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Giant pulsar frequency glitches as detected in the emblematic Vela pulsar have long been thought to be
the manifestation of a neutron superfluid permeating the inner crust of a neutron star. However, this
superfluid has been recently found to be entrained by the crust, and as a consequence it does not carry
enough angular momentum to explain giant glitches. The extent to which pulsar-timing observations can be
reconciled with the standard vortex-mediated glitch theory is studied considering the current uncertainties
on dense-matter properties. To this end, the crustal moment of inertia of glitching pulsars is calculated
employing a series of different unified dense-matter equations of state.
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I. INTRODUCTION

Although most pulsars are spinning with an extremely
stable frequency, some of them undergo abrupt changes. So
far, 472 such glitches have been detected in 165 pulsars [1].
One of the most emblematic glitching pulsars is Vela (PSR
B0833 − 45). Since its discovery in 1969, this pulsar has
exhibited regular glitches with giant jumps of the angular
velocity of order ΔΩ=Ω ∼ 10−6. These spin-ups have been
generally attributed to the sudden unpinning of neutron
superfluid vortices in the inner crust of the neutron star [2,3]
(see, e.g. Sec. 12.4 of Ref. [4] for a review). Although
different kinds of neutron superfluids are thought to exist in
neutron star cores, theywere found to be strongly coupled to
the crust due to mutual neutron-proton entrainment effects
[5]. Neutron superfluidity, which was actually predicted
before the discovery of pulsars [6], has found additional
support fromobservations of the initial cooling in transiently
accreting neutron stars [7,8], from the rapid cooling of the
neutron star in Cassiopeia A [9,10], and frommeasurements
of pulsar-braking indices [11,12] (for a recent review of
neutron star superfluidity, see, e.g. Ref. [13]).
The vortex-mediated glitch scenario has been recently

challenged [14–20] by the realization that despite the
absence of viscous drag the neutron superfluid is still
strongly coupled to the neutron star crust due to Bragg
scattering [21–24]. On the other hand, it has been argued
that the crustal superfluid may carry enough angular
momentum to explain Vela glitches invoking the lack of
knowledge of the dense-matter equation of state (EoS)
[25,26]. However, the EoSs employed in these analyses are

not thermodynamically consistent, and more importantly,
they are found to be incompatible with existing constraints
from laboratory experiments and astrophysical observa-
tions. In particular, the authors of Ref. [25] determined the
EoS of neutron stars using a relativistic mean-field model
for the core, and the model of Baym, Pethick and
Sutherland (BPS) for the outer crust [27]. The EoS of
the inner crust was obtained from a polytropic interpola-
tion. By fine-tuning the parameters of the relativistic mean-
field Lagrangian, they showed that the thickness of the
neutron star crust could be adjusted so as to be compatible
with observations of Vela pulsar glitches. Two parametri-
zations consistent with the existence of massive neutron
stars such as PSR J0348þ 0432 [28] were thus found:
NL3max and TFcmax. On the other hand, as pointed out by
the authors of Ref. [25], these parametrizations predict
neutron star radii (R≳ 14 km for neutron stars with a mass
M ¼ 1.4 M⊙ where M⊙ is the mass of the Sun) that are
significantly larger than those inferred in Refs. [29–31]
from the analysis of X-ray bursters and quiescent low mass
X-ray binaries. Although large neutron star radii are not
totally excluded by astrophysical observations (see, e.g.
Ref. [32]; but see also the recent discussion in Ref. [33]),
they are incompatible with experimental data and many-
body calculations [34,35]. In addition, the symmetric
nuclear-matter incompressibility coefficient at saturation
predicted by NL3max, Kv ¼ 271.54 MeV, lies outside the
range of values inferred from isoscalar giant monopole
resonances in finite nuclei (see, e.g. Ref. [36]). As a matter
of fact, the analysis of the matter flow and kaon production
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in heavy-ion collision experiments [37,38] showed that the
symmetric nuclear matter EoS predicted by NL3 (which is
identical to that obtained with NL3max for the reasons
discussed in Ref. [25]) is too stiff at any baryon number
densities up to 4.5n0, where n0 ≃ 0.16 fm−3 is the density
of symmetric nuclear matter at saturation. As for the
parametrization TFcmax, the predicted value for the sym-
metry energy coefficient at saturation J ¼ 38.3 MeV lies
well beyond the range of values obtained from various
experimental and theoretical constraints [39,40]. Among
the models considered in Ref. [25], TFcmax yields the
highest value for the slope of the symmetry energy at
saturation L ¼ 74.0 MeV. Since the crust-core boundary is
generally correlated with L [41], the TFcmax parametriza-
tion thus leads to the thickest neutron star crusts. In
Ref. [26], the uncertainties in the neutron star properties
were estimated from Monte Carlo simulations considering
different parametrizations of the EoS. In particular, either a
piecewise polytropic EoS or a four line segment EoS was
employed for the inner core. The EoS of the outer core was
taken from quantum Monte Carlo calculations or chiral
effective field theory calculations. Finally, a compressible
liquid drop model was applied to determine the EoS of the
crust. According to this study, the standard scenario of Vela
pulsar glitches still remains viable considering the uncer-
tainties in the dense-matter EoS. On the other hand, this
study also shows that the corresponding EoSs are incom-
patible with existing neutron star mass and radius mea-
surements from X-ray bursters and quiescent low mass
X-ray binaries, as also found in Ref. [25].
In this paper, the extent to which giant pulsar glitches can

be explained by the superfluid in neutron star crusts is more
closely examined given current uncertainties on dense-
matter properties. To this end, we have employed a set of
different unified EoSs. Treating all regions of a neutron star
within the same nuclear model ensures that the resulting
EoSs are thermodynamically consistent. This avoids the
occurrence of spurious instabilities in neutron star dynami-
cal simulations. Moreover, this guarantees an accurate
description of the transitions between the outer and inner
parts of the crust, as well as the crust-core boundary. This is
of utmost importance for the present study since the ad hoc
matching of different EoSs for the crust and the core has
been shown to induce large errors on the crust thickness
[42]. The EoSs considered here are based on the nuclear
energy-density functional (EDF) theory using the accu-
rately calibrated Brussels-Montreal EDFs BSk14 [43],
BSk20-21 [44] and BSk22, BSk24, BSk25 and BSk26
[45]. For comparison, we have also adopted two other
unified EoSs: SLy [46] and BCPM [47]. The constraint on
the global structure of a neutron star inferred from giant
pulsar glitches will be briefly reviewed in Sec. II. After
presenting our models of rotating neutron stars in Sec. III,
and the unified EoSs in Sec. IV, results will be discussed
in Sec. V.

II. GLITCH CONSTRAINT ON THE INERTIA
OF THE CRUSTAL SUPERFLUID

Giant pulsar glitches as observed in Vela are generally
thought to arise from sudden transfers of angular momen-
tum between the neutron superfluid permeating the neutron
star crust and the rest of the star. Taking into account
entrainment effects arising from Bragg scattering of
unbound neutrons by neutron-proton clusters, the angular
momentum J s of the superfluid depends on both the
angular velocity Ωs of the superfluid and on the observed
angular velocity Ω of the rest of the star [14]:

J s ¼ IssΩs þ IscΩ; ð1Þ

where Iss and Isc are partial moments of inertia. Likewise,
the angular momentum of the rest of the star can be
expressed as [14]

J c ¼ IscΩs þ IccΩ: ð2Þ

The total angular momentum of the star can thus be
written as

J ¼ J s þ J c ¼ IsΩs þ IcΩ; ð3Þ

where Is ¼ Iss þ Isc and Ic ¼ Isc þ Icc are the moments of
inertia of the superfluid and of the rest of the star
respectively.
Regardless of the actual glitch triggering mechanism,

this two-component model leads to the following constraint
[14]

ðIsÞ2
IIss

≥ G; ð4Þ

where I ¼ Is þ Ic is the total moment of inertia of the star.
The coefficient G can be obtained from pulsar-timing data
and is defined as

G≡ 2τcAg; ð5Þ

where τc ¼ Ω=ð2j _ΩjÞ is the pulsar characteristic age and
the glitch activity parameter Ag is given by the sum over
glitches occurring during a time t

Ag ¼
1

t

X
i

ΔΩi

Ω
: ð6Þ

Equation (4) can be alternatively expressed as [14]

Is
I
≥ G

m̄⋆
n

mn
; ð7Þ

where mn is the neutron mass, while m̄⋆
n is a suitably

weighted mean of the local effective neutron mass m⋆
n
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introduced in Refs. [21,22]. Comparing Eqs. (4) and (7)
thus yields

m̄⋆
n

mn
≡ Iss

Is
: ð8Þ

This mean effective neutron mass depends mainly on the
properties of the neutron star crust, as shown below. Values
of the coefficient G for different glitching pulsars can
be found, e.g., in Ref. [48]. For Vela, this coefficient is
G ¼ 1.62� 0.03%, thus leading to the following con-
straint:

Icrust
I

����
Vela

≥
Is
I

����
Vela

≥
m̄⋆

n

mn
ð1.62� 0.03Þ × 10−2; ð9Þ

where Icrust denotes the moment of inertia of the crust.
Other glitching pulsars such as PSR B1800 − 21 and PSR
B1930þ 22 exhibit higher values for the coefficient G
[15,48]. On the other hand, the estimated errors are also
larger. For this reason, these pulsars will not be considered
in this study.
The fractional moment of inertia of the crust and that of

the crustal superfluid depend on the global structure of the
neutron star, which we have computed by solving numeri-
cally Einstein’s equations of general relativity, as described
in the following section.

III. NEUTRON STAR MODEL

The equations describing the global structure of a
rotating neutron star can be obtained from Einstein’s
equation and the conservation of the stress energy-density
tensor Tab:

Gab ¼ 8πTab; ∇aTab ¼ 0; ð10Þ

where a and b denote space-time indices, and Gab is the
Einstein’s tensor. Note that throughout this paper we adopt
units such that G ¼ c ¼ 1, where G is the gravitational
constant and c is the speed of light. In the following, we
shall consider stationary and axially symmetric rigidly
rotating stellar configurations.
As in previous studies [15–20,25,26], we shall compute

the moments of inertia assuming that the superfluid is
corotating with the rest of star, i.e. neglecting the small
difference jΩs −Ωj ≪ Ω. The stress energy-density tensor
will be taken to be that of a perfect fluid:

Tab ¼ ðρþ PÞuaub þ Pgab; ð11Þ

where ρ is the mass-energy density, P the pressure, g the
metric and u the 4-velocity of the fluid normalized as
uaua ¼ −1. We shall also consider the limit of slow
rotation. The ensuing form of Einstein’s equations, and
the expressions for the partial moments of inertia are given

in Sec. III A. The validity of this approximation will be
assessed by extending our neutron star models to rapid
rotations. The formalism is briefly discussed in Sec. III B.

A. Slow-rotation approximation

The metric describing a neutron star rotating at a rate
much smaller than the mass-shedding limit is approxi-
mately given by (see, e.g. Ref. [49])

ds2 ¼ −bðrÞdt2 þ
�
1 −

2mðrÞ
r

�
−1
dr2

þ r2½dθ2 þ sin2θðdφ − ϵðΩ − ω1ðrÞÞdtÞ2�; ð12Þ

where bðrÞ, mðrÞ, and ω1ðrÞ are functions of the radial
coordinate r, θ and φ are the polar and azimuthal angles
respectively, Ω is the neutron star angular velocity as
measured by a distant observer, and ϵ is a small dimension-
less parameter.
We expand Einstein’s equations in powers of ϵ, follow-

ing the procedure introduced by Hartle [50]:

m0 ¼ 4πr2ρ;

b0

b
¼ 2

�
mþ 4πr3P
rðr − 2mÞ

�
;

P0 ¼ −
mþ 4πr3P
rðr − 2mÞ ðρþ PÞ;

ω00
1 ¼

16πr2ðρþ PÞω1 þ ð4ð2m − rÞ þ 4πr3ðρþ PÞÞω0
1

rðr − 2mÞ ;

ð13Þ
where a prime denotes the derivative with respect to r. This
system of equations is solved with the following boundary
conditions

mð0Þ ¼ 0; Pð0Þ ¼ P0;

bð0Þ ¼ b0; ω1ð0Þ ¼ 1;

ω0
1ð0Þ ¼ 0; ð14Þ

where P0 is the central pressure of the star and the
conditions on ω1 follow from elementary flatness and
the symmetry. Note that the (linear) equation of ω1 is
invariant under rescalings ω1 → λω1, allowing us to set
ω1ð0Þ ¼ 1 without loss of generality. The value of b0 is
obtained by the requirement that the function b matches
continuously the exterior spacetime described by the
Schwarzschild solution

bðrÞ ¼ 1 −
2M
r

; mðrÞ ¼ M; ð15Þ

whereM is the gravitational mass of the star, defined by the
function mðrÞ evaluated at the radius R for which the
pressure vanishes:
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PðRÞ ¼ 0; M ¼ mðRÞ: ð16Þ

In order to complete the model, an EoS must be specified.
The EoSs adopted in this work will be discussed in Sec. IV.
The total moment of inertia I of the slowly rotating star

can be obtained by matching the function ω1 to the exterior
spacetime, described by

ω1 ¼ Ω
�
1 −

2I
r3

�
: ð17Þ

Note that the moment of inertia is independent of the
boundary condition on ω1, see the remark below (14). For
the same argument, it is independent of the value of Ω.
It can be shown using Einstein’s field equations that the

total moment of inertia can be equivalently expressed as
(see, e.g., Ref. [51])

I ¼ IðRÞ; ð18Þ

with

IðrÞ ¼ 8π

3

Z
r

0

x4nðxÞμðxÞω1ðxÞ
Ω

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðxÞ

�
1 −

2mðxÞ
x

�s
dx; ð19Þ

where n is the average baryon number density, and μ the
corresponding baryon chemical potential. The fractional
moment of inertia of the crust is given by

Icrust
I

¼ 1 −
IðrcoreÞ

I
; ð20Þ

and rcore denotes the radial coordinate at the crust-core
boundary where the pressure is Pcore (as determined by
dense-matter models):

PðrcoreÞ ¼ Pcore: ð21Þ

The partial and total moments of inertia of the crustal
superfluid are given by [14]

Is ¼
8π

3

Z
rdrip

rcore

x4nfnðxÞmn
ω1ðxÞ
Ω

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðxÞ

�
1 −

2mðxÞ
x

�s
dx; ð22Þ

Iss ¼
8π

3

Z
rdrip

rcore

x4nfnðxÞm⋆
nðxÞ

ω1ðxÞ
Ω

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðxÞ

�
1 −

2mðxÞ
x

�s
dx; ð23Þ

where rdrip is the radial coordinate at the neutron-drip
transition, nfn the number density of free neutrons, and m⋆

n
their effective mass, as defined in Ref. [24]. In the slow-
rotation approximation, Icrust, Iss and Is are independent
of the angular frequency. This is, however, not true
anymore in the case of rapid rotation and a quadratic
increase is expected for the next order in the expansion
parameter ϵ.

B. Rapid rotations

If the neutron star is rotating rapidly enough, higher-
order corrections to the slow-rotation approximation could
in principle increase the fractional moment of inertia of the
crust. To assess the importance of these corrections, we
performed a numerical analysis using a version of the RNS

code [52,53], which was modified by J. Steinhoff and
applied in Ref. [54]. In the RNS code, the spacetime metric
is expressed in the form

ds2 ¼ −eγþβdt2 þ e2αðdr2 þ r2dθ2Þ
þ eγ−βr2sin2θðdφ − ωdtÞ2; ð24Þ

where γ, β, α and ω are functions solely of θ and r.
The moment of inertia of the star is given by (see, e.g.,

Ref. [55])

I ¼ J
Ω
: ð25Þ

The angular momentum J can be determined either
from the asymptotic behavior of the metric function ω
or from the Komar integral [56]. The approach based on the
Komar integral can be seen as a source integral formalism
for the first multipole moments, as described in Ref. [57].
It can be easily employed to assign to any region of the
neutron star the associated angular momentum. For exam-
ple, the angular momentum contained in the crust is
determined by [58]

J crust ¼ 2π

Z
V
nμeγ−βþ2α v

1 − v2
r3sin2θdθdr: ð26Þ

V is the coordinate volume of the crust and v is the proper
velocity of a fluid element with respect to a local zero
angular momentum observer, given by

v ¼ e−βr sin θðΩ − ωÞ: ð27Þ

Using Eq. (25), the fractional moment of inertia of the
crust is thus finally given by

Icrust
I

¼ J crust

J
: ð28Þ
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IV. UNIFIED EQUATIONS OF STATE
OF DENSE MATTER

The interior of a neutron star can be decomposed into
several qualitatively distinct regions, which can be classi-
fied as follows with increasing depth: (i) A very thin
atmospheric plasma layer of light elements (mainly hydro-
gen and helium though heavier elements like carbon may
also be present) possibly surrounds a Coulomb liquid of
electrons and ions, (ii) the outer crust consists of free
electrons and pressure-ionized atoms arranged in a body-
centered cubic lattice (see, e.g., Refs. [59–61]), (iii) the
appearance of free neutrons at densities above ρdrip ≈ 4 ×
1011 g cm−3 (see, e.g. Ref. [62] for a detailed discussion)
marks the transition to the inner crust, which extends up to
about ρcore ≈ 1014 g cm−3 (see, e.g. Ref. [4]), (iv) the outer
core made of nucleons and leptons up to densities 2 − 3ρ0
(with ρ0 ≃ 2.6 × 1014 g cm−3 the density of symmetric
nuclear matter at saturation), and (v) the inner core, whose
composition remains highly uncertain. For simplicity, we
assume that the inner core consists of nucleons and leptons
only. As we shall see in Sec. V, the density at the center of
the Vela pulsar, as inferred from the glitch data, actually lies
below ∼2 − 3ρ0.
In the following, we shall adopt the cold-catalyzed

matter hypothesis according to which matter in neutron
star interiors are in full thermodynamic equilibrium at zero
temperature. In this case, the surface layers are solid and
consist of 56Fe up to densities of about 8 × 106 g cm−3. For
this region, we employ the EoSs from Table 5 of Ref. [63]:
the one referred to as “QEOS” for densities below 1.4 ×
103 g cm−3 (this EoS was found to be in good agreement
with experiments [64]), and the one referred to as “TFD” up
to about 4.3 × 105 g cm−3. For the denser regions of the
star, the composition and the EoS depends on the nuclear
model (see, e.g. Ref. [40] for a recent review).
Although the different states of dense matter encountered

in this interval require different types of treatments (as
described below, see also Ref. [65]), these calculations are
performed using the same EDF. The transitions are thus
described self-consistently. The composition and the EoS
of the outer crust at densities above 4.3 × 105 g cm−3 were
calculated in the framework of the BPS model [27], making
use of the latest experimental atomic mass data comple-
mented with the Hartree-Fock-Bogoliubov (HFB) predic-
tions for masses that have not yet been measured (see
Ref. [60] for details). For the inner crust, the 4th-order
extended Thomas-Fermi method was employed. Proton
shell corrections were included via the Strutinsky integral
theorem (neutron shell effects are negligibly small except
possibly near the neutron-drip point). This so-called ETFSI
method (extended Thomas-Fermiþ Strutinsky integral) is
a computationally high-speed approximation to the fully
self-consistent Hartree-Fock equations [66]. Proton pairing
was included as in Ref. [67]. In order to further optimize the

computations, the nucleon density distributions were para-
metrized, and we adopted the spherical Wigner-Seitz
approximation to calculate the Coulomb energy, since
nuclear clusters are essentially spherical, except possibly
near the crust-core interface where so-called nuclear
“pastas” might exist [4]. Even though two different codes
were used to calculate the EoS in the outer crust and in the
inner crust, the pressure (energy per nucleon) at the
boundary was found to differ by less than 3% (5%) thus
ensuring a thermodynamically consistent description of the
EoS [66]. Deeper in the star, the core is described by the
EoS of homogeneous beta-equilibrated matter made of
nucleons and leptons (including muons at high density).
The crust-core transition can be determined by the insta-
bility of such homogeneous matter against density fluctua-
tions. The transition density and pressure were calculated
by the method described in Ref. [68], which was shown to
be extremely accurate [66].
In this way, unified EoSs for neutron stars were

calculated using the recent series of Brussels-Montreal
(BSk) EDFs: BSk22, BSk24, BSk25 and BSk26 [45].
Some of these EoSs were presented in Ref. [69]. These
EDFs were constructed from generalized Skyrme effective
interactions (see, e.g. Ref. [70] for a brief overview). The
parameters of these interactions were determined primarily
by fitting essentially all measured atomic masses, which
were calculated using the HFB method. In particular, the
root-mean square deviation between the measured atomic
masses with neutron number N ≥ 8 and proton Z ≥ 8 from
the 2012 Atomic Mass Evaluation (AME) [71] and the
theoretical HFB masses amounts to about 0.5 MeV. These
different EDFs were constructed by imposing different
values for the symmetry energy coefficient from J ¼
29 MeV to J ¼ 32 MeV (optimum values of J for the
mass fit lying in the range 30–31 MeV [45]), and by fitting
different realistic neutron-matter EoSs spanning different
degrees of stiffness corresponding to current predictions of
various microscopic calculations, as shown in Fig. 1. Are
plotted for comparison: the variational calculations from
Friedman and Pandharipande [72] and those from Akmal,
Pandharipande and Ravenhall [73], diagrammatic calcu-
lations [74], and constraints inferred from quantum
Monte Carlo calculations [75]. Moreover, these EDFs were
fitted to realistic 1S0 pairing gaps in neutron matter and in
symmetric nuclear matter. A number of additional con-
straints were imposed to these EDFs: (i) the incompress-
ibility Kv of symmetric nuclear matter at saturation was
required to fall in the empirical range 240� 10 MeV [76],
(ii) the isoscalar effective mass in symmetric nuclear matter
at saturation was fixed to the realistic value of 0.8 (see
Ref. [44] for a summary of the experimental and theoretical
evidence), (iii) the parameters of the interactions were
adjusted so as to limit the occurrence of spurious spin and
spin-isospin instabilities, and in particular to prevent a
ferromagnetic collapse of neutron stars. Although the
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Brussels-Montreal EDFs were not directly fitted to realistic
EoSs of symmetric nuclear matter, they are compatible with
the constraints inferred from the analysis of heavy-ion
collision experiments [37,38]. Besides, the predicted values
for the symmetry energy J and its slope L at saturation are
consistent with those inferred from various experimental
and theoretical constraints [39,40]. Finally, the isovector
effective mass was found to be smaller than the isoscalar
effective mass at the saturation density. This result is
consistent with measurements of isovector giant resonances
[77], and microscopic calculations [78,79]. These features
make the Brussels-Montreal EDFs well-suited for a unified
treatment of neutron stars. For comparison, we have also
considered the older series BSk19-BSk21 of the Brussels-
Montreal EDFs [44] for which unified EoSs have been
calculated [60,66,67,80] and tested against astrophysical
observations [65,81]. These EDFs were fitted to all
experimental atomic masses with Z, N ≥ 8 from the
2003 AME [82], and differ in the degree of stiffness of
the neutron-matter EoS (the EoSs based on BSk20 and
BSk21 are undistinguishable from those obtained with
BSk26 and BSk24 respectively). The EoS based on
the BSk19 EDF fails to explain the existence of massive
neutron stars such as PSR J0348þ 0432, and was therefore
discarded [83].
For completeness, we have also considered two other

unified EoSs based on the EDF theory: SLy [46] and
BCPM [47]. The SLy EoS does not actually provide a fully
consistent description of neutron stars: indeed, the EoS of
the outer crust was not calculated using the same EDF, but
was taken from Ref. [84]. The reason may lie in the fact that
HFB calculations using the SLy4 [85,86] EDF that under-
lies the SLy EoS, yields a rather poor fit to experimental

nuclear masses, with a root-mean-square deviation (con-
sidering only even-even nuclei) of about 5.1 MeV [87]. The
EoS of the inner crust was calculated using the compress-
ible liquid drop model. In this approximation, neutron-
proton clusters are assumed to have sharp surfaces.
Moreover, nucleons in clusters and unbound nucleons
are treated differently and shell effects are ignored. The
EDF underlying the BCPM EoS was constructed by
performing an educated polynomial fit of microscopic
calculations in infinite homogeneous nuclear matter using
realistic nucleon-nucleon potentials. The EDF was supple-
mented with additional phenomenological surface and
spin-orbit terms that were fitted to properties of finite
nuclei. The BPS model was employed to compute the EoS
of the outer crust making use of experimental masses as
well as theoretical masses obtained from HFB calculations.
The EoS of the inner crust was determined using the simple
Thomas-Fermi method, without higher-order corrections;
neither pairing nor shell corrections were included. On the
other hand, contrary to the Brussels-Montreal EoSs,
nucleon density distributions were not parametrized, but
were calculated self-consistently allowing for nuclear
pastas.
The evaluation of the partial moment of inertia Iss

requires the knowledge of the local neutron effective mass
m⋆

n in all regions of the inner crust of a neutron star.
However, m⋆

n has not been calculated for the unified EoSs
considered here. As a matter of fact, systematic calculations
of m⋆

n are computationally extremely costly, and for this
reason were only performed in Ref. [24] based on the
crustal composition taken from Ref. [88] using the
Brussels-Montreal EDF BSk14 [43]. Therefore, we have
computed the ratios Iss=Icrust and Is=Icrust using the EoS
based on the EDF BSk14, and kept the resulting values for
all the other unified EoSs. To this end, we have constructed
a unified EoS with BSk14. The EoS of the outer crust was
determined as in Ref. [60], and that of the core was
calculated considering homogeneous matter in beta equi-
librium. Like all the other Brussels-Montreal EDFs, BSk14
was fitted to all experimental atomic masses with Z;N ≥ 8
(masses from the 2003 AME [82] were fitted with a root-
mean-square deviation of 0.73 MeV), but was constrained
to reproduce a softer neutron-matter EoS than those
considered in the more recent series of Brussels-
Montreal EDFs, as shown in Fig. 1. The crust-core
transition density and pressure are indicated in Table I
for all the EoSs considered in this study.
In Table II we list the incompressibility of symmetric

nuclear matter at saturation Kv, the symmetry energy
coefficient J, and slope of the symmetry energy L as
predicted by the Brussels-Montreal EDFs underlying the
unified EoSs employed in this work. For comparison, we
show the same nuclear parameters for the EDFs SLy4 and
BCPM. Since the values of Kv, J, and L for the Brussels-
Montreal EDFs vary within the range inferred from various

FIG. 1. Energy per particle in pure neutron matter, as obtained
using the Brussels-Montreal energy-density functionals BSk14
[43], and BSk22, BSk24, BSk25 and BSk26 [45]. Also shown are
the microscopic calculations FP [72], APR [73], LS2 and LS3
[74]. The shaded area represents the constraints obtained in
Ref. [75] from quantum Monte Carlo calculations.
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experimental constraints [39,40,76], employing the unified
EoSs based on these EDFs allows us to account for the
current uncertainties in the dense-matter EoS.

V. RESULTS AND DISCUSSION

For each EoS described in Sec. IV, we have computed the
set of stationarily rotating neutron star configurations by
solving numerically Eqs. (13). In the slow-rotation approxi-
mation, the structure of the star is the same as that of a static
star. The corresponding masses and radii are shown in
Figs. 2 and 3. The mass-radius curves obtained with the
EoSs based on BSk20 and BSk21 are undistinguishable
from those obtained with the EoSs based on BSk26 and
BSk24 respectively. The results agree with those previously
obtained in Refs. [65,81]. The EoS based on BSk14
predicts a maximum mass significantly lower than that
obtained with the other Brussels-Montreal EDFs, and
below the measured mass 2.01� 0.04 M⊙ of PSR J0348þ
0432 [28]. This stems from the softer neutron-matter EoS to
which this EDF was fitted, namely that calculated by
Friedman and Pandharipande using realistic two- and
three-body forces [72]. Nevertheless, this EoS remains

compatible with more recent ab initio calculations at
densities of relevance for the crust and the outer core of
neutron stars [89]. For this reason, we believe that BSk14 is
still suitable for calculating the fractional moments of
inertia Iss=Icrust and Is=Icrust. Indeed, these ratios depend
mainly on the properties of the neutron star crust. They
were previously estimated within the thin-crust approxi-
mation as Iss ≈ 4.6Icrust and Is ≈ 0.89Icrust [16]. The asso-
ciated mean effective neutron mass is about m̄⋆

n ≈ 5.1mn
(values ∼14−16% lower were found in Ref. [15], but
calculations were not performed using the EoS based on
BSk14). We have recalculated these quantities using
Eqs. (20), (22) and (23) by solving numerically
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FIG. 2. Masses and radii of nonrotating neutron stars, as
obtained for different unified Brussels-Montreal equations of
state based on the following energy-density functionals: BSk14
[43,88], BSk22, BSk24, BSk25 and BSk26 [45,69].
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FIG. 3. Same as Fig. 2 for other unified equations of state: SLy
[46], and BCPM [47].

TABLE I. Average baryon number density ncore and pressure
Pcore at the crust-core interface, as predicted by different nuclear
energy density functionals. See text for details.

ncoreðfm−3Þ PcoreðMeV fm−3Þ
BSk14 0.0810 0.381
BSk20 0.0854 0.365
BSk21 0.0809 0.269
BSk22 0.0716 0.291
BSk24 0.0808 0.268
BSk25 0.0856 0.211
BSk26 0.0849 0.363
SLy4 0.0798 0.361
BCPM 0.0825 0.432

TABLE II. Nuclear matter parameters for the functionals
underlying the unified equations of state used in the paper:
incompressibility of symmetric matter at saturationKv, symmetry
energy coefficient J, and slope of the symmetry energy L. See
text for details.

Kv (MeV) J (MeV) L (MeV)

BSk14 239.3 30.0 43.9
BSk20 241.4 30.0 37.4
BSk21 245.8 30.0 46.6
BSk22 245.9 32.0 68.5
BSk24 245.5 30.0 46.4
BSk25 236.0 29.0 36.9
BSk26 240.8 30.0 37.5
SLy4 229.9 32.0 46.0
BCPM 213.75 31.92 53.0
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Einstein’s equations, as described in Sec. III. As shown in
Fig. 4, Iss=Icrust and Is=Icrust are almost independent of the
global neutron star structure. While the ratio Is=Icrust we
find is in very good agreement with the value obtained
within the thin-crust approximation, the ratio Iss=Icrust is
about 20% higher thus leading to a more stringent con-
straint. The origin of this discrepancy most presumably lies
in the large variations ofm⋆

n in different crustal layers. In all
these calculation, vortex pinning is supposed to be effective
in all regions of the inner crust (in reality, the inertia of the
neutron superfluid could be lower).
We have calculated numerically the fractional moment of

inertia of the crust of a neutron star with different masses
using the unified EoSs presented in Sec. IV. The results
shown in Figs. 5 and 6 can be easily analyzed after
remarking that for a given mass M, Icrust=I is generally
an increasing function of the radius R and of the crust-core
transition pressure Pcore (see, e.g., Ref. [51]). In turn, the
uncertainties in Pcore arise from the lack of knowledge of
the symmetry energy and its density dependence (see, e.g.,
Refs. [59,90–98,98–100]). The dependence of Icrust=I on R
and Pcore is best seen by comparing the results obtained for
the EoSs based on the EDFs BSk22, BSk24, and BSk25.
The EDFs underlying these unified EoSs were fitted to the
same realistic neutron-matter EoS, but with different values
for the symmetry energy coefficient, from J ¼ 32 MeV for
BSk22 to J ¼ 29 MeV for BSk25, while J ¼ 30 MeV for
BSk24. The highest values for R and Pcore are obtained
for the EoS based on BSk22, the lowest for the EoS based
on BSk25, the EoS based on BSk24 yielding intermediate
values. As expected, the crustal moment of inertia follows
the same hierarchy, with the largest values obtained with
the EoS based on BSk22. The BSk26 EDF yields the same
symmetry energy coefficient J ¼ 30 MeV as BSk24, but

was fitted to a neutron-matter EoS that is softer at high
densities. With a lower pressure to resist the gravitational
pull, the unified EoS based on this EDF thus predicts
smaller neutron stars. On the other hand, the EoS based on
BSk26 predicts a higher crust-core transition pressure than
the EoS based on BSk24. All in all, the crustal moment of
inertia obtained with the EoS based on BSk26 is not much
different from that obtained with the EoS based on BSk24,
as shown in Fig. 5. We have also found that the EoS based
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FIG. 4. Fractional moments of inertia of a neutron star as a
function of the neutron star mass, as obtained using the unified
equation of state based on the energy-density functional BSk14
[43]. See text for details.

FIG. 5. Fractional moment of inertia of the crust of a neutron
star, as obtained for unified Brussels-Montreal equations of state
based on the following energy-density functionals: BSk14 [43],
BSk22, BSk24, BSk25 and BSk26 [45,69]. The light grey region
below the dark thick line is excluded by pulsar timing-data if
giant glitches in Vela (PSR B0833 − 45) originate from neutron
star crusts only. See text for details.

FIG. 6. Same as Fig. 5 for other unified equations of state: SLy
[46], BCPM [47]. The equations of state based on the energy-
density functionals BSk24 and BSk26 [45,69] are plotted for
comparison.
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on BSk20 (BSk21) yields essentially the same crustal
moment of inertia as the EoS based on BSk26 (BSk24).
The corresponding curves are indistinguishable in Fig. 5.
The results obtained with the SLy and BCPM EoSs are
close to those obtained with the Brussels-Montreal EoSs, as
shown in Fig. 6.
Assuming that only the neutron superfluid in the crust of

a neutron star is responsible for the observed giant glitches
leads to the constraint shown in Figs. 5 and 6. The inferred
mass of the Vela pulsar is at most M ≃ 0.66 M⊙. Such a
low mass challenges the current scenarios of neutron star
formation (see, e.g., Sec. 3. 3 in Ref. [101] for a short
review). Although neutron stars with a mass M ∼M⊙
might be produced via fragmentation, they are not expected
to be seen as ordinary radio pulsars (see, e.g. Ref. [102]).
Besides, the comparison of neutron star cooling simulations
with the observational estimates of the age and thermal
luminosity of the Vela pulsar suggests that this neutron star
is rather massive (see, e.g., Ref. [103]). In other words, the
glitch puzzle still remains considering the current uncer-
tainties in the dense-matter EoS. The reason lies in the fact
that the average baryon number density inferred at the
center of Vela is rather low, at most 0.23–0.33 fm−3

depending on the EoS. At such densities, the neutron star
core is generally expected to contain nucleons and leptons
only (see, e.g. Ref. [104] and references therein), and the
dense-matter EoS is fairly well constrained by laboratory
experiments, especially heavy-ion collisions [37,38].
In this analysis, we considered that the fractional

moments of inertia Is=Icrust and Iss=Icrust are the same
for all EoSs, as in previous studies [15–20,25,26].
Although the threshold density for the onset of the
neutron-drip transition is model-dependent, the variations
are quite small (see, e.g., Refs. [62,105]). The ensuing
changes in Is are expected to be negligible since Is is
mainly determined by the inertia of the denser regions of
the inner crust. Ignoring the model dependence of Is=Icrust
and Iss=Icrust seems also to be a reasonable approximation
in view of the published results for the effective neutron
mass in the inner crust of a neutron star [16,21,23]. For
consistency and completeness, we have computed the
global structure of rotating neutron stars using the unified
EoS constructed from BSk14. As shown in Fig. 5, BSk14
yields similar results for the ratio Icrust=I as those obtained
with the more recent Brussels-Montreal EDF BSk26, as
well as with the SLy EoS.
Since the assumption of slow rotation may underestimate

Icrust=I, we have assessed the validity of this approximation
for the EoS based on BSk24 using the RNS code. We have
calculated different models of neutron stars varying the
central density and the ratio of the polar to equatorial
coordinate radius re. For neutron stars with a spin param-
eter J =M2 below 0.15 we have reduced the polynomial
order of the expansion in the RNS code to 3, since higher
orders contributed only numerical noise as in Ref. [54]. We

chose a grid of 401 × 801 in the compactified coordinate
plane ½cos θ; r=ðrþ reÞ�. A further increase of the grid size
did not yield any improvements. As a consistency check of
the numerical method, we have calculated the total angular
momentum via the two ways described in Sec. II. The
results have been found to deviate by less than 1% for
neutron stars with a mass exceeding 0.5 M⊙, which is in
accordance with previous comparative studies [53,106].
Thus, an accuracy of approximately that order must be
accepted for local quantities like Icrust=I, too.
In Fig. 7, we exemplify the behavior of Icrust=I for four

different masses and varying frequency of the neutron star.
Indeed, this ratio increases with the spin rate of the pulsar.
Taking as an example the fastest spinning pulsar (PSR
J1748-2446ad) known to date with a rotation frequency
f ¼ Ω=ð2πÞ of about 716 Hz [107], the relative difference
between the slow-rotation approximation and the numerical
results is about 23% for a 2 M⊙ star and 36% for a 0.7 M⊙
star, as shown in Fig. 7. In contrast, the slow-rotation
approximation is very accurate for stars spinning as slowly
as Vela (f ¼ 11.195 Hz), for which the relative difference
to the results obtained with the RNS code is far below the
numerical noise limit of 1%. Nonetheless, the fits shown in
Fig. 7 include already terms from an expansion in f to the
fourth order. In fact, the highest order is only relevant, i.e.
above the numerical noise limit, for the 0.7 M⊙ stars (6%
contribution). The fits reproduce also the results of the slow
rotation approximation with an accuracy of 1%–2%, which
corroborates the expected accuracy regime.
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FIG. 7. Fractional moment of inertia of the crust of a neutron
star as a function of the neutron star’s rotation frequency
f ¼ Ω=ð2πÞ, as obtained using the unified equation of state
based on the energy-density functional BSk24 [45]. Results are
shown for four different neutron star masses: 0.7, 1, 1.4 and 2
solar masses, respectively (from top to bottom). The points
represent the actual numerical results and the curves are poly-
nomial fits up to the fourth order.

GIANT PULSAR GLITCHES AND THE INERTIA OF … PHYSICAL REVIEW D 94, 023008 (2016)

023008-9



VI. CONCLUSIONS

We have computed the global structure of rotating
neutron stars, both in full general relativity and in the
slow-rotation approximation. For this purpose, we have
employed a series of unified EoSs, treating consistently all
regions of a neutron star. The Brussels-Montreal unified
EoSs are all based on the very accurately calibrated EDFs
BSk22, BSk24, BSk25 and BSk26 [45,69] that differ in the
density dependence of the nuclear symmetry energy and in
the high-density stiffness of the neutron-matter EoS. For
comparison, we have also considered the unified EoS based
on BSk14 [88] (for which crustal entrainment was calcu-
lated in Ref. [24]), BSk20-21 [60,66,80], SLy [46] and
BCPM [47].
In all cases, we find that the neutron superfluid per-

meating the inner crust of a neutron star does not carry
enough angular momentum to explain the giant frequency
glitches observed in the Vela pulsar. The glitch puzzle is not
restricted to Vela, but concerns other glitching pulsars. On
the other hand, the statistical errors are much larger due to
the smaller number of observed glitches [15]. It is also
worth pointing out that the analyses of the 2007 glitch
detected in PSR J1119 − 6127, as well as of the 2010 glitch
in PSR 2334þ 6 lead to even larger fractional moments of
inertia of the crust than for Vela [108,109]. In particular, the
constraint Is=I ≥ 0.204 m̄⋆

n=mn inferred from the glitch
in PSR J1119 − 6127 cannot be fulfilled by the crustal
superfluid. Indeed, inserting Is ≃ 0.893Icrust and m̄⋆

n ≃
5.13mn [16] thus yields Icrust > I.
As in all previous studies [15–20,25,26], for all the

models we considered, we adopted the same values of the

neutron effective mass m⋆
n, namely those calculated in

Ref. [24] for BSk14. The unified EoS based on BSk14 is
therefore the only one that is fully consistent. The model
dependence of m⋆

n needs to be further investigated.
In our calculations, we assumed that the neutron liquid

permeating the inner crust is superfluid and that vortex
pinning is effective in all crustal regions. However, because
the temperature in glitching pulsars remains nonzero,
superfluidity may only occur in some parts of the crust
thus further reducing the angular momentum reservoir [48].
Our study suggests that the neutron superfluid in the core

of a neutron star plays a more important role than
previously thought. The pinning of neutron superfluid
vortices to magnetic flux tubes opens promising perspec-
tives for locating the origin of giant glitches [110].
This scenario could be independently tested by the search
for gravitational waves associated with glitch events
[111–113].
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