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Current constraints on spatial curvature show that it is dynamically negligible: jΩKj ≲ 5 × 10−3 (95%C.L.).
Neglecting it as a cosmological parameter would be premature however, as more stringent constraints onΩK at
around the10−4 levelwould offer valuable tests of eternal inflationmodels andprobenovel large-scale structure
phenomena. This precision also represents the “curvature floor,” beyond which constraints cannot be
meaningfully improved due to the cosmic variance of horizon-scale perturbations. In this paper, we discuss
what future experiments will need to do in order to measure spatial curvature to this maximum accuracy. Our
conservative forecasts show that the curvature floor is unreachable—by an order of magnitude—even with
Stage IV experiments, unless strong assumptions are made about dark energy evolution and the ΛCDM
parameter values.We also discuss some of the novel problems that arise when attempting to constrain a global
cosmological parameter likeΩK with such high precision. Measuring curvature down to this level would be an
important validation of systematics characterization in high-precision cosmological analyses.
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I. INTRODUCTION

The question of whether spatial curvature is an important
contribution to the cosmic energybudget has lately seemed all
but settled. Current constraints from combined cosmicmicro-
wave background (CMB) and baryon acoustic oscillation
(BAO) data find jΩKj < 5 × 10−3 (95% C.L.) [1]. The
implication is that curvature is dynamically negligible,
affecting cosmic expansion by less than 1% at any epoch.
Is it time, then, to close the door on curvature, fixing it to

zero in our cosmological analyses (as is already common
practice)? In some contexts, this is certainly a valid choice—
for example, the effects of nonzero ΩK on the growth rate of
structure are essentially negligible at the precision of today’s
experiments. However, to assume flatness exclusively would
preclude a number of potentially powerful tests of early
Universe physics, and of general relativistic effects in large-
scale structure.
Constraints on ΩK at around the 10−4 level offer a

stringent test of eternal inflation [2–4]. Slow-roll eternal
inflation predicts a strong bound on jΩKj < 10−4, while
false-vacuum eternal inflation would be ruled out if
ΩK < −10−4. Measuring a “large” ΩK would have pro-
found implications for this important class of models.
Inflationary scenarios that give rise to bubble collisions
and other large-scale anomalies also tend to have observ-
able levels of spatial curvature [5,6], and an open Universe
(ΩK > 0) has been proposed as a strong prediction of the
string multiverse (although see [7] for a refutation of this

statement). There is therefore a clear theoretical motivation
for seeking a curvature constraint at the 0.01% level.
Another motivation for this target is that ∼10−4 repre-

sents a “floor” below which ΩK cannot be decisively
distinguished from primordial fluctuations. The expected
variance of curvature perturbations with wavelengths of
order the horizon size represents an irreducible cosmic
variance “noise” level, σðΩKÞ ≈ 1.5 × 10−5, below which
increased observational precision cannot improve the con-
straint [8]. Framed as a Bayesian model selection problem,
model confusion between curved and flat models actually
becomes unavoidable at a higher threshold: jΩKj ≈ 10−4 if
one demands “strong” evidence on the Jeffreys scale [9].
We adopt this more stringent value as the “curvature floor.”
Additionally, an observation of nonzero spatial curvature

could be the result of large-scale structure effects.
Perturbations to the distance-redshift relation at second order
contribute a monopole at the subpercent level, for example
[10], leading to a shift in the apparent value of ΩK. Local
inhomogeneities contribute to the monopole too, with observ-
ers inside potential wells seeing shifts inΩK [11–13]. In large-
scale structure surveys, supersample modes (thosewith wave-
lengths larger than the survey size) also contribute an apparent
shift in the background cosmology [14,15]. More subtle
general relativistic effects related to the behavior of curvature
in inhomogeneous spacetimes [16], such as the noncommu-
tation of spatial averaging with directional averaging [17],
time evolution [18,19], and wide-angle effects [20], can also
lead to observable discrepancies between different measure-
ments of curvature. Finally, certain alternative theories of
gravity predict a nonzero observedΩK [21]. A comparison of
various contributions is shown in Fig. 1.*danielle.leonard@physics.ox.ac.uk
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Given that current curvature upper limits are 1–2 orders of
magnitude away from the level required to probe most of
these effects, there is an imperative to continue pushing ΩK
constraints to greater precision. In this paper we address the
question of when, and how, we can expect to make
cosmological observations that will detect or constrain
ΩK at the 10−4 level. Recent efforts have explored future
constraints within a range of observational scenarios and
analysis frameworks [9,20,22–31]. The focus in these
previous forecasts has largely been on geometric observ-
ables, although several probes of the growth of structure
have also been considered.We expand upon these efforts by
considering combined constraints from the CMB, BAO, and
the weak gravitational lensing of galaxies. The former two
probes are arguably the “purest” precision observables, in
that they are likely to offer the best control over systematic
effects and biases. We have similarly selected weak gravi-
tational lensing on the basis that it is a key observable of
several upcoming surveys, and hence an intensive study of
relevant systematic errors is currently under way.
There are two principle ways in which we seek to

improve upon previous forecasts. First, we take a broadly
conservative approach. We incorporate parameters that may
exhibit significant degeneracies with ΩK (e.g. the neutrino
mass and the time evolution of dark energy), and then
examine the effect of varying or fixing these parameters.
We also fold in uncertainties due to observational nuisance
parameters, and comment on several possible additional
sources of systematic bias. In contrast, most previous work
has focused upon single or limited extensions beyond a
nonflat ΛCDM model. Second, we explore a suite of
current and upcoming surveys in combination, whereas
previous work has generally focused upon a single set or
very limited sets of future surveys. In this way, we aim to
answer the question of how and when we might first
achieve the target constraint of 10−4, rather than to examine
the properties of a particular survey or surveys of interest.
The paper is structured as follows. In Sec. II, we describe

the observational probes and our forecasting methodology.
In Sec. III, we present forecast spatial curvature constraints
for three generations of ongoing and upcoming surveys,
identifying the combination of surveys most likely to reach
the curvature floor first, while highlighting sources of
systematic bias that could jeopardize the measurement.
We conclude in Sec. IV with a discussion of the implica-
tions of our results for tests of inflation and of large-scale
structure effects, as well as for the next generation of
cosmological surveys.

II. SURVEYS AND FORECASTING METHOD

A. Observational probes

We examine the constraints that can be placed on spatial
curvature by three observational probes: CMB, BAO, and
weak gravitational lensing. We will use information from

the power spectra of these observables only, neglecting
three-point (and higher) correlations in the galaxy distri-
bution, for example.
Looking first to measurements of the CMB, we consider

the angular power spectra of the temperature and polari-
zation anisotropies. We also include information from the
CMB lensing convergence power spectrum, the theoretical
form of which is given below in Eq. (3).
Measurements of the BAO scale are included using a

formalism based on that presented in [32], in which the
redshift-space galaxy power spectrum is modeled as

Pgðk; μÞ ¼ ðbþ fμ2Þ2PsmðkÞ½1þ fBAOðkÞ�
× e−

k2
2
ð½1−μ2�Σ2⊥þμ2Σ2

∥Þ; ð1Þ

where b and f are the linear bias and linear growth rate
factors [33], Psm is the smooth (BAO-free) power spectrum,
and fBAO contains the scale information of the BAO
feature. To extract only the BAO information, we relabel
the argument of fBAO as k0, such that we consider only
derivatives with respect to the BAO scale in the Fisher
analysis described below. k0 is defined as

ðk0Þ2 ¼ α2s ½ðα⊥k⊥Þ2 þ ðα∥k∥Þ2�; ð2Þ

where k⊥ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
, k∥ ¼ kμ, fα∥; α⊥g represent shifts

with respect to a fiducial cosmology, and αs accounts for
uncertainty in modeling shifts of the BAO scale due to
nonlinearities. We marginalize over b and f, but assume
that the BAO smoothing is known, so ðΣ⊥;Σ∥Þ are treated
as fixed parameters.
Our third observable is the weak gravitational lensing of

galaxy images by large-scale structure. The angular power
spectra of the convergence for galaxy lensing, CMB
lensing, and their cross-correlation are given by the form

CAiBj

l ¼ 9

16

Z
χ∞

0

dχ
gA

iðχÞgBjðχÞ
fKðχÞ2c3

ðHðχÞaðχÞÞ4

×ΩMðχÞ2Pδ

�
l

fKðχÞ
; χ

�
; ð3Þ

where A and B indicate galaxies or CMB, while i and j
refer to the source galaxy redshift bin (relevant only in the
galaxy case). Note that we employ the Limber approxi-
mation [34,35], and so consider a minimum multipole of
lmin ¼ 10 for all lensing spectra in this work.
In Eq. (3), gA

iðχÞ is the lensing kernel,

gA
iðχÞ ¼ 2fKðχÞ

Z
χ∞

χ

fKðχ0 − χÞ
fKðχ0Þ

WAiðχ0Þdχ0: ð4Þ

In the case of CMB lensing, Wκc ¼ δðχ − χ�Þ, where χ� is
the comoving distance to last scattering. For galaxy lensing,
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WκigðχÞ is the distribution of source galaxies in each redshift
bin i, and accounts for photometric redshifts using the
method described in [36]. The photo-z bias is assumed to
be zero, while the photo-z scatter, σz, is used to determine
the number of redshift bins such that Δz ¼ 3σzð1þ zÞ.
Values of σz are given for each weak lensing survey in
Table I. The true redshift distribution of the total population
of source galaxies is modeled using the form nðzÞ ∝
zα exp½−ðz=z0Þβ� from [37], where z0 ¼ zm=1.412, and
zm is the median redshift.
We also account for the possibility of intrinsic galaxy

alignments, which contaminate the observed galaxy ellip-
ticity. For the galaxy lensing autocorrelation, we have

Cϵiϵj
l ¼ C

κigκ
j
g

l þ C
κigIj

l þ C
Iiκjg
l þ CIiIj

l ð5Þ

where I represents the intrinsic ellipticity. For the cross-
correlation between galaxy and CMB lensing, there is a
similar adjustment, which we compute as described in

[39]: Cϵiκc
l ¼ C

κigκc
l þ CIiκc

l .
We base our expressions for the final three terms of Eq. (5)

on those from [40]. However, where they assume that all
galaxies contribute equally to the intrinsic alignment signal,
we follow [41] and assume that only red galaxies contribute.
We additionally make the simplifying assumption that the
fraction of red galaxies fred is constant over the redshifts that

we consider. The result is that each of the final three terms of
Eq. (5) depends on an amplitude parameter fc, where
fc ¼ C1ρcfred, and C1 is the standard amplitude parameter
for intrinsic alignments. We marginalize over the combined
parameter fc in our forecasts to account for uncertainty in
the intrinsic alignment amplitude.
We also expect some minor cross-correlation between

CMB temperature and CMB lensing via the ISW effect.
This is comparatively negligible, however.

B. Fisher forecasting methodology

We explore the ability of current and future experiments
to improve constraints on ΩK by using a Fisher forecasting
methodology (see for example [42,43]). The inverse Fisher
information matrix approximates the covariance matrix for
an experiment, given a fiducial signal model and its
behavior as a function of selected free parameters, as well
as the experiment’s noise characteristics. The level of
optimism in Fisher forecasting can be controlled by
accounting for various nuisance parameters which would
be introduced in a realistic analysis.
We compute the Fisher matrix for each experiment with

respect to the parameters:ΩK,ΩBh2,ΩCh2, h, ns, As, τ,Mν,
w0, wa, ffig, fbig, and fc. As can be seen from this
parameter list, a non-ΛCDM expansion history is permit-
ted. Fiducial values of ΛCDM parameters are taken as
reported by Planck in 2015 [1], while fw0; wag are taken as
−1 and 0, respectively. The fiducial linear bias in each
redshift bin, bi, is survey specific, and fi is the linear
growth rate per bin. fc is fiducially taken as 0.0067,
following the standard convention in which C1ρc ¼
0.0134 [41] and setting fred fiducially to 0.5.
Note that Fisher matrices containing independent

information can be directly summed in order to obtain a
combinedFishermatrix.Here,we assume three independent
Fisher matrices: one for CMB temperature and polarization,
one for BAO, and one for CMB lensing and galaxy lensing.
By computing the Fisher matrices in this manner,
any covariance between CMB temperature/E-mode
polarization and lensing has been neglected.
The single Fisher matrix describing both the temperature

and polarization of the CMB takes the form

FCMB
ab ¼

X

l

fskyð∂aClÞTΣ−1
l ð∂bClÞ; ð6Þ

FIG. 1. Various contributions to the observed spatial curvature
or its variance (shown as a function of redshift where relevant).
Current and forecast upper limits on ΩK are shown as blue bars
(note that the Planck limit fixed w). The green shaded region
shows the approximate supersample variance σðΩKÞ ∼Oð1Þ ×ffiffiffiffiffiffiffiffi

hδ2bi
p

[38] for a ð5 GpcÞ3 redshift bin, as a function of its center
redshift. The shift in ΩK (absolute value) due to the second-order
correction to DA [10] is shown as a red dashed line, and the
maximum permissible value of ΩK in eternal inflation from [2] as
an orange bar. The grey band is the curvature floor, and the purple
dashed line is the cosmic variance limit from [8]. All upper limits
and variance bounds are shown at the 95% C.L. level.

TABLE I. Survey parameters for the three generations of weak
gravitational lensing surveys considered. ngal is given in units of
galaxies per square arcminute.

α β z0 σz ngal hγ2inti
1
2 fsky

DES 2 1.5 0.425 0.07 12 0.32 0.12
Euclid 2 1.5 0.637 0.05 30 0.22 0.375
LSST 2 1 0.5 0.03 40 0.18 0.485
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where fsky is the fractional sky coverage, and Σl is the
covariance matrix between angular power spectra at a given
l:Σl has dimensions N × N where N is equal to the
number of spectra considered. ∂aCl is a vector of length
N, containing derivatives of each spectrum at multipole l
with respect to parameter a.
Similarly, the weak gravitational lensing of galaxies and

that of the CMB are described in a single Fisher matrix. We
employ the formalism developed in [44]:

FL
ab ¼

X

l

2lþ 1

2
fskyTr½ðClÞ−1∂aClðClÞ−1∂bCl�: ð7Þ

Cl is a square matrix with dimensions of the number of
galaxy redshift bins plus one (for the CMB). Each element
of the Cl matrix provides the sum of the theoretical auto- or
cross-spectrum and the relevant noise.
Finally, the Fisher matrix of BAO is related to that for

galaxy clustering. In the distant observer approximation,

FGal
ab ¼

Z þ1

−1
dμ

Z
kmax

kmin

dk
ð2πÞ2 k

2Vsur

�
Pgðk; μÞ

Pgðk; μÞ þ 1=n

�
2

× ð∂a logPgÞð∂b logPgÞ; ð8Þ
where n is the number density of detected galaxies. In order
to extract information only from the BAO, derivatives are
considered only with respect to the BAO scale k0 described
above, i.e., ∂αPg ∝ ð∂k0fBAOðk0ÞÞ∂αk0. The desired Fisher
matrix, FBAO

ab , then follows directly.

C. Numerical issues and nonlinear scales

We use the public CAMB code [45] to output CMB
temperature and polarization spectra, as well as the matter
power spectra necessary to compute BAO and lensing
observables using the expressions above. Given our observ-
ables, we then compute all derivatives numerically.
When employing numerical derivatives, it is crucial to

select a step size in the differentiation parameter which lies
within the regime of convergence—too small a step can
yield numerical errors, while too large will depart from the
regime of validity. In the case of galaxy weak lensing,
ensuring convergence proved nontrivial. This was due to
the prescription for computing the nonlinear matter power
spectrum: in the case where nonlinearities were included,
derivative convergence was not uniformly achievable at
higher multipoles, but when predictions were artificially
restricted to linear theory, convergence was easily achieved.
Therefore, in order to be certain of robust results, we report
constraints from galaxy weak lensing using lmax ¼ 300.
We select this maximum multipole because it provides
agreement of better than 5% between the problematic
nonlinear case and the well-behaved linear case. Note that
we make this conservative lmax cut only for galaxy lensing
and for the cross-correlation between galaxy and CMB
lensing; the CMB lensing autocorrelation is less affected

due to its sensitivity to higher redshifts, where nonlinear
effects are less important.
Although we make this cut to deal with numerical

problems, we note that it also serves our overall goal of
providing conservative forecasts, as it naturally excises
multipoles at which nonlinearities become important.
Regardless of numerical issues, at smaller scales we would
be faced with uncertainties in nonlinear modeling and
baryonic physics that currently affect the matter power
spectrum at around the 10% level. To illustrate the potential
of including higher multipoles were this problem to be
solved in the future, we also present constraints with
lmax ¼ 2000 (and, in the case of the hypothetical
cosmic-variance-limited lensing survey explored below,
with lmax ¼ 5000). However, these constraints may be
subject to errors due to the numerical issues discussed
above, so should be treated with care.

D. Cosmological surveys

We compute Fisher matrices for experiments that are
representative of three generations of cosmological sur-
veys, for CMB, weak lensing, and BAO observations:

(i) Stage II (current): Planck [1], the Dark Energy
Survey (DES) [46], and the Baryon Oscillation
Spectroscopic Survey (BOSS) [47].

(ii) Stage III (next generation): Advanced ACTPol
(Atacama Cosmology Telescope) [48] and Euclid
[49] (for both galaxy lensing and BAO).

(iii) Stage IV (future): A Stage IV CMB survey [50], the
Large Synoptic Survey Telescope (LSST) [51], and
Stage 2 of the Square Kilometre Array [52].

In defining these three generations of experiments, we use
nomenclature similar to that of the Dark Energy Task Force
[53], but do not attempt to match their stages exactly. For
example, Euclid is technically a Stage IV experiment, but
we include it in Stage III due to its earlier operating time
frame than SKA2. Similarly, DES is included in Stage II
despite typically being considered a Stage III experiment.
SKA2 is selected as the Stage IV BAO experiment due to
the fact that it is expected to outperform nonradio counter-
parts in this observable out to z ¼ 1.4 [54]. We select
Advanced ACTPol as the Stage III CMB experiment, but
mention SPT-3G (South Pole Telescope) [55] as another
possible choice.
The survey parameters that we used in our Fisher fore-

casting are given in Table I for weak lensing surveys, while
those pertaining to BAO were given in [56–58] for BOSS,
Euclid, and SKA2 respectively. The specifications employed
here for Advanced ACTPol are the same as those given in
[59] for the Stage III (wide) experiment, while the CMB
Stage IV survey considered here employs the specifications
of the Stage IV CMB survey described in the same work.
Note that, in all cases, forecast constraints from CMB
experiments include CMB lensing as well as polarization.
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III. RESULTS

For each “generation” of survey, we consider four
combinations of observables: CMB only, CMBþ BAO,
CMBþ galaxy weak lensing (WL), and the combination
of all three. The results are shown in Table II, which
presents the forecast 95% C.L. constraint on ΩK for each
combination, and for a range of different prior assumptions.
Note that values in the table have been divided by 10−4.

A. Forecasts for each generation of surveys

We begin with the most pessimistic case, where all
parameters are marginalized without reference to any prior
information (the “uninformative priors” column in
Table II). Our Planckþ BOSS forecast predicts a
95% C.L. constraint on ΩK of approximately 3.8 × 10−2,
nearly eight times worse than the published Planckþ BAO
constraint [1]. This is the result of a geometric degeneracy
[60–63], which makes it difficult to disentangle the effects
of curvature and a varying dark energy equation of state.
Information from CMB lensing and low-redshift BAO
helps to break the degeneracy, but the parameters remain
strongly correlated; if w0 and wa are fixed (see the “fixed
w” column), the constraint is very similar to the published
result (which also assumed fixed w). Examining the
“uninformative priors” column more generally, we see
significant improvement in the constraint on ΩK with
progressive generations. The most powerful 95% C.L.
constraint, coming from the combination of all three
Stage IV experiments, is 4.8 × 10−3, far from the target
precision of ∼10−4.
A more realistic (but still conservative) analysis corre-

sponds to the “mild priors” column in Table II. In this case,

we assumed that external Gaussian priors would be applied
to certain parameters, corresponding to 95% (2σ) bounds of
σðαsÞ ¼ 0.01, σðbiÞ ¼ 1, σðMνÞ ¼ 0.4, σðfcÞ ¼ 0.05,
σðw0Þ ¼ 1, σðwaÞ ¼ 2, and σðτÞ ¼ 0.1. These priors are
chosen to be mostly uninformative (i.e. weak), except for
helping to break the more severe degeneracies. External
probes (e.g. supernovae in the case of w0 and wa, or 21 cm
experiments in the case of τ [64]) are capable of providing
external constraints at this level, without suffering from the
same degeneracies. These mild priors offer varying levels
of improvement over the case of uninformative priors. The
most dramatic gain is for the Advanced ACTPol + Euclid
BAO combination of surveys, where the constraint is
tightened by approximately a factor of 3.5.
Next, in each subsequent column, a particular parameter

is fixed to its fiducial value in an attempt to understand its
individual effect on the spatial curvature constraint. As
discussed above, fixing the equation of state of dark energy
(the “fixed w” column) can result in large improvements by
removing a geometric degeneracy. However, a key goal of
some of the experiments under consideration (e.g. Euclid)
is to measure the time dependence of w. For this reason, it is
arguable that w0 and wa should remain free. Still, if one had
a strong theoretical prior on a cosmological constant, fixing
these parameters would result in considerable gains for
curvature constraints—the S4þ SKA2þ LSST combina-
tion yields a 95% bound of 1.3 × 10−3, about a factor of 2
better than in the mild priors case.
Fixing the neutrino mass,Mν, is shown to be only mildly

helpful in increasing the combined constraining power of
all three observables, although its effect is non-negligible
for constraints from the CMB alone. Fixing τ has a
similarly small effect, with improvements reflecting the

TABLE II. Forecast marginal constraints on ΩK (95% C.L.), divided by 10−4, for all experiment combinations, and for various priors
on other parameters. In columns 3–9, the mild priors of the second column are assumed for the nonfixed parameters (see text). The final
column shows the results when no other parameters are marginalized over. Note that there is no result for the CV-limited combination of
surveys in the lmax ¼ 2000 column because we assume lmax ¼ 5000 for weak lensing in this case.

Experiments
Uninform.
priors

Mild
priors

Fixed
w

Fixed
αs

Fixed
Mν

Fixed
τ

Fixed
fc

Fixed
bi lmax ¼ 2000

Fixed
all

Planck CMB 393.4 280.7 239.3 280.7 258.4 267.9 280.7 280.7 280.7 4.6
þBOSSBAO 382.0 144.2 59.5 144.1 138.1 142.7 144.2 144.2 144.2 4.6
þDESWL 312.9 240.4 228.6 240.4 219.6 232.8 220.4 240.4 188.8 4.6
þboth 305.9 118.0 56.4 117.8 114.1 116.7 118.0 118.0 105.8 4.6

Advanced ACTPol
CMB

164.1 128.7 116.1 128.7 76.3 123.7 128.7 128.7 128.7 1.2

þEuclid BAO 153.6 44.1 18.8 43.4 29.1 41.0 44.1 44.1 44.1 1.2
þEuclidWL 97.9 83.4 70.2 83.4 43.0 80.7 74.4 83.4 42.7 1.2
þboth 87.7 25.3 18.3 23.2 23.3 23.5 24.0 25.3 19.7 1.2

S4 CMB 94.1 74.9 63.6 74.9 39.2 73.4 74.9 74.9 74.9 0.9
þSKA2BAO 68.2 31.4 13.9 30.6 21.7 28.5 31.4 31.4 31.4 0.9
þLSSTWL 56.6 51.8 31.2 51.8 23.6 51.2 45.0 51.8 24.7 0.9
þboth 47.8 22.2 12.7 19.4 17.3 21.3 21.1 22.2 15.0 0.9

CV-limited 3.6 3.5 3.3 2.2 3.5 1.9 3.4 3.5 � � � 0.4
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breaking of the degeneracy between the optical depth andAs,
which is itself degenerate with ΩK. We see, however, that
fixing τ has a considerable effect in the case of the combi-
nation of cosmic-variance-limited surveys (discussed below),
demonstrating the potential importance of this degeneracy for
even more futuristic observations than those of Stage IV.
Fixing the BAO scale exactly (see the “fixed αs” column)

has only a very mild effect for the Stage III and IV
experiments. Similarly, fixing either the galaxy bias bi
or intrinsic alignments parameter fc has a minimal effect on
the forecast constraint values. These parameters are of more
relevance as sources of potential bias in inferred parameter
values, as will be discussed in Sec. III B.
Allowing the galaxy weak lensing power spectra to

contribute out to a multipole of 2000 rather than 300
(“lmax ¼ 2000”) results in a more noticeable effect: for
Stage IV, the improvement over the mild priors scenario in
the three-observable case exceeds ∼30%, reaching a con-
straint on ΩK of 1.5 × 10−3.
The last column of Table II shows the constraints that

would be achieved ifΩK were the only unknown parameter.
In this case, 10−4 is achievable by S4 alone—the CMB
offers the best (conditional) constraint on ΩK. Beyond
fixing those parameters which have already been discussed,
the greatest effect in producing these tight forecast con-
straints comes from fixing h, with a secondary but relevant
effect from fixing ΩC and ΩB. Controlling all other
parameters to such a high precision is unrealistic,
however—the conclusion from our analysis is therefore
that 10−3 (95% C.L.) is the most likely achievable con-
straint on ΩK for the foreseeable future.
Finally, to explore what might be possible in the more

distant future, we include also forecast constraints for the
case where all three surveys are cosmic variance limited.
Interestingly, we see that even for this combination of
highly idealized surveys, only the case where all auxiliary
parameters are fixed can provide a sub-10−4 constraint on
the spatial curvature.

B. Systematics, degeneracies, and
theoretical uncertainties

We now briefly discuss some of the key modeling and
parameter uncertainties that are likely to affect a precision
curvature measurement.
a. Shifts in the BAO scale: Nonlinear evolution of the

galaxy distribution broadens the BAO feature slightly,
shifting the peak by ∼0.1–0.3% [65,66]. This shift can
be partially undone by calibrating off simulations, and
correcting for coherent peculiar velocities using the
“reconstruction” technique [67,68]. Uncertainty in the
redshift evolution and scale dependence of the galaxy bias
also have a small effect on the peak position [70]. One set
of simulations to estimate the effects of nonlinear evolution
on the BAO peak measured the distribution of shifts to be
ð0.3� 0.015Þ% at z≃ 0 [66]. An observer could correct

for the shift by marginalizing over this distribution, which
would correspond to setting a prior of σðαsÞ ≈ 0.015% in
our forecasts. Conservatively, we chose a looser 1% prior
for most columns in Table II, although it can be seen that
this does not significantly change the results (and even
fixing αs has little effect).
b. Nonlinear power spectrum: Weak lensing is also

sensitive to the modeling of the nonlinear power spectrum.
This is often dealt with by reducing lmax, so that only more
linear modes are used, at the cost of reducing the con-
straining power of a given experiment. As discussed above,
this is the approach we take for most columns in Table II,
choosing lmax ¼ 300. The lensing power spectrum is more
complicated to model than the BAO feature, so there is little
one can do to improve this situation other than trying to
model the nonlinear matter power spectrum as accurately as
possible. This requires high-precision simulations that
include realistic baryonic effects [71–73]; however, current
uncertainties in baryonic modeling on nonlinear scales are
relatively large (∼10%) [74]. As demonstrated in column 9
of Table II, if more accurate modeling of the nonlinear
power spectrum were to allow us to increase lmax for
galaxy lensing to 2000, this could improve constraints on
ΩK by 30% for Stage IV surveys. (See [75] for a more
optimistic assessment of the importance of baryonic effects
in weak lensing observations.)
c. Massive neutrinos: Spatial curvature and the sum of

neutrino masses are correlated in CMB observations
principally due to their similar effect on the amplitude of
the CMB lensing power spectrum (see Fig. 9 of [59]).
Increasing the neutrino mass increases the matter density
and therefore enhances the growth of structure, which
induces a larger lensing effect on the CMB. This can be
compensated for by increasing the curvature parameter ΩK
which, for a fixed CMB acoustic angular scale, decreases
the matter density and the corresponding lensing amplitude.
It is therefore vital to allow for variations in the neutrino
mass in any cosmological analysis involving spatial cur-
vature (and vice versa).
d. Dark energy evolution: As discussed above, there is a

strong degeneracy between the dark energy equation of state
andΩK; some of the redshift scaling of the curvature termcan
always be absorbed into a sufficiently unconstrainedwðzÞ. A
similar “dark degeneracy” also exists for the matter density,
ΩM [76]. This problem is often solved in an ad hoc way, by
fixingw (as in, for example, [1]), but this is a strong choice of
prior. A more conservative alternative may be to use
theoretical priors on dark energy models, e.g. [77–79].
These employ stability conditions and physical modeling
assumptions to establish a subset of (a priori) viable models
from a broad class of dark energy theories. These theoretical
priors can be surprisingly restrictive; using them, instead of
allowing completely arbitrary functional forms forwðzÞ, one
can hope to partially break the degeneracywith curvature in a
more physically justified manner.
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e. Intrinsic alignments: The intrinsic alignment of
galaxies contributes to the observed galaxy lensing power
spectrum, as well as to the observed cross-spectrum
between galaxy lensing and CMB lensing. The choice of
prior for the amplitude of the intrinsic alignment contri-
bution has a small effect on the spatial curvature constraint,
as described above. We do, however, find that increasing
the fiducial value of the amplitude parameter fc leads to a
tighter constraint on ΩK. For example, for the combination
of all three Stage III experiments, σðΩKÞ decreases by ∼6%
when the fiducial value for fred is increased from 0.1 to 1
(with fixed fiducial C1). This result is somewhat surprising,
as we might expect that adding more “contaminant” to the
lensing signal in the form of intrinsic alignments would
loosen cosmological constraints. Intrinsic alignments are
sensitive to cosmological parameters in their own right
though, and so it is entirely plausible that an increase in
their amplitude would render the lensing signal more
sensitive to spatial curvature—essentially, the IA contri-
bution contains extra information about ΩK.
f. Supersample modes and local environment: Density

fluctuations on scales larger than the survey size couple to
small-scale modes, causing shifts in observable quantities
that are degenerate with a change in background cosmo-
logical parameters like ΩK. Supersample modes are a
significant source of sample variance in weak lensing
surveys, and can potentially cause a large degradation in
parameter constraints e.g. [80,81]. Their effects can again
be calibrated using simulations [38,82], and the parameter
degeneracies can be broken through measurements of the
power spectrum covariance [14].
Inhomogeneities local to both the source and observer

can also shift observables away from their background
values, as well as contributing to the sample variance [83].
A coherent local inhomogeneity, such as the potential well
of the local supercluster [84], can bias the inferred distance-
redshift relation, again leading to a shift in the observed
ΩK. This can be corrected through sufficiently precise
modeling of local structures, or high-precision CMB
spectral distortion measurements [11].
g. Higher-order perturbations: At the precision level

being considered in this paper, higher-order corrections to
perturbative quantities are not necessarily negligible. For
example, at z ¼ 1, second-order lensing effects contribute a
∼8 × 10−4 correction to the angular diameter distance [10],
leading to a shift in ΩK significantly larger than the target
uncertainty if left uncorrected. The form of the higher-order
perturbations depends on the observable in question, but can
be calculated exactly at a given order for a given set of
background cosmological parameters [85–87]. A number of
novel physical effects also arise at higher order and areworthy
of further study in their own right [87]; high-precision
curvature observationswill necessarilymeasure someof them.
h. CMB systematics: Systematic effects in space-based

CMB experiments like Planck are mostly well understood,

at least in temperature maps [88]. However, there remain
some systematics affecting the CMB lensing reconstruction
and polarization data that are not fully understood [89].
Additionally, the data analysis challenges for forthcoming
ground-based experiments are uncertain. Coherent fluctua-
tions of the atmosphere may prove difficult to model, and
could affect the sensitivity and CMB lensing estimation
performance of experiments like Advanced ACT, espe-
cially on large scales. Polarized foregrounds are also
proving harder to clean than initially expected [90]. The
most likely impact onΩK constraints is to increase the error
bars by degrading their sensitivity.
i. Photometric redshifts: We have assumed that the

photometric redshift scatter σz is perfectly known for each
survey, and have fixed the photometric redshift bias to zero.
In principle, an error could be introduced into the weak
lensing spatial curvature constraints by uncertainty in either
of these parameters. Work is ongoing to adequately
calibrate photometric redshift measurements for current
and future surveys (see, for example, [91,92]).

IV. DISCUSSION AND CONCLUSIONS

We have shown that forthcoming surveys—even the
combination of Stage IV CMBþ BAOþ weak lensing
experiments—are likely to place constraints on the spatial
curvature of ∼10−3 (95% C.L.) at best. This is an order of
magnitude worse than the “ultimate” precision on ΩK
required to put constraints on eternal inflation and to detect
several large-scale structure effects which induce an ap-
parent spatial curvature.
This would at first glance seem to be at odds with some

predictions in the literature, which have reported that
constraints at the ∼few × 10−4 level may be achievable
even with single experiments, or when combined with
Planck CMB measurements (see, for example, [9,30]). Our
approach has differed in that we have performed consistent
and conservative forecasts for a selection of real (current or
planned) surveys for three observables simultaneously—
BAO, CMB, and weak lensing—each of which is expected
to have precise control over systematic effects once the
observations have fully matured. This is important, as even
small systematic shifts in the observations could cause a
spurious detection of curvature at the low level being
probed here.
We have also incorporated a set of cosmological and

nuisance parameters that cannot be neglected. As shown in
the final column of Table II, the ∼10−4 level is reachable by
both Stage III and Stage IV CMB experiments if all other
parameters are held fixed. This situation is unrealistic,
however. Even then, we have neglected to fold several other
effects into our forecasts, such as supersample variance and
corrections from higher-order perturbation theory (see
Sec. III B), which can be expected to contribute additional
uncertainty in ΩK.

SPATIAL CURVATURE ENDGAME: REACHING THE LIMIT … PHYSICAL REVIEW D 94, 023502 (2016)

023502-7



This does not mean that the “curvature floor” is
unreachable in principle. Other observational probes could
improve on the constraints we have presented here, either
directly, by measuring distances and the expansion rate
more precisely, or indirectly, by helping to break parameter
degeneracies. Experiments like Euclid and SKA2 may
produce tighter measurements of ΩK by using information
from redshift-space distortions and the broadband shape of
the galaxy power spectrum, while type Ia supernova
samples will greatly increase in size in the coming years.
Experiments targeting the epoch of reionization (e.g.
through 21 cm intensity mapping) will help to break the
τ degeneracy [64], while radio weak lensing studies will
improve our understanding of intrinsic alignments [93].
The systematic effects and modeling uncertainties affecting
these probes are, however, typically worse, or currently less
well understood, than for the three used here, which may
lead to concerns about the robustness of any 0.01%
constraint which depends on them.
This, really, is the big question in modern observational

cosmology: how well we can hope to understand the
myriad systematic and theoretical uncertainties that affect
various cosmological observables, as well as low-level

corrections (such second-order effects) that are simply
unobservable in current data. In other words, how accurate
can our cosmological inferences be, given their impressive
forthcoming precision?
Spatial curvature, with its relatively well-understood

physical causes and clear target precision level, represents
an “acid test” for this level of accuracy in cosmology.
Reaching the curvature floor, and agreeing on the inter-
pretation of whatever we see there, will be a definitive sign
of maturity for the field—whenever we get there.
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