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Using the analytic modeling of the electromagnetic cascades compared with more precise numerical
simulations, we describe the physical properties of electromagnetic cascades developing in the universe on
cosmic microwave background and extragalactic background light radiations. A cascade is initiated by
very-high-energy photon or electron, and the remnant photons at large distance have two-component
energy spectrum, ∝ E−2 (∝ E−1.9 in numerical simulations) produced at the cascade multiplication stage
and ∝ E−3=2 from Inverse Compton electron cooling at low energies. The most noticeable property of the
cascade spectrum in analytic modeling is “strong universality,” which includes the standard energy
spectrum and the energy density of the cascade ωcas as its only numerical parameter. Using numerical
simulations of the cascade spectrum and comparing it with recent Fermi LAT spectrum, we obtained the
upper limit on ωcas stronger than in previous works. The new feature of the analysis is the “Emax rule.”We
investigate the dependence of ωcas on the distribution of sources, distinguishing two cases of universality:
the strong and weak ones.
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I. INTRODUCTION

A very-high-energy extragalactic electron or photon
colliding with low-energy background photons γt [cosmic
microwave background (CMB) and extragalactic back-
ground light (EBL)] produces electromagnetic cascade
due to reactions γ þ γt → e− þ eþ [pair production (PP)]
and eþ γt → γ0 þ e [inverse Compton (IC) scattering].
Part of the cascade energy can be taken away by synchro-
tron radiation if the magnetic field is strong enough. The
existence of such cascading was understood soon after
discovery of CMB radiation [1] and of the Greisen-
Zatsepin-Kuzmin cutoff1 [2]. Since that time, electromag-
netic (EM) cascading in extragalactic space has received
many various applications.
One of the earliest applications was a rigorous upper

limit on cosmogenic neutrino flux, which was proposed by
Berezinsky and Zatsepin in 1969 [3]. The upper limit on
this flux as was first obtained in Ref. [4], following from the
observation that production of neutrinos and initial cascad-
ing particles (e and γ) takes place from the decay of the
same particle, Δþ resonance, produced in pγcmb interac-
tion, and thus the energy density of produced neutrinos and
cascade particles are characterized by a ratio of 1=3. A
remarkable byproduct of this work was a good agreement
of the analytically calculated cascade spectrum with a

diffuse extragalactic gamma-ray spectrum as presented
finally by the EGRET Collaboration in 1998 [5] in the
range from 30 MeV to 130 GeV. The exponent of the
EGRET spectrum α ¼ 2.1� 0.03 agrees quite well with
that predicted in Ref. [4] as α ¼ 2.0. The diffuse gamma-
ray spectrum measured recently by Fermi-LAT [6,7]
showed much worse agreement with the predicted cascade
spectrum; in particular, the spectrum exponent is found to
be α ¼ 2.3. The allowed energy density of the cascade
radiation is found to be [8]

ωcas ¼ 5.8 × 10−7 eV=cm3; ð1Þ

and it puts the severe limit on allowed flux of cosmogenic
neutrinos and extragalactic protons in ultrahigh-energy
cosmic rays (UHECRs) [8–10].
The new Fermi data [6] probably contradict also the

more general early hypothesis that the extragalactic back-
ground gamma-ray flux observed by EGRET [5] and
Fermi-LAT [6] is fully produced in pγ interaction of
extragalactic CRs followed by EM cascading. This hypoth-
esis, put forward in the early 1970s, e.g., in Refs. [11] and
[12], had the impact especially on the interpretation of the
EGRET data, but the more complicated Fermi-LAT spec-
trum and in particular the discovery of discrete sources in
the early background spectrum seriously questioned this
interpretation.
Electromagnetic cascading strongly affected gamma

astronomy of discrete sources. The first work in this field
was calculation by Gould and Schreder [13] of the

1Oral remark by I. L. Rozental at Soviet-Union Cosmic Ray
Conference, by personal recollection of one of us, VB, and
independently by S. Hayakawa according to recollection of K.
Sato.
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absorption of gamma rays with energies above 100 TeVon
CMB radiation in the Universe. Cascading of the absorbed
photons was understood soon, and in 1970, the absorption
of ultrahigh-energy (UHE) photons on optical, radio
radiation, and in magnetic fields was included in the
calculations, together with similar calculations for electrons
[14].
The new step was done in the work by Aharanian et al.

[15]. Before this work, a magnetic field in the cascading
process was taken into account for energy losses of
electrons and for absorption of photons in a very strong
magnetic field. In the work [15], the authors noticed the
importance of deflection of the cascade electrons in
magnetic fields. In the absence of a magnetic field, cascade
particles propagate from a source in the same direction as
the parent photon. If an extragalactic magnetic field nearby
the source is large enough, the low-energy cascade eþe−-
particles can be deflected from the direction of initial
cascading photon and produce (by IC radiation) an iso-
tropic low-energy Eγ < 1 TeV component named the “halo
component” by the authors. As the sources, the AGN and in
particular blazars are considered. In terms of presently
estimated EBL radiation [16,17], the considered model
looks as follows. An initial photon with energy Eγ0 ∼
10 TeV is absorbed on EBL with the mean absorption
length lγ ∼ 100 Mpc, producing an electron and positron
with energy Ee ∼ 5 TeV each. the electron/positron is
deflected in an extragalactic magnetic field producing then
in IC scattering on a CMB photon the recoil photon with
energy

EIC
γ ∼ ð4=3Þγ2eεcmb ∼ 100 GeV; ð2Þ

where γe ¼ Ee=me is the Lorentz factor of the electron.
Thus, a typical energy of halo radiation is E ∼ 100 GeV,
and the size of halo is rh ∼ a few Mpc.
A very exiting application of cascading was started by

the work of Neronov and Semikoz [18], who indicated a
possibility to search for very weak seeds of magnetic fields
in the Universe.
The creation of the seeds with extremely weak magnetic

fields is a necessary part of the explanation of observed
magnetic fields which can reach the tremendous values up
to 1013 G deduced for pulsars. The strong magnetic fields
can be produced very fast due to the collapse of the objects
with a weak magnetic field and fast increasing of magnetic
fields due to the dynamo mechanism. The problem is how
the objects with very weak magnetic fields, the seeds, were
produced. Two kinds of the seeds are in principle known:
the cosmological and astrophysical ones (for reviews, see,
e.g., Refs. [19–21] and the latest review with many
references [22]). Magnetic seeds of astrophysical origin
include historically the first model “Biermann battery”
[23,24] and recently many models based on plasma

instabilities, e.g., Ref. [25], and also on different models
for Population III stars, e.g., Ref. [26].
To measure magnetic fields in seeds, Neronov and

Semikoz [18] suggested observing the cascading propaga-
tion of TeV gamma rays from a source through a void with
very weak magnetic fields. Secondary positrons and
electrons are weakly deflected in magnetic fields producing
thus extended emission of IC gamma rays, i.e., the gamma-
ray halo described above. A decrease of the size of this halo
with the energy of emitted gamma rays allows us to
measure the strength of magnetic field B in a range
10−16 G≲ B≲ 10−12 G [27].
At present, from the observation of cascading radiation

of TeV gamma-ray sources (blazars), it became possible to
put the lower limit on the extragalactic magnetic field [28];
for the review and other references, see Ref. [22].
Following the references cited above and observational

data of the spectra of TeV blazars obtained by Fermi, one
may explain an appearance of the lower limit on the
extragalactic magnetic field in the following way.
Consider first the caseB ¼ 0 and gamma radiation from a

blazar with primary energies higher than 1 TeV directed
along the jet to an observer. These photons are absorbed,
leaving behind the cascade radiationwith low-energy spectra
∝ E−2 belowcutoff andE−1.5 at smaller energies (seeRef. [4]
and Sec. II). These predicted low-energy spectra exceed the
Fermi observation atE ∼ 1 − 100 GeV, and themost natural
assumption is the suppression of these fluxes due to the
magnetic field, which deflects eþe− pairs from the direction
to an observer. The Monte Carlo (MC) simulations from
Refs. [28,29] and other calculations cited inRef. [22] result in
the lower bound B > 10−17 G for extragalactic magnetic
fields in voids. All these limits depend on the size of the
coherence length of the magnetic field λ.
Apart from lower limits obtained using cascading from

different blazars, there is one case of the positively
measured magnetic field applying a quite different method
suggested by T. Vachaspati and his collaborators [30,31]
and references therein. This case is relevant for cascading in
a helical magnetic field. Such a field scatters eþe− and
provides a nonzero correlator between positions of three
cascading gamma quanta produced by the IC radiation of
electrons and positrons. The data of Fermi from blazars are
used for the analysis. The helical magnetic field B ∼
10−14 G is found on the 10Mpc scale. This helical magnetic
field can be produced in the early Universe at t ∼ 1 ns.
Extragalactic magnetic fields in other structures, like

filaments and galaxy clusters, are larger by many orders of
magnitude, reaching the μG level in clusters. A reader can
find a wider and more detailed discussion of extragalactic
magnetic fields in the review [22]. Above, we limited
ourselves by several issues connected with cascading.
This paper is organized in the following way. In Sec. II,

we describe the cascade physics and obtain analytical
solutions of cascade equations.
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Our basic model in Sec. II is a static universe filled by
background radiations with a dichromatic spectrum of
photons with energy ϵcmb ¼ 6.3 × 10−4 eV for CMB and
ϵebl ¼ 0.68 eV for EBL radiation, the only free parameter
in this model. Cascade is initiated by a very high-energy
electron or photon with energy Es and develops due to pair
production γ þ γt → eþ þ e− and IC eþ γt → e0 þ γ0
scattering on background target photons γt. At large enough
time, the spectrum of remnant photons obtains a universal
form (independent from initial energy Es, assuming Es is
high enough), which has universal characteristic energies:
the energy of the spectrum cutoff

Eebl
γ ¼ m2

e

ϵebl
¼ 3.9 × 1011 eV

and the energy of spectrum steepening

EX ¼ 1

3
Eebl
γ

ϵcmb

ϵebl
¼ 1.2 × 108 eV:

The spectrum of remnant photons is given by nγðEÞ ∝
E−3=2 at E ≤ EX, nγðEÞ ∝ E−2 at EX ≤ E ≤ Eγ , and
nγðEÞ ¼ 0 at E ≥ Eγ .
The spectrum nγðEÞ ∝ E−3=2 at E ≤ EX is robust. The

spectrum at EX ≤ E ≤ Eγ is approximate: numerical sim-
ulation gives the exponent γ ¼ 1.9 instead of 2.0. The
cutoff is given in a rough approximation.
In Sec. II A, we demonstrate that the spectra obtained in

the static universe using the analytic dichromatic model
have the property of universality, which we will later call
the strong universality. The main feature of the universal
spectrum is its fixed shape, independent of initial energy Es
and distance to the source. The universality is broken for
nearby sources.
In Sec. II B, the analytic universal spectrum is compared

with numerical simulations for the cascades initiated at
redshift z. For z ¼ 0.15ðr ¼ 626 MpcÞ, agreement for the
dichromatic model with ϵebl ¼ 0.68 eV is good, as it is
good for larger z but with the choice of different values of
ϵebl. The case of small distance (low z) needs a different
treatment.
In Sec. II D, we consider physically and technically

interesting cases of CMB-only radiation. This case is
important at large z when the density of CMB photons
strongly dominates and for nearby sources when absorption
on EBL is small or absent. Technically, the case of CMB
only is interesting because it automatically produces a
dichromatic effect: the role of EBL photons is played by the
photons with energy ~εcmb from the high-energy tail of
Planckian distribution, the density of which is enough to
absorb a cascade photon with energy E of interest at
considered distance r.
In this approximation, we calculated the cascade spec-

trum from nearby sources r ¼ 1, 8.5, 85, and 200 Mpc and

compared them with numerical simulations also with the
assumption of CMB-only background radiation. The most
noticeable difference with numerical simulation is observed
at the smallest distance r ¼ 1 Mpc because in realistic
calculations the cascades arrive at an observer as under-
developed with the spectrum ∝ E−1.47. The calculated
parameters of the cascades are shown in Table I of
Sec. II E. The new element of calculations is low-energy
suppression of the spectrum shown by Eγ

lec in Table I.
In the Sec. III, we discuss the two numerical simulation

techniques for the calculation of the cascade spectrum,
namely, the solution of the one-dimension transport equa-
tion and Monte Carlo simulation. The former method is
much faster and allows precise calculation of propagated
spectra in the case in which cascade deflections are not
important, while the latter method is good for investigating
the effects of the magnetic field, e.g., in a problem of
isotropization of the cascades emitted by point sources. We
compare our numerically calculated spectra obtained with
two techniques with each other and with independent
numerical simulations.
In Sec. IV, the cases of strong and weak universality are

introduced and discussed. In Sec. V, the corresponding
spectra are calculated and compared with that measured by
Fermi LAT. This comparison allows us to obtain upper
limits on the energy density of the cascade radiation ωcas,
shown in Fig. 11 as function of production redshift. The
limits are stronger for generations of the cascades at small
redshifts.
In Sec. VI, we give a summary of the paper with the main

conclusions. This section is written in an autonomous way
and is designed for a reader who is interested in the main
results and wants to bypass the technical details.

II. CASCADE PHYSICS AND ANALYTIC
CALCULATIONS

We develop here a simplified model for the cascadewhich
allows us to obtain an approximate spectrum of sterile
(remnant) photons left behind after the cascade multiplica-
tion. We perform the approximate calculations of the EM
cascade from a burst of radiation in the form of very-high-
energy electrons or photons at a very large distance from an

TABLE I. Parameters of analytic model for nearby sources
(CMB only).

Distance r 1 Mpc 8.5 Mpc 85 Mpc 200 Mpc

~Eγ eV 1.58 × 1014 1.18 × 1014 9.24 × 1013 8.6 × 1013

~εcmb eV 1.65 × 10−3 2.21 × 10−3 2.83 × 10−3 3.04 × 10−3

EX eV 2.05 × 1013 1.11 × 1013 7.0 × 1012 7.6 × 1012

εcmb eV 6.42 × 10−4 6.24 × 10−4 6.43 × 10−4 8.0 × 10−4

Eγ
lec eV 4.34 × 108 6.01 × 106 6.01 × 104 1.09 × 104
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observer. One may think of a single electron or photon with
very-high-energy Es ≳ 1015 eV or a number of such par-
ticles. We use the dichromatic spectrum of background
radiationwhich consists of photonswith energy ϵcmb and ϵebl,
analogs of CMB and extragalactic background light EBL
with fixed energies of orders of 6.3 × 10−4 eV and ∼1 eV,
respectively.We assume ϵebl ≫ ϵcmb for energies andncmb ≫
nebl for space densities. A cascade is initiated by a single
electron or photon with very-high-energy Es and proceeds
through PP, γ þ γbckgr → e− þ eþ, and IC scattering,
eþ γbckgr → e0 þ γ0, on low-energy background photons
(CMB or EBL). We assume a low magnetic field, which
does not influence the cascade development due to synchro-
tron radiation, and our calculations will be mostly concerned
with the mean diffuse photon flux which is not affected by
deflections of the cascade electrons and positrons in the
magnetic field.
We consider first the flat static universe and calculate the

cascade spectrum from a pointlike burst of radiation at a
large distance from an observer. The remnant cascade
photons at large distances become cascade sterile, and
we refer to the spectrum of these photons as universal.

To compare the calculated spectrum with numerical
simulations, we further consider the expanding universe
and a burst of high-energy radiation at a point with redshift
z. In this case, the spectrum of sterile photons remaining
from the EM cascade undergoes the redshift.

A. Universal spectrum in analytic calculations

In this subsection, we consider the flat static universe and
EM cascade from a pointlike burst of very-high-energy
photons or electrons at distances from an observer to be
large enough for remnant photons to become sterile.
The criterion of high energy (HE) and low energy (LE)

for a cascade particle with energy E is given with help of
dimensionless parameter xt,

xt ¼ Eεt=m2
e; ð3Þ

where εt is the energy of a target photon
(t ¼ CMB or EBL). xt ≫ 1 and xt ≪ 1 characterizes HE
and LE regimes, respectively. In the HE regime, for both
PP and IC, a cascade particle propagates as a leading
particle γ → e → γ → e (see Fig. 1, leading-particle

FIG. 1. Qualitative picture of the cascade development in the static universe for monoenergetic energies of background photons ϵcmb

and ϵebl with the assumption ϵebl ≫ ϵcmb and ncmb ≫ nebl. The energies of cascade particles Ecmb
γ , Emin

γ , and Ee mark three regions of the
cascade development: (I) HE leading-particle regime when a leading particle loses very small energy in a collision with background
photons; (II) fast cascade multiplication, with a comparable fraction of energy obtained by each of two produced particles; and (III)
regime of production of sterile photons by the electrons with energy E ≤ Ee (see the text for details.)
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regime) losing in each collision (PP and IC) a fraction of
energy [14]:

f ≈ 1=½lnð2Eε=m2
eÞ�: ð4Þ

The turning point occurs when a leading particle
approaches x≳ 1 and enters multiplication regime II
in Fig. 1.
In the case of an expanding universe, we assume that

development of the cascade occurs during time τcasðEÞ,
much shorter than the Hubble time H−1ðzbÞ, where
τcasðEÞ ∼ 1=ðσðEÞcnbckgrÞ and σðEÞ is a cross section for
the HE photon or electron. The cascade development
continues until the cascade photons reach, due to multi-
plication, the threshold of pair production in the process
γ þ γebl → eþ þ e−. After this moment, the remnant cas-
cade photons lose energy only by redshift.
Because of inequality ncmb ≫ nebl, the cascade develop-

ment proceeds in two stages. In the first one, a cascade
develops in collisions with CMB photons only: γ þ γcmb →
e− þ eþ and eþ γcmb → e0 þ γ0. At the second stage, the
remnant photons from the HE part of the distribution are
absorbed on EBL radiation γ þ γebl → e− þ eþ, and then
the produced eþ and e− are scattered on more numerous
CMB photons: eþ γcmb → e0 þ γ0. Because of this, calcu-
lations of the cascade on the CMB background only has the
physical importance. This stage becomes particularly
significant at zb ≫ 1 when the EBL radiation is absent
and a cascade develops only on CMB. At smaller read-
shifts, EBL radiation appears, and the cascade enters its
second stage.
The remnant photon spectrum is characterized by the

following benchmark energies: the minimum energy of the
absorbed photon Emin

γ , which we refer to as min-photon;
the minimum energy of absorbed photons for CMB back-
ground only Ecmb

γ ; the minimum energy of the cascade
electron/positron Ee ¼ Emin

γ =2 (min-electron); and the
energy EX of the photon (X-photon) produced in IC
scattering by min-electron. These energies are listed below
in Eq. (5) together with their numerical values estimated for
values ϵcmb ¼ 6.3 × 10−4 eV and ϵebl ¼ 0.68 eV (see the
discussion below):

Emin
γ ¼ Eebl

γ ¼ m2
e

ϵebl
¼ 3.9 × 1011 eV

Ecmb
γ ¼ m2

e

ϵcmb
¼ 4.1 × 1014 eV

Ee ¼
1

2
Emin
γ ¼ 1.95 × 1011 eV

EX ¼ 1

3
Emin
γ

ϵcmb

ϵebl
¼ 1.2 × 108 eV ð5Þ

These energies appear in the cascade development illus-
trated by Fig. 1.
At the highest energies x ≫ 1, the cascade develops in a

leading particle regime I, γ → e → γ → e, with a small
fraction of energy (4) lost in every collision. The non-
leading particle in this process is always the electron (or
positron). However, as long as Enl

e ε=m2
e ≫ 1, the non-

leading electron propagates as a leading particle and
transfers its energy to cascade multiplication regime II
(see Fig. 1, leading-particle regime I). As numerical
calculations show, the total energy injected into regime
II approximately equals the initial energy Es, mainly
because the nonleading electrons can enter the multiplica-
tion regime (see Fig. 1).
The leading-particle regime finishes at Ecmb

γ , when eþe−

pairs are not produced on CMB photons, and approxi-
mately at this energy cascade multiplication regime II
starts. Pair production there occurs on EBL radiation,
while IC scattering proceeds mainly on more numerous
CMB photons. The minimum energy Emin

γ ¼ 3.9 × 1011 eV
of photons, which are able to produce eþe− pairs on high-
energy EBL target photons, mark the end of the cascade
multiplication and the beginning of low-energy region III
where IC scattering on CMB photons, eþ γcmb → e0 þ γ0,
dominates. The produced photons are cascade sterile and,
in consideration of this subsection, propagate losing the
energy only adiabatically.
The energy spectrum of these photons is easy to calculate

from two relations, dnγ ¼ dEe=Eγ and Eγ ≈ ðEe=meÞ2ϵcmb,
valid for low-energy regime III. One obtains

dnγ=dEγ ∝ E−3=2
γ : ð6Þ

Equation (6) gives the robust prediction for low-energy
asymptotics of the cascade spectrum.
There is one feature common for all stages of cascades

I–III: due to the strong dominance of the density of CMB
photons, ncmb ≫ nebl, IC scattering is always dominated by
CMB photons.
For this regime in region III and most of region II, the

relation given by Eq. (7) is valid,

E0
γ ¼

4

3
γ2eϵcmb; ð7Þ

where γe ¼ Ee=me is the electron Lorentz factor and E0
γ is

the average energy of the CMB photon after scattering off
the electron. This equation was obtained in Refs. [32] and
[14], and it is valid at the energy of target photons εr ≪ me
in the system where the electron is at rest.
The essential feature of Eq. (7), E0

γ ∼ γ2eϵcmb, can be
easily obtained from the Lorentz transformations. Indeed,
consider an electron with Lorentz factor γe colliding with
CMB photon ϵcmb. The energy of this target photon in the
rest frame system of the electron, ϵr ∼ γeϵcmb, is assumed to
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be much smaller than me. After scattering, such a photon
does not change its energy ϵ0r ¼ ϵr, and in the laboratory
system, it is typically boosted by another Lorentz factor γe:
ϵ0 ∼ γeϵ

0
r ∼ γ2eϵcmb. In Fig. 2, we compare E0

γ from Eq. (7)
(black dotted line) with exact calculation (red line), both
given as a function of electron energy Ee plotted at the
abscissa. One may see that maximum energy E0

γ from
Eq. (7) is valid up to 3 × 1013 eV. In fact, in all cases where
we apply Eq. (7), the maximum energy of photon spectra is

limited by absorption on EBL radiation Eebl
γ ¼ m2

e
ϵebl

¼
3.9 × 1011 eV, which is well below 3 × 1013 eV allowed
by exact calculations. The only almost exceptional case
EX ¼ 2.0 × 1013 eV is given by nearby sources (see Table I
in Sec. II E). The flat ∝ E−1.7 part of the spectrum between
EX and Eγ is a reflection of more flat red curve in Fig. 2
above E0

γ ¼ 3 × 1013 eV.
It is important to note that, instead of following the time-

dependent cascade development, we consider a history of a
cascade in terms of particle generations. Particles, elec-
trons, and photons can reach given generation ν at different
times. The total number of particles in one generation is
Ntot ¼ 2ν, and the relation between the number of electrons
Ne and photons Nγ in the same generation with large ν is
approximately Ne ≈ 2Nγ [in case a cascade starts by an
electron, this relation is given byNe ¼ 2Nγ þ ð−1Þν, and in
case it starts by a photon, Ne ¼ 2Nγ − 2ð−1Þν].
For calculation of the cascade energy spectrum, we

introduce the quantity qðEÞ, as a number of cascade
particles passing through energy E during the whole time
of cascade propagation. For electrons and photons, we use
notation qeðEÞ and qγðEÞ, respectively. Assuming that the
total energy in the cascade is conserved, one can use the
equality of primary-particle energy Es and the total energy
E × qðEÞ which flows through energy E during all the

cascade history. Taking into account that Ne ≈ 2Nγ in each
generation of the cascade in multiplication region II, one
obtains qeðEÞ ¼ ð2=3ÞEs=E and qγðEÞ ¼ ð1=3ÞEs=E (for
a different way to prove qðEÞ ∝ ð1=EÞ, see Refs. [4] and
[33]). For low-energy regime III, we have qeðEÞ ¼ const
for electrons and qγðEÞ increasing with energy due to the
low-energy tail of photons produced by electrons.
The basic equation for the number of the cascade

photons nγðEÞ reads

dnγðEγÞ ¼ qeðEeÞdEe=Eγ: ð8Þ

In low-energy regime III in addition to Eq. (8) we assume
constant electron flux qeðEeÞ ¼ q0 at Ee ≤ Ee and use
aproximate relation Eγ ∝ E2

e for IC photon production on

CMB photons. It results in dnγ=dEγ ∝ E−3=2
γ at Eγ ≤ EX in

agreement with Eq. (6).
In multiplication regime II in addition to the basic

equation (8) we again use aproximate relation Eγ ∝ E2
e

while for electron flux we assume qeðEeÞ ∝ 1=Ee. We
obtain thus dnγ=dEγ ∝ E−2

γ , valid in the interval
EX ≤ Eγ ≤ Emin

γ . At Eγ ≥ Emin
γ , all remnant photons are

absorbed, and dnγ=dEγ ¼ 0.
Thus, we finally obtain for the spectrum of remnant

photons in terms of the total number of particles nγ ,

nγðEγÞ ¼

8>><
>>:

ðK=EXÞðEγ=EXÞ−3=2 at Eγ ≤ EX

ðK=EXÞðEγ=EXÞ−2 at EX ≤ Eγ ≤ Eγ

0 at Eγ > Eγ;

ð9Þ

where absorption energy Eγ ¼ Emin
γ ¼ m2

e=εebl ¼
3.9 × 1011 eV is the minimum energy of the absorbed
photon (min-photon) and transition energy EX ¼
ð4=3ÞðEe=meÞ2εcmb ¼ 1.2 × 108 eV is the energy of the
IC photon radiated by min-electron produced in the
absorption of the min-photon. Everywhere below, we
use Eγ and EX as generic notation for the cutoff energy
and energy of transition between E−3=2 and E−2 regimes,
respectively. The background radiation (CMB or EBL) can
be indicated as indices, when it is needed. The normalizing
coefficient K can be found from the conservation of energy
in the cascade, with the total energy equal to energy Es of
the primary electron or photon,

K ¼ Es

EXð2þ ln Eγ=EXÞ
: ð10Þ

Wewill refer to spectrum (9) with normalization (10) as the
universal spectrum: its shape is fixed independently on
initial energy Es or even injection spectrumQðEsÞ, if initial
energy is sufficiently high, larger than scale energy E0,
which can be taken as Ecmb

γ from Eq. (5).
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FIG. 2. Comparison of the exact calculation of the mean energy
of the recoil CMB photon E0

γ in IC scattering (shown by the red
curve) and its asymptotic dependence according to Eq. (7) (black
dotted line).
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The initial energy Es (or energy density ωcas for the
diffuse flux) changes only total normalization coefficient K
from Eq. (10). Thus, the shape of the cascade spectrum
does not depend on the injection spectrum and propagation
time (the spectrum is frozen at the remnant-photons stage
and forgets about its production stage). This universality
will be referred to as “strong universality.”
The universal spectrum given by Eq. (9) with normali-

zation (10) has been obtained above in the simple model for
a static flat universe, but in fact it is valid for a wide class of
different models, e.g., for a realistic expanding universe at
fixed redshift, if cascade develops at time τ shorter than the
Hubble time H−1ðzÞ. In many cases below, Eqs. (9) and
(10) are valid, though with numerical values of Eγ , EX, and
K different from that given above.
The universal spectrum of remnant photons left behind

from the cascading of particles on dichromatic background
photons with energies εcmb ¼ 6.3 × 10−4 eV and εebl ¼
0.68 eV in a flat universe at a large distance from an
observer is characterized by the following spectral features:
it has a flat energy spectrum ∝ E−3=2

γ from the lowest
energies and up to EX ¼ 1.2 × 108 eV, and it becomes
more steep ∝ E−2 at higher energies, followed by a sharp
cutoff at Eγ ¼ m2

e=εebl ¼ 3.9 × 1011 eV due to absorption
onEBLphotons. Themost reliable predictions of this simple
model are the low-energy spectral shape ∝ E−3=2 (robust)
and cascade-multiplication one ∝ E−2 (probably approxi-
mate), while prediction of the sharp cutoff at Eγ is caused by
the assumption of the large distance to the source and
monochromatic spectrum of EBL. The sharpness of the
spectral feature at EX with its numerical value is an artifact of
the dichromatic model of background radiation. In fact, at
both energies EX and Eγ , theremust be the transition regions.
The low-energy component of spectrum (9) ∝ E−1.5 is a

signature of low-energy IC scattering (7), while the
component ∝ E−2 is a signature of the cascade multipli-
cation (region II in Fig. 1 up to the cutoff at energy
Eebl
γ ¼ 3.9 × 1011 eV).
Equation (9) gives the total number of photons from a

pointlike source. In particular, in the case of one primary
UHE photon/electron, nγðEγÞdEγ gives the total number of
the cascade photons with energy Eγ observed at any large
distance r from a source. Since both the characteristic
energies Eγ and EX do not depend on distance and energy
Es, Eq. (9) presents the same universal spectrum nγðEγÞ for
any initial energy Es being larger than energy Eγ.
Equation (9) gives also diffuse flux with normalization
Es substituted by the energy density of the cascade
radiation ωcas. Since the cascade spectra nγðEγÞ are the
same far all Es (apart from the total normalization), the
spectra are the same for any generation spectrum QgðEsÞ.
In other words, the resultant universal spectrum forgets
about its parent generation spectrum.

The diffuse flux of the cascade radiation is described by
the space density of the cascade photons nγðEγÞ with
normalization given by Eq. (10), where Es is substituted by
the energy density ωcas. The problem here is an additional
component at Eγ > Eγ due to nearby sources (see Sec. II E).
In conclusion, the universality of spectrum (9) for both

remote pointlike sources and diffuse radiation implies that all
characteristics of the spectrum do not depend on the primary
energy Es and distance r (for a pointlike source). The
universal spectrum, obtained above in a static universe,
describes in fact a rather wide class of remote gamma-ray
sources in the universe and also diffuse gamma-ray radiation.
In the next subsections, Secs. II B, II C, and II E, we will
present the relevant comparison with numerical simulations
for pointlike sources and discuss the phenomena which limit
the validity of the universal spectrum.

B. Comparison of universal spectrum with
numerical simulations

In this subsection, we compare the universal spectrum,
obtained within our simplified model, with realistic numeri-
cal simulation. The universal spectrum (9) is not valid for
sources at too small and too large redshifts z. At small
redshifts (nearby sources), absorption on EBL, which is an
essential feature of our model, may not occur because of the
small distance and low space density of EBL photons.
Cascades may not be produced at all if a primary photon
has energy Es less than the threshold of pair production on
EBL, Eγ .
Note that in our calculations we did not include at all the

density of target photons. Instead, we just assumed that the
distance to a source is large enough for photon absorption
at E > Eγ .
For nearby sources, this assumption fails. In the case of

low-density nebl of EBL photons, σpairneblrsource ≪ 1, a
cascade may still develop on CMB only, and this case will
be considered below. Even if a photon is absorbed, the
cascade still may not develop. It happens when the
characteristic IC radiation length for the secondary elec-
tron/positron exceeds the distance to the observer.
At the large redshits z, comparison with numerical

simulations may fail, because in analytic calculations we
neglect the effects of the universe expansion and energy
redshift. We will include these effects in the next subsection
and thus extend our consideration to larger redshifts. The
first comparison of analytic calculations [34] (similar to our
static-universe model) with MC simulation for sources with
fixed redshift zwas done in Ref. [35] and is presented in the
upper panel of Fig. 3. We can compare now the predicted
spectrum (9) shown by the thick black line, with the MC
spectrum from Ref. [35]. For z ¼ 0.15 (r ¼ 626 Mpc), we
see the good agreement with the model where the energy
of EBL photons is fixed as εebl ¼ 0.676 eV. The low-
energy spectrum∝ E−1.5 is reliably confirmed. The cascade
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multiplication spectrum (∝ E−2) is seen as E−1.9. Values of
EX and Eγ agree well with MC simulation. The MC
simulation gives a smooth transition between different
regimes, while in analytic calculations, it is sharp because
of the dichromatic spectrum of the background.
For z ¼ 0.02 ðr ¼ 83.4 MpcÞ, agreement is bad, and it

has to be interpreted as a small distance to the source.
In the lower panel of Fig. 3, the analytic spectrum (9) is

compared with our numerical simulations with the same
conclusions (see Sec. III).
The success of the static model is provided by a large, but

not too large, value of z. For larger redshifts, we have to
generalize our analytic calculations for an expanding universe.

C. Expanding universe and comparison for z > 0.3

For large redshifts z > 0.3, we assume that cascades have
enough time to develop during the Hubble timeH−1ðzÞ into

the spectrum given by Eq. (9). The energies of background
photons at epoch z are assumed to be εcmbðzÞ ¼ ð1þ zÞεcmb
for CMB and εzebl > εebl for EBL. Accordingly, the charac-
teristic energies at redshift z become EγðzÞ ¼ m2

e=ε
z
ebl and

EXðzÞ ¼ 1
3
ðEγðzÞ=meÞ2εcmbðzÞ. The spectrum of remnant

photons at epoch z, nγðEγ; zÞ, is given by Eq. (9) with EX ≡
EXðzÞ and Eγ ≡ EγðzÞ. At the propagation of this spectrum to
z ¼ 0, the energies of photonsEγ and characteristic energies
EγðzÞ and EXðzÞ are redshifted by factor (1þ z), but Eq. (9)
remains the same with the invariant value of K provided by
the conservation of the number of particles during the
redshift process, nγðEγ; zÞdEγ ¼ nγðE; 0ÞdE. Redshifted
characteristic energies are given by

Eγð0Þ ¼
m2

e

εzebl

1

1þ z
; EXð0Þ ¼

m2
eεcmb

3ðεzeblÞ2
: ð11Þ

From the second relation in Eq. (11), one finds the energy of
the EBL photon εzebl at epoch z as

εzebl ¼
�
m2

eεcmb

3EXð0Þ
�

1=2
: ð12Þ

Now, the procedure of comparing the analytic solution with
the numerical simulation consists of the following four
operations illustrated by Fig. 4:

(i) Normalization of the E−1.5 part of the analytic
solution by the E−1.5 part of the simulation.

(ii) Finding EXð0Þ as the intersection of the E−1.5 and
E−1.9 parts of the spectrum (see Fig. 4). In this
operation, we neglect the difference between E−1.9

and E−2.
(iii) Calculation of εzebl using Eq. (12).
(iv) Calculation of cutoff energy Eγð0Þ from Eq. (11).
A comparison of the analytic solutions with numerical

simulation is presented in Fig. 4 for redshifts z ¼ 0.32, 0.4,
0.64, 1.0. The analytic solution predicts that the cascade
spectrum consists of two power-law components E−1.5 and
E−2, with the intersection at EX. The numerical simulations
confirm this prediction with component E−1.9 instead of
E−2. The only free parameter in the analytic calculations is
the energy of EBL photons for each redshift, which means
the value of εebl ≈ 0.68 at z ¼ 0 and evolution
εzebl=εebl ¼ fðzÞ. The free parameter εzebl determines two
characteristic energies EX and Eγ .
In contrast to the sharp spectral features in analytic

calculations, the numerical simulations predict a smooth
transition regime centered by these features.
The evolution of EBL energy εzebl=εebl with z in a

dichromatic model must correspond, to some extent, to
the evolution of the mean EBL energy ε̄eblðzÞ with redshift.
The numerical simulations show an interesting feature of

merging the spectrum nγðE; zÞ to E−1.9 at increasing z,
which coincides within the accuracy of calculations with

FIG. 3. Comparison of analytic calculations (black thick line)
with numerical simulation (red and blue lines for z ¼ 0.15 and
z ¼ 0.02 correspondingly from the work by Kachelrieß et al. [35]
(upper panel) and from the present work (lower panel) for
redshifts z ¼ 0.2 (red line) and 0.25 (green line). Analytic
calculations in the lower panel are presented by blue broken
lines. For both panels, the line ∝ E−1.5 is shown for comparison;
the characteristic energies in analytic calculations EX and Eγ are
shown by arrows (see the text).
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the fundamental spectrum of the cascade multiplication E−2

in analytic calculations (see Fig. 5).

D. Cascading only on CMB

This section has a technical character. Study of the
cascade development only on CMB is important at least in
two cases discussed in this paper:

(i) in the case of nearby sources when absorption of
photons on EBL is absent.

(ii) in an expanding universe at large redshifts, when,
due to high space density of CMB photons, a
cascade is developing very fast with cutoff at
Ecmb
γ ¼ m2

e=ε
z
cmb; only later, the HE tail of the

cascade photon distribution is slowly absorbed on
EBL, followed by IC scattering of produced elec-
trons and positrons on CMB photons.

Consider first cascading on monochromatic CMB at
z ¼ 0. The energy spectrum of the cascade is given again
by Eq. (9) with

FIG. 4. Comparison of analytic calculations with numerical simulations from this work for large redshifts z > 0.3. Four panels show
the comparison for redshifts 0.32, 0.4, 0.64, and 1.0 with the same notation as in Fig. 3 (see the text for details).
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FIG. 5. Merging at increasing z of numerically simulated
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Eγ ¼ Ecmb
γ ¼ m2

e=εcmb ≈ 4.1 × 1014 eV ð13Þ

and

EX ¼ ð4=3ÞðEe=meÞ2εcmb ¼ ð1=3ÞEcmb
γ : ð14Þ

The normalization is given by the same equation (10) with
Eγ=EX ¼ 3 as follows from Eq. (14).
The remarkable feature of this calculation is the pre-

diction of a very narrow cascade-multiplication energy
width given by the ratio Eγ=EX ¼ 3, to be compared with
3 × 103 for the universal spectrum (9). This is the direct
consequence of monochromatic CMB model accepted here
(see the discussion in the end of this subsection).
For redshift z, there are two spectra of interest: the

equilibrium spectrum at epoch z, nγðEγ; zÞ and this spec-
trum redshifted to epoch z ¼ 0, nγðE; 0Þ.
Consider first the former. It is given by Eq. (9) with

εzcmb ¼ εcmbð1þ zÞ and by characteristic energies at epoch
z as

EγðzÞ ¼ m2
e=ε

z
cmb; EXðzÞ ¼ ð1=3ÞEγðzÞ: ð15Þ

The normalization is given by Eq. (10) with
EγðzÞ=EXðzÞ ¼ 3.
The spectrum redshifted to z ¼ 0 may be also of

interest for applications. It is given by redshifted character-
istic energies Eγð0Þ ¼ EγðzÞ=ð1þ zÞ and EXð0Þ ¼
EXðzÞ=ð1þ zÞ,

Eγð0Þ ¼
m2

e

εcmbð1þ zÞ2 ð16Þ

and

EXð0Þ ¼ ð1=3ÞEγð0Þ ¼ ð1=3Þ m2
e

εcmbð1þ zÞ2 : ð17Þ

The redshift leaves constant K in normalization (10)
invariant.
In fact, the monochromatic CMB model considered

above is unrealistic and the introduction of the dichromatic
model is necessary in most applications. It can be
explained, for example, by cascading on the CMB at
z ¼ 0 at distance r from an observer. IC scattering occurs
on all CMB photons and the average energy εcmb ¼ 6.3 ×
10−4 eV may be safely assumed for all of them. However,
the absorption of photons occurs on CMB photons from the
high-energy tail of Planckian distribution, and the mini-
mum energy of absorbed photons Emin is determined by
much higher energies of CMB photons ~εcmb ≫ εcmb as

~Emin ¼ ~Ecmb
min ¼ m2

e=~εcmb: ð18Þ
Energy ~εcmb coincides with the minimum energy in the HE
tail of CMB photons for given Eγ because with the

increasing of ε the number density of CMB photons
exponentially falls down.
Therefore, we come back to the standard spectrum given

by Eq (9) distorted at the highest energies due to the
distortion of relation Eγ ¼ 4

3
γ2eεcmb and with εebl substituted

everywhere by ~εcmb.

E. Cascades from nearby sources

In this section, we calculate the cascade spectra, taking
into account only CMB radiation and comparing them with
numerical calculations with the same assumptions. This
procedure clarifies the interesting physical details. As
argued above, the cascade spectrum on the CMB only
must be calculated using the dichromatic model of back-
ground radiation with εcmb ¼ 6.3 × 10−4 eV, which pro-
vides IC scattering, and higher-energy ~εcmb, which provides
the absorption of cascade photons with minimum energy
~Emin given by Eq. (18). As far as physics is concerned, ~εcmb
is minimal energy in the HE Planckian tail of photon
distribution where the number density of photons is big
enough enough for the absorption of photons with energy
~Emin. The energy εmin for ~Emin can be calculated from the
kinematic relation for arbitrary Eγ and ε given by
Eγεð1þ cosϕÞ ¼ 2ε2cm, where ϕ is an angle between
photons Eγ and ε in the laboratory system and εcm is the
energy of each photon in the c.m. system. Finding the value
ε from this relation for Eγ ¼ ~Emin and minimizing it with

the choice cosϕ ¼ 1 and εcm ¼ me, we arrive at εmin ¼
m2

e= ~Emin as in Eq. (18).
We can discuss now the spectra and basic features

predicted for the cascades on the CMB from nearby
sources, assuming tentatively, as the first step, εcmb ∼ 6 ×
10−4 eV and ~εcmb ∼ 2 × 10−3 eV (these values will be
determined more precisely after comparison with numerical
simulations.)
The minimum absorption energy (on CMB photons) can

be estimated from equationlcmb
abs ð ~EminÞ ¼ r, wherelcmb

abs ðEγÞ
is the absorption length in the CMBbackground. It results in
the well-known value ~Emin ∼ 1 × 1014 eV, and it is given
precisely, as ~Eγ , for different distances r in Table I. Using
Eq. (18), we find then ~εcmb ∼ 2 × 10−3 eV. The transition
energy is given by EX ¼ ð1=3Þð ~Emin=meÞ2εcmb, which
approximately equal to 7 × 1012 eV. We cannot expect in
this picture the standard spectra ∝ E−1.5 and ∝ E−2, espe-
cially the latter one. First of all, the spectrum can be flatter
than ∝ E−2 due to the flattening of the Eγ ∝ E−2

e regime in
the end of the IC spectrum (see Fig. 2).
Another plausible reason is the width of the cascade-

multiplication part of the spectrum, i.e., one with the
conventional E−2 spectrum, but with the ratio Eγ=EX ≈
14 to be compared with 3 × 103 for the case of
the (εcmb; εebl) background. The relatively small ratio

V. BEREZINSKY and O. KALASHEV PHYSICAL REVIEW D 94, 023007 (2016)

023007-10



Eγ=EX ≈ 14 is the reminiscent of the ratio 3 for the CMB
monochromatic background model [see Eq. (14)]. Since the
realistic simulations show a smooth transition between
energies EX and Eγ, one may expect non-power-law of
cascade-multiplication spectrum, in disagreement with the
dichromatic model. As for the low-energy asymptotic
spectrum E−1.5, it also should be distorted, because
absorption on ~εcmb photons occurs at distances of the order
of the distance to the source r, and thus a cascade is
underdeveloped. Now, we will compare the analytic esti-
mates with accurate numerical simulations for cascades on
CMB radiation and obtain more precisely parameters of our
dichromatic model for different distances r to the source.
We will change the notation as ~Emin ≡ ~Eγ to emphasize that
this is the value of the spectrum cutoff.
As the first step, we find ~Eγ from equation lcmb

abs ð ~EγÞ ¼ r,
where lcmb

abs ðEγÞ is absorption length in the CMB back-

ground. The values of ~Eγ are shown in Table I for distances
1.0, 8.5, 85, and 200 Mpc.
Next, we calculate ~εcmb using Eq. (18) and values of

~Emin ≡ ~Eγ from Table I (third row).

The values of EX in the fourth row are obtained from
comparison with numerical simulations (see Fig. 6) as the
intersection of the power-law approximation of the cas-
cade-multiplication spectrum (∝ E−1.8 in the Fig. 6) with
the low-energy asymptotics.
The energies of the CMB photons εcmb (fifth row) are

calculated using the equation EX ¼ ð1=3ÞðEγ=meÞ2εcmb.
In the last row of Table I, we put the low-energy

cutoff Eγ
lec of the cascade spectrum estimated in the follow-

ing way.
The low-energy cascade electrons with energy below

some critical energy Ecr
e ðrÞ have a time of IC photon

emission larger than the time-of-flight r=c. Therefore,
radiation of IC photons with energies below Eγ

lec ¼
ð4=3ÞðEcr

e =meÞ2εcmb is suppressed.
The critical energy of electron Ecr

e can be found from
τ−1e ðEcr

e Þ ¼ c=r, where τeðEÞ is the electron lifetime rela-
tive to the IC energy loss,

τ−1e ðEeÞ ¼
�

1

Ee

dEe

dt

�
IC

¼ 4

3
σTcγe

ρcmb

me
; ð19Þ

FIG. 6. Comparison of analytic calculations with numerical simulations for CMB radiation only for nearby sources at distances 1.0,
8.5, 85, and 200 Mpc.
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where σT is the Thompson cross section, γe ¼ Ee=me is the
electron Lorentz factor, and ρcmb ¼ εcmbncmb is the energy
density of CMB radiation. Equation (19) can be rearranged as

τ−1e ðEeÞ ¼
4

3
σTcncmb

Ee

Ecmb
γ

; ð20Þ

where Ecmb
γ ¼ m2

e=εcmb.
Using τ−1e ðEcr

e Þ ¼ c=r, one finds the critical energy of
electron Ecr

e and low-energy cutoff Eγ
lec as

Ecr
e ¼ 3=4

σTncmbr
Ecmb
γ ; Eγ

lec ¼
3

4

�
1

σTncmbr

�
2

Ecmb
γ : ð21Þ

From Table I, one can see that for nearby sources at
distance 1–85 Mpc the dichromatic model is characterized
by almost equal energies εcmb ≈ 6 × 10−4 eV and by similar
values of ~εcmb ≈ ð2 − 3Þ × 10−3 eV. For 200 Mpc, these
values differ more considerably. The low-energy cutoff is
observable only for very close sources Eγ

lec ∼ 400 MeV for
r ¼ 1 Mpc; for r ¼ 8.5 Mpc, it starts at 6 MeV.
Finally, we calculate the cascade-photon spectrum,

taking the characteristic energy features from Table I
and comparing this spectrum with precise numerical
simulation on the CMB radiation only. One may expect
that the canonical low-energy part of spectrum ∝ E−1.5 will
survive for long-distance sources and may fail for short-
distance ones, being underdeveloped. Figure 6 confirms
this expectation; for distance r ¼ 200 Mpc, the spectrum
coincides well with the E−1.5 shape and is weakly distorted
at smaller distances. For the high-energy part of the
spectrum ðEX − EγÞ, the energy interval is very short,
and the spectrum is ∝ E−1.78 flatter than canonical 2.0.

III. NUMERICAL SIMULATIONS OF
ELECTROMAGNETIC CASCADE PROPAGATION

In this section, we will discuss the basics of numerical
simulations, the universality of EM cascade spectra in the
numerical simulations, the calculated cascade energy spec-
tra, and upper limits on the cascade energy density ωcas
obtained from comparison of the calculated spectra with
observations of Fermi LAT.

A. Generalities

The results presented in this work have been obtained
with two independent numerical techniques, the
Monte Carlo simulation and the code [36,37] based on
the solution of Boltzmann kinetic equations for cascade
particles propagation in one dimension. The latter method
does not take into account deflections of cascade particles by
themagnetic field and therefore is valid only for calculations
with averaged angles and time or for diffuse fluxes. In Fig. 7,
interaction and energy loss lengths are shown for electrons
and photons. The lengths are defined as follows,

L−1
i;int ¼

Z
dϵnðϵÞ

Z
dμ

1 − βiμ

2
σi ð22Þ

Le;att ¼ Le;intEe=Ēγ; ð23Þ

where i ¼ e, γ; σe ¼ σIC; σγ ¼ σPP; and Ēγ is the mean
energy of the recoil photon in IC. A number of kinetic
equation-based codes has been developed at present (see,
e.g., Refs. [36,38,39]). For the precise calculation of
gamma-ray fluxes from individual sources in the presence
of non-negligible magnetic fields, full 3D Monte Carlo
simulation is needed. Such calculations as a rule require
excessive computing time since the number of secondary
particles grows exponentially in the cascade. In the
Monte Carlo code used in this work, to speed up compu-
tations, we utilize, following Ref. [35], the weighted
sampling of the cascade development. It allows us reduce
the number of secondary particles.
While IC scattering occurs mostly on the CMB, the eþe−

pair production, when it is below threshold on the CMB,
takes place on infrared and optical components of EBL,
which is not precisely known. A number of different
models have been proposed for EBL [16,17,40–44].
There are some upper bounds on EBL in the literature
that were based on observations of distant blazars. These
limits are derived without taking into account the possible
contribution of cosmic rays, and therefore these bounds can
be relaxed [45]. The limits based on GRBs [46] remain
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FIG. 7. Shown are the pair production interaction length [see
Eq. (22)] calculated assuming EBL models of Ref. [16] (shown
by the solid blue line), of Ref. [17] (dashed blue line), and of
Ref. [40] (doted blue line); electron attenuation length [see
Eq. (23)] due to inverse Compton scattering (red line) and the
interaction length of this process (green line); 10° deflection
length for electrons (shown by black dotted lines) for given values
of the constant transverse component of the magnetic field;
synchrotron energy loss length [see Eq. (28)] of electrons in
B⊥ ¼ 10−9 G (shown by the pink dashed line); and adiabatic
energy loss length (shown by the horizontal solid black line).
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unaffected. The model of Ref. [43] is disfavored by the
Fermi LATobservation of the photons from GRB 090902B
and GRB 080916C. Note that limits based on GRB
observations constrain only the highest-energy part of
EBL. To obtain the range of ωcas in this work, we use
the baseline model from the recent work [40], which
includes estimates of EBL for redshifts z ≤ 10. In addition,
we use for comparison the “best-fit” and “lower-limit”
models of Refs. [16,17], providing estimates of EBL for
z ≤ 5. The EBL model of Ref. [42] for z ≤ 2 is used only
for comparison of our numerical calculations with
Ref. [29].
Another poorly known factor which is crucial for

consideration of the electromagnetic cascades from indi-
vidual sources is intergalactic magnetic field (IGMF). Even
in the presence of relatively weak IGMF, the angular size of
sources can increase due to the deflection of electrons and
positrons moving along the curved trajectories with curva-
ture radius Rc,

Rc ¼
Ee

eB
≃ 1.1

�
Ee

1 TeV

��
B⊥

10−15 G

�
−1

Mpc: ð24Þ

After traversing distance L, the misalignment of the
electron direction with the primary gamma-ray direction
is given by angle δ,

δ≃
8<
:

L
Rc
; L ≪ λBffiffiffiffiffiffi
LλB

p
Rc

; L ≫ λB;
ð25Þ

where λB is IGMF correlation length. In the second case
above, many stochastic deflections were taken into account.
The deflections in the cascade cannot be neglected as soon
as electron energy-loss length becomes comparable with
the defocusing length, i.e., the travel path at which
electrons are deflected by maximal angle δ. The definition
of δ varies for different problems. It may be related to the
experimental angular resolution or average angular distance
between the sources. The defocusing lengths for δ ¼ 10°
and a range of IGMF strengths (assuming λB ≫ L) are
shown in Fig. 7 (black dashed lines) together with the
energy-loss length (red curve) for comparison. As an
example in the case B ¼ 10−15G and δ ¼ 10°, one can
infer that deflections become important for electron energy
Ee ≲ 1 TeV, which corresponds to the typical recoil photon
energy of 3 GeV. Below this energy, gamma-ray flux is
essentially isotropized.
Current theoretical and observational constraints on the

IGMFmean value and correlation length are summarized in
the review [22] as

10−17 G≲ B≲ 10−9 G; ð26Þ

λB ≳ 1pc; ð27Þ

where the obtained lower limit on IGMF is based on the
simultaneous observation of GeV and TeV gamma radia-
tion from the hard-spectrum blazars RGB J0710+591, 1ES
0229þ 200, and 1ES 1218þ 304 (Fermi/LAT observa-
tions in GeV and Veritas, Major Atmospheric Gamma
Imaging Cherenkov Telescope, and High-Energy
Stereoscopic System observations in TeV) [29].
In the special case of IGMF being close to its upper limit

B≃ 10−9 and for the sources emitting ultrahigh-energy
photons or electrons with E≳ 1019 eV, the electron syn-
chrotron losses should be taken into account. The pink line
on Fig. 7 represents the energy-loss length for this process
given by [47]

L−1
syn ¼

1

Ee

dEe

dt
¼ −

4

3
σT

B2

8π

Ee

m2
e
; ð28Þ

where σT is the Thomson cross section and me is the
electron mass. In this paper, we disregard the synchrotron
energy losses if not otherwise stated.

B. Comparison

In this section, we compare the cascade spectra obtained
using the kinetic equation and Monte Carlo codes from the
present work with other numerical simulations and with
analytic calculations. Figure 8 demonstrates the level of
agreement between our numerical calculations, simulation
[29], and analytic calculation for a source at z ¼ 0.13
injecting 1014 eV photons and using the EBL model of
Ref. [42] for photon absorption. One may see in this figure
the familiar two cascade energy spectra ∝ E−1.5 and ∝
E−1.9 and also the steeper high-energy feature in good
agreement in all three numerical simulations. As will be

 0.1

 1

106 107 108 109 1010 1011 1012 1013

E
2 j(E

)

E, eV

E-1.5

E-1.9

this work kinetic
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FIG. 8. Average cascade spectrum obtained using the kinetic
equation code (solid curve) and Monte Carlo code (dashed curve)
compared with analytic calculation and with results of
Monte Carlo simulation [29] (dot-dashed curve), all for the
injection of 1014 eV photons at z ¼ 0.13.
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demonstrated below, this feature plays an important role in
the determination of the cascade energy density ωcas.
The diffuse gamma-ray spectrum as presented by Fermi

LAT in 2015 [7] shows the steepening which starts at
1 × 1011 eV and continues as a more sharp cutoff at
ϵ ¼ 2.5 × 1011 eV. Both the high-energy features in theo-
retical spectra in Fig. 8, ∝ E−1.9 and more steep feature
above it, are flatter than that observed by Fermi LAT, and it
results in the upper limit on ωcas. The reason may be easily
understood from Fig. 8.
For given large enough ωcas, the realistic, numerically

calculated, spectra from Fig. 8 can intersect the Fermi high-
energy tail at some energy. It means that at energy above the
crossing the calculated cascade flux is larger than the
measured Fermi flux. To eliminate this contradiction, one
must lower the calculated cascade flux, i.e., ωcas. This
procedure results in the upper limit on ωcas.
The case of analytic spectrum in Fig. 8 is quite different.

It has a sharp cutoff at ϵγ ≈ 400 GeV close to the Fermi
cutoff energy ϵ ≈ 250 GeV, and thus a quite larger ωcas is
allowed.
All effects which make lower the high-energy cutoff in

the calculated cascade spectrum, e.g., high redshift of
production, increase the upper limit on ωmax.

IV. UNIVERSALITY OF THE CASCADE SPECTRA
IN NUMERICAL SIMULATIONS

Universality of the cascade energy spectrum was dis-
covered first in analytic calculations [33], and we will start
our discussion from the analytic dichromatic model of
Sec. II A. This universality is clearly seen from Eq. (9),
where two joint energy spectra ∝ E−3=2 and ∝ E−2 appear,
divided by two boundary energies EX and Eγ , built from
basic parameters of dichromatic model εcmb and εebl. The
main features of this universal spectrum include: (i) The
same energy shape of the spectrum produced by
initial photon/electron if its primary energy is sufficiently
high. Ultimately the scale can be as high as
E0 ≳m2

e=εcmb ∼ 0.4 PeV, and it is the basic one in analytic
calculations. The lower universality scale E0 ∼ 100 TeV is
found in numerical simulations, and this result is very
natural and may be expected a priori. In the analytic
approach, the cutoff energy Ecmb

γ ¼ 0.4 PeV is a conse-
quence of the monochromatic spectrum of CMB photons
ϵcmb ¼ 6.3 × 10−4 eV. In numerical simulations, absorp-
tion occurs on the high-energy tail of Planckian distribution
of CMB photons and absorption produced at Ecmb

γ ≈
100 TeV when labs reaches c=H0. (ii) The cascade energy
spectrum is the same for any injection spectrum QðEsÞ at
Es ≳ E0 (in other words, the cascade spectrum forgets what
injection spectrum produced it). (iii) The cascade spectrum
does not depend on distance to the point where the cascade
started. (iv) The energy density of the cascade ωcas is the
only cascade characteristic which determines the spectrum.

These properties of “analytic” cascades will be referred
to as strong universality.
For realistic cascades in the expanding universe, the

strong universality, as it is formulated above, is not valid.
The cascade spectrum observed at z ¼ 0 depends on the
redshift of production zs, e.g., due to the dependence EX and
Eγ on zs and simply due to the redshift of the spectrum.
Consider, for example, the generation rate of photons/
electrons in an expanding universe in the form QðEs; zsÞ ¼
ϕðEsÞRðzsÞ with Es above the universality scale E0. All
cascades produced at fixed redshift zs have the same cascade
spectrum qcasðEÞ at z ¼ 0. However, cascades originating at
different zs have the different cascade spectra at z ¼ 0, and
integration over zs results in cascade spectra, which depend
on the distribution of production rateQðEs; zsÞ over zs. The
predicted cascade spectrum is determined not only by ωcas
but, e.g., by parameters of the cosmological evolution of the
sources. Universality of the cascade spectra remains only for
a subclass of the sources with approximately equal redshifts.
In summary, the sources in the expanding universe with the
generation rate QðEs; zÞ, with Es above the universality
scale E0 and with arbitrary dependence on z [e.g., evolution
ð1þ zÞm up to zmax] have the following properties of
universality: (i) The energy shape of the EM cascade at z ¼
0 is independent from Es or from injection spectrum ϕðEsÞ;
i.e., for fixed zs, the shape is the same for different Es, or for
different spectraϕðEsÞ. (ii) The cascade spectrum at z ¼ 0 is
not uniquely determined by ωcas but depends also on the
evolution ofQðE; zÞ with z, e.g., through parametersm and
zmax. (iii) A subclass of the sources with the same (or almost
the same) redshift zs has the identical cascade spectrum at
z ¼ 0, which is characterized by the single parameter ωcas.
This case can be referred to as weak universality.
The class of sources with the fixed redshift of production

zs, i.e., with production rate QðEs; zÞ ¼ ϕðEsÞδðz − zsÞ,
has all the properties of strong universality, except iii, and
can be attributed to strong universality for arbitrary gen-
eration spectrum ϕðEsÞ with Es above the universal scale
E0. The corresponding cascade spectrum is characterized
by a single parameter ωcas for any fixed zs.
Consider z-fixed sources in some details, starting from

low initial energy Es < E0. While increasing Es the z ¼ 0
cascade spectrum evolves to a strongly-universal spectrum,
reaching it at scale E0 and remains unchanged. Figure 9
illustrates this statement. The figure presents the diffuse
fluxes generated by the population of sources with the fixed
energy of injected photon Es and with fixed redshift zs. The
diffuse spectrum shape at z ¼ 0 does not depend on Es as
long as Es ≳ Ecmb

γ . In fact, for remote enough sources at
z≳ 0.1, universality is reached at the scale E0 ≳ 100 TeV.
This observation was tested for all EBL models used in
this work.
The numerically calculated diffuse cascade spectra from

the sources with fixed redshift zs and energy Es are shown
in Figs. 9a–9c. The spectra are expected to be strongly
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universal when energy Es exceeds the largest scale
E0 ¼ Ecmb

γ ¼ 0.4 PeV. All three figures (a), (b), and
(c) demonstrate that the spectra are universal at E ≥ E0,
where E0 ¼ 100 TeV. This energy can be considered as the
energy scale of universality in numerical simulations (see
the discussion above). Apart from identical spectra, they
have at large zs ≥ 0.1 the predicted standard spectrum ∝
E−3=2 at low energy, ∝ E−1.9, at intermediate energies with
highest-energy feature in the end of the spectrum
(cf. Fig. 8). The spectra with Es ¼ 100 TeV (black thick
curves) and with all energies Es ≳ 100 TeV are indistin-
guishable in Figs. 9.
The cascade universality makes it hard to extract the

injection spectrum from the diffuse spectrum observed at
z ¼ 0. On the other hand, the comparison of the calculated
and observed spectra allows us to estimate the upper limit
on the main characteristic of the universal cascade spec-
trum, the cascade energy density ωcas at z ¼ 0. This
problem will be considered in the next section.

V. UPPER LIMIT ON ωcas FROM FERMI
LAT DATA

The upper limit on the cascade energy density given by
Eq. (1) as 5.8 × 10−7 eV=cm3 was derived in Ref. [34]
from the first-year Fermi data [6]. Here, we obtain this limit
from 50 months Fermi LAT observations [7] using a
somewhat different approach.
Fermi LAT [6] presents two kinds of extragalactic

gamma-ray fluxes in energy range 100 MeV—820 GeV:
extragalactic gamma-ray background (EGB) and isotropic
diffuse gamma-ray background (IGRB). EGB presents the
total extragalactic gamma-ray flux, from which about half
is given by the resolved individual sources. In the cascade
calculations, we use these fluxes to normalize the upper
limits on the cascade energy density ωcas. The highest and
most conservative upper limit on the theoretical energy
density ωcas is imposed by Fermi EGB flux and is marked
as ωtot

cas. In the isotropic case, the estimate of ωiso
cas can be

obtained from Fermi IGRB flux [7] assuming additionally
highly homogeneous distribution of gamma-ray sources or
astrophysical gamma-ray generation scenarios in which the
IGMF must be high enough to isotropize the cascade
electrons and positrons (or their parent particles) in
the space.
EGB flux is higher than IGRB, and the two calculated

values of ωcas follow this hierarchy. Both fluxes are
described by the power-law spectrum with index γ ≈ 2.3
and with a steeper highest-energy tail starting at Ecut ¼
ϵ ≈ 250 GeV (beginning of the steepening). The nature of
the gamma-ray flux above Ecut is not well known, but we
consider it a diffuse flux. This high-energy steep compo-
nent (tail) is responsible for a stronger upper limit onωcas in
comparison with an earlier paper [8]. The realistic, numeri-
cally calculated, spectra in Fig. 8 are flatter than the

FIG. 9. Diffuse cascade spectrum from sources injecting
photons with energy Es ¼ 1 TeV (red curves), 10 TeV (green
curves), and Es ≥ 100 TeV (black thick curves) at redshifts
z ¼ 0.01, z ¼ 0.1, and z ¼ 1. Photon fluxes are limited from
above by the Fermi EGB flux, shown by black error bars, with
foreground model B [7]. The curves obtained for initial photon
energies greater than 100 TeV coincide in all figures. In
calculations, the EBL flux from Ref. [40] is used.
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highest-energy Fermi tail and can intersect it at some
energy (see Sec. III B).

A. Upper limit on ωcas in analytic calculations

To illustrate our method of calculating ωcas, we will
consider first a simple example of the analytic model,
followed by the accurate numerical calculations.
Consider the energy of the Fermi IGRB spectrum cutoff

ϵ ¼ 2.5 × 105 MeV, where the measured flux is Jigrbγ ¼
4.80 × 10−16 cm−2 s−1 sr−1 MeV−1. We use here the ana-
lytic dichromatic model with εcmb ¼ 6.3 × 10−4 eV and
εebl ≈ 1 eV, which provides the high-energy cutoff in the
cascade spectrum Eγ ¼ m2

e=εebl ¼ 2.61 × 105 MeV, practi-
cally the same as that observed in the Fermi IGRB spectrum
ϵ ¼ Ecut. We take the cascade spectrum as JcasðEÞ ∝ E−1.9

at EX ≤ E ≤ Eγ and E ∝ E−1.5 at E ≤ EX. Then, the cascade
energy density can be calculated using the cascade flux
JcasðEÞ as

ωcas ¼
4π

c

�Z
EX

0

dEEJcasðEÞ þ
Z

Eγ

EX

dEEJcasðEÞ
�
: ð29Þ

The most restrictive relation we use in the calculation of
Eq. (29) is given by the cascade flux in the energy interval
EX ≤ E ≤ Eγ,

JcasðEÞ ¼ JigrbðϵÞðE=ϵÞ−1.9; ð30Þ

which includes the normalization of the cascade flux by
Fermi IGRB flux Jigrb at energy ϵ ¼ Ecut. This particular
condition provides the low upper limit on ωcas in this
estimate.
For the interval E ≤ EX, we use

JcasðEÞ ¼ JigrbðϵÞðEX=ϵÞ−1.9ðE=EXÞ−1.5: ð31Þ

As a result, we obtain the upper limit on the energy density
of cascade radiation,

ωcas ≤ 6.6
4π

c
ϵ2JigrbðϵÞ ¼ 8.3 × 10−8 eV=cm3; ð32Þ

to be compared with the much larger cascade upper limit
ωmax
cas ¼ 5.8 × 10−7 eV=cm3 obtained in Ref. [8] and used

in Ref. [9]. The reason is that for the normalization of the
calculated flux we used the measured flux at energy
ϵ ¼ 2.5 × 105 MeV, which is located below the Fermi
E−2.3 approximation of the flux. However, this argument
implies the further decrease of ωmax

cas . In more realistic
numerical simulations, there is the high-energy tail (see
Fig. 8), and the intersection of this tail with the steep high-
energy Fermi IGRB tail demands lowering the calculated
flux, i.e., further suppression ofωcas. Another reason for the
modification of the calculated spectrum is connected with

the interpretation of the two highest-energy points in the
Fermi LAT spectrum above 2.5 × 105 MeV. If these points
belong to isotropic diffuse radiation, the high-energy
theoretical tail must be shifted downward, and it results
in the lowering of ωcas. However, in case the weak
universality ωcas is not the only parameter which influences
the flux, it could be that other parameters, e.g., the
cosmological evolution of the sources, can shift the flux
upward at the same ωcas.
The stronger upper limit on ωiso

cas obtained here puts the
stronger upper limit on the flux of UHE extragalactic
protons and cosmogenic neutrinos, in comparison with
Refs. [8–10]. The effect of increasing the fraction of
resolved sources [48] diminishes further JcasðEÞ and ωcas
given above.

B. Upper limit on ωcas in numerical simulations

Now, we will proceed to the consideration of ωcas using
the calculation of the cascade spectra in numerical simu-
lations, kinetic equations, and Monte Carlo. These calcu-
lations provide us with the shape of the cascade spectra at
E < ϵγ , and normalization by the observed Fermi LAT
spectrum allows us to obtain the values of ωcas, the final
aim of our research in this paper.
Below, we calculate ωtot

cas and ωiso
cas for two cases: (i) the

redshift-fixed photon-electron sources with very-high-
energy Es and (ii) redshift-distributed sources with the
injection rate of photons/electrons QðEs; zÞ smoothly
dependent on z. Case i results in strong universality, and
ii, for the general case of z dependence, results in weak
universality. The scale of very high energy is given by
Es ≳ Ecmb

γ ≳ 0.4 PeV for analytic calculations, though as
argued above and as Figs. 9(a)–9(c) show, the universal
shape of the spectra is reached already at energy
scale Es ∼ 100 TeV.
Let us now come over to the numerical calculation of the

cascade spectra and to the evaluation of ωcas. We consider
two cases:

(i) the redshift-fixed and energy-fixed sources with
injection rate

QðE; zÞ ∝ δðz − zsÞδðE − EsÞ; ð33Þ

(ii) redshift-distributed sources with injection rate

QðE; zÞ ¼ ð1þ zÞ3þmδðE − EsÞ; at z < zmax;

ð34Þ

with 1 < zmax < 5 and 0 < m < 5 (the case m ¼ 0
corresponds to a constant source density in the
comoving frame).

In calculations for both cases, we will keep Es ≥
100 TeV to provide universality.
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The calculated spectra will be normalized by Fermi LAT
spectra, EGB, and IGRB. The highest and most
conservative upper limit on energy density ωcas is imposed
directly by EGB flux, which includes also the flux of
resolved extragalactic discrete sources. To be even more
conservative, we take the fluxes of EGB (and IGRB, too) as
a maximal one allowed by systematic uncertainties. Using
these two fluxes, we obtain the upper limits on ωigrb

cas

and ωegb
cas ; the latter will be considered as maximally

allowed ωmax.
Case i spectra are shown for three values of zs in

Figs. 9(a)–9(c). At energies Es higher than 100 TeV, all
spectra are the same. Figure 10 presents the cascade spectra
for continuous source distribution (34), which illustrates
the dependence of the cascade spectra on evolution
parameters m and zmax.
From Fig. 10, one may observe that spectra with low

zmax ¼ 1 have large cutoff energy Emax, and to avoid the
contradiction with Fermi data, one must shift the calculated
spectrum downward, thus diminishing ωcas.
Spectra with large zmax ¼ 5 have lower Emax due to the

redshift factor (1þ z) and respectively larger ωcas.
Dependence onm works in a similar way. Figure 10 allows
us to calculate ωcas using the corresponding curves. As a
result, the constraints on the energy density of cascades
with large m and zmax are relaxed.
We already have seen such an effect in Sec. II B for the

case of the analytic solution with the sharp high-energy
cutoff, which starts at low energy (see Fig. 8). Now, we can
generalize the both cases, formulating what will be called
the “Emax rule” used here and below. It reads: Increasing
Emax in the calculated cascade spectrum suppresses ωcas.
Indeed, Fig. 10 shows that increasing Emax needs the
lowering of the total curve JðEÞ to avoid the excess of
the predicted flux JðEÞ over the observed Fermi flux. For

changingEmax, one may use, for example, the cosmological
evolution: increasing zmax results in decreasing Emax at
z ¼ 0 by a factor (1þ z).
Another feature observed in Fig. 10 is the standard

energy spectra ∝ E−1.5 transforming to ∝ E−1.9 at higher
energy (see these curves in the figure).
In Fig. 11, we present the maximum cascade energy

density ωiso
cas consistent with the Fermi IGRB flux and ωtot

cas
consistent with the Fermi EGB flux [7] for two cases of
source distribution (33) and (34). To obtain these quantities,
we normalize the cascade spectrum calculated in numerical
simulations by IGRB or EGB fluxes [7].
In panel (a), we show the energy density ωtot

cas and ωiso
cas

calculated in the model with fixed redshift of the source zs
and with fixed energy Es of the primary photon/electron.
This is the case of strong universality, when the cascade
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spectrum is determined by a single parameter ωcas.
Uncertainties, caused by different EBL models, are not
large, and values of ωtot

cas are larger than ωiso
cas, as expected.

The values of ωcasðzÞ at large z exceed that at small z
according to the Emax rule: large z gives small Emax, and
small Emax results in large flux and hence in large ωcas. One
can see this effect in Fig. 11(a).
In Fig. 11(b), the case of more realistic continuous z

distribution, as given by Eq. (34), is presented. It is
described by weak universality, when the cascade spectrum
depends, apart from ωcas, on other parameters, in particular
on parameters of cosmological evolution m and zmax. The
low z and large z regimes exist here, too, being provided by
the Emax rule.
The lowest, ωiso

cas ¼ 4 × 10−8 eV=cm3, is obtained for
zmax ≲ 1 and for the absence of evolution m ¼ 0. It is an
order of magnitude lower than the limit 5.8 × 10−7 eV=cm3

found in Ref. [8] for the secondary photons produced
during the propagation of UHECR. The limit appears very
restrictive for fluxes of protons in the UHECR and
cosmogenic neutrinos produced at zmax ≲ 1 and in the
absence of evolution m ¼ 0.
Nonevolutionary models with m ¼ 0 and zmax ≳ 2 have

ωiso
cas ≤ 8 × 10−8 eV=cm3 (see Fig. 11, panel b) which

allows some of nonevolutionary UHECR proton models
from Table 1 of Ref. [34]. The models with strong evolution
m ¼ 5 and zmax ≳ 2 allow large ωiso

cas ≈ 8 × 10−7 eV=cm3,
favorable for UHECR proton models with strong evolution
and large zmax.
The smallness of ωcas produced in cosmic-ray models in

comparison with ωiso
cas measured by Fermi LAT is not the

only criterion for a successful cosmic-ray model. It must
satisfy another more sensitive criterion: not to exceed the
Fermi IGRB flux in the highest-energy bin (in fact, this
criterion enters the comparison of energy densities as an
integral characteristic). Unfortunately, the IGRB flux esti-
mate in the highest-energy bin is strongly model dependent
and suffers from low statistics. We have considered
problem of survival of UHECR proton models in details
in a separate work, emphasizing the role of the highest-
energy bin (in preparation). This problem was already
studied in the works [8–10] and most recently in a different
approach in Ref. [49].
The above analysis is based on EGB and IGRB fluxes

derived using 50 months of Fermi-LAT observation [7].
The two recent catalogs of sources which appeared later
[50] and [51] may have an effect on the IGRB estimate and
therefore on our results. These catalogs are based on the
new program of analysis, Pass 8, with the improved
reconstruction and classification of events and with the
time of observation increased to 6 years. The analysis of the
work [48] shows that the considerable fraction of high-
energy events above 50 GeV can be attributed to unre-
solved sources, most of which are blazars. For EGB flux,
contribution of blazars according to this work reaches

86þ16
−14%. This implies a stronger bound on the true isotropic

flux. This effect can be roughly described by inequality

ω0iso
cas ≲ 0.28ωtot

cas: ð35Þ

VI. SUMMARY

Using both an analytic approach and numerical simu-
lations, we have described the development of electromag-
netic cascades in the universe in the presence of CMB and
EBL background radiations. The cascades develop due to
IC scattering on the most numerous CMB photons eþ
γcmb → e0 þ γ0 and pair production on less numerous EBL
photons γ þ γebl → e−eþ. A primary particle below is
called the photon, though the electron is implied under
this name, too.
For analytic calculations, we use dichromatic model with

fixed energy of CMB photons εcmb ¼ 6.3 × 10−4 eV and
EBL photons with εebl ¼ 0.68 eV. In the cascade photon
spectrum there are two characteristic energies: absorption
energy Eebl

γ ∼m2
e=εebl and Inverse Compton energy of a

photon EX ¼ ð1=3ÞðEγ=meÞ2εcmb, produced by an electron/
positron which is born in γ þ γebl collision. Thus, in the
analytic dichromatic model, we have

Eebl
γ ¼ m2

e

εebl
¼ 3.9 × 1011 eV

EX ¼ 1

3
Eebl
γ

ϵcmb

ϵebl
¼ 1.2 × 108 eV: ð36Þ

The cascade initiated at large distance by a very-high-
energy photon/electron has a spectrum given by Eq. (9),
which is ∝ E−3=2 in the low-energy regime E≲ EX, with
∝ E−2 at intermediate energies EX ≲ E≲ Eγ and with a
high-energy cutoff at Eγ , where Eγ numerically can differ
from Eebl

γ in Eq. (36) due to different values of ϵebl.
The numerical simulations confirm the analytic spectrum

with index γ1 ¼ 3=2 being exact, γ2 ¼ 2 being approxi-
mate (γ2 ≈ 1.9 in numerical simulations), and with a sharp
high-energy cutoff for a source at a very large distance. The
artificially sharp energy transitions in the analytic spectrum
at E ¼ EX and E ¼ Eγ appear in numerical simulations as
continuous transition features. This is the most important
difference between the analytic solution and more precise
numerical simulation.
The remarkable feature found in both analytic and

numerical solutions is the universality of the cascade
spectrum. In the analytic solution, the strong universality
is seen explicitly from the spectrum given by Eq. (9), where
the shape of the spectrum does not depend on the initial
energy of the primary photon at Es > E0 nor on the
distance to observer r, unless it is too small. The energy
scale of universality is E0 ¼ Ecmb

γ ¼ 0.4 PeV. The energy
EX which separates two regimes, ∝ E−3=2 and ∝ E−2, and
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the energy of spectrum cutoff Eγ are built from the main
physical constants of the model [see Eq. (5)], and the
cascade energy spectrum does not depend on variables of
the model, in particular on initial energy Es and the distance
to the source r. The main features of this universality,
specific for the analytic model developed in Sec. II A, are
(i) the same energy shape of the cascades produced by the
primary photon/electron if its energy Es is larger than
universality scale E0, (ii) the same cascade energy spectrum
for any injection spectrumQðEÞ at E ≥ E0 (in other words,
the cascade spectrum forgets what injection spectrum
produced it), (iii) indepedence of the spectrum shape from
the distance to the point where the cascade started, and
(iv) the energy density of the cascade ωcas as the only
cascade parameter which determines the spectrum shape.
These properties of analytic cascades are referred to as

strong universality.
For realistic cascades in the expanding universe, property

i is modified as follows: cascades initiated at the fixed
redshift z by the photon/electron with sufficiently high-
energy Es > E0 turn at z ¼ 0 into cascades with a spectrum
independent of Es but dependent on z. These spectra are
calculated by numerical simulation. Property ii remains
almost the same: cascade spectra initiated at the same zwith
different injection spectra QðEÞ are almost identical.
However, if injection spectrum QðE; zÞ smoothly changes
with z, the total diffuse spectrum obtained by integration
over z is not universal; the spectra are different for a
different dependence of QðE; zÞ on z. The diffuse spectra
for various QðE; zÞ are determined in this case not only by
ωcas but also by other parameters fromQðE; zÞ distribution.
We refer to the case described above as weak univer-

sality. Some of the described properties of these cascades,
studied in numerical simulations, are shown in Fig. 9.
The main aim of this paper is to obtain the upper limit on

the cascade energy density ωcas using the Fermi LAT flux
of gamma radiation. In the analytic model with strong
universality, there is the direct and transparent method
which allows us to obtain a strong enough upper limit on
the cascade energy density. This upper limit follows from
Eq. (29) and results in ωcas ≤ 8.3 × 10−8 eV=cm3. The
specific property of this limit is the high-energy cutoff, i.e.,
Emax, given by Eγ ¼ m2

e=εebl, which at εebl ∼ 1 eV coin-
cides with cutoff energy in Fermi IGRB spectrum. The
limit is stronger if the model-dependent Emax ¼ Eγ is
higher.
An even stronger upper limit is obtained comparing the

numerical calculations of the cascade energy shape with
the Fermi measured spectrum, due to its high-energy tail. If
the calculated spectrum crosses the steep high-energy
Fermi tail at Ecross, the calculated flux above Ecross exceeds
the observations. To eliminate this contradiction, one must
lower the total calculated spectrum decreasing ωcas, and
thus we arrive at the Emax-rule formulated in Sec. V B as

increasing Emax in the calculated spectrum further sup-
pressing ωcas.
In particular, the Emax rule works efficiently in evolu-

tionary ð1þ zÞm models with large m and large zmax. Since
the flux in these models is dominated by production at zmax,
the maximum energy Emax at z ¼ 0 becomes ð1þ zmaxÞ
times less, and, respectively, ωcas is allowed to be higher, as
one observes in Fig. 11(b).
We describe now the obtained limits on ωcas in some

details.
Fermi LAT presented two kinds of measured extraga-

lactic fluxes: the total EGB and IGRB. The corresponding
energy densities obtained, using EGB and IGRB as the
upper limits, are ωtot

cas and ωiso
cas, respectively, the former

being always larger. Both fluxes, EGR and IGRB, have
systematic and statistical uncertainties and are to some
extent model dependent (e.g., foreground models). To be
conservative, we use maximal fluxes allowed within these
uncertainties.
The both spectra, EGR and IGRB, have steepening,

which starts at Ecut ¼ 250 GeV, and at higher energies
become steeper. The method of ωcas calculation is mainly
based on this steep high-energy feature.
The shape of the cascade spectrum is accurately calcu-

lated using kinetic equations and MC methods. As these
calculations show, Emax in the cascade spectrum at z ¼ 0
becomes smaller at larger zs of cascade production. Since
the flux of EGR/IGRB is JðEÞ ∝ E−3.2, small Emax results
in larger flux JðEmaxÞ, i.e., in larger ωcas. In other words,
ωcas is rising with increasing zs as we see indeed in
Fig. 11(a).
Figure 11(a) shows the case of fixed zs, when strong

universality holds, and thus theωcas value is unique for each
zs. As expected, ωtot

cas is larger than ωiso
cas. For small distances

zs < 0.1, cascades are underdeveloped, and ωcas are small:
ωiso
cas ≲ ð2 − 3Þ × 10−8 eV=cm3. At large zs ≳ 1, the energy

density is larger: ωiso
cas ≳ ð5 − 8Þ × 10−7 eV=cm3. These

results depend weakly on models of EBL.
The strong dependence ofωcas on redshift zs in Fig. 11(a)

implies the dependence of the energy density on the source
distribution over z, seen in Fig. 11(b). One may observe
there an increase of ωcas with zmax up to zmax ∼ 1, with the
constant value at larger zmax. This constant value depends
on cosmological evolution ð1þ zÞm. One may summarize
the values of ωiso

cas as 5 × 10−8 eV=cm3 in the case of the
absence of cosmological evolution m ¼ 0 and up to
9 × 10−7 eV=cm3 in the case of strong cosmological
evolution m ¼ 5.
The large ωmax

cas allowed in the case of strong
evolution with large zmax is explained by the diminishing of
Emax by the factor (1þ z) in the cascade spectrum at z ¼ 0.
The first results of Fermi LAT [6] demonstrated [8–10]

that cascade energy density ωcas ≈ 5.8 × 10−7 eV=cm3

excludes some proton models of UHECR and cosmo-
genic neutrinos. However, some models survived. The
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new data of Fermi LAT [7] discovered the steep energy
feature in the end of the spectrum, which further
constrains the cascade energy density. The new limit is
model dependent. For models with strong universality of
the cascade spectrum, the limits on ωcas became stronger,
and restrictions on UHECR became more severe.
However, for the models with weak universality, the
restrictions are relaxed. In particular, the evolutionary
models with strong evolution and large zmax the energy

density can be larger than 6 × 10−7 eV=cm3, i.e., larger
than the previous limit.
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