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We present a novel mathematical formalism that allows us to easily compute the expected kinetic
Sunyaev-Zeldovich (kSZ) signal in intensity and polarization due to an anisotropic primordial cosmic
microwave background (CMB). We derive the expected intensity and polarization distortions in the
direction of nonmoving galaxy clusters, and then we generalize our calculations for nonzero peculiar
velocity. We show that, in the direction of moving clusters, low CMB multipoles impose intensity and
polarization spectral distortions with different frequency dependences. The polarization signal primarily
probes the quadrupole moment of the CMB, with a significant contribution from the primordial dipole and
octupole moments. For a typical cluster velocity of 1000 km=s, corrections to the quadrupole-induced
polarization of a nonmoving cluster are of the order of 2%–10% between 200–600 GHz, and depend on
cluster’s position on the sky, velocity magnitude, and direction of motion. We also find that the angular
dependence of the signal varies with frequency of observation. The distinct frequency and angular
dependences of the polarization induced by the primordial dipole and octupole can be exploited to measure
them despite other physical effects and foregrounds. Contrary to polarization, intensity distortions are
affected by all the CMB multipoles, so they cannot be readily used to probe the low multipoles at higher
redshifts. However, correlations between intensity and polarization signals can be used to enhance the
signal to noise ratio for the measurements of the primordial dipole, quadrupole, and octupole. The more
general calculation of the aberration kernel presented in this work has applications reaching beyond the SZ
cluster science addressed here. For example, it can be exploited to the deboost/deaberrate CMB multipoles
as observed in our local frame.
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I. INTRODUCTION

Intensity and polarization distortions of the cosmic micro-
wave background (CMB), induced in thedirection ofmoving
galaxy clusters, probe the peculiar velocity of galaxy clusters
at higher redshifts. These distortions, known as the intensity
and polarization kinetic Sunyaev-Zeldovich (kSZ) effects,
are usually calculated assuming an isotropic incoming CMB
towards moving clusters. Therefore, they do not completely
reflect the contribution of the anisotropies to the observed
signal. In an isotropic CMB model, the kSZ intensity effect
(kSZIn) [1–3] probes the radial component of the cluster’s
peculiar velocity while the kSZ polarization effect (kSZPol)
[1,4–9] probes the transverse component. Since both effects
are induced by the motion of cluster, they vanish in the
direction of nonmoving clusters.
It has been shown that for nonmoving galaxy clusters,

the polarization-induced signal is proportional to the
quadrupole moment (l ¼ 2) of the CMB observed at the
cluster’s location [10–18]. Measuring this temperature-
induced polarization (TinPol) component can be used to

infer the quadrupole moment of the CMB anisotropies at
higher redshifts and reduce cosmic variance for this mode
[19,20]. Independent measurements of the quadrupole
moment can also potentially explain the low measured
value of our local quadrupole compared to theory [21–23].
By detailed calculation of the TinPol effect, we will show

that in the direction of amoving cluster, the quadrupole is not
the only mode that is reflected through the induced polari-
zationdistortion; all the other lowmultipoles of theCMBwill
have a contribution to the polarization signal with different
frequency weights. In this paper, we mainly focus on the
contribution of the primordial octupole (l ¼ 3) and dipole
(l ¼ 1) to the total induced polarization signal, and we
investigate the possibility of their measurement at higher
redshifts. Aside from the issue of cosmic variance, finding
the octupole moment at higher redshifts can help us deter-
mine if the apparent alignment between the quadrupole and
octupole along the cosmic “axis of evil” [16,23–25] is just
coincidental or if there is a fundamental reason for it that can
be explained by physical laws. Also, the primordial dipole
moment of the CMB at our location is overshadowed by the
dipole generated by our motion in the CMB rest frame;
therefore, looking for it at the other locations in the Universe
would be a natural alternative to measure it.
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The polarization distortion induced by the CMB anisot-
ropies is a result of their Doppler and aberration leakage
into the quadrupole moment observed by the moving
cluster. In order to calculate this leakage, we use the
aberration kernel formalism [26–34]; however, we general-
ize it by including the frequency dependence of the
multipoles (which is typically either neglected or integrated
over) and by allowing for a general peculiar velocity
direction for the moving frame (which in previous works
is always taken to be in the ẑ direction). These general-
izations will reveal an interconnection between the direc-
tion of motion of the cluster and the frequency function of
the observed signal which would have been concealed
otherwise. We will also briefly discuss how the generalized
aberration kernel can be employed in the local frame to
deboost and deaberrate the observed CMB multipoles.
Since the leakage of the low multipoles into the quadru-

pole is due to the motion of the cluster, naturally its induced
polarization signal is proportional to the cluster’s peculiar
velocity β ¼ v=c. The leakage of the quadrupole’s first
neighbors, the dipole and the octupole, is proportional to β,
and that of its second neighbors, the monopole (l ¼ 0) and
hexadecapole (l ¼ 4) to β2, and so on. In the absence of
temperature anisotropies, our calculations naturally reduce
to the kSZPol effect, which can be interpreted as the
leakage of the CMB monopole into the quadrupole. Even
though this effect is proportional to β2, the monopole is
larger than the other low multipoles by a factor of ∼105 and
consequently, its induced polarization is the dominant
effect for clusters with large peculiar velocities.
Therefore, measurement of the polarization induced by
the low multipoles requires identification and subtraction of
the kSZ polarization in the direction of the cluster. Since the
frequency dependence of the kSZ is different from the other
low multipole-induced polarization signals, they can be
easily separated in a multifrequency survey.
Apart from the kSZ polarization signal, the largest con-

tribution to the TinPol after the quadrupole is due to the dipole
and octupole. Since the leakage of these modes into the
quadrupole is proportional to β, their polarization signals
are expected to be relatively small.However,wewill show that
the large frequency weights of the Doppler leakage of these
modes amplify their induced polarization signals and even
make them dominant over the quadrupole-induced polariza-
tion at high frequencies (ν≳ 400 GHz). Furthermore, the
amplitude of the quadrupole-induced polarization varies over
the sky, independently of the peculiar velocities of the clusters,
and vanishes in four different directions [10,11,35]. Therefore,
in the areas around these four directions, where this signal is
small, the primary source of polarization in the TinPol would
be due to the dipole and octupole moments.
The low multipoles also induce a change in the intensity

of the CMB observed in the direction of a galaxy cluster.
This distortion, known as the blurring Sunyaev-Zedovich
effect (bSZ) [36], is present even in the direction of a

nonmoving cluster and is caused by scattering of the CMB
photons out of the observer’s line of sight. Wewill calculate
this effect for an anisotropic CMB radiation, with correc-
tions due to the motion of the cluster. For a moving cluster,
the dipole moment of the bSZ effect will give us the well-
known kSZIn effect. We will refer to the quadrupole
moment of bSZ effect as the temperature-induced intensity
(TinIn) and show that its celestial distribution is highly
correlated with the TinPol signal. There is also a strong
correlation between the TinIn=TinPol effects at low red-
shifts and the local quadrupole moment of CMB observed
at z ¼ 0, which can be exploited to enhance these signals.
The thermal Sunyaev-Zeldovich effect (tSZ) [37] also

induces an intensity and polarization distortion in the
direction of the galaxy cluster. The tSZ intensity effect is
typically much larger than its motion-induced counterpart,
the kSZ intensity effect, and it has been measured for over a
thousand galaxy clusters by the Planck satellite [38] as well
as the ACT [39] and SPT-SZ [40] experiments. Both effects
are proportional to the temperature monopole of the CMB
and therefore aremuch larger than the lowmultipole-induced
intensity effects. The tSZ polarization effect, on the other
hand, is subdominant to the kSZ polarization effect and
hence, comparable to the lowmultipole-induced polarization
signals [11]. Nevertheless, for the sake of simplicity, we
neglect the thermal effects throughout the calculations based
on the assumption that they can be separated due to their
distinct frequency functions. Since both tSZ intensity and
polarization are proportional to the dimensionless temper-
ature of the cluster θe ¼ kTe=mec2, corrections due to these
effects can be treated perturbatively and simply added to the
results of our calculations to first order in θe.
kSZIn and kSZPol were first introduced in Refs. [4] and

[1]. The TinPol effect was first suggested by Ref. [19] as a
probe of the quadrupole mode at higher redshifts and has
been examined in [7,10–13,15,17]. Corrections due to
thermal motion and relativistic effects in the absence of
anisotropies have been studied in detail in Refs. [2,3,6,17].
Our calculations include all of the above (except for the
thermal effects) and extend the results to an anisotropic
CMB model.
The outline of the paper is as follows: In Sec. II, we

derive the change in the intensity and polarization of the
CMB in the direction of a nonmoving cluster, induced by
the primordial temperature anisotropies. In Sec. III, we
generalize the results for the case of a moving cluster and
show how the low multipoles of the CMB other than the
quadrupole will contribute to the signal. We end with
summary and conclusions in Sec. IV.

II. NONMOVING GALAXY CLUSTER

A. Geometry of the problem and notation

For convenience, we set up a coordinate system
ðX̂; Ŷ; ẐÞ centered at the location of the observer O,
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with the Ẑ and X̂, respectively, pointing towards the
North Galactic Pole and the Galactic center. We indicate
the angular coordinates of the center of the cluster P at
distance r from the origin O, with a line of sight vector
γ̂ ¼ ðθ;ϕÞ. The relationship between these angles and the
galactic coordinates in radians is ðl; bÞ ¼ ðϕ; π=2 − θÞ.
We set up the cluster’s rest frame ðx̂; ŷ; ẑÞ at P and initially
align it with the observer’s coordinate system (see Fig. 1).
Throughout the calculations, we keep the orientation of
the observer’s coordinate system ðX̂; Ŷ; ẐÞ fixed and
apply the rotations and boosts only to the cluster’s frame
ðx̂; ŷ; ẑÞ. The line of sight vector of the cluster will be
denoted by γ̂0 ¼ ðθ0;ϕ0Þ. The actual propagation vectors
of the incoming photons towards the cluster P and the
outgoing ones towards the observer at O are, respectively,
−γ̂ and −γ̂0. In the paper, h, k, and c denote the Planck’s
constant, Boltzmann’s constant, and the speed of light.
We also use

Pα;β;…ζ
a;b;…;z as shorthand notation forP

α
a¼−α

Pβ
b¼−β � � �

Pζ
z¼−ζ. A list of all the abbreviations

used in the paper is provided in Table I (Appendix C).

B. Intensity and polarization induced by a
nonmoving cluster

1. The radiative transfer equation

The specific intensity and polarization of the CMB are
commonly described using the set of Stokes parameters
ðIν; Qν; UνÞ [41]. The change in these parameters due to
Thomson scattering with the electrons in the cluster is
conveniently expressed in terms of the radiative transfer
equation [42]

ΔIνðγ̂Þ
Δτ

¼ 3

16π

Z
Iνðγ̂0Þð1þ cos2θscÞd2γ̂0 − Iνðγ̂Þ; ð1Þ

ΔðQν � iUνÞðγ̂Þ
Δτ

¼ 3

16π

Z
Iνðγ̂0Þsin2θsce�2iϕscd2γ̂0; ð2Þ

where θsc and ϕsc are the polar and azimuthal angles of
scattering between γ̂ and γ̂0, and τ ¼ R

neσTds is the optical
depth of the cluster with respect to Thomson scattering.
Here, ne is the number density of the electrons, σT is the
Thomson cross section, and s is the length of the cluster
along the line of sight.
The thermal motion of the electrons (which causes the

tSZ distortion) and multiple scattering effects [43,44] are
neglected to simplify the calculations. The scattering events
are assumed to be elastic with no energy transfer between
the electrons and photons. In the limit of cold clusters, since
the scatterings do not change the bulk motion of the cluster,
it is safe to use Thomson scattering [7]. For high temper-
ature clusters, since the electrons upscatter the CMB
photons, the elasticity assumption does not hold anymore
and Compton scattering should be used instead [45].
The tSZ corrections in this limit are of the order of the
perturbative parameter θe ≡ kTe=mec2 ≈ 0.01 for a typical
cluster, so if calculated, they can be linearly added to
Eqs. (1) and (2). The initial polarization of the CMB is also
neglected, but the polarization-induced effects also linearly
couple to Eqs. (1) and (2), so the extra terms can be simply
added at any point. It is important to mention that although
the polarization-induced effects are typically smaller than
the temperature-induced ones, due to their different spatial
morphology they can be comparable or even dominant over
them in certain directions over the sky.
In order to integrate the radiative transfer equations for

an anisotropic incoming intensity with the harmonics
expansion

Iνðγ̂0Þ ¼
X∞
l¼0

Xl
m

aIlmðνÞYlmðγ̂0Þ; ð3Þ

we rewrite the integrand of Eqs. (1) and (2) in terms of
spin-weighted spherical harmonics using the generalized
addition theorem [46–48]

sYlsðθsc; 0Þe−isϕsc

¼ ð−1Þs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r Xl
m

Y�
lmðγ̂0ÞsYlmðγ̂Þ: ð4Þ

After integrating over all the incoming photons γ̂0, these
equations simplify to

ΔIνðγ̂Þ
Δτ

¼ −δIð1Þν ðγ̂Þ
zfflfflfflffl}|fflfflfflffl{bSZð1Þ

− δIð2Þν ðγ̂Þ
zfflfflfflffl}|fflfflfflffl{TinIn

−
X∞
l¼3

δIðlÞν ðγ̂Þ
zfflfflfflffl}|fflfflfflffl{bSZðlÞ

; ð5Þ

ΔðQν � iUνÞðγ̂Þ
Δτ

¼ −δðQν � iUνÞð2Þðγ̂Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{TinPol

; ð6Þ

FIG. 1. The CMB rest frame coordinate system ðX̂; Ŷ; ẐÞ is set
up with the Ẑ pointing towards the Galactic North Pole and X̂
towards the Galactic center. The cluster’s frame ðx̂; ŷ; ẑÞ is
centered at the location of the cluster P and initially aligned
with the CMB rest frame. γ̂ and γ̂0 are, respectively, the line of
sight vector of the observers at O and P.
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with each term defined as

δIð2Þν ðγ̂Þ ¼ 9

10

X2
m

aI2mðνÞY2mðγ̂Þ; ð7Þ

δðQν � iUνÞð2Þðγ̂Þ ¼
ffiffiffi
6

p

10

X2
m

aI2mðνÞ∓2Y2mðγ̂Þ; ð8Þ

and for l ≠ 2

δIðlÞν ðγ̂Þ ¼
Xl
m

aIlmðνÞYlmðγ̂Þ: ð9Þ

The right-hand side (rhs) of Eq. (8) is induced by the
photons that scatter into the line of sight of the observer,
while the rhs of Eq. (7) is a combination of the photons
that scatter into and out of the line of sight. We refer to
these terms as the temperature-induced polarization
(TinPol) and temperature-induced intensity (TinIn)
effects. Notice that both these effects depend on the
quadrupole of the CMB as observed by the cluster and
therefore are highly correlated with each other.
Equation (9) is basically the harmonic expansion of
the photons that scatter out of the line of sight. We will
refer to these terms as the blurring Sunyaev-Zeldovich
effect (bSZ) [36]. Although the temperature quadrupole-
induced intensity δIð2Þν is a combination of both inscat-
tered and outscattered photons, since the frequency
dependence of these scattering events are identical they
are not distinguishable from each other. Therefore, the
overall effect is written as one single term, which we
have called the TinIn effect. However, it is important to
remember that the nature of this effect is different from
the bSZ, which is only caused by outscattering of the
photons.
Note that the monopole term that survives the

radiative transfer integral has been canceled out with
the monopole term of the bSZ expansion. This means
that in a completely isotropic CMB model where all the
alms for l > 0 vanish, ΔIνðγ̂Þ and ΔðQν � iUνÞðγ̂Þ will
be equal to zero. This is because in an isotropic model
the number of scatterings that deflect the photons
towards and out of the line of sight are equal to each
other. However, it is evident from Eqs. (7) and (8) that
after including the anisotropies, the quadrupole moment
of the incident radiation induces a change in the
observed intensity and polarization of the CMB in
the direction of the cluster γ̂. It is important to note
that there is an implicit location/redshift dependence in
all the alms on the rhs of these equations. Therefore, the
TinIn and TinPol signals give us access to the observed
quadrupole moment of the CMB at the redshift of the
cluster z as first noticed in [19].

2. Separating frequency dependence from
spatial morphology

The specific intensity of the CMB has an almost perfect
blackbody spectrum which can be described as
Iνðγ̂0Þ ¼ BνðTðγ̂0ÞÞ, where Bν is the Planck function
defined as BνðTÞ≡ 2hν3

c2
1

ehν=kT−1 and Tðγ̂0Þ is the thermody-
namic temperature of the CMB in the γ̂0 direction. If we
assume that the frequency spectrum of the CMB is isotropic
(by negliecting anisotropic effects such as patchy reioniza-
tion [49,50]), we only need a single number, namely the
thermodynamic temperature of the blackbody T, and an
appropriate frequency function (here, the Planck Function
Bν) to describe the intensity of the CMB in every direction
γ̂. Consequently, the intensity multipole coefficients aIlmðνÞ
can be expressed as the combination of a frequency
function which describes the spectrum of the anisotropies,
and the thermodynamic temperature multipole coefficients
aTlm defined as

Tðγ̂0Þ ¼
X∞
l¼0

Xl
m

aTlmYlmðγ̂0Þ: ð10Þ

Using the Planck frequency function, it is easy to show that
the relationship between these coefficients up to first order
in temperature anisotropies is (see Appendix A and [51])

aI00ðνÞ ¼ ~BνðTÞaT00; ð11aÞ

aIlmðνÞ ¼ ~FνðTÞaTlm ðl > 0Þ; ð11bÞ

where T ¼ aT
00

2
ffiffi
π

p is the thermodynamic temperature of

the CMB monopole, ~BνðTÞ≡ T−1BνðTÞ and ~FνðTÞ≡
T−1BνðTÞfðhν=kTÞ are, respectively, the frequency func-
tions of the monopole and higher multipoles of the
anisotropies, with fðxÞ≡ xex

ex−1. The tilde over the frequency
functions denotes the normalization by the temperature
monopole T. The aIlmðνÞ coefficients have units of radiative
intensity (W=m2 Hz sr ¼ 1026 Jy=sr) and aTlms have units
of temperature (Kelvin).
Using Eqs. (11) in (7) and (8) will give us the advantage

of separating the frequency dependence of the TinIn and
TinPol signals from their spatial morphology over the sky,
simply described by the aTlms. For a nonmoving cluster this
separation is trivial, but in the case of a moving cluster, it
will help us to easily calculate the frequency weights of the
leakage of the lowmultipoles into the quadrupole due to the
Doppler effect. After substitution, Eqs. (7) and (8) can be
rewritten as

δIð2Þν ðγ̂Þ ¼ 9

10
~FνðTzÞ

X2
m

aTz
2mY2mðγ̂Þ; ð12Þ

δðQν � iUνÞð2Þðγ̂Þ ¼
ffiffiffi
6

p

10
~FνðTzÞ

X2
m

aTz
2m∓2Y2mðγ̂Þ; ð13Þ
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and similarly for the bSZ terms [Eq. (9)]

δIðlÞν ðγ̂Þ ¼ ~FνðTzÞ
Xl
m

aTz
lmYlmðγ̂Þ; ð14Þ

where the aTz
lms are the harmonic coefficients of the

temperature anisotropies of the CMB observed by the
cluster at redshift z and Tz is the average temperature at

that redshift. As we will see in Sec. III, the bSZ term δIð1Þν

will give rise to the kSZ intensity distortion [1].
Here, since the frequency dependence of these signals

are the same as that of the CMB temperature anisotropies,
we can also write the distortions in terms of the thermo-
dynamic temperature defined as

δTðγ̂Þ≡ δIνðγ̂Þ
~FνðTzÞ

; ð15Þ

as is common practice in tSZ and kSZ calculations. A
similar conversion can be used for the polarization param-
eters QT and UT as well. After plugging in Eqs. (12)–(14)
into (15), it would be evident that the thermodynamic
temperature (and polarization) distortions induced by the
quadrupole in the direction of nonmoving clusters are not
frequency dependent. However, this is not the case for
the distortions induced by the motion of the cluster. As
will be shown later, due to the addition of the motion-
induced effects, the total change in intensity and polariza-
tion will have a nontrivial frequency function that cannot be
described by the blackbody spectrum anymore. Therefore,
although Eq. (15) can be used to convert all the results in
terms of temperature fluctuations, in order to see the
complete frequency dependence of the signal and for the
sake of conceptual clarity we refrain from using this
conversion throughout the calculations.
In order to get an estimate of the amplitude of the TinPol

and TinIn signals for nonmoving clusters, we set the bSZ
terms equal to zero and use the numerical values of the aT2ms
from the deboosted Planck SMICA temerature map [52]
as an estimate of the quadrupole moment that a galaxy
clusters at z ≈ 0 would observe. Figure 2 shows the angular
distribution of these signals over the whole sky. Both
signals have similar frequency dependencies but they have
different angular distributions over the sky. The TinPol
and TinIn signals reach the maximum values of ΔðQþ
iUÞmax

ν ¼ 3.6 ~FνðT0ÞτμK and ΔImax
ν ¼ 18.6 ~FνðT0ÞτμK.

At ν ¼ 217 GHz where the tSZ signal vanishes, these
values correspond to ΔðQþ iUÞmax

217 GHz ≈ 1.7τkJy=sr and
ΔImax

217 GHz ≈ 9.1τkJy=sr. The reader should keep in mind
that at higher redshifts the amplitude and angular depend-
ence of the signal will be different due to the change in aT2m
coefficients. However, this change is very small up to z ∼ 1
[18] so for close by clusters we expect the distortion maps
to be highly correlated with the ones in Fig. 2.
In actual observations, the intensity distortion map in the

direction of galaxy clusters contains both TinIn and bSZ

effects. Since these effects have the same frequency
dependence, it is not easy to separate them without prior
knowledge of the temperature anisotropies at higher red-
shifts. Therefore, the TinIn effect would not be directly
observable as opposed to the TinPol. However, by looking
at the definition of the TinIn effect in Eq. (12) and its
angular distribution in Fig. 2, it is evident that at z ¼ 0, this
effect is equal to our local quadrupole rescaled by a factor
of 0.9τ (compare with Fig. 17 of [22]). Therefore, we
expect the cluster intensity distortion map over the whole
sky at low redshifts to be highly correlated with the local
quadrupole observed at z ¼ 0. This correlation can be used
to amplify the TinIn signal and separate it from bSZ for
clusters at low redshifts. Moreover, using the definition of
the spin-2 spherical harmonics through [46,53]

�2Ylmðγ̂Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl∓2Þ!
ðl� 2Þ!

s
ð−1Þ�2ð�2Ylmðγ̂Þ ð16Þ

FIG. 2. Mollweide projection contour maps of the TinPol (top)
and TinIn (bottom) at 217 GHz at z ¼ 0 in galactic coordinates.
The quadrupole moment of the CMB observed by the clusters is
estimated using Planck’s SMICA map. The TinPol signal
vanishes at four different directions and reaches the maximum
value of 1.7τ kJy=srð3.6 μKÞ at ðl; bÞ ¼ ð−113.1°;−63.3°Þ and
ð67.615°; 67.873°Þ. The TinIn signal vanishes over two large
rings and has the maximum value of 9.1τ kJy=srð18.7 μKÞ at
ðl; bÞ ¼ ð−23.6°; 0.4°Þ and ð100.4°;−0.5°Þ.
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with the operators ð�2 defined as

ð�2 ≡ ∂2

∂θ2 − cotðθÞ ∂
∂θ �

2i
sinðθÞ

∂2

∂θ∂ϕ
− cotðθÞ ∂

∂ϕ −
1

sin2ðθÞ
∂2

∂ϕ2
; ð17Þ

it is easy to see that the ð�2 derivative of the TinIn map in
Eq. (12) is just a rescaling of the TinPol in (13). Therefore
the second derivative of the quadrupole moment of the
intensity distortion map is strongly correlated with the
polarization distortion map. Furthermore, since TinIn itself
is correlated with the local quadrupole at low redshifts, the
second derivative of the quadrupole map is also highly
correlated with the TinPol. In other words, the second
derivative of the TinIn map at low redshifts (bottom panel
of Fig. 2) and the local quadrupole both reproduce a rescaled
version of the TinPol map (top panel of Fig. 2) and can be
used to enhance the signal to noise ratio for this effect.

III. MOVING GALAXY CLUSTER

We showed that the intensity and polarization induced in
the direction of a galaxy cluster are proportional to the
quadrupole moment that the cluster observes in its location,
so by measuring these induced signals, we can infer the
aTz
2ms at that redshift. However if the cluster is moving, since

Eqs. (7) and (8) are not Lorentz invariant, the observed
quadrupole moment in the cluster’s frame—which sources
the TinIn and TinPol signals—will not be equal to the
primordial quadrupole moment in the CMB frame any-
more. Hence, in order to correctly use these equations in the
cluster’s frame, we need to find the proper transformation
that links the former to the latter.
Using the generalized aberration kernel formalism, we

will show that the quadrupole moment observed in the
moving cluster’s frame is not only proportional to the
primordial quadrupole in the CMB rest frame, but also to
all the other low multipoles of the temperature anisotropies.
We will see that the multipole moments observed in a
moving frame have contributions from their nearby multi-
poles in the CMB rest frame as a result of the aberration and
Doppler effects. The aberration effect is only a geometrical
effect and does not change the frequency of the photons;
therefore, the aberration leakage of the multipoles into
each other is frequency independent. The Doppler effect,
on the other hand, depends both the frequency and angle of
the incoming photons, which makes theDoppler leakage of
the multipoles into each other frequency dependent. In a
moving frame, the frequency spectrum of the CMB will
still be that of a blackbody in every single direction;
however, the spectrum of the multipoles will be distorted
due to mixing of these blackbodies [51,54]. Therefore, the
combination of the Doppler and aberration effects changes
the frequency spectrum of the observed multipole

coefficients in the frame of the moving cluster. This
frequency dependence is always concealed in calculations
of the kernel of the transformation between the two frames,
because they are typically carried out in terms of the
temperature coefficients aTlm or the frequency integrated
coefficients aIlm ¼ R

aIlmðνÞdν [26,27,29,30]. Using the
frequency-dependent intensity coefficients, however, we
will find the frequency functions with which different
multipoles leak into each other. These frequency functions
will allow us to distinguish different multipole-induced
effects from one another in a multifrequency survey.
In this section, first we calculate the general expression

for the observed intensity multipole coefficients aIclm in the
frame of a cluster moving in an arbitrary direction, as a
function of the primordial aIlms in the CMB rest frame.
Then we will show that the quadrupole observed by the
cluster, which is the only mode that is reflected through
the TinIn and TinPol signals, will have contributions from
the primordial dipole, quadrupole, octupole, hexadecapole,
etc. with different frequency functions. Therefore, all these
low multipoles are observable through the intensity and
polarization signals induced in the direction of the cluster
[Eqs. (7) and (8)]. Since the frequency weights of the
Doppler leakage of the low multipoles into the quadrupole
are related to the higher order derivatives of the blackbody
frequency spectrum, they will amplify the overall TinIn and
TinPol signals (see Appendix A).
There is also a leakage from the temperature monopole

into the quadrupole which leads to the kSZ intensity and
polarization effects. Due to the large amplitude of the
monopole relative to the anisotropies, its induced intensity
and polarization signals are typically larger than the ones
induced by the other low multipoles. However, since the
frequency dependence of these effects are not the same, we
may be able to distinguish them from each other. We avoid
any frequency integrations over the aIlms throughout the
calculations to show this feature clearly. We will also do a
comparison between kSZ and the low multipole-induced
intensity and polarization effects. In the following section,
the subscript c corresponds to variables in the cluster’s
frame.

A. CMB intensity observed by a moving cluster

In order to calculate the multipole coefficients aIclmðνÞ of
the CMB observed by the cluster in terms of the aIlmðνÞ
coefficients in the CMB rest frame, we take advantage of
the Lorentz invariance of the quantity Iν=ν3 to relate the
intensities in the different frames. For a cluster that is

moving with the peculiar velocity vector ~vpec ¼ ~βc in the
CMB rest frame ðX̂; Ŷ; ẐÞ, the observed intensity in γ̂c ¼
ðθc;ϕcÞ direction at frequency νc can be written as [26,42]

Iνcðγ̂cÞ ¼
�

νc
νcmb

�
3

Iνcmb
ðγ̂cmbÞ: ð18Þ
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Here, νcmb and γ̂cmb are the frequency and the line of sight
vector of the incoming photon in the CMB rest frame. The
observed frequency and direction vector observed in the
Lorentz boosted cluster frame ðx̂; ŷ; ẑÞ are given by

νc ¼
�

1þ βμffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p �
νcmb; ð19Þ

γ̂c ¼
�ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2
p

Þμþ β

1þ βμ

�
β̂þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
1þ βμ

�
γ̂cmb: ð20Þ

Here, μ ¼ γ̂cmb:β̂, β ¼ j~βj and β̂ ¼ ~β=β which can be
denoted as ðθβ;ϕβÞ in the CMB frame. Using the spherical
harmonic expansion of Eq. (3) on both sides of Eq. (18), we
write the multipole coefficients observed in the cluster’s
frame aIcl0m0 ðνcÞ, in terms of the coefficients in the CMB rest
frame aIlmðνcmbÞ

aIcl0m0 ðνcÞ

¼
X∞
l¼0

Xl
m

Z �
νc
νcmb

�
3

aIlmðνcmbÞYlmðγ̂cmbÞY�
l0m0 ðγ̂cÞd2γ̂c:

ð21Þ

This expression relates the harmonic coefficients of the
observed multipoles in the two frames, so we can use it to
find the quadrupole in the cluster’s frame aIc

2m0 in terms of
all the primordial aIlms in the CMB rest frame. In the next
two subsections, we use the inverse of Eqs. (19) and (20) to
expand aIlmðνcmbÞ and Ylmðγ̂cmbÞ in terms of their cluster
frame counterparts so that we can integrate the rhs of this
expression.

1. Doppler effect

For typical values of β, the Doppler shift in Eq. (19)
is small. This allows us to use the following Taylor
expansion:�

νc
νcmb

�
3

aIlmðνcmbÞ

¼ Dð00Þ
νc aIlmðνÞ þ βDð11Þ

νc aIlmðνÞ
X1
n

4π

3
Y1nðγ̂cÞY�

1nðβ̂Þ

þ β2Dð22Þ
νc aIlmðνÞ

X2
n

4π

5
Y2nðγ̂cÞY�

2nðβ̂Þ

þ β2Dð20Þ
νc aIlmðνÞ þOðβ3Þ; ð22Þ

where the differential operators Dνc
ðkjÞ are defined in the

Appendix (see B 1 a). The superscripts are chosen such

that individual terms on the rhs are in βkDðkjÞ
νc Yjnðγ̂cÞ

format; they are simply labels to distinguish these

operators, and they have no tensorial meaning. Each

operator DðkjÞ
νc consists of frequency derivatives up to the

order ∂k
νc ≡ ∂k=∂νkjν¼νc

. The trivial operator Dð00Þ
νc only

changes the argument of its following function from ν
to νc and is defined for consistency in notation. In
this equation, since the Doppler factor ðνc=νcmbÞ3 only
depends on powers of μc ¼ γ̂c:β̂, we have written the
expansion in terms of Legendre polynomials and sep-
arated the γ̂c and β̂ dependence using the addition
theorem

PNðγ̂c:β̂Þ ¼
4π

2N þ 1

XN
n

YNnðγ̂cÞY�
Nnðβ̂Þ: ð23Þ

Equation (22) introduces the leakage of the intensity
harmonic coefficients aIlms due to the Doppler effect.
The second line of this equation shows the Doppler
leakage of the first neighbors of the lth multipole into
it. Using the addition property of the spherical harmon-
ics Y1m × Ylm ∝ Yðl�1Þm, it is easy to see that in the
absence of the aberration effect, after substituting this
equation back into (21), the observed aIcl0m0s in the
moving frame have contributions from aIðl0�1Þm0 coef-
ficients in the CMB frame up to first order in β.
Similarly, the third line in Eq. (22) brings in contribu-
tions from aIðl0�2Þm0 to second order in β.
The angle dependence of this expansion is due to the

fact that the ratio of the observed frequencies in each
frame depends on the observation angle. To first order
in β, the Doppler factor ðνc=νcmbÞ3 only depends on the
cosine of the angle between the incoming photons and
the direction of motion of the cluster so it will distort
the lth multipole in the moving frame by a factor of
μc ¼ P1ðγ̂c:β̂Þ. Therefore, it is maximal when the line of
sight is parallel to the direction of motion and is zero
when it is perpendicular, as there is no Doppler shift to
first order in β in these directions. It is evident from
Eq. (22) that the Doppler effect distorts both the
frequency spectrum of the observed multipoles (fre-
quency leakage) and their angular spectrum (geometri-
cal leakage). Keep in mind that the intensity in every
direction is still a blackbody and the Doppler effect
only distorts the spectrum of the multipoles. In par-
ticular, it draws in the first neighbors of each multipole

(l� 1) with the frequency operator Dð11Þ
νc ð∝ ∂1

νcÞ to first
order in β, the second neighbors (l� 2) with the

frequency operator Dð22Þ
νc ð∝ ∂2

νcÞ to second order in β,
and so on.

2. Aberration effect

We use Eq. (20) to expand Ylmðγ̂cmbÞ in terms of
Ylmðγ̂cÞ (see Appendix B 1 b)
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Ylmðγ̂cmbÞ ¼ Ylmðγ̂cÞ

þ β
X1;lþj

j;M0
Ωð1;jÞ

lmM0 ðβ̂ÞYðlþjÞM0 ðγ̂cÞ

þ β2

2

X2;lþj

j;M0
Ωð2;jÞ

lmM0 ðβ̂ÞYðlþjÞM0 ðγ̂cÞ þOðβ3Þ:

ð24Þ
The rotation operators Ωðk;jÞ

lmM0 ðβ̂Þ consist of an active and
passive rotation on spherical harmonics, performed by two

Wigner-D matrices [Eq. (B24)]. The operators Ωð1;0Þ
lmM0 ðβ̂Þ,

Ωð2;þ1Þ
lmM0 ðβ̂Þ, and Ωð2;−1Þ

lmM0 ðβ̂Þ are identically zero. Unlike
Doppler effect, the aberration expansion is not frequency
dependent and it only induces an angular distortion to the
multipoles. The sum limits of the index j in Eq. (24) show
that up to order βk, aberration distorts the multipole l by
drawing in its kth nearest neighbors.
In a moving frame, the Doppler and aberration effects

both induce geometrical leakage of nearby multipoles into
each other, but since their dependence on β̂ is not the same,
their contribution to the final observed aIclm can be different.
Since the Doppler effect is related to the frequency
derivative of the anisotropies, it is usually the dominant
effect (Appendix A). The derivatives can amplify the
Doppler terms by large factors and also shift the peak of
the frequency spectrum of the aIclms observed by the cluster.

B. The observed multipoles in the cluster’s frame

After substituting Eqs. (22) and (24) in (21), we can
easily integrate over γ̂c and obtain the following expression
for the observed aIclms in the cluster’s frame:

aIcl0m0 ðνcÞ ¼ aIl0m0 ðνcÞ þ β2Dð20Þ
νc aIl0m0 ðνÞ

þ
X

0<pþq≤2

X
l;m

βpþqp
qGlm

l0m0 ðβ̂ÞDðppÞ
νc aIlmðνÞ

þOðβ3Þ: ð25Þ

The geometrical kernel p
qGlm

l0m0 ðβ̂Þ is a modified version of

Y�
Nnðβ̂Þ and Ωðk;jÞ

lmM0 ðβ̂Þ in Eqs. (22) and (24), and it shows
the geometrical leakage of order βp in Doppler effect and
order βq in aberration, of the multipole l to the observed
multipole l0. For example, 1

0G
3m
2m0 shows the geometrical

leakage of the octupole into the observed quadrupole,
entirely due to the Doppler effect up to first order in β
[see Appendix B 1 c Eqs. (B30)–(B34) for a list of the
geometrical factors].
Similarly to what was done in Sec. II B 2, assuming that

the CMB has a pure blackbody spectrum in its rest frame,
the frequency dependence of the aIlmðνÞ coefficients can be
easily separated from the spatial part using Eqs. (11).

For convenience, we introduce the following frequency
functions:

~BðijÞ
νc ðTzÞ≡DðijÞ

νc
~BνðTzÞ; ð26aÞ

FIG. 3. Leakage of the dipole and octupole moments of
the primordial CMB into the aIc2;0ðνÞ coefficient of the
quadrupole observed by a cluster that is moving in the −ẑ.
The frequency functions of the Doppler (dashed), aberration
(dotted), and total leakage (dot dashed) are calculated for the
large value of β ¼ 0.2 to exaggerate the change due to the motion
of the cluster. The observed quadrupole by the cluster (solid red)
has a different frequency function compared to the primordial
quadrupole. Notice that the Doppler and aberration effects cancel
each other at 86 GHz for this particular value of β̂, so the total
leakage vanishes at this frequency.

FIG. 4. The ratio of the aIc2;0ðνÞ coefficient of the quadrupole
observed by a cluster moving in the −ẑ direction, and the
primordial aI2;0ðνÞ observed in the CMB rest frame. Higher
values of β increase the leakage of the octupole and the dipole and
amplify the quadrupole by 5%–20% in the frequency range of
200–400 GHz. For a typical velocity of 1000 km=s, this change is
about 2%–0% in the 200–600 GHz range.
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~FðijÞ
νc ðTzÞ≡DðijÞ

νc
~FνðTzÞ: ð26bÞ

After substituting these functions in Eq. (25) and writing
the rhs in terms of the thermodynamic temperature coef-
ficients aTz

lm, we can easily find the leakage of the
primordial anisotropies into each multipole observed by
the moving cluster. For example, Fig. 3 shows the fre-
quency functions of the leakage of the dipole and octupole
into the observed aIc2;0 quadrupole coefficient by a cluster

that is moving with ~β ¼ −0.2ẑ. The large value of the
peculiar velocity is chosen to exaggerate the total effect.
Here, the octupole coefficients are also adopted from
Ref. [52] but the dipole coefficients are simulated. It is
evident from Fig. 3 that the Doppler and aberration
leakages have different frequency functions and for the
particular value of β̂ ¼ −ẑ, the two effects cancel each other
at 86 GHz. In the plot, the apparent cancellation between
the nonmoving quadrupole, and the aberration leakage of
the dipole and octupole is just a coincidence due to the
choice of β ¼ 0.2. This value is roughly equal to the ratio of
the local aT2;0 coefficient to the amplitude of the dipole and
octupole moments used in the plot.
Figure 4 shows the relative change in the observed aIc2;0

coefficient for peculiar velocities ranging between β ¼
0.001 (v ¼ 300 km=s) to β ¼ 0.015 (v ¼ 4500 km=s). As
we can see in this figure, the frequency at which the
Doppler and aberration effects cancel each other does not
change for different values of β. For ν > 86 GHz, the
Doppler leakage becomes dominant with a larger frequency
weight compared to the aberration leakage. As a result, the
change in the quadrupole observed by the cluster at these
frequencies can be relatively large, despite the small values
of β.
It is worth mentioning that Eq. (25) can be also used in

the context of deboosting/deaberrating the CMBmultipoles
in the local frame. Writing this equation in the local frame
allows us to easily find the observed multipoles (lhs) in
terms of the primordial ones (rhs). The most important
feature of this equation is that it shows the dependence of
the overall frequency function on the direction of motion of
the frame β̂. This dependence is not clearly recognizable in
the usual calculations of the aberration kernel, due to the
convenient choice of β̂ ¼ ẑ. In that case, one can in
principle still recover the same results by applying appro-
priate rotations to the aIlm0s numerically. In fact, the

geometrical factors p
qGlm

l0m0 ðβ̂Þ in Eq. (25) can be interpreted
as these “appropriate rotations” applied to the aIlms. In
Appendix B 2, Eq. (25) is explicitly calculated for the first
few multipoles of the CMB in a boosted frame.
In the following section, we calculate the polarization

and intensity induced by the aIc
2m0 coefficients in the

direction of a moving cluster, and their dependence on
the primordial dipole and octupole, which will be reflected
through the cluster in the TinIn and TinPol effects.

C. Induced signals in the direction of the cluster

1. TinPol and kSZ polarization effects

Using the transformation between the intensity multi-
poles in the CMB frame and the cluster’s frame, it is now
easy to find the intensity and polarization induced in the
direction of a moving cluster. We simply need to replace the
terms on the rhs of Eqs. (7) and (8) with those calculated
from Eq. (25). Although the results derived here will be
only valid for an observer in the cluster’s frame, converting
it to any arbitrary frame would be trivial using the trans-
formations (19) and (20). One can first transform the signal
back to the CMB rest frame and then Lorentz boost it into
the frame of a general observer using the same equations.
This procedure is outlined in great detail in Refs. [2]
and [55].
We start with the change in polarization, because unlike

intensity it directly probes the quadrupole observed by the
cluster, and it is not distorted by the higher multipoles of the
temperature anisotropies that induce the bSZ effect [see
Eqs. (5) and (6) in Sec. II B 1]. Equation (8) in the cluster’s
frame is

ΔðQνc � iUνcÞðγ̂cÞ
Δτ

¼ −δðQνc � iUνcÞð2Þðγ̂cÞ; ð27Þ

where the quadrupole-induced polarization on the rhs is
now proportional to the primordial temperature quadrupole,
as well as its first neighboring multipoles (the dipole and
the octupole) to first order in β, and its second neighbors
(the monopole and the hexadecapole) to second order in β
and so on. The first few terms of this expansion are as
follows:

δðQνc � iUνcÞð2Þðγ̂cÞ ¼ T2inPolþ kSZPol

þ T1inPolþ T3inPolþOðβ2Þ; ð28Þ

with the following definitions:

T2inPol≡
ffiffiffi
6

p

10
~FνcðTzÞ

X2
m

∓2Y2mðγ̂cÞa
Tz
2m; ð29Þ

kSZPol≡
ffiffiffi
6

p

10
β2 ~Bð22Þ

νc ðTzÞ
X2;2
m0;m

2
0G

00
2m0 ðβ̂Þ × ∓2Y2m0 ðγ̂cÞaTz

00;

ð30Þ

T1inPol≡
ffiffiffi
6

p

10
β
X2;1
m0;m

ð10G1m
2m0 ðβ̂Þ ~Fð11Þ

νc ðTzÞþ 0
1G

1m
2m0 ðβ̂Þ ~FνcðTzÞÞ

×∓2Y2m0 ðγ̂cÞaTz
1m; ð31Þ
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T3inPol≡
ffiffiffi
6

p

10
β
X2;3
m0;m

ð10G3m
2m0 ðβ̂Þ ~Fð11Þ

νc ðTzÞþ 0
1G

3m
2m0 ðβ̂Þ ~FνcðTzÞÞ

×∓2Y2m0 ðγ̂cÞaTz
3m: ð32Þ

The first term in Eq. (28) is the quadrupole-induced
polarization (T2inPol) that was already present for a

nonmoving cluster [compare with Eq. (8)]. The monop-
ole-induced term, defined in Eq. (30), is the well-known
kSZ polarization effect (kSZPol). In order to make this
expression look more familiar, we write the frequency
function and geometrical factor explicitly to obtain

ΔðQνc � iUνcÞkSZðγ̂cÞ
Δτ

¼ β2

20
sin2ϑβe�2iφβ

× ~FνcðTzÞxc cothðxc=2Þ; ð33Þ

where xc ≡ hνc=kTz and ϑβ and φβ are the polar and

azimuthal Euler angles between γ̂c and β̂ defined as [56]

cosϑβ ¼ cos θc cos θβ þ sin θc sin θβ cosðϕc − ϕβÞ;
cotφβ ¼ cos θβ cotðϕc − ϕβÞ − cot θc sin θβ cscðϕc − ϕβÞ:

ð34Þ
In Eq. (33), β sin ϑβ ¼ β⊥ is the transverse component of
the peculiar velocity with respect to the observer’s line of
sight. This expressions generalizes the results of [5,57] in
agreement with [11]. The e�2iφβ factor decomposes the
polarization signal into the Q and U components, respec-
tively, with factors of cosð2φβÞ and sinð2φβÞ. Therefore, the
combination of the Q and U polarization maps can be used
to determine the exact three-dimensional direction of the
cluster’s velocity vector.
The second line of Eq. (28) shows the dipole and

octupole-induced polarization (T1inPol and T3inPol). We
will refer to these terms collectively as T1;3inPol. The most
interesting feature of these new terms is that they induce

FIG. 5. (top) Temperature quadrupole-induced polarization
(T2inPol) effect (solid black) and its modifications due to the
dipole and octupole in the ðl; bÞ ¼ ð0°; 90°Þ direction for different
values of β̂. The large value of β ¼ 0.2 is chosen to exaggerate the
differences between the frequency functions. Since the ratio
between Doppler and aberration leakage of the dipole and
octupole depends on the direction of motion of the cluster, the
frequency function of the total signal changes with β̂. The orange
and blue colors correspond to clusters with only radial and
transverse velocity vectors. (bottom) Induced polarization by the
quadrupole moment in comparison with that of the dipole and
octupole (T1;3inPol) and kSZ polarization (kSZPol) for clusters
moving in the β̂1 ¼ ð−54°; 27°Þ direction with 4500 km=s (dot
dashed), 900 km=s (dashed) and 300 km=s (dashed). The β ¼
0.015 kSZPol signal is scaled by a factor 0.1.

FIG. 6. Temperature-induced polarization for clusters moving
with the peculiar velocity β ¼ 0.05 in the −ẑ direction at
217 GHz. The dashed circles depict the 0.5τ μK contour lines
at 300 GHz (cyan) and 135 GHz (red) and for nonmoving clusters
at 217 GHz (black). Similarly, the solid lines show the 3.5τ μK
contour lines over different frequency channels. The shift in the
location of the maxima (minima) of the signal between 217 GHz
and 300 GHz channels is 23° (11° and 22°).
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different frequency and angular distortions to the TinPol at
different frequency bands. Note that in Eqs. (29)–(32), the
dependence of the signals on the observation direction γ̂c
and the velocity direction of the cluster β̂ are separated as a
result of our generalized approach. For the T1;3inPol effect,
changing any of these directions changes the total fre-
quency function of the signal. In Figs. 5 and 6, by fixing
one of these directions, we show the dependence of the
signal on the other one. The top panel of Fig. 5 shows how
much the dipole and octupole can change the TinPol signal
and its frequency dependence in the direction of the North
Galactic Pole for an exaggerated value of β. The T2inPol
effect, which is the only term that does not depend on the
velocity of the cluster, reaches its maximum at 218 GHz.
The peak value of this signal is 1.7τ kJy=sr (3.6τ μK)
which for a cluster with optical depth τ ≈ 0.02 is equal to
34 Jy=sr (0.07 μK). In the bottom panel, we have separated
the T1;3inPol for comparison with the T2inPol and kSZPol
for realistic values of β. Since the leakage due to the
Doppler effect is typically dominant over the aberration
effect (see Fig. 3), it shifts the position of the peak of the
dipole and octupole-induced polarizations with respect to
the quadrupole-induced signal. The direction of motion of
the cluster β̂ is chosen to maximize the T1;3inPol in this
specific direction in the sky. For bulletlike clusters
(β ¼ 0.015), kSZPol is dominant over the T2inPol but
for low velocities (β ¼ 0.001) it is approximately smaller
by a factor of 10. The reason for kSZPol’s fast drop is its
dependence on β2⊥. Although T1;3inPol is much smaller
than kSZPol at high velocities, it induces a 10% correction
to T2inPol at 217 GHz. For smaller velocities, this effect is
about 5% of the kSZPol at low frequencies. Although
kSZPol is typically the dominant effect in Eq. (28) for
larger values of β, it is nevertheless distinguishable from the
other TinPol effects due to its distinct frequency depend-
ence and large amplitude. The leakage of the hexadecapole
has been neglected in Eq. (28) because it only contributes
0.2% (2%) to the total polarization in the Rayleigh-Jeans
(Wien) frequencies.
Doppler and aberration leakages of the dipole and

octupole also induce an angular distortion to the TinPol
signal. Figure 6 shows the shift in the location of the
minima and maxima of the signal to represent the angular
change of the overall signal at different frequencies, for
clusters moving with ~β ¼ −0.05ẑ. The maxima and minima
of the TinPol signal are, respectively, 32° and 14° apart at
217 GHz and 300 GHz. For a more realistic velocity
β ¼ 0.015, these angle separations are about 15° for the
maxima and 5° for the minima. Note that the angular
distortions in this plot are calculated for one particular
direction of motion of clusters. Figure 6 simply shows that
the induced angular distortions are frequency dependent
and unless the clusters in some observation direction at a
certain redshift bin have a coherent bulk motion, the
expected signal would not change as described in this

plots. Indeed, for a more realistic map, one would need to
populate the sky with clusters moving in different direc-
tions, but even in that case, the angular dependence of the
signal will change at different frequencies. This feature can
be extremely helpful in a multifrequency and whole-sky
survey to identify and extract the TinPol effects from
foreground distortions and even kSZ and tSZ effects which
are not expected to have similar distributions over the sky.
Also, the angle dependence of this distortion changes the
ratio between T1;3inPol and T2inPol effects at different
observation directions and obviously makes T1;3inPol the
dominant effect in the areas where T2inPol is small.
The top panel of Fig. 7 shows a similar map to Fig. 6 at

300 GHz, which is the frequency at which the peak of

FIG. 7. (top) Mollweide projection of the TinPol effect for
clusters moving with the peculiar velocity β ¼ 0.015 in the β̂2 ¼
ð−135°; 45°Þ direction. This direction is chosen to maximize the
T1;3inPol signal. The red (yellow) contours show the ares within
which the T1;3inPol is larger than 10% (20%) of the T2inPol
signal. (bottom) Polarization signals in the direction of the black
dot in the top panel. In this direction, T1;3inPol becomes larger
than T2inPol above 420 GHz for β ¼ 0.015 (dot dashed). At
289 GHz, the peak of the T1;3inPol is, respectively, 70%, 13%,
and 4% of the T2inPol for 4500 km=s (dot dashed), 900 km=s
(dashed), and 300 km=s (dashed).
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T1;3inPol typically lies. We can see that T1;3inPol is larger
than 10% (20%) of T2inPol over roughly 20% (10%) of the
sky. Here, the average contribution of the T1;3inPol over the
whole sky is 10%. The bottom panel shows different
polarization signals in an arbitrary direction ðl; bÞ ¼
ð−54°;−27°Þ which is indicated with a black dot in the
top panel. In this direction, the amplitude of T1;3inPol for
β ¼ 0.015 is comparable to T2inPol and even becomes
dominant at 386 GHz. The peak value of T1;3inPol is at
289 GHz, and at this frequency it is as large as 70% of the
T2inPol. For the smaller values of β ¼ 0.003 and
β ¼ 0.001, T1;3inPol is, respectively, 13% and 4% of the
T2inPol at the peak frequency.

2. TinIn and kSZ intensity effects

Similar to the case of polarization, for intensity we can
rewrite Eq. (7) in the cluster’s frame as

ΔIνcðγ̂cÞ
Δτ

¼ −δIð1Þνc − δIð2Þνc −
X∞
l¼3

δIðlÞνc ; ð35Þ

where the new bSZð1Þ in the cluster’s frame is

δIð1Þνc ¼ T1inbSZð1Þ þ kSZInð1Þ þ T2inbSZð1Þ þOðβ2Þ;
ð36Þ

where

T1inbSZð1Þ ≡X1
m

Y1mðγ̂cÞ ~FνcðTzÞaTz
1m ð37Þ

is the dipole-induced bSZ term, which was already present
even in the case of the nonmoving cluster,

kSZInð1Þ ≡ β
X1
m0

1
0G

00
1m0 ðβ̂Þ ~Bð11Þ

νc ðTzÞY1m0 ðγ̂cÞaTz
00; ð38Þ

is the first order monopole-induced intensity, known as the
kSZ intensity effect, and

T2inbSZð1Þ ≡ β
X1;2
m0;m

ð10G2m
1m0 ðβ̂Þ ~Fð11Þ

ν ðTzÞ þ 0
1G

2m
1m0 ðβ̂Þ ~FνðTzÞÞ

× Y1m0 ðγ̂cÞaTz
2m ð39Þ

is the leakage of the quadrupole into the dipole-induced
bSZ. Similarly, the new TinIn in the cluster’s frame would
be equal to

δIð2Þνc ¼ T2inInþ kSZInð2Þ þ T1inInþ T3inInþOðβ2Þ;
ð40Þ

where again

T2inIn≡ 9

10

X2
m

Y2mðγ̂cÞ ~FνcðT0ÞaT2m ð41Þ

is the quadrupole-induced intensity which was already
derived for nonmoving clusters,

kSZInð2Þ ≡ 9

10
β2

X2
m0

2
0G

00
2m0 ðβ̂Þ ~Bð22Þ

νc ðT0ÞY2m0 ðγ̂cÞaT00 ð42Þ

is the second order monopole-induced intensity (first
relativistic correction to kSZIn) and

T1inIn≡ 9

10
β
X2;1
m0;m

ð10G1m
2m0 ðβ̂Þ ~Fð11Þ

νc ðTzÞ þ 0
1G

1m
2m0 ðβ̂Þ ~FνcðTzÞÞ

× Y2m0 ðγ̂cÞaTz
1m; ð43Þ

T3inIn≡ 9

10
β
X2;3
m0;m

ð10G3m
2m0 ðβ̂Þ ~Fð11Þ

νc ðTzÞ þ 0
1G

3m
2m0 ðβ̂Þ ~FνcðTzÞÞ

× Y2m0 ðγ̂cÞaTz
3m ð44Þ

are the dipole and octupole-induced intensity signals. If we
rewrite the monopole-induced terms in Eqs. (38) and (42)
together, with the frequency and geometrical functions
written out explicitly as

ΔIkSZνc

Δτ
¼ −β cosϑβ ~FνcðT0Þ

þ 1

6
β2ð3cos2ϑβ − 1Þ ~FνðT0Þx cothðx=2Þ; ð45Þ

we obtain the well-known kSZ intensity (kSZIn) effect and
its first relativistic correction in β. To first order in β, kSZIn
is proportional to the parallel component of the peculiar
velocity β cosϑβ ¼ β∥ as expected. Note that β3 order
corrections due to the leakage of the monopole into the

δIð3Þνc will be comparable to the motion-induced intensity
effects for clusters with large peculiar velocity and there-
fore must be included. The third and fourth lines of
Eqs. (43) and (44) are the dipole and octupole-induced
intensity effects which we will collectively call T1;3inIn.
The top panel of Fig. 8 shows the total signal induced by
T2inIn and T1;3inIn in the direction of the North Galactic
Pole for an exaggerated value of β ¼ 0.2. It clearly shows
the dependence of the frequency function of the total signal
on the cluster’s direction of the motion. The T1;3inIn effect
is maximal for clusters moving parallel to the line of sight.
The bottom panel shows how these signals compare to
each other.
The motion-induced intensity by the dipole and octupole

change the angular distribution of the TinIn signal over
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different frequency bands. Figure 9 shows the absolute value
of the TinIn signal for clusters moving with ~β ¼ −0.05ẑ at
217 GHz and how the angular shape of the signal changes at
different frequencies. Similar to Fig. 6, this plots only shows
the angular distortions calculated for a particular direction of
motion of the clusters and does not show the dependence of
the angular distortions on β̂. The change in the location of the
maxima and minima at different frequencies are smaller
compared to the TinPol effect but are still noticeable. As
mentioned before, the ð�2 derivative of these maps will
reproduce rescaled version of the polarization maps in Fig. 6

and are highly correlated with them. This correlation can be
used to amplify the signal to noise ratio for both signals.

IV. SUMMARY AND DISCUSSION

In this paper, we performed a comprehensive study of the
expected signal from CMB-gas interaction in moving
galaxy clusters over the whole sky. We developed a
formalism that generalizes the kSZ effect by including
the CMB temperature anisotropies and their frequency
dependences. In this formalism, one can easily see the
contribution of the low multipoles of the CMB to the
intensity and polarization distortions induced in the direc-
tion of a galaxy cluster. In the absence of anisotropies, our
results naturally reduce to the well-known kSZ intensity
and polarization effects. However, in the anisotropic
picture, the low multipoles of the CMB also contribute
to the kSZ effect in a frequency dependent manner. For
nonmoving clusters, the polarization signal is only propor-
tional to the quadrupole of the temperature, but we showed
that for clusters with large peculiar velocities, the primor-
dial dipole and octupole can contribute to the signal by 10%
(20%) over 20% (10%) of the sky at 300 GHz. Measuring
these intensity and polarization distortions in the direction
of a cluster can be exploited to infer the low multipoles at
other locations/redshifts in the Universe and ultimately help
to reduce the cosmic variance for these modes.
In order to calculate the polarization induced by temper-

ature anisotropies, we employed the aberration kernel
formalism, which calculates the harmonic coefficients of
anisotropies in a moving frame as a function of their CMB
rest frame counterparts. We generalized this formalism in
two ways: by allowing an arbitrary location and direction of
motion for the moving frame of the cluster, and by taking

FIG. 8. (top) Temperature quadrupole-induced intensity
(T2inIn) effect (solid black) and its modifications due to the
dipole and octupole in the ðl; bÞ ¼ ð0°; 90°Þ direction for different
values of β̂. The maximal change is in the direction of clusters
moving with a radial velocity. (bottom) Induced intensity by the
quadrupole moment in comparison with that of the dipole and
octupole (T1;3inIn) and the kSZ intensity (kSZIn) effect rescaled
by 5 × 10−4 for clusters moving in the β̂3 ¼ ð−94°; 76°Þ direction
with 4500 km=s (dot dashed), 900 km=s (dashed), and
300 km=s (dashed).

FIG. 9. Temperature-induced intensity for clusters moving with
the peculiar velocity β ¼ 0.05 in the −ẑ direction at 217 GHz.
The dashed circles depict the 3τ μK contour lines at 300 GHz
(cyan) and 135 GHz (red) and at 217 GHz for nonmoving clusters
(black). The solid lines show the 18τ μK contour lines over
different frequency channels. Similar to the TinPol effect, the
location of the maxima and minima of this signal change at
different frequencies.
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the frequency dependence of the anisotropies into account.
Using these features, we developed a whole-sky and
frequency-dependent formalism for calculating the kSZ
effect. These generalizations reveal a connection between
the frequency dependence of the signal and the direction of
motion of the cluster for higher order effects. This will
facilitate the interpretation of results from future microwave
surveys, which are aiming to measure the frequency
spectrum of the CMB over numerous channels, and allow
for precise measurements of kSZ. Our generalizations of
the aberration kernel can be also employed in the local
frame to conveniently deboost/deaberrate the CMB multi-
poles in a frequency dependent manner.
First, we studied the temperature-induced polarization

signal and its dependence on the remote quadrupole in the
direction of nonmoving clusters (Sec. II). By using our
local temperature quadrupole, we presented a map of the
expected quadrupole-induced polarization signal and its
spatial morphology for nonmoving clusters at z ∼ 0.
The peak value of this signal for a single cluster is expected
to be ∼1.7τ kJy=sr (3.6τ μK) which results in a 70 nK
signal for a cluster with τ ¼ 0.02. The signal has a
maximum at 218 GHz in the ðl; bÞ ¼ ð−113.1°;−63.3°Þ
and ð67.6°; 67.9°Þ, which would be the ideal directions for
its detection. At higher redshifts, the amplitude and angular
dependence of the expected signal will be different due to
the change in the quadrupole, so the polarization map will
be less correlated with the one calculated at z ∼ 0 and the
local quadrupole [18].
We then generalized the problem to the case of moving

clusters and calculated the contribution of the quadrupole’s
neighbors to the signal (Sec. III), the leakage of themonopole
into the quadrupole observed by the cluster leads to the kSZ
polarization effect. This signal is subdominant to the quadru-
pole-induced polarization for typical values of cluster veloc-
ity (β ≲ 0.003) but can become dominant for high velocity
clusters and mergers. For example, in the case of the bullet
cluster (β ≈ 0.015) [58] kSZ polarization is 25 times larger
than the quadrupole-induced polarization at 218 GHz.
Nevertheless, since the peak of kSZ polarization is always
at 276 GHz, these effects are distinguishable from each other
in multifrequency surveys. One can also take advantage of
the distinct patterns that these signals create in the Q and U
polarization components, which are easily separable in our
formalism.
For a moving cluster, the next order correction induced by

the other anisotropies is due to the dipole and octupole
moments of the CMB. Although the contribution of dipole
and octupole to the induced quadrupole polarization are of
order β, their individual frequency weights can enhance the
signal by a factor of 5 and larger for ν ≥ 350 GHz, so for
β ¼ 0.015 they can collectively boost the polarization signal
by 15%. For a smaller value of β ¼ 0.003, the change is
about 2%–10% in the 200–600 GHz frequency range.
Unlike kSZ and the quadrupole-induced polarization, the

frequency function of the dipole and octupole-induced
polarizations depend on the direction of motion of the
cluster β̂. This is due to the fact that the total signal is a
combination of the Doppler (frequency-dependent) and
aberration (frequency-independent) effects. Since the ratio
of these effects depends on β̂, different directions of motion
change the peak location of the frequency function for the
total induced signal.
The quadrupole-induced polarization also has a different

angular dependence compared to that of the dipole and
octupole, so the ratio between the two signals changes over
the sky. This will make the dipole and octupole-induced
effects non-negligible in large areas over the sky. Moreover,
since the contribution of the dipole and octupole to the
overall polarization signal has a steeper frequency depend-
ence than the one due to the quadrupole, they may become
dominant at high frequencies (ν≳ 400 GHz). As for the
next leading order term, the hexadecapole, since its leakage
to the quadrupole is proportional to β2, it only contributes
to the signal by 0.2% at low frequencies, but can be as large
as 2% at higher frequencies.
The temperature-induced polarization effects for the

leading order terms can be summarized (in order of
importance) as follows:

(i) Monopole-induced polarization (kSZPol) for high
velocity (β ≳ 0.003) clusters and mergers ∝ β2τaT00

(ii) Quadrupole-induced polarization (T2inPol) ∝ τaT2m
(iii) Monopole-induced polarization (kSZPol) for low

velocity (β ≲ 0.003) clusters ∝ β2τaT00
(iv) Dipole-induced polarization (T1inPol) ∝ βτaT1m
(v) Octupole-induced polarization (T3inPol) ∝ βτaT3m
(vi) Hexadecapole-induced polarization (T4inPol) ∝

β2τaT4m
It is important to mention that for certain alignments of the
line of sight and the velocity vector, the angular and
geometrical prefactors—which have not been included in
the list—can suppress each term with respect to the others or
even make it vanish. For example, since the kSZPol effect
only depends on the transverse component of β, it becomes
zero for a cluster that has a bulk velocity parallel to our line

of sight. Also, regardless of the magnitude or direction of ~β,
T2inPol vanishes in four directions over the sky. So for
clusters located close to these directions and moving with a
radial bulk velocity, T1inPol and T3inPol are the dominant
polarization effects. Note that since the late ISW effect
enhances the dipole mode of the CMB more than the
octupole mode, the induced polarization by the former is
in general expected to be larger than that of the latter. This is
why T1inPol appears before T3inPol in the above list.
The quadrupole of the CMB is also reflected through the

temperature-induced intensity effect for a nonmoving cluster
with a maximum value of ∼9.1τ kJy=sr (18.7τ μK)which is
about 5 times larger than the T2inPol signal (Sec. II B).
Unfortunately, unlike the polarization effect, this signal does

SIAVASH YASINI and ELENA PIERPAOLI PHYSICAL REVIEW D 94, 023513 (2016)

023513-14



not directly probe the quadrupole moment of the CMB in the
direction of nonmoving clusters because it is confused by the
other temperature multipoles that scatter out of line of sight.
However, as discussed in Sec. II B 2, the second derivative
of the intensity distortion map is highly correlated with the
temperature-induced polarization so cross-correlating the
two maps can amplify the signal to a great extent.
The sensitivity needed for measuring the T2inPol

(∼100 nK) and T1inPol and T3inPol (∼10 nK) are well
below the sensitivity level of current instruments. The
PRISM project [59] has proposed to measure the quadru-
pole-induced polarization signal, and since it is a multi-
frequency and whole-sky survey, it is the ideal instrument
to measure the signal induced by the other low multipoles
as well. The sensitivity of PRISM at relevant frequency
channels is not high enough for single cluster measure-
ments, but the signal can be enhanced to detection level
using stacking methods and cross-correlation with the
temperature-induced intensity effects discussed earlier.
The polarization induced by the low multipoles of the

CMB, aside from imposing corrections to the kSZ effect,
allow us to measure these modes at higher redshifts.
Successful measurements of the low multipoles can help
us determine if the observed anomalies in the quadrupole
and octupole are coincidental or fundamental. Even more
importantly, it opens up a window to find the primordial
dipole moment of the CMB at z ≈ 0 which is inevitably
masked by the motion-induced dipole in our local moving
frame. In this study, we neglected the multiple scattering
events, which can induce similar effects in aspherical
clusters (∼0.2%) [43]. We also neglected the initial
polarization of the CMB and its leakage into the quadrupole
polarization through galaxy clusters. This effect is gen-
erally expected to be small, however, in certain areas
of the sky can be comparable to the temperature-induced
polarization and kSZ. We will investigate the polarization-
induced polarization effects in a future paper.
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APPENDIX A: FREQUENCY FUNCTIONS

The assumption that the frequency spectrum of the CMB
is isotropic was used in Eq. (11) to separate the frequency
dependence of the multipoles from their spatial morphol-
ogy. Assuming that the intensity of the CMB can be
described by a pure blackbody BνðTÞ≡ 2hν3

c2
1

ehν=kT−1 in its
rest frame, we can write

IνðTÞ ¼ BνðTÞ ðA1Þ

δIνðTÞ ¼
∂BνðTÞ
∂T δT ðA2Þ

¼ T−1FνðTÞδT; ðA3Þ
where FνðTÞ≡ BνðTÞ xex

ex−1 and x ¼ hν=kT is the dimen-
sionless frequency. Here, since δT=T ≈ 10−5, we can safely
ignore the second and higher order temperature fluctua-
tions. By using the expansions (3) and (10) on both sides of
Eq. (A1) one can easily derive Eq. (11), which shows that
the frequency dependence of the CMB monopole is
described by BνðTÞ, and for the anisotropies by its first
temperature derivative FνðTÞ. Since the aberration effect is
frequency independent and only depends on the angle
between the incoming photon and observer’s velocity
vector, it does not change the frequency spectrum of the
observed multipoles. Therefore the leakage of the monop-
ole into the nearby multipoles will be proportional to BνðTÞ
and for the anisotropies to FνðTÞ. The Doppler effect, on
the other hand, shifts the observed frequency of the
incoming photons in an angle dependent manner and is
proportional to the derivatives of the frequency spectrum.
Up to first order in β, the Doppler leakage of the multipoles

is proportional to their first frequency derivative (Dð11Þ
νc ),

and to second order in β proportional to the second

derivatives (Dð20Þ
νc and Dð22Þ

νc ) and so on. For the monopole
the explicit form of these functions are

Bð11Þ
ν ðTÞ≡Dð11Þ

νc BνðTÞ ¼ −FνðTÞ; ðA4Þ

Bð20Þ
ν ðTÞ≡Dð20Þ

νc BνðTÞ ¼
1

6
FνðTÞðx cothðx=2Þ − 3Þ;

ðA5Þ

Bð22Þ
ν ðTÞ≡Dð22Þ

νc BνðTÞ ¼
1

3
FνðTÞx cothðx=2Þ; ðA6Þ

and for the anisotropies

Fð11Þ
ν ðTÞ≡Dð11Þ

νc FνðTÞ ¼ −FνðTÞðx cothðx=2Þ − 1Þ;
ðA7Þ

Fð20Þ
ν ðTÞ≡Dð20Þ

νc FνðTÞ ¼
1

6
FνðTÞ

×
−3þ 2x2 þ ð3þ x2Þ coshðxÞ − 5x sinhðxÞ

coshðxÞ − 1
;

ðA8Þ

Fð22Þ
ν ðTÞ≡Dð22Þ

νc FνðTÞ ¼
1

6
FνðTÞxsinh−2ðx=2Þ

× ðx coshðxÞ − 2 sinhðxÞ þ 2xÞ: ðA9Þ
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Figure 10 shows all these frequency functions
together. Note that the frequency functions used in
Secs. II and III are normalized with the temperature
monopole at redshift z and are denoted with a tilde.
Notice that the frequency dependence of the primordial
dipole Fν is identical to the frequency dependence of

the Doppler leakage of the monopole Bð11Þ
ν up to a

negative sign. This is why the primordial dipole moment
of the temperature anisotropies is not distinguishable
from the dipole induced by the monopole, due to our
motion with respect to the CMB rest frame.

APPENDIX B: CALCULATION DETAILS

1. The intensity kernel integral

The harmonic coefficients in the cluster’s frame can be
found by performing the following integral from Eq. (21)

aIcl0m0 ðνcÞ ¼
X∞
l¼0

Xl
m

Z �
νc
νcmb

�
3

× aIlmðνcmbÞYlmðγ̂cmbÞY�
l0m0 ðγ̂cÞd2γ̂c: ðB1Þ

For small values of β, we can use the inverse of Eqs. (19)
and (20) and perform the following Taylor expansions

aIlmðνcmbÞ ¼ aIlmðνcÞ

þ
�
μcβ þ

1

2
β2
�
νc∂νjν¼νc

aIlmðνÞ

þ
�
1

2
μ2cβ

2

�
ν2c∂2

νjν¼νc
aIlmðνÞ þOðβ3Þ;

ðB2Þ

Ylmðγ̂cmbÞ ¼ Ylmðγ̂cÞ

þ
�
β þ 1

2
μcβ

2

�
β̂:∇Ylmðγ̂cÞ

þ 1

2
β2ðβ̂:∇Þ2Ylmðγ̂cÞ þOðβ3Þ; ðB3Þ

where μc ¼ γ̂c:β̂. The expansions are, respectively, due to
the Doppler and aberration effects. In the following sub-
sections, we simplify the rhs of these equations analytically
and integrate equation (B1).

a. Doppler effect

It is mathematically convenient to write different powers
of μ in Eqs. (B2) and (B3) in terms of the Legendre
polynomials as μc ¼ P1ðγ̂c:β̂Þ and μ2c ¼ 1

3
þ 2

3
P2ðγ̂c:β̂Þ.

This allows us to use the addition theorem for spherical
harmonics, as a special case of Eq. (4)

Plðγ̂c:β̂Þ ¼
4π

2lþ 1

Xl
n

Ylnðγ̂cÞY�
lnðβ̂Þ; ðB4Þ

and separate the γ̂c and β̂ dependence and easily integrate
over γ̂c in Eq. (B1). We rewrite the expansion (B2) as

�
νc
νcmb

�
3

aIlmðνcmbÞ

¼ Dð00Þ
νc aIlmðνÞ þ βDð11Þ

νc aIlmðνÞ
X1
n

4π

3
Y1nðγ̂cÞY�

1nðβ̂Þ

þ β2Dð22Þ
νc aIlmðνÞ

X2
n

4π

5
Y2nðγ̂cÞY�

2nðβ̂Þ

þ β2Dð20Þ
νc aIlmðνÞ þOðβ3Þ; ðB5Þ

with the differential operators DðkjÞ
νc defined as

Dð00Þ
νc ≡ ∂0

νc ; ðB6aÞ

Dð11Þ
νc ≡ −3∂0

νc þ νc∂1
νc ; ðB6bÞ

Dð20Þ
νc ≡ 1

2
∂0
νc −

1

2
νc∂1

νc þ
1

6
ν2c∂2

νc ; ðB6cÞ

Dð22Þ
νc ≡ 4∂0

νc − 2νc∂1
νc þ

1

3
ν2c∂2

νc ; ðB6dÞ

where ∂k
νc ≡ ∂k=∂νkjν¼νc

. The trivial operator Dð00Þ
νc only

changes the argument of its following function from ν to νc,

and it is defined for consistency in notation.

FIG. 10. Frequency functions of the CMB monopole (Bν), its
anisotropies (Fν), and their derivatives. The large amplitude of
the derivatives boosts the Doppler leakage of the multipoles into
each other.
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b. Aberration effect

The gradient terms in Eq. (B3) can be simplified in a
coordinate system where β̂ ¼ ẑ using the recursive spheri-
cal harmonics identities

ðμ2 − 1Þ ∂
∂μYlm ¼ lCðlþ1ÞmYlþ1m − ðlþ 1ÞClmYðl−1Þm;

ðB7Þ

μYlm ¼ Cðlþ1ÞmYðlþ1Þm þ ClmYðl−1Þm; ðB8Þ

with the constants Clm defined as

Clm ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −m2

4l2 − 1

s
: ðB9Þ

In order to use these identities, first we rotate the cluster’s
coordinate system ðx̂; ŷ; ẑÞ to align ẑ with β̂, then simplify
the equations, and finally rotate it back to its original
orientation. By applying an active rotation using the Euler
matrix R≡ Rẑð−ϕβÞRŷð−θβÞ to the argument of Eq. (B3),
we can rewrite it as

YlmðRγ̂cmbÞ ¼ YlmðRγ̂cÞ

þ βYð1Þ
lmðRγ̂cÞ þ

1

2
β2Yð2Þ

lmðRγ̂cÞ þOðβ3Þ;
ðB10Þ

where the functions YðiÞ
lm comprise a linear combination of

Ylm and its ith nearest harmonic neighbors

YðiÞ
lmðγ̂Þ≡

Xi

j

Cði;jÞlm YðlþjÞmðγ̂Þ: ðB11Þ

The only nonvanishing coefficients Cði;jÞlm in Eq. (B10) are

Cð1;þ1Þ
lm ¼ lCðlþ1Þm; ðB12aÞ

Cð1;−1Þlm ¼ −ðlþ 1ÞClm; ðB12bÞ

Cð2;þ2Þ
lm ¼ lðlþ 1ÞCðlþ1ÞmCðlþ2Þm; ðB12cÞ

Cð2;0Þlm ¼ −ðl2 − 1ÞC2
lm − lðlþ 2ÞC2

ðlþ1Þm; ðB12dÞ

Cð2;−2Þlm ¼ lðlþ 1ÞCðl−1ÞmClm; ðB12eÞ

and the coefficients Cð1;0Þlm , Cð2;þ1Þ
lm , and Cð2;−1Þlm are equal to

zero. In order to write Eq. (B10) in terms of Ylmðγ̂Þ, first we
use the Wigner D matrix to separate the rotation operator

YlMðRγ̂Þ ¼
X
M0

Dl
M0Mð−ϕβ;−θβ; 0ÞYlM0 ðγ̂Þ; ðB13Þ

which followed by a further transformation

X
M

Dl
Mmð0; θβ;ϕβÞYlMðRγ̂Þ ¼ Ylmðγ̂Þ ðB14Þ

will give us the desired equation for aberration effect in
terms of Ylmðγ̂Þ

Ylmðγ̂cmbÞ ¼ Ylmðγ̂cÞ

þ β
X1;l;lþj

j;M;M0
Dl

Mmðβ̂ÞCð1;þjÞ
lM Dlþj

M0Mðβ̂−1Þ

× YðlþjÞM0 ðγ̂cÞ

þ β2

2

X2;l;lþj

j;M;M0
Dl

Mmðβ̂ÞCð2;þjÞ
lM Dlþj

M0Mðβ̂−1Þ

× YðlþjÞM0 ðγ̂cÞ þOðβ3Þ: ðB15Þ

Here, β̂ and β̂−1 in the argument of the Wigner D symbols
are shorthand notation for the Euler angles ð0; θβ;ϕβÞ and
ð−ϕβ;−θβ; 0Þ. For negative values of j, the Wigner D
matrix is not defined for lþ j < jMj < l; however, in
favor of consistency of notation, we resolve this issue by

setting Dlþj
M0M to zero for these values of M.

c. The kernel integral

Substituting Eqs. (B5) and (B15) into (B1) will yield

aIcl0m0 ðνcÞ ¼ I0 þ βðID1 þ IA1Þ
þ β2ðID0 þ ID2 þ IA2 þ ID1

A1 Þ
þOðβ3Þ; ðB16Þ

where

I0 ≡X∞
l¼0

Xl
m

Dνc
ð00ÞaIlmðνÞ

×
Z

Ylmðγ̂cÞY�
l0m0 ðγ̂cÞd2γ̂c ðB17Þ

is the zeroth order integral,

ID1 ≡X∞
l¼0

Xl;1
m;n

4π

3
Y�
1nðβ̂ÞDð11Þ

νc aIlmðνÞ

×
Z

Ylmðγ̂cÞY�
l0m0 ðγ̂cÞY1nðγ̂cÞd2γ̂c ðB18Þ

is the first order Doppler integral,
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IA1 ≡
X∞
l¼0

Xl;1;lþj

m;j;M0
Ωð1;jÞ

lmM0 ðβ̂ÞDð00Þ
νc aIlmðνÞ

×
Z

YðlþjÞM0 ðγ̂cÞY�
l0m0 ðγ̂cÞd2γ̂c ðB19Þ

is the first order aberration integral,

ID0 ≡X∞
l¼0

Xl
m

Dð20Þ
νc aIlmðνÞ

×
Z

Ylmðγ̂cÞY�
l0m0 ðγ̂cÞd2γ̂c ðB20Þ

and

ID2 ≡X∞
l¼0

Xl;2
m;n

4π

5
Y�
2nðβ̂ÞDð22Þ

νc aIlmðνÞ

×
Z

Ylmðγ̂cÞY�
l0m0 ðγ̂cÞY2nðγ̂cÞd2γ̂c ðB21Þ

are the second order Doppler integrals,

IA2 ≡
X∞
l¼0

Xl;2;lþj

m;j;M0

1

2
Ωð2;jÞ

lmM0 ðβ̂ÞDð00Þ
νc aIlmðνÞ

×
Z

YðlþjÞM0 ðγ̂cÞY�
l0m0 ðγ̂cÞd2γ̂c ðB22Þ

is the second order aberration integral and

ID1
A1 ≡X∞

l¼0

Xl;1;1;lþj

m;n;j;M0
Y�
1nðβ̂ÞΩð1;jÞ

lmM0 ðβ̂ÞDð11Þ
νc aIlmðνÞ

×
4π

3

Z
YðlþjÞM0 ðγ̂cÞY�

l0m0 ðγ̂cÞY1nðγ̂cÞd2γ̂c ðB23Þ

is the cross-Doppler-aberration integral of first

order. The rotation coefficients Ωð1;jÞ
lmM0 ðβ̂Þ, which were

introduced to simplify the aberration expansion, are
defined as

Ωðk;jÞ
lmM0 ðβ̂Þ≡

Xl
M

Dl
Mmðβ̂ÞCðk;jÞlM DðlþjÞ

M0M ðβ̂−1Þ: ðB24Þ

These integrals are easy to evaluate using

Z
Ylmðγ̂cÞY�

l0m0 ðγ̂cÞd2γ̂c ¼ δll0δmm0 ðB25Þ

and the Gaunt formula

Z
Ylmðγ̂cÞY�

l0m0 ðγ̂cÞYNnðγ̂cÞd2γ̂c

¼ ð−1Þm0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2N þ 1Þ

4π

r

×

�
l l0 N

0 0 0

��
l l0 N

m −m0 n

�

≡ ΔN;nðl; m;l0; m0Þ: ðB26Þ

After substituting these into Eqs. (B17)–(B23), we can
simplify them as

I0 ¼ Dð00Þ
νc aIl0m0 ðνÞ ðB27Þ

ID0 ¼ Dð20Þ
νc aIl0m0 ðνÞ ðB28Þ

IDp
Aq ¼

X∞
l¼0

Xl
m

p
qGl;m

l0m0 ðβ̂ÞDðppÞ
νc aIlmðνÞ; ðB29Þ

where the geometrical factors p
qGl;m

l0m0 ðβ̂Þ are defined as

1
0G

l;m
l0m0 ðβ̂Þ ¼

X1
n

4π

3
Y�
1nðβ̂ÞΔ1;nðl; m;l0; m0Þ ðB30Þ

0
1G

l;m
l0m0 ðβ̂Þ ¼

X1;lþj

j;M0
Ωð1;jÞ

lmM0 ðβ̂Þδlþj;l0δM0;m0 ðB31Þ

2
0G

l;m
l0m0 ðβ̂Þ ¼

X2
n

4π

5
Y�
2nðβ̂ÞΔ2;nðl; m;l0; m0Þ ðB32Þ

0
2G

l;m
l0m0 ðβ̂Þ ¼

X2;lþj

j;M0
Ωð2;jÞ

lmM0 ðβ̂Þδlþj;l0δM0;m0 ðB33Þ

1
1G

l;m
l0m0 ðβ̂Þ ¼

X1;1;lþj

n;j;M0

4π

3
Y�
1nðβ̂ÞΩð1;jÞ

lmM0 ðβ̂Þ

× Δ1;nðlþ j;M0;l0; m0Þ: ðB34Þ

Here in the Doppler terms, we have introduced the
notation ΔN;nðl; m;l0; m0Þ which can be easily calculated
in terms of the Wigner 3-j symbols using Eq. (B26).
These coefficients are nonzero for jl − l0j < N < lþ l0,
so up to order βN, ΔN;nðl; m; l0; m0Þ brings in contribu-
tions from the first N neighbors of lth multipole to the
observed multipoles of order l0 with different frequency
weights. Similarly, the order βN aberration effect draws in
the first N neighbors of each multipole, but unlike the
Doppler effect, with the same frequency weight as the
observed multipole.
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2. The observed multipoles in a boosted frame

After substituting Eqs. (B27)–(B29) in (B1), we obtain the following expression for the aIclms:

aIcl0m0 ðνcÞ ¼ aIl0m0 ðνcÞ þ Doppler

8>><
>>:

þβ
P∞

l¼0

P
l;1
m;n

4π
3
Y�
1nðβ̂ÞΔ1;nðl; m;l0; m0ÞDð11Þ

νc aIlmðνÞ
þβ2Dð20Þ

νc aIl0m0 ðνÞ
þβ2

P∞
l¼0

P
l;2
m;n

4π
5
Y�
2nðβ̂ÞΔ2;nðl; m;l0; m0ÞDð22Þ

νc aIlmðνÞ

Aberration

(þβ
P∞

l¼0

Pl;1;lþj;l
m;j;M0;M Dl

Mmðβ̂ÞCð1;jÞlM DðlþjÞ
M0M ðβ̂−1Þδlþj;l0δM0;m0Dνc

ð00ÞaIlmðνÞ
þ 1

2
β2

P∞
l¼0

Pl;2;lþj;l
m;j;M0;M Dl

Mmðβ̂ÞCð2;jÞlM DðlþjÞ
M0M ðβ̂−1Þδlþj;l0δM0;m0Dνc

ð00ÞaIlmðνÞ

Doppler þ aberration

(þβ2
P∞

l¼0

Pl;1;1;lþj;l
m;n;j;M0;M

4π
3
Y�
1nðβ̂ÞDl

Mmðβ̂ÞCð1;jÞlM DðlþjÞ
M0M ðβ̂−1ÞΔ1;m00 ðlþ j;M0;l0; m0Þ

×Dð11Þ
νc aIlmðνÞ þOðβ3Þ: ðB35Þ

Using this equation, we can easily find the low
multipoles of the CMB in any boosted frame. The
source of each term is written on the left for clarifica-
tion. It is easy to see from this expression that the
Doppler leakage changes the frequency function of the
multipoles in the moving frame. Equation (B35) can be
used in our local frame to disentangle the leakage of the
multipoles into each other due to our motion with
respect to the CMB rest frame. Since we derived this
equation for an arbitrary direction of motion, it gives us

the advantage to treat β̂ as an independent parameter
when we are deboosting the observed multipoles. In the
following subsections, we calculate the observed
monopole, dipole, and quadrupole in a frame moving

with the velocity vector ~β ¼ ββ̂.

a. Monopole (l0 = 0)

The expression for the observed monopole in the
cluster’s frame to second order in β can be simplified as

aIc00ðνcÞ ¼ ~BνcðT0ÞaT00 þ Doppler

8>><
>>:

þβ2 ~Bð20Þ
νc ðT0ÞaT00

þβ
P

1
m

2
ffiffi
π

p
3
Y1mðβ̂Þ ~Fð11Þ

νc ðT0ÞaT1m
þβ2

P
2
m

2
ffiffi
π

p
5
Y2mðβ̂Þ ~Fð22Þ

νc ðT0ÞaT2m

Aberration

(
−β

P
1
m

4
ffiffi
π

p
3
Y1mðβ̂Þ ~FνcðT0ÞaT1m

þβ2
P

2
m

4
ffiffi
π

p
5
Y2mðβ̂Þ ~FνcðT0ÞaT2m þOðβ3Þ:

ðB36Þ

It is evident from this expression that the frequency
spectrum of the new monopole is different from the
spectrum of the monopole in the CMB frame aI00ðνÞ
which can be described with ~BνcðT0Þ. We calculated the
aberration kernel, based on the assumption that the
intensity of the CMB in every direction of the sky can
be described by a pure blackbody at temperature T0. But
in a moving frame, because of the Doppler effect, the
temperature of these blackbodies will be different in
different directions. Therefore, at each frequency band,
the average of intensity over the whole sky (monopole)
picks up different values from different directions. The
sum of these values do not necessarily reproduce a

blackbody spectrum [51,54,60]. For example, in the
absence of the anisotropies, a moving observer measures
an intensity Doppler distortion of order δI ≈ β∂ν

~BνaT00 in
the forward direction and −δI in the opposite direction.
Averaging the intensity over all incoming angles will
cancel the two distortions, so the observed monopole will
be still a blackbody to first order in β. However, to second
order in β, there will be Doppler distortions of order
β2∂2

ν
~BνaT00 in all directions perpendicular to the direction

of motion, that do not cancel each other in the average.
Therefore, the new monopole observed in the moving
frame will have a different frequency spectrum than the
monopole of a pure blackbody radiator [61].
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b. Dipole (l0 = 1)

The new dipole in the moving frame is

aIc
1m0 ðνcÞ ¼ ~FνcðT0ÞaT1m0 þDoppler

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

−β 2
ffiffi
π

p
3
Y�
1m0 ðβ̂Þ ~FνcðT0ÞaT00

þβ
P

2;1
m;n

ffiffiffiffi
8π
3

q
Y�
1nðβ̂Þð−1Þm

0
�
2 1 1

m −m0 n

�
~Fð11Þ
νc ðT0ÞaT2m

þβ2 ~Fð20Þ
νc ðT0ÞaT1m0

þβ2
P

1;2
m;n

2
ffiffiffiffi
6π

p
5

Y�
2nðβ̂Þð−1Þm

0
�
1 71 2

m −m0 n

�
~Fð22Þ
νc ðT0ÞaT1m

−β2
P

3;2
m;n

6
ffiffi
π

p
5
Y�
2nðβ̂Þð−1Þm

0
�
3 1 2

m −m0 n

�
~Fð22Þ
νc ðT0ÞaT3m

Aberration

8>>><
>>>:
þβ

P2;1
m;MD2

Mmðβ̂ÞCð1;−1Þ2M D1
m0Mðβ̂−1Þ ~FνcðT0ÞaT2m

þ 1
2
β2

P1;1
m;MD1

Mmðβ̂ÞCð2;0Þ1M D1
m0Mðβ̂−1Þ ~FνcðT0ÞaT1m

þ 1
2
β2

P3;1
m;MD3

Mmðβ̂ÞCð2;−2Þ3M D1
m0Mðβ̂−1Þ ~FνcðT0ÞaT3m

Dopplerþ aberration

8>>>>>>>><
>>>>>>>>:

þβ2
P1;1;2;1

m;n;M0;M

ffiffiffiffi
8π
3

q
Y�
1nðβ̂ÞD1

Mmðβ̂ÞCð1;1Þ1M D2
M0Mðβ̂−1Þð−1Þm

0
�

2 1 1

M0 −m0 n

�
~Fð11Þ
νc ðT0ÞaT1m

þβ2
P3;1;2;2

m;n;M0;M

ffiffiffiffi
8π
3

q
Y�
1nðβ̂ÞD3

Mmðβ̂ÞCð1;−1Þ3M D2
M0Mðβ̂−1Þð−1Þm

0
�

2 1 1

M0 −m0 n

�
~Fð11Þ
νc ðT0ÞaT3m

þβ2
P

1;1
m;n

4π
3
Y�
1nðβ̂ÞY�

1mðβ̂Þð−1Þm
0
�
0 1 1

0 −m0 n

�
~Fð11Þ
νc ðT0ÞaT1mþOðβ3Þ:

ðB37Þ

Since the CMB monopole is the dipole’s first neighbor, its Doppler leakage is proportional to β. Since the monopole is
larger than the anisotropies by a factor of 105, it is the dominant term in the new dipole, even for small values of β. Most
importantly, the frequency weight of this term is exactly the same as the primordial dipole. Therefore, by only looking at the
dipole moment of the CMB in a moving frame, one cannot distinguish between the primordial dipole and the one induced
by the monopole. Using this expression in our local coordinate system makes it clear that a bulk velocity of about
v ≈ 300 km=s will induce a spurious dipole of order 10−3 × 3K ¼ 3 mK. This is precisely why the observed dipole in our
coordinate system is always associated with our bulk motion in the CMB frame. However, since the Doppler leakage of the
primordial dipole moment into its first neighbors has a different frequency weight, it can be extracted from them using the
frequency spectral distortions of the observed monopole and quadrupole. It is important to mention that since the CMB
monopole is isotropic by definition, the aberration leakage of this term into the other multipoles always vanishes as
expected.

c. Quadrupole (l0 = 2)

Similar to the monopole and dipole, we can easily calculate the observed quadrupole moment in the cluster’s moving
frame. Since the polarization induced in the direction of a cluster reflects the quadrupole that it observes, all the
multipoles that leak into this mode will be observable in the polarization signal. The leakages of the first neighbors of

the quadrupole, the dipole and octupole, are proportional to β but are amplified by the frequency weight ~Fð11Þ
νc ðT0Þ in

the Doppler terms. The contribution of the second neighbors, the monopole and hexadecapole, is of order β2. Although
the frequency weight of the hexadecapole is much larger than the dipole and octupole, its dependence on the velocity
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keeps it subdominant for typical values of the cluster peculiar velocity. The monopole-induced quadrupole term, on the
other hand, is much larger due to its dependence on aT00, so its leakage can become dominant over the other modes.
This term is typically referred to as the Doppler quadrupole [54,62,63]; in the context of galaxy clusters, this term
induces the kSZ polarization and the first relativistic correction of the kSZ intensity effect.

aIc
2m0 ðνcÞ ¼ ~FνcðT0ÞaT2m0 þ Doppler

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

þβ2 2
ffiffi
π

p
5
Y�
2m0 ðβ̂Þ ~Bð22Þ

νc ðT0ÞaT00
þβ

P
1;1
m;n

ffiffiffiffi
8π
3

q
Y�
1nðβ̂Þð−1Þm

0
�

1 2 1

m −m0 n

�
~Fð11Þ
ν ðT0ÞaT1m

−β
P

3;1
m;n

ffiffiffiffiffiffi
2π

p
Y�
1nðβ̂Þð−1Þm

0
�

3 2 1

m −m0 n

�
~Fð11Þ
ν ðT0ÞaT3m

þβ2 ~Fð20Þ
νc ðT0ÞaT2m0

−β2
P

2;2
m;n

ffiffiffiffi
8π
7

q
Y�
2nðβ̂Þð−1Þm

0
�

2 2 2

m −m0 n

�
~Fð22Þ
ν ðT0ÞaT2m

þβ2
P

4;2
m;n

6
ffiffiffiffi
2π

pffiffiffiffi
35

p Y�
2nðβ̂Þð−1Þm

0
�

4 2 2

m −m0 n

�
~Fð22Þ
ν ðT0ÞaT4m

Aberration

8>>>>>><
>>>>>>:

þβ
P1;1

m;M D1
Mmðβ̂ÞCð1;þ1Þ

1M D2
m0Mðβ̂−1Þ ~FνcðT0ÞaT1m

þβ
P3;2

m;M D3
Mmðβ̂ÞCð1;−1Þ3M D2

m0Mðβ̂−1Þ ~FνcðT0ÞaT3m
þ 1

2
β2

P2;2
m;M D2

Mmðβ̂ÞCð2;0Þ2M D2
m0Mðβ̂−1Þ ~FνcðT0ÞaT2m

þ 1
2
β2

P4;2
m;M D4

Mmðβ̂ÞCð2;−2Þ2M D2
m0Mðβ̂−1Þ ~FνcðT0ÞaT4m

Doppler þ aberration

8>>>>>>>>>>><
>>>>>>>>>>>:

þβ2
P2;1;1;1

m;n;M0;M

ffiffiffiffi
8π

p ffiffi
3

p Y�
1nðβ̂ÞD2

Mmðβ̂ÞCð1;−1Þ2M D1
M0Mðβ̂−1Þð−1Þm

0
�

1 2 1

M0 −m0 n

�
~Fð11Þ
νc aT2m

−β2
P2;1;3;2

m;n;M0;M 2
ffiffiffi
π

p
Y�
1nðβ̂ÞD2

Mmðβ̂ÞCð1;þ1Þ
2M D3

M0Mðβ̂−1Þð−1Þm
0
�

3 2 1

M0 −m0 n

�
~Fð11Þ
νc aT2m

−β2
P4;1;3;3

m;n;M0;M 2
ffiffiffi
π

p
Y�
1nðβ̂ÞD4

Mmðβ̂ÞCð1;−1Þ4M D3
M0Mðβ̂−1Þð−1Þm

0
�

3 2 1

M0 −m0 n

�
~Fð11Þ
νc aT4m

þOðβ3Þ:
ðB38Þ
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APPENDIX C: ABBREVIATIONS

In order to easily identify each intensity and polarization effect induced in the direction of a moving cluster, we used
different names for individual terms. Table I contains a list of all these effect, including the equation they are defined in and
a short description.

[1] R. A. Sunyaev and Ya. B. Zeldovich, Mon. Not. R. Astron.
Soc. 190, 413 (1980).

[2] J. Chluba, D. Nagai, S. Sazonov, and K. Nelson, Mon. Not.
R. Astron. Soc. 426, 510 (2012).

[3] S. Nozawa, N. Itoh, and Y. Kohyama, Astrophys. J. 508, 17
(1998).

[4] R. A. Sunyaev and Ya. B. Zeldovich, Comments Astrophys.
Space Phys. 4, 173 (1972).

[5] E. Audit and J. F. L. Simmons, Mon. Not. R. Astron. Soc.
305, L27 (1999).

[6] N. Itoh, S. Nozawa, and Y. Kohyama, Astrophys. J. 533,
588 (2000).

[7] J. Portsmouth and E. Bertschinger, arXiv:astro-ph/0412095.
[8] E. Roebber and G. Holder, Astrophys. J. 781, 98 (2014).
[9] J. M. Diego, P. Mazzotta, and J. Silk, Astrophys. J. 597, L1

(2003).

TABLE I.

Term Definition Description

TinPol Eqs. (8), (13), and (28) Polarization distortion induced by the observed quadrupole (aIc2m) in the cluster’s frame.
kSZPol Eqs. (30) and (33) Polarization distortion induced by the leakage of the CMB rest frame monopole (aI00) into

the observed quadrupole by a moving cluster.
T1inPol Eq. (31) Polarization distortion induced by the leakage of the CMB rest frame dipole (aI1m) into the

observed quadrupole by a moving cluster.
T2inPol Eq. (29) Polarization distortion induced by the CMB rest frame quadrupole (aI2m) in the cluster’s

frame. This effect is identical to TinPol for a nonmoving cluster.
T3inPol Eq. (32) Polarization distortion induced by the leakage of the CMB rest frame octupole (aI3m) into

the observed quadrupole by a moving cluster.
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bSZðlÞ Eqs. (9) and (14) Intensity distortion induced by the observed lth (l ≠ 2) multipole in the cluster’s frame.
This effect is entirely induced by scattering of the CMB photons out of the observer’s line
of sight.

kSZInð1Þ Eq. (38) Intensity distortion induced by the leakage of the CMB rest frame monopole (aI00) into the
observed bSZð1Þ in the cluster’s frame.

T1inbSZð1Þ Eq. (37) Intensity distortion induced by the CMB rest frame dipole (aI1m) in the cluster’s frame. This
effect is identical to bSZð1Þ for a nonmoving cluster.

T2inbSZð1Þ Eq. (39) Intensity distortion induced by the leakage of the CMB rest frame monopole (aI2m) into the
observed bSZð1Þ in the cluster’s frame.

TinIn Eqs. (7), (12), and (40) Intensity distortion induced by the observed quadrupole (aIc2m) in the cluster’s frame. This
term is essentially bSZð2Þ which has been named differently—in accordance with TinPol
—to distinguish it from the rest of the bSZ terms.

kSZInð2Þ Eq. (42) Intensity distortion induced by the leakage of the CMB rest frame monopole (aI00) into the
observed quadrupole in the cluster’s frame.

T1inIn Eq. (43) Intensity distortion induced by the leakage of the CMB rest frame dipole (aI1m) into the
observed quadrupole by a moving cluster.

T2inIn Eq. (41) Intensity distortion induced by the CMB rest frame quadrupole (aI2m) in the cluster’s frame.
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kSZIn Eq. (45) Sum of kSZInð1Þ and kSZInð2Þ.
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