
Cosmological backreaction in the presence of radiation
and a cosmological constant

Viraj A. A. Sanghai* and Timothy Clifton†

School of Physics and Astronomy, Queen Mary University of London, E1 4NS London, United Kingdom
(Received 25 April 2016; published 6 July 2016)

We construct high-precision models of the Universe that contain radiation, a cosmological constant,
and periodically distributed inhomogeneous matter. The density contrasts in these models are allowed
to be highly nonlinear, and the cosmological expansion is treated as an emergent phenomenon. This is
achieved by employing a generalized version of the post-Newtonian formalism, and by joining together
inhomogeneous regions of space-time at reflection symmetric junctions. Using these models, we find
general expressions that precisely and unambiguously quantify the effect of small-scale inhomogeneity
on the large-scale expansion of space (an effect referred to as “backreaction” in the literature). We
then proceed to specialize our models to the case where the matter fields are given by a regular array of
pointlike particles. This allows us to derive extremely simple expressions for the emergent Friedmann-like
equations that govern the large-scale expansion of space. It is found that the presence of radiation tends to
reduce the magnitude of backreaction effects, while the existence of a cosmological constant has only a
negligible effect.
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I. INTRODUCTION

In previous work we developed a new formalism for
constructing cosmological models with a periodic lattice
structure [1,2]. This was done by taking regions of space-
time that we described using the post-Newtonian perturba-
tive expansion, and patching them together at reflection
symmetric boundaries to form a global solution to Einstein’s
equations. The advantages of this approach are (i) that it
allows extremely large density contrasts to be consistently
included in cosmology, at higher orders in perturbation
theory, without the imposition of any continuous symmetries
(i.e. Killing vectors), and (ii) that it allows the cosmological
expansion to be viewed as an emergent phenomenon,
resulting from the junction conditions between patches
[3], rather than being specified from the outset.
These two features, taken together, make our lattice

models ideally suited for studying the effects that nonlinear
structure has on the large-scale expansion of space. Such
effects, usually referred to as backreaction in the cosmol-
ogy literature [4–6], are important to understand if we are to
have faith that the homogeneous and isotropic Friedmann-
Lemaître-Robertson-Walker (FLRW) models are suitable
for interpreting observations in a lumpy universe (such as
the one within which we live). They may also be important
for the much heralded era of “precision cosmology” [7,8],
especially if observations become good enough to isolate
higher-order relativistic effects.
However, while they may constitute interesting devices

for studying backreaction, and while they can help to

illustrate the complementary nature of cosmology and
weak-field gravity, the lattice models constructed in [1,2]
are not fully realistic. One way in which this situation
can be improved upon, and on which we focus in this
paper, is by adding other types of matter fields, beyond
the nonrelativistic matter that is usually included in studies
of post-Newtonian gravity. In this regard, particular
matter fields that are of interest in cosmology are radiation
and the cosmological constant, Λ. The former of these
becomes increasingly important at early times, while the
latter (if it is nonzero) comes to dominate the expansion at
late times.
In this paper we extend the post-Newtonian formalism by

including the contribution of barotropic fluids with non-
vanishing pressure, p ¼ pðρÞ, to the energy-momentum
tensor. Such an approach can be used to include a fluid of
radiation, with p ¼ 1

3
ρ, or a cosmological constant, with

p ¼ −ρ. It could also be used to include a variety of other
matter fields that are commonly considered in cosmology.
We then use this extended formalism to model the gravi-
tational fields that exist within each of our lattice cells, and
proceed to determine (lengthy) general expressions for the
effect that such fluids have on the large-scale expansion of
space. This is done in full generality, without assuming
anything about the distribution of matter within each cell.
In order to develop these ideas further we then specialize

the distribution of matter to a particularly simple example:
a single pointlike mass at the center of each cell, in the
presence of radiation and Λ. Globally, this corresponds to a
regular array ofmassive particles sitting in a sea of radiation.
The result of considering this specific setup is an expression
for cosmological backreaction that takes an extremely
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simple form. Its effect on the Friedmann equation is to add
an extra term, so that we have

�
_a
a

�
2

¼ 8πG
3

ðρM þ ρrÞ −
k
a2

þ Λ
3
þ B;

where the backreaction term, B, is given by

B≃ −ð2πGLρMaÞ2
�
1.50 − 0.80

Ωr

ΩM
þ 1.76

Ωk

ΩM

�
;

whereΩM,Ωr andΩk are the standard cosmological density
parameters for matter, radiation and spatial curvature,
respectively, and where L is the length of the edge of a
cell (see Sec. IV B for details).
It can be seen that the discretely distributed matter

contributes a term that looks like radiation to the effective
Friedmann-like equation that governs the large-scale
expansion of space, just as was found in [1]. We find that
presence of radiation, however, reduces the magnitude of
this backreaction term, while the presence of Λ has no
noticeable effect on it at all. As shown in [1], a negative
value of spatial curvature increases the amplitude of the
backreaction, and a positive value decreases it.
The physical setup that we consider in the latter parts of

this paper, consisting of a universe full of point sources, has
received considerable attention over the past few years.
This includes studies of the initial data of such models
[9–13], as well as their evolution [14–20]. Studies of
backreaction in the presence of radiation and Λ have also
been performed using both perturbative methods [21–23],
and by solving the full Einstein equations [17,24]. Our
work is complementary to these previous studies. It builds
on them by developing and applying a versatile perturbative
framework that incorporates nonlinear density contrasts,
while avoiding the ambiguities that can arise when averag-
ing in general relativity.
The plan for the rest of this paper is as follows: In Sec. II

we set out the equations that describe the geometry and
dynamics of our lattice cells. In Sec. III we use these
equations to determine the cosmological expansion of our
lattice, in the presence of an arbitrary barotropic fluid, and
for any general distribution of matter. In Sec. IV we then
look at the specific case of regularly arranged point masses
in cubic cells in the presence of radiation, spatial curvature
and a cosmological constant. Throughout the paper we
use latin letters (a; b; c;…) to denote space-time indices,
and greek letters (μ; ν; ρ;…) to denote spatial indices. We
reserve the first half of the capital latin alphabet
(A; B;C;…) to denote the spatial components of tensors
in the boundary of a cell, and the latter half (I; J; K;…) as
labels to denote quantities associated with our various
different matter fields.

II. THE GEOMETRY OF A LATTICE CELL

In this section we present the equations that describe the
geometry within each of our lattice cells, and the dynamics
of their boundaries. We begin by briefly recapping the setup
of our bottom-up approach to cosmology, before moving
on to discuss how we extend the post-Newtonian formalism
to include a barotropic fluid, as well as nonrelativistic
matter. After this, we make use of reflection symmetric
junction conditions to find the evolution of the boundary of
every cell. Altogether, this gives us just enough information
to work out the expansion of each of our cells, and hence
the lattice as a whole, to the first post-Newtonian level of
accuracy.

A. Lattice structure

We begin by splitting the Universe into a large number
of identical cells, in order to construct a periodic lattice
structure. When doing this, we allow the cell shapes to be
chosen as any regular convex polyhedra that tessellates a
three-dimensional space that is either flat or has constant
positive or negative spatial curvature. There are six such
tessellations for a space of positive curvature, one for a flat
space and four for a space of negative curvature (see Table I
of [1], and reference [25], for details). The analysis we
present in this section is valid for any cell shape, and for
any of these possible tessellations.
Let us now consider any one cell, and take, as a first

approximation, the space-time within this cell to be close to
Minkowski space. We can then choose a Cartesian set of
spatial coordinates ðx; y; zÞ, and rotate these coordinates
until the vector ∂=∂x is orthogonal to one of the faces (as all
cell faces are identical, it does not matter which one we
choose). This situation is illustrated in Fig. 1, for the case of
a dodecahedral cell. The position of every point on this cell
face is then given by x ¼ Xðt; y; zÞ.
Now, as the evolution of this cell face is a (2þ 1)-

dimensional timelike hypersurface, we can define a space-
like unit vector, na, as its normal. The leading-order
contributions to the covariant components of this vector
are given by [1]

FIG. 1. Two neighboring cells with a dodecahedral shape that
are reflection symmetric around their common cell face, and that
form a part of a larger periodic lattice structure. The unit vector,
na, is the spacelike normal to the boundary of the cell.
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na ¼ ð−X;t; 1;−X;y;−X;zÞ; ð1Þ

where commas denote partial differentiation. Reflection
symmetry implies that junction conditions at the cell
face should be invariant under the change na → −na, which
means that the extrinsic curvature of every (2þ 1)-
dimensional cell face must vanish. This requirement pro-
vides the information necessary for specifying the boundary
conditions for the field equations within each cell, as well as
for the motion of the cell face itself.

B. Post-Newtonian expansion

The matter content and geometry within each of our cells
is described using the post-Newtonian perturbative expan-
sion. This formalism, valid in the limit of weak gravita-
tional fields and slow motions, assigns orders of smallness
to quantities in the metric and the energy-momentum tensor
using the parameter

ϵ≡ jvj
c

≪ 1; ð2Þ

where v is the three-velocity associated with the matter
fields, and c is the speed of light. The post-Newtonian
expansion also requires that time derivatives add an order
of smallness, compared to space derivatives, so that
X;t=X;y ∼OðϵÞ, etc.
The explicit expansion of the metric is then given by the

following line element:

ds2 ¼ ð−1þ hð2Þtt þ hð4Þtt Þdt2

þ 2hð3Þtμ dtdxμ þ ðδμν þ hð2Þμν Þdxμdxν; ð3Þ

where hð2Þtt , hð2Þμν , hð3Þtμ and hð4Þtt are perturbations to the
Minkowski metric, and where superscripts in brackets
represent the order of smallness of a quantity. The metric
has been expanded toOðϵ4Þ in the time-time component, to
Oðϵ3Þ in the time-space components, and Oðϵ2Þ in the
space-space components. These are the orders of accuracy
required in order to consistently write the equations of
motion for timelike particles to first post-Newtonian
accuracy.
We can similarly expand the matter fields in powers of ϵ.

To do so, we define the energy density, ρ, and isotropic
pressure, p, as

ρ ¼ Tabuaub; ð4Þ

p ¼ 1

3
Tabðgab þ uaubÞ; ð5Þ

where Tab is the energy-momentum tensor, gab is the metric
of space-time, and ua is a reference four-velocity that
satisfies uaua ¼ −1. We can expand the energy density and
pressure as

ρ ¼ ρð2Þ þ ρð4Þ þOðϵ6Þ; ð6Þ

p ¼ pð2Þ þ pð4Þ þOðϵ6Þ; ð7Þ

and write the expanded four-velocity as

ua ¼
�
1þ hð2Þtt

2
þ v2

2

�
ð1; vμÞ þOðϵ4Þ; ð8Þ

where v is the three-velocity of the fluid we are consid-
ering, and v2 ¼ vμvμ.
The reader may note that we have included a contribu-

tion to the pressure at Oðϵ2Þ, which is usually taken to
vanish in post-Newtonian gravity. We have done this in
order to include barotropic fluids, which generally have the
leading-order contribution to pressure at the same order as
energy density. For further details of post-Newtonian
expansions, the reader is referred to [26].

C. Matter content

Let us now consider the matter content of our space-time.
We wish to model a universe that contains both non-
relativistic matter, with pð2Þ ¼ 0, and a barotropic fluid,
with equation of state p ¼ pðρÞ. For simplicity, and as a
first approximation, we will take the latter of these to be a
perfect fluid that does not strongly interact with the
nonrelativistic matter. Such a fluid could be used to model
radiation (p ¼ 1

3
ρ), vacuum energy (p ¼ −ρ), or a massless

scalar field (p ¼ ρ). The nonrelativistic matter is intended
to represent both baryonic matter and cold dark matter.
We therefore write the total energy-momentum tensor for

these two fluids as

Tab ¼ Tab
M þ Tab

I ; ð9Þ

where subscripts M and I refer to quantities associated
with the nonrelativistic matter fields and the barotropic
fluid, respectively. In what follows, the cosmological
constant, Λ, is included directly in the field equations. If
we now take the reference four-vector for each of the fluids
to be given by

uaM ¼
�
1þ hð2Þtt

2
þ v2M

2

�
ð1; vμMÞ þOðϵ4Þ;

uaI ¼
�
1þ hð2Þtt

2
þ v2I

2

�
ð1; vμI Þ þOðϵ4Þ; ð10Þ

where vM and vI are the three-velocities of our two fluids,
then we can write the components of the perturbed energy-
momentum tensor as

COSMOLOGICAL BACKREACTION IN THE PRESENCE OF … PHYSICAL REVIEW D 94, 023505 (2016)

023505-3



Ttt ¼ ρð2Þð1 − hð2Þtt Þ þ ρð2ÞI v2I þ ρð2ÞM v2M

þ ρð2ÞM ΠM þ ρð4ÞI þ pð2Þ
I v2I þOðϵ6Þ; ð11Þ

Ttμ ¼ − ρð2ÞM vMμ − ðρð2ÞI þ pð2Þ
I ÞvIμ þOðϵ5Þ; ð12Þ

Tμν ¼ ρð2ÞM vMμvMν þ ðρð2ÞI þ pð2Þ
I ÞvIμvIν

þ ðpð4Þ
M þ pð2Þ

I þ pð4Þ
I Þgμν þOðϵ6Þ; ð13Þ

where ρð2Þ ¼ ρð2ÞM þ ρð2ÞI , and where ρð2ÞM is the rest-mass
energy density of the nonrelativistic matter fields, ΠM is

their specific energy density, and pð4Þ
M is their pressure.

Similarly, ρð2ÞI and ρð4ÞI are the two lowest-order parts of the

energy density of the barotropic fluid, and pð2Þ
I and pð4Þ

I are
the two lowest-order contributions to its pressure. The

reader may note the we have set pð2Þ
M ¼ 0 for the non-

relativistic matter fields, as we want this to represent
dustlike sources such as galaxies and clusters.
Before considering Einstein’s equations, we note that we

can use the energy-momentum conservation equations for
the noninteracting barotropic fluid to write

∇pð2Þ
I ¼ 0: ð14Þ

This is the leading-order part of the Euler equation of the
barotropic fluid, and it immediately implies that both pð2Þ

I

and ρð2ÞI must be functions of time only [as p ¼ pðρÞ, for
this fluid]. It also means that the leading-order part of the
continuity equation for the barotropic fluid, which also
follows directly from energy-momentum conservation, is
given by

ρð2ÞI;t þ ðρð2ÞI þ pð2Þ
I Þ∇ · vI ¼ 0: ð15Þ

This is very similar to the conservation equation for a
homogeneous fluid in FLRW models, and we later use it in
the same way as that equation to determine the cosmo-
logical evolution.

D. Einstein’s field equations

In order to find the geometry of the space-time within
each cell, and to solve for the motion of its boundary, we
need to use Einstein’s field equations,

Rab ¼ 8πG

�
Tab −

1

2
Tgab

�
þ gabΛ; ð16Þ

where Rab is the Ricci tensor, gab is the metric of space-
time, Λ is the cosmological constant, G is Newton’s
constant, Tab is the energy-momentum tensor, and T ¼
gabTab is its trace.

Using the perturbed metric given in Eq. (3), and the
energy-momentum tensor from Eq. (11), we can write
the leading-order contributions to the tt-component of
Einstein’s equations as

∇2hð2Þtt ¼ −8πGρð2Þ − 24πGpð2Þ
I þ 2Λ; ð17Þ

where ∇2 ¼ ∂α∂α is the three-dimensional Laplacian. Here
we have taken the cosmological constant Λ to contribute at
Oðϵ2Þ, which means we are modeling a scenario where

Λ ∼ ρð2Þ ∼ hð2Þtt . This happens on scales of about 100 Mpc,
where the cosmological constant is comparable to the
background gravitational potential. This is still well below
the cosmological horizon scale, where our post-Newtonian
formalism is satisfied.
The solution to Eq. (17) can be formally written as

hð2Þtt ≡ 2Φ ¼ 2ΦM þ 2ΦI þ 6Φp þ 2ΦΛ; ð18Þ
where the potentials ΦM, ΦI , Φp and ΦΛ are given
implicitly as the solutions to

∇2ΦM≡ − 4πGρð2ÞM ; ð19Þ

∇2ΦI≡ − 4πGρð2ÞI ; ð20Þ

∇2Φp≡ − 4πGpð2Þ
I ; ð21Þ

∇2ΦΛ ≡ Λ: ð22Þ

Using the symmetries of our lattice model, and the fact that

pð2Þ
I is a function of time only, the potentials ΦpI

and ΦΛ

can be written explicitly as

ΦpI
¼ −

2πGpð2Þ
I

3
ðx2 þ y2 þ z2Þ; ð23Þ

ΦΛ ¼ Λ
6
ðx2 þ y2 þ z2Þ: ð24Þ

Solutions to Eqs. (19) and (20) can be given in terms of
Green’s functions, as shown in [1]. Auxiliary functions of

time can also be added in hð2Þtt , and absorbed into the matter
potential, ΦM.
To go further, we now need to make a gauge choice. We

make the following choice at Oðϵ2Þ, so that we remain as
close as possible to the standard post-Newtonian gauge,

1

2
hð2Þtt;μ þ hð2Þμν;ν −

1

2
hð2Þνν;μ ¼ 3Φp;μ þ

3

2
ΦΛ;μ: ð25Þ

This ensures that the metric is diagonal at Oðϵ2Þ, and
there are no OðϵÞ contributions to the tμ-component of the
metric. Using Eqs. (13) and (24), the μν-component of
Einstein’s equations can now be written as

VIRAJ A. A. SANGHAI and TIMOTHY CLIFTON PHYSICAL REVIEW D 94, 023505 (2016)

023505-4



∇2hð2Þμν ¼ −ð8πGρð2Þ þ ΛÞδμν: ð26Þ

The solution to this equation is given by

hð2Þμν ≡ 2Ψδμν ¼ ð2ΦM þ 2ΦI − ΦΛÞδμν: ð27Þ

The reader may note that in this formalism we have Ψ ≠ Φ
in the presence of either a cosmological constant or a
barotropic fluid (or both). This differs from the case of
cosmological perturbation theory, where Φ ¼ Ψ in the
absence of anisotropic stress.
To solve for the tμ-component of Einstein’s equations,

we now need to make a gauge choice atOðϵ3Þ, which we do
as follows:

hð3Þνt;ν −
1

2
hð2Þνν;t ¼ 0: ð28Þ

Using both of our gauge conditions, Eqs. (25) and (28), the
tμ-component of Einstein’s equations can be written as

∇2hð3Þtμ þΨ;tμ ¼ 16πG½ρð2ÞM vMμ þ ðρð2ÞI þ pð2Þ
I ÞvIμ�: ð29Þ

The solution to this equation is given by

hð3Þtμ ¼ −4VMμ − 4VIμ þ
1

2
χ;tμ; ð30Þ

where we have used the two vector potentials

∇2VMμ≡ − 4πρð2ÞM vMμ; ð31Þ

∇2VIμ≡ − 4πGðρð2ÞI þ pð2Þ
I ÞvIμ; ð32Þ

and the superpotential

∇2χ ≡ −2Ψ: ð33Þ

The gauge conditions imply that the divergence of these
vector potentials must obey VMμ;μ þ VIμ;μ ¼ −Ψ;t.
Finally, we can write the Oðϵ4Þ part of the tt-component

of Einstein’s equations. Using the energy-momentum
tensor from Eq. (13), both our gauge conditions, and the

lower-order solutions for hð2Þtt , h
ð2Þ
μν and hð3Þtμ , this equation

becomes

∇2hð4Þtt ¼−2∇ðΦ∇ΦÞ−∇ðΨ∇ΦþΦ∇ΨÞþ4πGρð2ÞΦ

þ24πGpð2Þ
I Φ−

5

2
ΛΦ−20πGρð2ÞΨ−60πGpð2Þ

I Ψ

þ5ΛΨ−16πGρð2ÞM v2M−16πGρð2ÞI v2I −8πGρð2ÞM ΠM

−8πGρð4ÞI −16πGpð2Þ
I v2I −24πGpð4Þ

M −24πGpð4Þ
I :

ð34Þ

These equations can also be solved using the Green’s
functions from [1]. Once this has been done, and the
distribution of matter has been specified, this gives us
sufficient information to find the geometry of each of our
lattice cells, to post-Newtonian order of accuracy.
Nowhere in this analysis have we assumed asymptotic

flatness, as is conventionally done when applying the post-
Newtonian formalism to the case of isolated systems.
Instead, we have a system of equations that can be directly
applied to solve for the gravitational fields of astrophysical
bodies in a cosmological setting.

III. COSMOLOGICAL EXPANSION

In this section, we derive the acceleration and constraint
equations for the boundary of each of our cells, up to the
first post-Newtonian level of accuracy. Due to the perio-
dicity of our lattice models, these equations will also
describe the large-scale expansion of the Universe as a
whole. At Newtonian order, these equations take exactly
the same form as the acceleration and constraint equations
of a FLRW universe containing dust, a barotropic fluid,
spatial curvature and a cosmological constant. At first post-
Newtonian order, we obtain the leading-order corrections to
these equations in a lattice universe.
Using reflection symmetric boundary conditions, as we

do in this study, implies that the extrinsic curvature of each
of the (2þ 1)-dimensional boundaries of every cell must
vanish (see [1] for details). This condition leads directly to
the equation of motion of the cell boundary, which to post-
Newtonian accuracy can be written as follows:

X;tt ¼
�
Φ;x − 2ΨΦ;x þ

hð4Þtt;x

2
− htx;t − ð2Φ;x þΨ;xÞX2

;t

− ð2Ψ;t þ Φ;tÞX;t − Xð2Þ
;A Φ;A

�����
x¼X

þOðϵ6Þ; ð35Þ

which can also be derived from the geodesic equation.
Likewise, we obtain a set of equations that describes the
spatial curvature of the cell boundaries, and their rate of
change, as

X;AB ¼ δABðΨ;xÞjx¼X þOðϵ4Þ; ð36Þ

and

X;tA ¼ 1

2
½htA;x − htx;A − 2ðΦ;A þΨ;AÞX;t�jx¼X þOðϵ5Þ:

ð37Þ

Each of the quantities in these equations must be evaluated
on the boundary of the cell. Together, they give us enough
information to relate the evolution of the boundaries of our
cells to the matter content within them. We now do this to
Newtonian, and then post-Newtonian, levels of accuracy.
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A. Newtonian accuracy

For a regular polyhedron, at the Newtonian order of
accuracy, the total surface area and volume of a cell are
given by A ¼ ακX2 and V ¼ 1

3
ακX3, where αk is a set of

constants that depend on the cell shape in question
(numerical values can be found in [1]). By applying
Gauss’s theorem, and using Eq. (17), we can rewrite the
evolution equation for X as

X;tt ¼
−4πGM−4πG

R
Vðρð2ÞI þ3pð2Þ

I ÞdVð0Þ

ακX2
þΛ
3
X; ð38Þ

where M is the gravitational mass of the nonrelativistic

matter, defined by M≡ R
V ρ

ð2Þ
M dVð0Þ, the integrals are over

the spatial volume interior to the cell, and dVð0Þ is the
spatial volume element at zeroth order.
This equation can be simplified, and integrated, by

making use of Reynold’s transport theorem. This theorem
states that for any function on space-time, f, we have

d
dt

Z
fdV ¼

Z
f;tdV þ

Z
fv · dA: ð39Þ

Taking f to be the energy density, ρð2ÞI , and using the
conservation equations (14) and (15), then gives

d
R
ρð2ÞI dV
dt

¼ −
Z

pð2Þ
I vI · dA ¼ −pð2Þ

I X;tA; ð40Þ

where we have required the barotropic fluid to be comoving
with the boundary of the cell, at all points on the boundary,

and where we have made use of the fact that ρð2ÞI and pð2Þ
I

are functions of time only. We then have the following
conservation equation for the barotropic fluid:

ρð2ÞI;t þ 3
X;t

X
ðρð2ÞI þ pð2Þ

I Þ ¼ 0: ð41Þ

This is strongly reminiscent of the corresponding equation
in FLRW cosmology, as it should be.
We can now simplify the evolution equation (38), and

integrate it using the continuity equation (41), to get

X;tt

X
¼ −4πGM

ακX3
−
4πG
3

ðρð2ÞI þ 3pð2Þ
I Þ þ Λ

3
; ð42Þ

and

�
X;t

X

�
2

¼ 8πGM
ακX3

þ 8πG
3

ρð2ÞI −
C
X2

þ Λ
3
; ð43Þ

where C is an integration constant. These equations are
identical to the acceleration and constraint equations of an
FLRW universe filled with dust, a barotropic fluid, and a
cosmological constant, with C taking the role of the spatial
curvature.

Finally, using Eqs. (15) and (41), we can read off that
∇:vI ¼ 3X;t=X. The three-velocity of the barotropic fluid is
therefore given by

vμI ¼
X;t

X
ðx; y; zÞ: ð44Þ

This expression will be very useful for evaluating some of
the more complicated post-Newtonian expressions that will
follow.

B. Post-Newtonian accuracy

In this section we calculate the post-Newtonian contri-
butions to the equations of motion of the boundary,
following a similar approach to the one used in [1]. The
principal difference in the present case is the inclusion of
the barotropic fluid, and of Λ. These lead directly to extra
terms in the energy-momentum tensor, but also result in
Φ ≠ Ψ. We must therefore keep track of each of these
potentials separately.
We begin by observing that the functional form of X, up

to Oðϵ2Þ, is given by

X ¼ ζ þ 1

2
ðy2 þ z2Þn ·∇ΨþOðϵ4Þ; ð45Þ

where ζ ¼ ζðtÞ is a function of time only, and corresponds
to the position of the center of a cell face in the x-direction.
This observation follows from the lowest-order parts of
Eqs. (35)–(37), from the gauge conditions (25) and (28),
and from symmetry arguments imposed at the center of the
cell face.
Taking time derivatives of Eq. (45), and substituting in

from Eq. (35), then gives

ζ;tt ¼ X;tt −
1

2
ðy2 þ z2Þðn ·∇ΨÞ̈ þOðϵ6Þ

¼ Φ;x − 2ΨΦ;x þ
hð4Þtt;x

2
− htx;t − ð2Φ;x þΨ;xÞX2

;t

− ð2Ψ;t þ Φ;tÞX;t − Xð2Þ
;A Φ;A

−
1

2
ðy2 þ z2Þðn · ∇ΨÞ̈ þOðϵ6Þ; ð46Þ

where · represents a time derivative along the boundary and
where all quantities in this equation should be evaluated on
the boundary of the cell.
Several of the terms in Eq. (46) can be related to the

matter content within the cell by an application of Gauss’s
theorem. For example, we can use Eq. (26) to obtain

n ·∇Ψ ¼ −
4πGM
ακX2

−
4πGρð2ÞI X

3
−
ΛX
6

: ð47Þ

We can also replace a number of terms in Eq. (46) using
either the gauge condition, given in Eq. (28), or the lower-
order solutions given in Eqs. (42) and (43). As an example
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of this, we can replace the htx;t term in Eq. (46) by using
Eq. (28) and Gauss’s theorem. This gives

κ

Z
S
nαhtα;tdS ¼

Z
Ω
3Ψ;ttdV: ð48Þ

Finally, using the lower-order solutions for Φ and Ψ, from
Eqs. (18) and (27), we can write the generalized form of the
acceleration equation in terms of the potentials defined in
Eqs. (19)–(22). This gives

X;tt ¼ −
4πGM

A
þ ð−4πGρð2ÞI − 12πGpð2Þ

I þ ΛÞV
A
−

3κ

ακX2

Z
S
ððΦM þ ΦI þ ΦpI

Þ;tX;tÞdS

þ κ

ακX2

Z
S

�
2ΦM þ 2ΦI þ 3ΦpI

þ 1

2
ΦΛ

��
4πGM
ακX2

þ 4πG
3

ðρð2ÞI þ 3pð2Þ
I ÞX −

ΛX
3

�
dS

þ 1

ακX2

�
4πGhρð2ÞI ðΦM þ ΦI þ 3ΦpI

þ ΦΛÞi þ 4πG

�
ρð2ÞM

�
−2ΦM − 2ΦI þ 3ΦpI

þ 5

2
ΦΛ

��

þ 12πGhpð2Þ
I ðΦM þ ΦI þ 3ΦpI

þ ΦΛÞi − hΛðΦM þ ΦI þ 3ΦpI
þ ΦΛÞi − 12πGhpð4Þ

M i

− 8πGhρð2ÞM v2Mi − 8πGhρð2ÞI v2I i − 4πGhρð2ÞM ΠMi − 4πGhρð4ÞI i − 8πGhpð2Þ
I v2I i − 12πGhpð4Þ

I i
�

þ 96π2G2M2

α2κX3
þ 64π2G2Mρð2ÞI

ακ
−
12πGMC
ακX2

þ 32π2G2ρð2ÞI
2X3

3
− 4πGρð2ÞI CX

þ 64π2G2Mpð2Þ
I

ακ
þ 8

3
πGpð2Þ

I ΛX3 þ 64π2G2ρð2ÞI pð2Þ
I X3

3
− 8πGpð2Þ

I CX −
Λ2X3

6
þ ΛCX

2

−
3

ακX2

Z
V

�
ΦM þ ΦI −

1

2
ΦΛ

�
;tt
dV −

1

2
ðn ·∇ΨÞ̈

�
κ

ακX2

Z
S
ðy2 þ z2ÞdS − ðy2 þ z2Þ

�
þOðϵ6Þ; ð49Þ

where V is the volume of the cell, A is the total surface area of the cell, and κ is the number of faces of the cell. The notation
hφi ¼ R

V φdV is used to denote quantities integrated over the volume interior to the cell, where φ is some scalar function on
the space-time. The quantity ðn ·∇ΨÞ̈, in this equation, can be found to be given by

ðn ·∇ΨÞ̈ ¼ −
224π2G2M2

α2κX5
−
14πGMΛ
3ακX2

−
448π2G2Mρð2ÞI

3ακX2
þ 24πGMC

ακX4
−
112π2G2Mpð2Þ

I

ακX2

−
224π2G2ρð2ÞI

2X
9

−
112π2G2ρð2ÞI pð2Þ

I X
3

−
14πGρð2ÞI ΛX

9
− 16π2G2pð2Þ

I
2X

−
2πGpð2Þ

I ΛX
3

−
Λ2X
18

þ 8πGρð2ÞI C
X

þ 8πGpð2Þ
I C

X
þ 4πGpð2Þ

I;t X;t: ð50Þ

The acceleration equation (49) is fully general, being valid
for any cell shape and any distribution of matter in the
presence of a barotropic fluid and a cosmological constant.
This complicated equation reduces to the one derived in [1],
in the absence of the barotropic fluid and the cosmological
constant. In addition, however, the present equation con-
tains several cross terms between the different types of
matter. These arise due to the nonlinearity of Einstein’s
equations, and should be expected to alter the effects of
backreaction.
Before moving on to consider simple matter distribu-

tions, we can simplify Eq. (49) a little by looking at the
specific case of cubic cells. In this case the total volume of a
cell is given by

V ¼ 8ζ3 þ 8ðn · ∇ΨÞζ4 þ 3

Z
V
ΨdV þOðϵ4Þ; ð51Þ

and the total surface area is given by

A ¼ 24ζ2
�
1þ 4

3
ðn ·∇ΨÞζ þ 1

2ζ2

Z
S
ΨdS

�
þOðϵ4Þ:

ð52Þ

We can also use κ ¼ 6 and αk ¼ 24, for the specific
case of cubic cells, and rewrite the acceleration equa-
tion (49) as
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X;tt ¼
−πGM
6ζ2

−
4πG
3

ðρð2ÞI þ 3pð2Þ
I Þζ þ Λζ

3
þ 7π2G2M2

27X3
þ 118π2G2Mρð2ÞI

27
þ 5πGMΛ

108
þ 4π2G2Mpð2Þ

I þ 496π2G2ρð2ÞI
2X3

27

þ 32π2G2ρð2ÞI PX3 þ 16πGρð2ÞI ΛX3

27
þ 8πGpð2Þ

I ΛX3

3
−
7Λ2X3

54
−
5πGMC
6X2

−
20πGρð2ÞI CX

3
−
32πGpð2Þ

I CX
3

þ ΛCX
2

þ 1

4X2

Z
S

�
4ΦM þ 4ΦI þ 3ΦpI

−
1

2
ΦΛ

��
πGM
6X2

þ 4πG
3

ðρð2ÞI þ 3pð2Þ
I ÞX −

ΛX
3

�
dS

−
3

4X2

Z
S
ððΦM þ ΦI þ ΦpI

Þ;tX;tÞdSþ 16π2G2pð2Þ
I

2X
3

−
4πGpð2Þ

I;t X;tX2

3

þ 1

24X2

��
ð4πGðρð2Þ þ 3pð2Þ

I Þ − ΛÞ
�
−2ΦM − 2ΦI þ 3ΦpI

þ 5

2
ΦΛ

��
− 8πGhρð2ÞM v2Mi − 8πGhρð2ÞI v2I i

− 4πGhρð2ÞM ΠMi − 4πGhρð4ÞI i − 8πGhpð2Þ
I v2I i − 12πGhpð4Þ

M i − 12πGhpð4Þ
I i

�

−
1

8X2

Z
V

�
ΦM þ ΦI −

1

2
ΦΛ

�
;tt
dV þ 1

2
ðn · ∇ΨÞ⋅⋅ðy2 þ z2Þ þOðϵ6Þ: ð53Þ

Every term in this equation can be solved for in complete
generality using the Green’s function formalism set out in
[1], but it still remains a very complicated expression.
Instead, and in order to show the effects of backreaction in a
simple illustrative example, we look at the case of regularly
arranged pointlike particles in a sea of radiation, and in the
presence of a cosmological constant.

IV. POINT SOURCES WITH RADIATION,
SPATIAL CURVATURE AND Λ

To find an explicit solution to the acceleration equation,
let us consider the case of a point source located at the
center of each cell, in the presence of radiation and a
cosmological constant. To simplify matters further, let us
evaluate the acceleration equation at the center of a cell face
(i.e. at y ¼ z ¼ 0).

A. Solutions

In the case of point sources we have vαM ¼ pð4Þ
M ¼

ΠM ¼ hρð2ÞM ΦMi ¼ hρð2ÞM ΦIi ¼ hρð2ÞM ΦpI
i ¼ hρð2ÞM ΦΛi ¼ 0.

Hence, in this case, the potentials defined in Eq. (22)
simplify to

∇2ΦM ¼ −4πGMδðxÞ; ∇2ΦI ¼ −4πGρð2Þr ;

∇2ΦpI
¼ −

4πG
3

ρð2Þr ; and ∇2ΦΛ ¼ Λ; ð54Þ

whereM is the gravitational mass of the point source at the

center of the cell, and ρð2Þr is the energy density of the
radiation. The first of these potentials can be solved for,
using the method of images, and can be used to absorb all
auxiliary functions of time (see [1] for details). This gives

ΦM¼ lim
N→∞

XN
β¼−N

GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−2β1XÞ2þðŷ−2β2XÞ2þðẑ−2β3XÞ2

p

− lim
N→∞

XN
β�¼−N

GM
2jβjX; ð55Þ

where β� indicates that the null triplet has been removed.
The remaining potentials are given by

ΦI ¼ −
2πGρð2Þr

3
ðx2 þ y2 þ z2Þ;

ΦpI
¼ −

2πGρð2Þr

9
ðx2 þ y2 þ z2Þ; and

ΦΛ ¼ Λ
6
ðx2 þ y2 þ z2Þ: ð56Þ

If we now assume that the radiation does not interact
with the point sources, then we have pð4Þ

r ¼ 1
3
ρð4Þr . Using

the energy-momentum conservation equation at Oðϵ4Þ, the
velocity of the barotropic fluid given in Eq. (44), and
the lower-order acceleration and constraint equations, the
energy density of radiation at Oðϵ4Þ can then be seen to be
given by

ρð4Þr ¼
�
πGMρð2Þr

X3
þ 16

3
πGρð2Þr

2 − 2
ρð2Þr C
X2

þ 2ρð2Þr Λ
3

�
r2

þ 4ρð2Þr ΦM; ð57Þ

where r2 ¼ x2 þ y2 þ z2. Using all of this information,
the acceleration equation (53) can then be found to
reduce to
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X;tt ¼ −
πGM
6X2

−
8πG
3

ρð2Þr X þ ΛX
3

þ πG2M2

X3
A1

þ πG2Mρð2Þr A2 þ GMΛA3 þ
GMC
X2

A4

−
64

9
π2G2ρð2Þr

2X3 −
8

9
πGρð2Þr ΛX3 −

2

9
Λ2X3

þ 4

3
πGρð2Þr CX þ 1

2
ΛCX þOðϵ6Þ; ð58Þ

where A1, A2, A3 and A4 are constants whose values are
given in Table I, and whose relationship to the variables
used in [1] are given in the appendix.
Although already dramatically simplified, we can reduce

this equation further by transforming it into a FLRW
background. This can be achieved using the following
coordinate transformations [1]:

t ¼ t̂ −
a;t̂a
2

ðx̂2 þ ŷ2 þ ẑ2Þ þOðϵ3Þ; ð59Þ

x ¼ ax̂

�
1þ ða;t̂Þ2

4
ðx̂2 þ ŷ2 þ ẑ2Þ

�
þOðϵ4Þ; ð60Þ

y ¼ aŷ

�
1þ ða;t̂Þ2

4
ðx̂2 þ ŷ2 þ ẑ2Þ

�
þOðϵ4Þ; ð61Þ

z ¼ aẑ

�
1þ ða;t̂Þ2

4
ðx̂2 þ ŷ2 þ ẑ2Þ

�
þOðϵ4Þ; ð62Þ

where the new coordinates t̂, x̂, ŷ, ẑ are the standard set in a
FLRW background, and where aðt̂Þ is the scale factor of
that background.
The energy density in these new coordinates is given by

ρð2Þr ðtÞ¼ ρð2Þr ðt̂Þ−2a2;t̂ρ
ð2Þ
r ðt̂Þðx̂2þ ŷ2þ ẑ2ÞþOðϵ4Þ: ð63Þ

Evaluating this expression at the center of a cell face, and
using the lower-order constraint equation (43), gives

ρð2Þr ðtÞ ¼ ρ̂ð2Þr −
�
2πGðρ̂ð2Þr ÞM

3aX̂3
0

þ 16πGðρ̂ð2Þr Þ2a2
3

þ 2ρ̂ð2Þr Λa2

3
− 2ρ̂ð2Þr k

�
X̂2
0: ð64Þ

In this last equation we have introduced the abbreviated
notation ρ̂ð2Þr ¼ ρð2Þr ðt̂Þ, and used k to denote Gaussian
curvature in the background FLRW geometry.
Similarly, at the center of a cell face the position of the

boundary transforms as

X ¼ aX̂0

�
1þ a2;t̂

4
X̂2
0

�

¼ aX̂0

�
1þ

�
πGM

12aX̂3
0

þ 2πGρ̂ð2Þr a2

3
þ Λ
12

a2 −
k
4

�
X̂2
0

�
;

ð65Þ
where a ¼ aðt̂Þ in this expression.

B. Results

Finally, using Eqs. (59)–(65), the acceleration equa-
tion (58) simplifies down to

ä
a
¼ −

4πG
3

ðρ̂ð2ÞM þ 2ρ̂ð2Þr Þ þ Λ
3
þ B1 þOðϵ6Þ; ð66Þ

where overdots in this equation denote derivatives
with respect to t̂, and where the backreaction term, B1,
is given by

B1 ≃ ð4πGρ̂ð2ÞM aX̂0Þ2
�
1.50 − 1.20

Ωr

ΩM
þ 0.88

Ωk

ΩM

�
: ð67Þ

In writing these equations we have used the expression

ρ̂ð2ÞM ≡M=8a3X̂3
0 for the average mass density in a cell, and

have introduced the usual cosmological parameters,

ΩM ≡ 8πGρ̂ð2ÞM

3H2
; Ωr ≡ 8πGρ̂ð2Þr

3H2
; Ωk≡ −

k
a2H2

;

where H ≡ _a=a. The numerical values inside the brackets
in Eq. (67) are calculated from the constants in Table I, and
are quoted to the second decimal place only. The reader will
note that Λ does not appear in this expression, and so does
not contribute to this backreaction term at this level of
accuracy. It can also be seen that, in the absence of the
pointlike particles, the acceleration equation reduces to the
standard Friedmann equation for a universe with radiation,
spatial curvature and a cosmological constant, as expected.
The backreaction term, B1, is strongly influenced by the

presence of radiation and spatial curvature, but not Λ. As
can be seen from Fig. 2, the magnitude of B1 decreases as
the amount of radiation in the Universe increases. This is
independent of the expected suppression in the growth of
structure that radiation is known to cause, as the discrete
nature of the nonrelativistic matter in this example exists for
all time. Figure 2 also shows us that the backreaction effect
reduces for a closed universe, and increases for an open
universe. In Fig. 3 we plot the consequences of having

TABLE I. The numerical values of A1, A2, A3 and A4, from
Eq. (58). These are the numbers approached as the number of
reflections in the method of images diverges to infinity.

Constant Numerical value

A1 1.27…
A2 −9.29…
A3 −0.219…
A4 0.809…
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nonzero amounts of both radiation and positive spatial
curvature, while in Fig. 4 we show the corresponding plot
for negative spatial curvature. In this latter case the spatial
curvature and radiation can have compensating effects as
they are simultaneously increased.
As well as an acceleration equation, we can integrate

Eq. (66) to obtain a constraint equation. This is given by

�
_a
a

�
2

¼ 8πG
3

ðρ̂ð2ÞM þ ρ̂ð2Þr Þ − k
a2

þ Λ
3
þ B2 þOðϵ6Þ; ð68Þ

where we have introduced B2 to denote the leading-order
contribution to the backreaction in this equation, and

written C ¼ kX̂2
0 þOðϵ4Þ. The backreaction term can be

written explicitly as

B2 ≃ −ð4πGρ̂ð2ÞM aX̂0Þ2
�
1.50 − 0.80

Ωr

ΩM
þ 1.76

Ωk

ΩM

�
:

ð69Þ

Let us now consider how different forms of matter affect
the backreaction in the Hubble rate. From Fig. 5 it can be
seen that the effect of radiation is to decrease the back-
reaction term in this equation. In the Hubble rate, the
backreaction effect from the nonrelativistic matter itself is
negative. This means that radiation increases the value of

FIG. 5. The effect of different forms of matter on the back-
reaction term that appears in the constraint equation, (68). This is
expressed in terms of the fractional change in B2.

FIG. 3. The effect that simultaneously adding radiation and
positive spatial curvature has on the backreaction term in the
acceleration equation, B1.

FIG. 4. The effect that simultaneously adding radiation and
negative spatial curvature has on the backreaction term in the
acceleration equation, B1.

FIG. 2. The effect of different forms of matter on the back-
reaction term that appears in the acceleration equation, (66). This
is expressed in terms of the fractional change in B1. The energy
density parameter ΩY for each type of matter is expressed as a
fraction of ΩM.
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the Hubble rate. The cosmological constant again makes a
negligible contribution to the backreaction. Finally, at
Oðϵ4Þ, the Hubble rate is greater for a universe with
positive spatial curvature, and smaller for a universe with
negative spatial curvature. In Figs. 6 and 7 we plot the
results of simultaneously adding radiation and spatial
curvature. Once again, if spatial curvature is negative,
then the effect it has on the backreaction term can
compensate that of radiation. If spatial curvature is
positive, however, the effect it has on backreaction is
complementary to that of radiation.
Let us now consider the functional form of the different

terms in the backreaction equations. Recall that the lowest-
order parts of the matter density and radiation density both

scale in exactly the same way as in a FLRW model. This
means that the leading-order correction arising from the
nonrelativistic matter itself is a radiationlike term, as
identified in [1]. The nonlinear effect from radiation, on
the other hand, scales as a fluid with equation of state
p ¼ 2

3
ρ. This is somewhere between the behavior expected

from a free scalar field, and that of normal radiation. The
leading-order correction from the spatial curvature scales
in the same way as nonrelativistic matter, and effectively
renormalizes the value of the gravitational mass in the
Universe.
Let us now consider the deceleration parameter,

q0. Using Eqs. (66) and (68), we find this parameter to
be given by

q0 ≡ −
äa
_a2

¼ ðΩM þ 2Ωr − 2ΩΛÞ
2ðΩM þΩr þΩΛ þ ΩkÞ

þ B3 þOðϵ4Þ;

ð70Þ

where the backreaction term in this equation is

B3 ¼ −
3B1

8πGρ̂ð2ÞM ð1þ Ωr
ΩM

þ ΩΛ
ΩM

þ Ωk
ΩM

Þ

−
3B2ð1þ 2 Ωr

ΩM
− 2 ΩΛ

ΩM
Þ

16πGρ̂ð2ÞM ð1þ Ωr
ΩM

þ ΩΛ
ΩM

þ Ωk
ΩM

Þ2
; ð71Þ

whereΩΛ ≡ Λ=3H2, and where the values of B1 and B2 are
given in Eqs. (67) and (69).
The effect that radiation, spatial curvature and a cos-

mological constant have on the backreaction term B3 is
displayed graphically in Fig. 8. Unlike the cases of B1 and
B2, it can be seen that B3 is only of order ϵ2. This is because

FIG. 8. The effect of different forms of matter on the back-
reaction term that appears in the deceleration parameter, (70).
This is expressed in terms of the fractional change in B3.

FIG. 7. The effect that simultaneously adding radiation and
negative spatial curvature has on the backreaction term in the
constraint equation, B2.

FIG. 6. The effect that simultaneously adding radiation and
positive spatial curvature has on the backreaction term in the
constraint equation, B2.
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the deceleration parameter, q0, is itself an order 1 quantity.
The backreaction in this quantity is therefore still small
compared to the corresponding FLRW value, even though
its absolute magnitude has increased from the terms that
enter into the Friedmann equations. At scales of about
100 Mpc, we estimate that these corrections amount to
changes at the level of about one part in 104 in the
deceleration parameter.
The value of B3 in the absence of radiation and a

cosmological constant is negative, meaning that discre-
tizing the matter in this way leads to a small increase in
acceleration. This is no surprise, as backreaction
has already been shown to increase ä=a and decrease

_a2=a2. As the value of q0 is simply given by the ratio
of these two quantities (with a minus sign), we have
that both types of backreaction contribute cumulatively
to the acceleration measured by this dimensionless
parameter.
It can be seen from Fig. 8 that radiation increases the

backreaction that occurs in the deceleration parameter.
Positive values of Λ have a small effect on B3, even
though it does not have a noticeable effect on B1 or B2.
This is because, in Eq. (71), we find that Λ enters into
the background terms that multiply B1 and B2. Negative
values of Λ can make a more sizeable contribution
to the backreaction of q0, and can even cause the
backreaction term to contribute to deceleration, if its
magnitude is large enough. The effect of positive spatial
curvature on B3 can also be large, but in this case causes
extra acceleration. One should keep in mind, however,
that for both of these last two cases the background
value of the deceleration also diverges as ΩΛ → −ΩM
and Ωk → −ΩM. Finally, and unlike in the acceleration
and constraint equations, a negative value for the spatial
curvature provides only a small correction to the value
of B3.
The effects on B3 of simultaneously adding negative

spatial curvature, positive cosmological constant, and
nonzero radiation are displayed in Figs. 9–11. It can be
seen from Fig. 9 that, in the presence of radiation, negative
spatial curvature has only a small effect on the back-
reaction. Similarly, in Fig. 10, it can be seen that positive
values of Λ have a small effect on the backreaction term,
when radiation is present. On the other hand, in Fig. 11, it
can be seen that although positive Λ and negative spatial
curvature have only a small effect on the backreaction in
the absence of radiation, these effects are comparable to
each other when radiation is absent. In this case, for small

FIG. 10. The effect that simultaneously adding radiation and a
cosmological constant has on the backreaction term in the
deceleration equation, B3.

FIG. 11. The effect that simultaneously adding radiation and
negative spatial curvature has on the backreaction term in the
deceleration equation, B3.

FIG. 9. The effect that simultaneously adding radiation and
positive spatial curvature has on the backreaction term in the
deceleration equation, B3.
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values of Λ, we have a small correction to the absolute
value of B3, with a maximum at ΩΛ ¼ 0.5ΩM. Negative
spatial curvature does not affect B3 for small values of Λ,
but does become increasingly significant as the value of Λ
increases.

V. CONCLUSIONS

We have constructed an original framework that can be
used to quantify the effects that radiation, spatial curvature
and Λ have on the cosmological backreaction that results
from the existence of nonlinear inhomogeneities. Our
approach is based on modeling the Universe as a regular
lattice, in which all structure is periodic. The geometry of
space-time within each individual cell is then taken to
be close to Minkowski space, and a post-Newtonian
perturbative expansion is used to model all gravitational
fields and matter content. By patching these cells together,
using Israel’s junction conditions at reflective symmetric
boundaries, we finally construct a global and dynamical
space-time. We derived an acceleration equation that
describes the expansion of this emergent cosmology,
and which is valid for any arbitrary distribution of matter
within each cell (as long as it is distributed periodically).
This equation is valid in the presence of both a barotropic
fluid, with unspecified equation of state, and a cosmo-
logical constant.
Having derived the equations that govern the general

case, we then simplified our equations by considering the
specific example of a pointlike mass at the center of each
lattice cell, in a sea of radiation and in the presence of a
cosmological constant. The backreaction terms generated
by the matter fields alone behave like radiation in the
Friedmann equation, as found in [1]. The presence of actual
radiation, however, reduces the magnitude of the back-
reaction in both the acceleration and constraint equations.
In contrast, we find that the cosmological constant has a
negligible effect on backreaction, and that spatial curvature
can have a significant effect depending on whether the
Universe is open or closed. These results explain why the
leading-order effects of backreaction occur at the level of
linear-order perturbations in cosmological perturbation
theory [21–23], even though they require second-order
gravity in order to be calculated.
In future work we will calculate observables in these

models by solving the equations that govern the expansion
of a beam of light [27]. We also aim to further improve
their realism by reducing the symmetries required at the
junctions between cells.
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APPENDIX: NUMERICAL COEFFICIENTS

The numerical constants that appear in the accelera-
tion equation (58) are given, in terms of the variables used
in [1], by

A1 ¼
D
3
−
E
2
þ 7π

27
−
F
6
þ P
12

;

A2 ¼
13π

27
þ 16D

3
− 4E − 8V1 −

4F
3

þ 4P
3
;

A3 ¼
5π

216
−
2D
3

−
E
2
þ V1

3
−
F
6
−
P
6
;

A4 ¼ −
5π

6
þ F

2
þ 3E

2
: ðA1Þ

The numerical values of A1, A2, A3 and A4 are given in
Table I, and the numerical values of D, E, F, P and V1 are
given in Table II. The quantity V1, which is defined by

V1 ≡
R
X
−X ΦMdxdydz
4GMX2

; ðA2Þ

converges to its limiting value quickly as the number of
image masses is increased, as illustrated in Fig. 12. The
convergence of D, E, F, P and V1 is given in [1].

FIG. 12. The percentage difference from the asymptotic value
of V1, for various different numbers of image points in the
partial sum.

TABLE II. The numerical values of D, E, F, P, and V1 that are
approached as the number of reflections used in the method of
images diverges to infinity.

Constant Asymptotic value

D 1.44…
E 0.643…
F −1.62…
P 0.304…
V1 2.31…
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