics in the t − x plane are not restricted to be straight
lines. There might be cases where characteristics in the t −
x plane repel before intersecting with each other. There
might also be other cases where characteristics in the t − x
plane tend to attract each other. Whether standard canonical
theory and DBI theory are caustic free or not even in such
general wave solutions is of future interest but beyond the
scope of the present paper.
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10While the occurrence of a planar caustic (or would-be
caustic) is at an (n − 2)-dimensional surface in n-dimensional
spacetime, the world volume of the corresponding structure is
(n − 1)-dimensional, provided that the system after the caustic
formation is evolved by, e.g., the Zel’dovich approximation [26]
or that the would-be caustic is resolved. For this reason, when we
discuss evolution or/and resolution of (would-be) caustics, we
consider that a planer caustic has codimension-one.
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APPENDIX: EQUIVALENCE TO THE
COMPLETELY EXCEPTIONAL CONDITION

In this appendix, we show the equivalence between the
so-called “completely exceptional” (CE) condition (see
Ref. [7–9] for the definition) adopted in Ref. [10] and our
criterion imposed in Sec. III. The CE condition, explicitly
shown for a scalar field in Ref. [28], is written with the
notations in the present paper in 1þ 1 dimensions as

ep ·
� ∂τ

∂χ

�
λp ¼ 0 ðA1Þ

for each p. Here, λp and ep are eigenvalues and eigen-
vectors, respectively, of a matrix M appearing in the
equation of motion Eqs. (3) and (4) when rewritten in
the form

∂U
∂t þM

∂U
∂x ¼ 0; ðA2Þ

where

U ¼
�
τ

χ

�
;

M ¼
�
2B=A C=A

−1 0

�
: ðA3Þ

Roughly speaking, the eigenvalues λp correspond to the
propagation speed of wavefronts of simple waves, and the
CE condition Eq. (A1) states that the gradient of each λp
with respect to the vector U is orthogonal to the corre-
sponding propagation direction. This guarantees that no
C�-characteristics intersect each other, enabling initial
wavefronts to evolve without emerging shock waves.
Explicitly calculating eigenvalues and eigenvectors of
M, we have

λ� ¼ ξ�; e� ∝
�−ξ�

1

�
; ðA4Þ

where ξ� is defined in Eq. (10). Then, the CE condition
Eq. (A1) is expressed as

ð∂χ − ξ�∂τÞξ� ¼ 0; ðA5Þ

which can be written as

∂σ∓ξ� ¼ 0: ðA6Þ

It is immediate to derive Eq. (A5) from Eq. (A6) by
regarding ξ� as a function of τ and χ, using the chain rule
and Eq. (19), i.e., τσ∓=χσ∓ ¼ −ξ�. Therefore, the CE
condition is equivalent to what was imposed in Sec. III,
as mentioned in footnote 9.

[1] M. Born and L. Infeld, ‘Foundations of the new field theory,
Proc. R. Soc. A 144, 425 (1934).

[2] P. A. M. Dirac, An extensible model of the electron, Proc. R.
Soc. A 268, 57 (1962).

[3] C. Armendáriz-Picón, T. Damour, and V. F. Mukhanov,
k-Inflation, Phys. Lett. B 458, 209 (1999).

[4] C. Armendáriz-Picón, V. F. Mukhanov, and P. J. Steinhardt,
Essentials of k-essence, Phys. Rev. D 63, 103510 (2001).

[5] E. Babichev, Formation of caustics in k-essence and
Horndeski theory, J. High Energy Phys. 04 (2016) 129.

[6] R. Courant and K. O. Friedrichs, Supersonic Flow and
Shock Waves (Interscience, New York, 1948).

[7] P. D. Lax, The initial value problem for nonlinear hyperbolic
equations in two independent variables, Ann. Math. Stud.
33, 211 (1954).

[8] P. D. Lax, Hyperbolic systems of conservation laws II,
Commun. Pure Appl. Math. 10, 537 (1957).

[9] A. Jeffrey and T. Taniuti, Non-Linear Wave Propagation
(Academic Press, New York, 1964).

[10] S. Deser, J. McCarthy, and Ö. Sarıoglu, 'Good propagation'
and duality invariance constraints on scalar, gauge vector
and gravity actions, Classical Quantum Gravity 16, 841
(1999).

[11] M. Ostrogradsky, Mémoires sur les équations différentielles,
relatives au problème des isopérimètres, Mem. Acad. St.
Petersbourg VI 4, 385 (1850).

[12] G.W. Horndeski, Second-order scalar-tensor field equations
in a four-dimensional space, Int. J. Theor. Phys. 10, 363
(1974).

[13] C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, From
k-essence to generalised Galileons, Phys. Rev. D 84, 064039
(2011).

[14] T. Kobayashi, M. Yamaguchi, and J. Yokoyama,
Generalized G-inflation: Inflation with the most general
second-order field equations, Prog. Theor. Phys. 126, 511
(2011).

[15] A. Sen, Rolling tachyon, J. High Energy Phys. 04 (2002)
048.

[16] A. Sen, Tachyon matter, J. High Energy Phys. 07 (2002)
065.

[17] G.W. Gibbons, Cosmological evolution of the rolling
tachyon, Phys. Lett. B 537, 1 (2002).

[18] N. Arkani-Hamed, H. C. Cheng, M. A. Luty, and S.
Mukohyama, Ghost condensation and a consistent infrared
modification of gravity, J. High Energy Phys. 05 (2004)
074.

IS THE DBI SCALAR FIELD AS FRAGILE AS OTHER … PHYSICAL REVIEW D 94, 023514 (2016)

023514-9

http://dx.doi.org/10.1098/rspa.1934.0059
http://dx.doi.org/10.1098/rspa.1962.0124
http://dx.doi.org/10.1098/rspa.1962.0124
http://dx.doi.org/10.1016/S0370-2693(99)00603-6
http://dx.doi.org/10.1103/PhysRevD.63.103510
http://dx.doi.org/10.1007/JHEP04(2016)129
http://dx.doi.org/10.1002/cpa.3160100406
http://dx.doi.org/10.1088/0264-9381/16/3/015
http://dx.doi.org/10.1088/0264-9381/16/3/015
http://dx.doi.org/10.1007/BF01807638
http://dx.doi.org/10.1007/BF01807638
http://dx.doi.org/10.1103/PhysRevD.84.064039
http://dx.doi.org/10.1103/PhysRevD.84.064039
http://dx.doi.org/10.1143/PTP.126.511
http://dx.doi.org/10.1143/PTP.126.511
http://dx.doi.org/10.1088/1126-6708/2002/04/048
http://dx.doi.org/10.1088/1126-6708/2002/04/048
http://dx.doi.org/10.1088/1126-6708/2002/07/065
http://dx.doi.org/10.1088/1126-6708/2002/07/065
http://dx.doi.org/10.1016/S0370-2693(02)01881-6
http://dx.doi.org/10.1088/1126-6708/2004/05/074
http://dx.doi.org/10.1088/1126-6708/2004/05/074
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