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The separate universe technique provides a means of establishing consistency relations between short-
wavelength observables and the long-wavelength matter density fluctuations within which they evolve by
absorbing the latter into the cosmological background. We extend it to cases where nongravitational forces
introduce a Jeans scale in other species like dynamical dark energy or massive neutrinos. The technique
matches the synchronous gauge matter density fluctuations to the local expansion using the acceleration
equation and accounts for the temporal nonlocality and scale dependence of the long-wavelength response
of small scale matter observables, e.g., the nonlinear power spectrum, halo abundance and the implied halo
bias, and N-point correlation functions. Above the Jeans scale, the local Friedmann equation relates the
expansion to real energy densities and a curvature that is constant in comoving coordinates. Below the
Jeans scale, the curvature evolves and acts like a fake density component. In all cases, the matter evolution
on small scales is correctly modeled as we illustrate using scalar field dark energy with adiabatic or
isocurvature initial conditions across the Jeans scale set by its finite sound speed.
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I. INTRODUCTION

Describing the impact of a long-wavelength cosmologi-
cal perturbation on small scale observables as a change
in the background cosmology, or separate universe, has
proven very useful both conceptually and as a tool for
making precise and consistent predictions between observ-
ables. In the inflationary context, separate universe argu-
ments provide insights into consistency relations between
the N-point functions [1,2], the evolution of isocurvature
fluctuations in multifield models [3], and the observable
impact of compensated isocurvature fluctuations [4] within
its domain of validity [5].
In the late universe context, they have enabled studies of

baryon acoustic oscillations [6], supersample power spec-
trum covariance [7,8], position dependent power spectra
[9–11], cosmic microwave background lensing covariance
[12], and dark matter halo bias [13–16]. Moreover, to the
extent that the separate universe construction holds, these
observable effects can be modeled deep into the nonlinear
regime with cosmological simulations [9,17–19], in prin-
ciple complete with state-of-the-art treatments of astro-
physical processes. In particular, long-wavelength modes
have an impact on small scale observables that is nonlocal
in time, complicating, for example, the modeling of the
nonlinear power spectrum [20] and halo bias [21–23].
In the separate universe approach, these can simply be
modeled as a change in cosmological parameters.

The separate universe construction has traditionally been
limited to large scales where only gravitational forces act
[24]. The effects of pressure or anisotropic stress gradients
in stabilizing fluctuations at the Jeans scale would seem to
prevent replacing fluctuations with a separate homogeneous
and isotropic universe. While the nonrelativistic matter is
effectively pressureless on cosmological scales, the real
universe contains components that have relativistic stresses
today or in the past, e.g., dark energy andmassive neutrinos.
In these cases, the response of short-wavelength observables
to long-wavelength fluctuations can depend on their scale
and redshift in addition to their amplitudes [23,25].
In this work, we extend separate universe techniques

to the multicomponent, relativistic case by introducing
fictitious components below the Jeans scale that preserve
the illusion of a separate homogeneous and isotropic
background from the perspective of the small-scale matter
distribution. We begin in Sec. II with the construction
of a separate expansion history that absorbs a long-
wavelength matter density fluctuation even in this general
case where nongravitational forces act on other compo-
nents. Above the Jeans scale set by these forces, the
construction yields a separate universe with the real energy
densities and curvature of the long-wavelength fluctua-
tions. Below the Jeans scale, nonconservation of curvature
prevents these associations but retains the correct evolution
of the small scale matter distribution.
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In Sec. III, we discuss the relationship between the
entropy, nonadiabatic stress, and curvature of the pertur-
bations and the assignment of cosmological parameters
in the separate universe above and below the Jeans scale.
The separate universe construction determines how short-
wavelength observables respond to long-wavelength modes
including scale dependent and temporally nonlocal effects
as illustrated in Sec. IV. We provide a concrete example of
scalar field dark energy with adiabatic and isocurvature
initial conditions in Sec. V. We discuss these results
in Sec. VI.

II. SEPARATE UNIVERSE CONSTRUCTION

In this section, we develop the formal aspects of the
separate universe construction in a fully relativistic and
multicomponent context. We begin in Sec. II A by defining
the local expansion history that absorbs a matter density
fluctuation and its entire growth history into the back-
ground. This construction corresponds to exactly matching
the separate universe acceleration equation with the syn-
chronous gauge density perturbation and is always possible
as shown in Sec. II B. In Sec. II C, we find this construction
also matches the Friedmann and energy conservation
equations of the other components if the separate universe
curvature implied by the curvature perturbation is constant
(see also Ref. [24]). We relate this condition to the Jeans
scales of these components in Sec. II D.

A. Local expansion and density

In the separate universe approach, we seek to absorb a
long-wavelength matter density fluctuation δ ¼ δρm=ρ̄m,
including its entire growth history, into the background of a
separate universe [8,9,13,17,26],

ρ̄mðaÞ½1þ δðaÞ� ¼ ρ̄mWðaÞ: ð1Þ

“W” here and throughout denotes locally averaged or
“windowed” quantities on scales much smaller than
the wavelength. In terms of defining the local cosmology,
we can introduce the separate universe scale factor
through ρ̄mW ∝ a−3W , which then defines the matter density
parameters

Ωmh2

a3
ð1þ δÞ ¼ ΩmWh2W

a3W
: ð2Þ

Here, the Hubble constant H0 ¼ 100h km s−1Mpc−1, and
similarly H0W is parametrized by the dimensionless hW .
Our convention is to set the scale factor of the separate
universe aW to agree with the global one a at high redshift,

lim
a→0

aWðaÞ ¼ a; ð3Þ

where

lim
a→0

δðaÞ ¼ 0: ð4Þ

With this convention, the background energy densities in
the matter at the same numerical values for a and aW are
always equal, and hence

ΩmWh2W ¼ Ωmh2; ð5Þ

but the scale factors at the same time differ,

aW ¼ a

ð1þ δÞ1=3 ≈ a

�
1 −

δ

3

�
: ð6Þ

In this construction, we assume that the two universes
share a common universal time. We shall see that common
clocks of the two universes require δ to be specified in
synchronous gauge, a distinction that becomes important
for scales near the horizon. Equivalently, in a gauge-
invariant separate universe construction, the quantity of
interest is the change in the e-folds of the expansion [3]
which we can equate to the synchronous gauge matter
density perturbation since it evolves only via metric
perturbations (see Sec. II C),

δN ¼ ln aW − ln a ≈ −
δ

3
: ð7Þ

The difference in scale factors also implies that the
separate universe has a different expansion rate. Using the
definition H ¼ _a=a and Eq. (6), we obtain

δH2 ¼ H2
W −H2 ≈ −

2

3
H _δ ¼ −

2

3
H2δ0: ð8Þ

Here, overdots denote d=dt in both the global and separate
universe, whereas 0 ¼ d=d ln a will denote derivatives in
the global universe only.
For the purpose of setting up the separate universe, it is

sufficient to modify the expansion rate directly without
making further distinctions about its purported sources in
the local Friedmann equation. Notice that this construction
in fact makes no direct use of components in the universe
besides the matter. Other components affect the construc-
tion only through changing the matter growth history δðaÞ.
On the other hand, this expansion history may or may not
be generated by the local Friedmann equation with the
physical components of the local universe. To understand
this issue, we consider the impact of the other components
in the following sections.

B. Newtonian cosmology and acceleration

In the Newtonian interpretation of the acceleration
equation, the nonrelativistic matter can be considered as
test particles tracking the evolution of some region of
physical radius R in the global universe. It accommodates a
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perturbation δ as long as R is much smaller than its
wavelength.
Let us suppose that in addition to the matter there are

additional density and pressure components:

ρQ ¼
X
J≠m

ρJ; pQ ¼
X
J≠m

pJ: ð9Þ

Newtonian cosmology, the relativistic justification of which
relies on the Birkhoff theorem [27,28], relates the accel-
eration R̈ to the enclosed active gravitational mass

R̈ ¼ −
4πG
3

½ρm þ ρQ þ 3pQ�R ð10Þ

and so with the acceleration equation for the global
universe,

R̈
R
¼ ä

a
−
ΩmH2

0

2a3
δ −

4πG
3

ðδρQ þ 3δpQÞ: ð11Þ

The evolution of this radius can be absorbed into a separate
universe scale factor if aW ∝ R so that

R̈
R
¼ äW

aW
: ð12Þ

Using Eq. (6), we also have

äW
aW

¼ ä
a
−
2

3
H _δ −

1

3
δ̈: ð13Þ

Thus, the separate universe condition is satisfied if

δ̈þ 2H_δ ¼ 3ΩmH2
0

2a3
δþ 4πGðδρQ þ 3δpQÞ

¼ 4πG
X
J

ðδρJ þ 3δpJÞ ¼ 0: ð14Þ

We shall see in the next section that this is exactly the
equation of motion for the synchronous gauge matter
density perturbation. In the separate universe approach,
we are really just going to Lagrangian coordinates defined
by the cold dark matter particles. Only their relationship
to Eulerian coordinates, quantified by δ, is influenced by
other species in the universe. On scales that are well
below the horizon, the distinction between the synchronous
gauge and other common gauges such as the conformal
Newtonian or comoving gauge becomes irrelevant, and a
Newtonian analysis for the density perturbation also
applies.

C. Synchronous gauge and Friedmann equation

We can formalize the separate universe associations in
the fully relativistic context of the Friedmann and

acceleration equations. The assumption of a universal time
implies that the δ we absorb into the local background is
the synchronous gauge fluctuation. Its evolution must be
compatible with the local Friedmann and acceleration
equations for a real separate universe construction.
In the synchronous gauge, the metric is given by

g00 ¼ −1, g0i ¼ 0, and a perturbed spatial metric

gij ¼ a2ðγij þ hijÞ; ð15Þ

where γij is the 3-metric of constant comoving curvature K
and the scalar metric perturbations for a mode of Laplacian
wave number k can be further decomposed into trace and
trace-free pieces:

hij ¼
hL
3
γij −

�
∇i∇j −

1

3
γij∇2

�
hL þ 6ηT

k2
: ð16Þ

Covariant differentiation and raising and lowering of spatial
indices is performed with respect to γij. In the separate
universe, hL performs the role of the perturbation to the
scale factor a and ηT to the spatial curvatureK. Specifically,
the perturbation to the 3D Ricci scalar ð3ÞR ¼ 6K=a2 on
constant synchronous time slices (e.g., Ref. [29]),

δK ¼ −
2

3
ðk2 − 3KÞηT; ð17Þ

whereas the effect of hL is to change volumes and hence the
effective Hubble rate by

δH
H

¼
_hL
6H

¼ h0L
6
: ð18Þ

Note that the effect of a single k-mode perturbation is
an anisotropic change in the expansion rate. For example,
if K ¼ 0, the normal modes are plane waves. For a
k-mode directed in the x direction eikx, the scale factor
and its time derivative only change in the same direction
δ ln ax ¼ hL=2, δ ln ay ¼ δ ln az ¼ 0. Consequently, the
separate universe construction only strictly applies to the
angle averaged response of local observables to the long-
wavelength mode, for example, number densities of dark
matter halos or angle averaged power spectra.
The 00 and trace ii Einstein equations relate the metric

to the energy density δρJ and pressure δpJ perturbations of
the various components (see, e.g., Refs. [29] and [30,31]
for a similar notation),

−
k2 − 3K
ðaHÞ2 ηT þ 1

2
h0L ¼ 4πG

H2

X
J

δρJ; ð19Þ

h00L þ
�
2þH0

H

�
h0L ¼ −

8πG
H2

X
J

ðδρJ þ 3δpJÞ; ð20Þ
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which are themselves governed by the continuity and
Navier-Stokes equation

δρ0J þ 3ðδρJ þ δpJÞ ¼ −
kρ̄J
aH

uJ −
ρ̄J þ p̄J

2
h0L;

ρ̄Ju0J þ ðρ̄J − 3p̄JÞuJ ¼
k
aH

�
δpJ −

2

3

�
1 −

3K
k2

�
pJπJ

�
;

ð21Þ

where ρ̄JuJ is the momentum density.
If the separate universe construction holds exactly,

then these synchronous gauge equations can be reabsorbed
into the Friedmann, acceleration, and energy conservation
equations. We can already see from the lack of a back-
ground Navier-Stokes equation that this can only be true
if the momentum density generated by nongravitational
gradients in the isotropic stress δpJ and anisotropic stress
πJ can be ignored. We examine each of these equations
in turn.
First, let us check the matter continuity equation (21) and

its relation to the perturbation to the Hubble rate. For the
matter, pm ¼ 0, and we further use the remaining gauge
freedom of the synchronous gauge to choose the freely
falling observers to be on a grid of the pressureless matter
particles themselves which sets um ¼ 0.
With the shorthand convention δ ¼ δm, Eq. (21)

becomes

δ0 ¼ −
1

2
h0L ¼ −3

δH
H

: ð22Þ

This relation matches the separate universe construction in
Eq. (18). Equation (20) then gives the evolution equation
for δ as Eq. (14).
For the other components, if we take energy conserva-

tion in the background

ρ̄0J þ 3ðρ̄J þ p̄JÞ ¼ 0 ð23Þ

and perturb the expansion rate, we obtain the purely
gravitational pieces of their continuity equations (21).
The perturbation to the Hubble rate means that derivatives
with respect to the scale factor are perturbed as

d
d ln aW

¼ 1

HW

d
dt

¼ H
HW

1

H
d
dt

≈
�
1 −

δH
H

�
d

d ln a
; ð24Þ

and so Eq. (23) becomes for the perturbations

δρ0J þ 3ðδρJ þ δpJÞ þ 3
δH
H

ðρ̄J þ p̄JÞ ¼ 0: ð25Þ

This matches the continuity equation (21) when the effect
of the divergence of the nongravitational peculiar velocities
uJ can be ignored. These are generated through the

Navier-Stokes equation (21) from pressure and anisotropic
stress gradients which give the condition

�
k
aH

�
2

O
�
δpJ

δρJ
;
p̄JπJ
δρJ

�
≪ 1 ð26Þ

for them to change the energy density fluctuation
negligibly.
Next, through the change in the expansion rate (22), the

ii Einstein equation (20) is related to the perturbation to the
acceleration equation

H2 þ 1

2

dH2

d ln a
¼ −

4πG
3

X
J

ðρ̄J þ 3p̄JÞ: ð27Þ

Converting derivatives of the scale factor with Eq. (24), we
obtain the perturbed acceleration equation in terms of the
global a as

�
δH
H

�0
þ
�
2þH0

H

�
δH
H

¼−
4πG
3H2

X
J

ðδρJþ3δpJÞ; ð28Þ

which matches Eq. (20) given (22). Notice that, unlike the
continuity equations, the acceleration equations for the
background and perturbations take exactly the same form
with no further restrictions on scales, in agreement with the
discussion of the Newtonian cosmology in the previous
section.
Finally, the 00 Einstein equation (19) is the perturbation

to the Friedmann equation

H2 þ K
a2

¼
X
J

8πG
3

ρ̄J; ð29Þ

or

δH2 þ δK
a2

¼
X
J

8πG
3

δρJ; ð30Þ

with the associations of Eq. (17) and (18). Conversely,
these perturbations can be reabsorbed into a Friedmann
equation of a local, separate universe if the curvature
fluctuation δKðaÞ can be replaced by a new constant
curvature KW in coordinates that comove with aW ,

KW ≡ a2W
a2

ðK þ δKÞ ≈ K þ δK −
2

3
Kδ: ð31Þ

If the global universe is flat K ¼ 0, the curvature pertur-
bation δK itself must be constant. Thus, the existence of a
real separate universe is intimately related to the conserva-
tion of curvature perturbations outside the horizon [32]. If
K ≠ 0, the curvature perturbation must evolve to account
for the different local scale factor of the perturbed universe.
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Thus, from the perspective of matching the synchronous
gauge perturbation equations to background equations
in the separate universe, the continuity equation requires
nongravitational flows uJ to be negligible, and the
Friedmann equation requires the curvature KW to be
constant. We shall now see that these are essentially the
same criteria.

D. Curvature conservation and Jeans scale

To better understand why the constancy of curvature is
related to having negligible nongravitational flows, it is
useful to examine the redundant 0i Einstein equation which
directly gives the evolution equation for the curvature
fluctuation,�

1 −
3K
k2

�
η0T −

K
2k2

h0L ¼ 4πG
H2

aH
k

X
J

ρ̄JuJ: ð32Þ

This equation has no equivalent in the background given
homogeneity and isotropy, and so in the separate universe
construction should produce a tautology 0 ¼ 0. Using
Eqs. (17) and (31), we can rewrite Eq. (32) as

K0
W ¼ −

8πG
3

k2

H2

aH
k

X
J

ρ̄JuJ: ð33Þ

The curvature is effectively constant when we can ignore
the nongravitational velocities uJ. Given the Navier-Stokes
equation (21)

ρ̄JuJ ¼
k
aH

OðδpJ; pJπJÞ; ð34Þ

we obtain the estimate

K0
W ¼ 8πG

k2

H2
OðδpT; pTπTÞ; ð35Þ

where “T” denotes the total of all components. We call
the scale kT at which this change in curvature per e-fold
becomes comparable to the curvature fluctuation itself,

K0
W

δK
¼ Oð1Þ; ð36Þ

the total Jeans scale.
While this defines the total Jeans scale and relates

it to nongravitational flows, it is useful to estimate its
value in particular cases to relate it to more conventional
definitions. For metric perturbations sourced by growing
total density fluctuations δρT , where jδpT=δρT j≲1,
h0 ¼ Oð4πGδρT=H2Þ. Then, Eq. (19) gives the order of
magnitude of the curvature fluctuation itself,

δK ¼ 4πGa2OðδρTÞ; ð37Þ

and so

K0
W

δK
¼

�
k
aH

�
2

O
�
δpT

δρT
;
p̄TπT
δρT

�
: ð38Þ

For a single component with only isotropic, adiabatic
stresses,

δpT=δρT ¼ p0
T=ρ

0
T ≡ c2Ta; ð39Þ

defining the adiabatic sound speed. This corresponds to the
usual Jeans condition that pressure prevents further growth
below the sound horizon or Jeans scale cTakT=aH ≈ 1.
If the sound speed is subluminal cTa < 1, the Jeans scale
is always below the horizon scale. Note that in this case
there is no difference between the constant curvature
condition (38) and the negligible nongravitational flows
condition (26).
More generally, the total pressure is composed of the

adiabatic ðp0
J=ρ

0
JÞδρJ ¼ c2JaδρJ; internal nonadiabatic stress

ΓJ of the various components,

δpJ ¼ c2JaδρJ þ pJΓJ; ð40Þ

and their relative entropy fluctuations with the matter

SJm ¼ δρJ
ρ̄J þ p̄J

−
δρm

ρ̄m þ p̄m
; ð41Þ

such that

δpT ¼ c2TaδρT þ pTΓT; ð42Þ

with the total nonadiabatic stress

pTΓT ¼
X
J

½pJΓJ þ SJmðρJ þ pJÞðc2Ja − c2TaÞ�: ð43Þ

In the general case, the adiabatic sound speed cTa no longer
bounds the total pressure.
Entropy fluctuations allow initial isocurvature conditions

where the total Jeans scale can be made arbitrarily large
compared with the horizon. In this case, we need to slightly
generalize the estimate (38) since the total pressure fluc-
tuation can be larger than the total density perturbation and
we need to separate their contribution through h0L to ηT in
Eq. (19). This division can be readily identified by using
the final synchronous Einstein equation, the redundant ij
trace-free equation

−
�

k
aH

�
2

ηT þ h00L þ 6η00T
2

þ
�
3þH0

H

�
h0L þ 6η0T

2

¼ −
8πG
H2

X
J

pJπJ; ð44Þ
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and combining Eqs. (19) and (32) into

�
1 −

3K
k2

��
h0L þ 6η0T

2
−

k2

ðaHÞ2 ηT
�
¼ 4πG

H2
δρTc; ð45Þ

where

δρTc ¼
X
J

�
δρJ þ 3

�
aH
k

�
ρJuJ

�
ð46Þ

defines the density perturbation in the comoving gauge
[32]. With the assumption that the total anisotropic stress is
negligible outside the horizon,

δK ¼ 4πGa2OðδρTcÞ; ð47Þ

which generalizes Eq. (37) for total density fluctuations that
grow from isocurvature initial conditions.
Thus, isocurvature conditions result when the contribu-

tions to the comoving gauge density perturbations cancel
between species of different sound speeds, leaving finite
pressure perturbations. In this case, the curvature fluc-
tuation is initially small but evolves significantly so that
its small impact on the local curvature cannot be captured
as a real separate universe. On the other hand, since our
universe possesses adiabatic or initial curvature fluctua-
tions, even if isocurvature modes SJm are comparable to the
curvature fluctuations, their impact on the separate universe
curvature above the horizon is negligible (see Sec. V). We
shall also see there that an entropy fluctuation SJm forms
dynamically from initial curvature fluctuations if J has an
intrinsic nonadiabatic stress ΓJ as it must for a dynamical
dark energy component (see Sec. V and Ref. [33]).
Finally, for collisionless particles, free streaming

generates anisotropic stress, and their gradients generate
higher moments. Anisotropic stress gradients also act as
an effective viscosity in the Navier-Stokes equation (21)
generating uJ and setting an effective Jeans scale in
Eq. (34) called the free streaming scale.
The distinction between the constant curvature condition

(38) and the nongravitational flows condition Eq. (26) is
that the latter sets a Jeans scale for each component. If a
component contributes negligibly to the total, then it has a
negligible effect on the curvature even below its Jeans
scale. In Sec. V, we shall see an example where, in the
matter dominated regime, the dark energy has its own Jeans
scale that is much larger than the total Jeans scale but
does not impact the matter evolution. On the other hand,
this distinction becomes irrelevant if, as in this case, the
component eventually does dominate the expansion.
In summary, if the wavelength of δ is larger than the

Jeans scales of all components, we call its absorption into a
local background as a “real” separate universe construction
since all of the perturbation equations can be absorbed into
the background with real energy density and curvature in

the Friedmann equation. If the wavelength is shorter than
the total Jeans scale, we call this a “fake” separate universe
construction. In this case, from the perspective of the
matter, the local universe obeys an effective Friedmann
equation. Here, the curvature in comoving coordinates
evolves, but as we shall see in the next section, it is
considered as an effective energy density component for the
matter dynamics.
This correspondence enables and justifies a separate

universe treatment of the response of small scale cosmo-
logical observables to a long-wavelength density perturba-
tion even if that wavelength is below the total Jeans scale of
the system.

III. SEPARATE UNIVERSE COMPONENTS

In the previous section, we have shown that a long-
wavelength matter density fluctuation can always be
reabsorbed into the background with an appropriate adjust-
ment of the expansion rate to its local or separate universe
value. By construction, this approach satisfies the accel-
eration equation or the Newtonian cosmology exactly.
For the separate universe Friedmann equation to be truly
satisfied in terms of real energy densities and curvature, the
wavelength must be much longer than the total Jeans scale
in order for the curvature to be constant in comoving
coordinates.
Below the Jeans scale, if the nonmatter components only

influence the small scale matter evolution through the
expansion rate, they can be described by an effective
energy density component. In this fake separate universe,
the dynamical impact of a changing curvature is assigned to
this fictitious energy density component.
In this section, by matching parameters in the global

and separate universe Friedmann equation, we establish
this correspondence explicitly. We begin in Sec. III A with
the comparison of the two Friedmann equations. We relate
parameters in the real separate universe in Sec. III B and
in the fake separate universe in Sec. III C.

A. Friedmann matching

The Friedmann equation in the global background
universe can, without loss of generality, be written as

H2

H2
0

¼ Ωm

a3
þΩQFQðaÞ þ

ΩK

a2
; ð48Þ

whereQ represents the sum over all components aside from
the pressureless matter. Here, FQða ¼ 1Þ ¼ 1, and so
defines ρ̄QðaÞ relative to its value today. Its derivative
gives the equation of state parameter

d lnFQ

d ln a
¼ −3ð1þ wQÞ: ð49Þ

HU, CHIANG, LI, and LOVERDE PHYSICAL REVIEW D 94, 023002 (2016)

023002-6



Let us first try a naive method for absorbing the energy
density fluctuations δm and δQ into a local background.
Taking an equation of the same form as the Friedmann
equation,

H2
W ¼ H2

0W

�
ΩmW

a3W
þ ΩQWFQðaWÞ þ

ΩKW

a2W

�
; ð50Þ

we can attempt to set the local parameters using the
Friedmann equation with perturbed energy densities

H2
W ¼H2

0

�
ð1þ δÞΩm

a3
þ ð1þ δQÞΩQFQðaÞ

�
þH2

0W
ΩKW

a2W
:

ð51Þ

Using the aWðaÞ relationship (6), the Hubble rates in
Eqs. (50) and (51) coincide if

ΩmWH2
0W ¼ ΩmH2

0;

ΩQWH2
0W ¼ ΩQH2

0;

δQ ¼ −
1

3

d lnFQ

d ln a
δ; ð52Þ

i.e., if the energy densities agree when a and aW have the
same numerical value and the entropy perturbation (41)

SQm ¼ δQ
1þ wQ

− δ ð53Þ

between the components vanishes. In this case, the same
shift in the scale factor of Eq. (6) that absorbs the matter
fluctuation would absorb the Q fluctuation as well for all
time. However, Eq. (52) is not a necessary condition and
in fact cannot be stably satisfied if Q contains dynamical
dark energy components (see Sec. V and Ref. [33]).
More generally, in the separate universe construction, the

synchronous gauge matter density fluctuation δ defines the
Hubble rate in the separate universe HW through Eq. (8)
and the relationship between the scale factors at constant
time through Eq. (6). We can relate H2

W to the energy
densities and curvature to a more general form of the
Friedmann equation,

H2
W

H2
0W

¼ΩmW

a3W
þΩQWFQðaWÞþ

ΩKW

a2W
þΩSWFSðaWÞ; ð54Þ

where FSðaW ¼ 1Þ ¼ 1. The introduction of the S compo-
nent allows us to match any expansion history, not just
those defined by perturbations to the ΩQ of the global
universe. We shall see next that its presence indicates
an entropy perturbation or nonadiabatic stress for a real
separate universe and a fictitious energy density that
accounts for the evolution of the curvature in a fake
separate universe.

We can obtain these correspondences by equating the
difference in the Friedmann equation Hubble rates defined
by Eqs. (54) and (48) to that required by Eq. (8) to match
the acceleration equation. Keeping terms linear in δ,

δH2

H2
0

≡ −
2

3

H2

H2
0

δ0 ¼ Ωm

a3
δ −

ΩQ

3
F0
Qδþ

2

3

ΩK

a2
δþ 2δh

h
1

a2

þΩSW

�
FS −

1

a2

�
: ð55Þ

Here, 2δh=h ≈ ðH2
0W −H2

0Þ=H2
0 is a constant associated

with the expansion rates at two different times but the same
numerical value of the scale factor, namely aW ¼ 1 and
a ¼ 1. Here and below, we use the notation δX ¼ XW − X
for a parameter X. Note that ΩSW ∝ δ since this component
is absent in the global universe.
In particular, δh=h is defined by evaluating Eq. (55) at

a ¼ 1 using δ0ða ¼ 1Þ≡ δ00,

2
δh
h

¼ −
2

3
δ00 − Ωmδ0þ

F0
Q

3
ΩQδ0 −

2

3
ΩKδ0: ð56Þ

Equality of the physical energy densities at the same scale
factor sets

δΩm

Ωm
¼ δΩQ

ΩQ
¼ −2

δh
h
; ð57Þ

and

ΩSW þ ΩKW ¼ 1 − ΩmW −ΩQW; ð58Þ

by definition of H2
0W . While this assumption for δΩQ is not

fully general, we can absorb any remaining difference into
the S component. In other words, we take δΩQ to define the
division into Q and S components in the separate universe.
We shall make explicit use of this fact in the dark energy
isocurvature example in Sec. V.
These relations set the separate universe parameters of

the energy density components that exist in the global
universe. If we take ΩSW ¼ 0, then the curvature is also
determined, and there is no additional freedom that can be
used to satisfy Eq. (55) at a < 1. Thus, for a general
evolution of δ, ΩSW ≠ 0 is required, and we can define FS
so as to satisfy Eq. (55). Conversely, for any desired
evolution of δ, we can always construct a well-defined
expansion history using S to satisfy both the acceleration
and Friedmann equations.

B. Real separate universe

The distinction between a real and fake separate universe
construction depends on whether the Friedmann compo-
nents ΩSW and ΩKW truly represent an energy density and
curvature in the local universe. In the construction of
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Eq. (58), only their sum and not their individual values is
specified. This ambiguity is related to the fact that in the
Friedmann and acceleration equations it is not possible to
distinguish between an energy density that scales as 1=a2

and a curvature component.
However, curvature has geometric effects which distin-

guish it, and moreover we can relate the curvature pertur-
bation and the separate universe curvature using Eq. (31) at
aW ¼ 1,

ΩKW ≡ −
KW

H2
0W

¼ −
K
H2

0

−
δK
H2

0

þ K
H2

0

�
2

3
δþ 2

δh
h

�
: ð59Þ

δK
H2

0

¼ 8πG
3H2

0

X
J

δρJ þ
2

3
δ0; ð60Þ

where we have used Eqs. (17) and (19). Combining these
equations with Eq. (56), we obtain

δΩK ¼ −ΩQδQ −
F0
Q

3
ΩQδþ 2ð1 − ΩKÞ

δh
h

¼ −ΩQð1þ wQÞSQm þ 2ð1 −ΩKÞ
δh
h
: ð61Þ

Finally using Eq. (58), we obtain

ΩSW ¼ ΩQð1þ wQÞSQm ð62Þ

so that this component is associated with the entropy
perturbation. All of the above relationships for separate
universe cosmological parameters ΩJW in terms of global
universe perturbations are assumed to be evaluated at
aW ¼ 1, and note that δðaW ¼ 1Þ ≈ δða ¼ 1Þ≡ δ0.
We obtain the same criteria from the standpoint of

absorbing the energy density associated with δQ into the
background at an arbitrary aWðaÞ,

H2
0ΩQFQðaÞð1þ δQÞ
¼ H2

0WΩQWFQðaWÞ þH2
0WΩSWFSðaWÞ

≈H2
0ΩQ

�
FQðaÞ −

F0
QðaÞ
3

δ

�
þH2

0ΩSWFSðaÞ: ð63Þ

Employing the definition of the entropy

FQδQ ¼ −
F0
Q

3
ðSQm þ δÞ; ð64Þ

we infer

ΩSWFSðaÞ ¼ −ΩQ
F0
QðaÞ
3

SQmðaÞ; ð65Þ

which gives Eq. (62) at a ¼ 1 and defines the energy
density scaling in terms of the evolution of the entropy.

Note that the presence of an evolving entropy fluctuation
does not prevent a real separate universe matching; each
component represents a real energy density that exists in the
global universe. It simply means that in the separate
universe the background energy density components do
not obey the same equations of state as in the global
universe. On the other hand, we shall see next that
nonconservation of the separate universe curvature below
the Jeans scale does indicate that the separate universe
construction involves fake components.

C. Fake separate universe

While the remapping of perturbations onto separate
universe cosmological parameters in the previous section
may seem fully general, it implicitly assumes that the
separate universe curvature KW ¼ const. whereas it is
actually constructed in Eq. (31) out of the dynamical
curvature and scale factor fluctuations in the global
universe,

K0
W ¼ δK0 −

2

3
Kδ0: ð66Þ

Setting K0
W ¼ 0 and combining the synchronous gauge

metric equations, we obtain the condition

ðδρQÞ0 þ 3ðδρQ þ δpQÞ ¼ ðρ̄Q þ p̄QÞδ0: ð67Þ

Not surprisingly, this is exactly the same condition in
Eq. (25) for which the continuity equation Eq. (21) can be
written as a perturbation to the background energy con-
servation equation. This condition holds to good approxi-
mation for scales above the Jeans scale for Q including any
evolution in SQm. In this case, δQ evolves as in a separate
universe.
Below the Jeans scale, the matter fluctuations still

behave in a way that can be absorbed into a separate
universe expansion rate but one that does not obey a true
Friedmann equation. If we use the curvature and entropy
decomposition in Eqs. (61) and (62), we must allow the
curvature contribution to the Friedmann equation to have a
general evolution,

H2
W

H2
0W

¼ ΩmW

a3W
þ ΩQWFQðaWÞ þ ΩKWFKðaWÞ

þΩSWFSðaWÞ; ð68Þ

where

ΩKWFKðaWÞ≡ −
KWðaWÞ
H2

0Wa
2
W

: ð69Þ

In this case, KW is a nonconstant background curvature
which has a fake equation of state wKW ≠ −1=3.
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Alternatively, we can combine the curvature fluctuation
into the effective energy density S,

δΩK ¼ 0;

ΩSW ¼ −δΩm − δΩQ; ð70Þ

which evolves according to

ΩSWFSðaÞ ¼
ΩSW

a2
−
2

3

H2

H2
0

δ0 −
Ωm

a3
δþ F0

Q

3
ΩQδ

−
2

3

ΩK

a2
δ −

2δh
h

1

a2
: ð71Þ

In this case, S is a fake energy density component that
accounts for both the curvature and entropy fluctuations.
Of course, in practice, given that either alternative involves
a fake component to the Friedmann equation, one can
also simply set an expansion rate HW without dividing
its sources into separate energy density and curvature
components.
In the intermediate regime, where the growth of δ

depends on scale, we can either analyze the separate
universes for each k-mode in turn or construct the real
space δ that corresponds to the sum over the modes that
contribute to the local mean averaged over a given
physical scale.

IV. OBSERVABLE RESPONSE

In both the real and fake or super- and sub-Jeans scale
separate universe constructions, the matter distribution on
small scales responds to a long-wavelength fluctuation as if
it were in a separate universe, i.e., through the change in
cosmological parameters associated with the separate uni-
verse. In general, this means that these observables respond
not just to the change in the local mean density at the epoch
in which they are observed but also the whole history of
its evolution. If this growth history depends on the scale of
the long-wavelength mode, then the observable response
will as well.
For nonlinear observables such as the bias and abun-

dance of dark matter halos or the nonlinear matter or halo
power spectra, we can employ cosmological simulations in
the separate universe [9,17–19] to calibrate this response
[8,9,14,15,15,16]. In future work, we will present results
from cosmological simulations in the real and fake separate
universe for dynamical dark energy and massive neutrino
models.
Here, we illustrate the ideas with the observable being

the growth of structure or power spectrum in the linear
regime. If the short-wavelength mode is much smaller than
the Jeans length of the other components Q, the evolution
of δWðaÞ obeys the usual growth equation obtained by
setting the J ¼ Q components to zero in Eq. (20), but with
the scale factor and expansion rate of the separate universe

d2δW
dlna2W

þ
�
2þdlnHW

dlnaW

�
dδW

dlnaW
¼3

2

H2
0W

H2
W

ΩmW

a3W
δW: ð72Þ

Note that here the density fluctuation and growth are
relative to the separate universe mean ρmW ¼ ρmð1þ δÞ.
Using the relationship between the separate and global
universes (6), (8), and (24), we can rewrite this in the global
coordinates as

δ00W þ
�
2 −

2

3
δ0 þ d lnH

d ln a

�
δ0W ¼ 3

2

H2
0

H2

Ωm

a3
ð1þ δÞδW: ð73Þ

Since the change in the growth due to δ is itself small, we
can expand

δW ¼ δ− þ ϵ; ð74Þ

where δ− is given by the unperturbed sub Jeans scale
growth, i.e., by setting δ ¼ 0 in Eq. (73). Here, ϵ ¼ OðδÞδ−
is the second order correction from the long-wavelength
mode that obeys

ϵ00 þ
�
2þH0

H

�
ϵ0 −

3

2

H2
0

H2

Ωm

a3
ϵ ¼ 2

3
δ0δ0− þ 3

2

H2
0

H2

Ωm

a3
δδ−:

ð75Þ

Notice that both the long-wavelength perturbation to the
scale factor δ and the perturbation to the Hubble rate δ0
enter as sources.
Solving this system, we can define the growth response

function

d lnDW

dδ
¼ ϵ

δδ−
: ð76Þ

For growing modes in the matter dominated limit,

d lnDW

dδ
¼ 13

21
; ð77Þ

which is the usual second order result [34], accounting for
the difference due to fluctuations being measured with
respect to ρmW , i.e., in the global universe,

d lnD
dδ

¼ d lnDW

dδ
þ 1: ð78Þ

This implies that the power spectrum response to δ in the
linear regime [8]

∂ lnP
∂δ ¼ 2

d lnD
dδ

−
1

3

d ln k3P
d ln k

ð79Þ

depends on the growth history of the long-wavelength
mode δ which can itself depend on scale. The second term
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on the rhs comes from the dilation of scales due to the
separate universe scale factor [8]. One consequence of this
is that the squeezed bispectrum and trispectrum becomes
dependent on the scale of the long-wavelength mode. The
latter also causes the supersample covariance of the power
spectrum [8] to also depend on which modes contribute to
the local mean within the sample.
These relations are also useful for setting up cosmo-

logical simulations of the separate universe with the same
initial conditions as the global universe given a power
spectrum normalization at aW ¼ 1 commonly used
in codes.

V. SCALAR FIELD DARK ENERGY

As an illustration of the concepts in the previous
sections, let us consider the concrete example of scalar
field dark energy with a Lagrangian [35],

L ¼ PðX;QÞ; X ¼ −
1

2
∇μQ∇μQ: ð80Þ

In this case, Q represents a single component, the scalar
field itself, and takes the form of a perfect fluid with no
anisotropic stress in the fluid rest frame.
In Sec. VA, we review how the scalar field equations

of motion set the rest frame sound speed and require
nonadiabatic stress. The separate universe construction for
long-wavelength modes with initial adiabatic or curvature
fluctuations differs above and below the sound horizon
as shown in Sec. V B. In Sec. V C, we examine how this
construction changes if the dark energy also has initial
isocurvature fluctuations.

A. Sound horizon and equations of motion

To close the equations of motion (21) of dynamical dark
energy in general, we need to specify the relationship
between its pressure and energy density fluctuations, i.e.,
the sound speed. In the scalar field model, this is provided
by the field equation given a specific Lagrangian. More
generally, for a dark energy component that accelerates
the expansion, wQ < −1=3, and so typically the adiabatic
sound speed

c2Qa ≡
p̄0
Q

ρ̄0Q
< 0: ð81Þ

For the Navier-Stokes or Euler equation (21) to be stable,

c2Qa ≠
δpQ

δρQ
≡ c2Qs > 0; ð82Þ

where s denotes synchronous gauge. Thus, an internal
nonadiabatic stress ΓQ is required for dynamical dark
energy [33].

In terms of the scalar field, internal nonadiabatic stress
arises from the separate kinetic and potential contributions
to the energy density and pressure. In that case, the local
energy density does not uniquely specify the local pressure
as it is possible to specify a sound speed that is independent
of wQðaÞ. For definiteness, we take the Lagrangian

PðX;QÞ ¼ ΛX

�
X
ΛX

�
n
− VðQÞ ð83Þ

as an example.
The sound speed for the fluid is best defined in the rest

frame “r” or equivalently the constant field gauge [35]

c2Q ≡ δpQr

δρQr
¼ P;X

2P;XXX þ P;X
¼ 1

2n − 1
; ð84Þ

where

δpQr ¼ δpQ − p̄0
Q
aH
k

uQ
1þ wQ

;

δρQr ¼ δρQ − ρ̄0Q
aH
k

uQ
1þ wQ

: ð85Þ

The sound horizon of this system is then defined by the
wave number kQ where

cQkQ
aH

¼ 1: ð86Þ

The pressure fluctuation therefore carries internal non-
adiabatic stress

pQΓQ ¼ δpQ − c2QaδρQ; ð87Þ

which we shall see also generates an entropy fluctuation
SQm dynamically.
For the two-component system, the equations of motion

for the synchronous gauge perturbations (20) and (21)
become

δ0Q þ 3ðc2Qs − wQÞδQ ¼ −
k
aH

uQ þ ð1þ wQÞδ0; ð88Þ

u0Q þ ð1 − 3wQÞuQ ¼ k
aH

c2QsδQ ð89Þ

for the scalar field and

δ00 þ
�
2þH0

H

�
δ0 ¼ 3

2

H2
0

H2

X
J

ΩJFJð1þ 3c2JsÞδJ ð90Þ

for the matter, where δm ¼ δ, c2ms ¼ 0, Fm ¼ a−3, and
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c2QsδQ ¼ c2QδQ þ 3ðc2Q − c2QaÞ
aH
k

uQ: ð91Þ

To specify the background evolution, we can either fix wQ

by hand and leave the corresponding potential implicit or
solve the Q background equations of motion

Q̄00 þ 3

2
ð2c2Q − 1 − wTÞQ̄0 þ c2Q

H2

V;Q

P;X
¼ 0; ð92Þ

for a given potential V. Here, the total equation of state
wT ¼ pQ=ðρm þ ρQÞ for the two-component system, and
we construct

wQ ¼ p̄Q

ρ̄Q
¼ P

2P;XX − P

����
Q̄

ð93Þ

from the background solution Q̄.
Below the sound horizon, Q density fluctuations are

pressure supported and become negligible compared with
the dark matter. Above the sound horizon, dark energy
fluctuations influence the growth of matter density pertur-
bations and thus the separate universe construction. Above
the total Jeans scale, the separate universe construction
provides a real separate universe. The correspondence
between the total Jeans scale and the sound horizon
depends on the initial conditions as we shall see next.

B. Initial curvature perturbations

For the usual case of adiabatic perturbations that origi-
nate from initial comoving curvature fluctuations R in the
matter dominated epoch, the matter density fluctuation
growth takes on a scale-free form when the mode is either
well above or below the Q sound horizon. In this case, the
sound horizon defined in the constant field gauge corre-
sponds to the total Jeans scale during the acceleration
epoch [36].
For simplicity, let us assume that PðX;QÞ has

been constructed so that in the global background
0 > wQ ¼ c2Qa ¼ const. Then, at the initial epoch ai, the
universe is matter dominated, and the growing mode of
adiabatic or initial curvature fluctuations R is

δðaiÞ ¼
2

5

�
k

aiHi

�
2

R ∝ ai: ð94Þ

Inspecting the equations of motion (88), (89), and (90), we
obtain

δQðaiÞ ¼
ð5 − 6c2QÞð1þ wQÞ
5þ 9c2Q − 15wQ

δðaiÞ;

uQðaiÞ ¼
k

aiHi

2c2Qð1þ wQÞ
5þ 9c2Q − 15wQ

δðaiÞ: ð95Þ

Note that there is an entropy fluctuation induced by the
curvature fluctuations

SQm ¼ 15wQ − 15c2Q
5þ 9c2Q − 15wQ

δðaiÞ ð96Þ

and the internal nonadiabatic stress. Here, SQm ∝ δ, and so
jSQmj ≪ jRj ∼ jηT j outside the horizon when k=aH ≪ 1

unlike the isocurvature conditions discussed in the next
section. Equivalently, the entropy fluctuation vanishes as
ai → 0, and the background dark energy density in the
separate and global universe are initially the same.
For the sub-Jeans case of k ≫ kQ, the dark energy

perturbations are negligible compared with the matter,
and the system reduces to the familiar case δ ≈ δ−,

δ00− þ
�
2þH0

H

�
δ0− ¼ 3

2

H2
0

H2

Ωm

a3
δ−: ð97Þ

We show this growth function in Fig. 1 for various wQ.
As wQ increases, dark energy domination occurs earlier for
the same Ωm, and pressure support in Q has a larger impact
on the matter growth.
For the super-Jeans case of k ≪ kQ, the growth of δ in

the dark energy dominated epoch depends on the sound
speed if relativistic cQ ∼ 1. In this case, the Jeans scale
is near the horizon. The super- and sub-Jeans scale
differences are difficult to measure and also involve
relativistic effects in relating synchronous gauge quantities
to direct observables.
It is therefore interesting to consider the cQ ≪ 1 limit

where we solve

wQ

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4

10.80.60.40.2
0

2

4

6

8

10

a

Adiabatic Sub-Jeans

FIG. 1. Adiabatic matter density perturbation evolution δ
relative to the initial curvature fluctuation R for an arbitrary
wavenumber on sub-Jeans scales. Pressure support in the scalar
field Q slows the growth of fluctuations as wQ increases and dark
energy domination occurs earlier. Here and throughout the
figures, we take Ωm ¼ 1 − ΩQ ¼ 0.3.
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δ0Q − 3wQδQ ¼ ð1þ wQÞδ0þ;

δ00þ þ
�
2þH0

H

�
δ0þ ¼ 3

2

H2
0

H2

�
Ωm

a3
δþ þΩQFQδQ

�
ð98Þ

and take δ ≈ δþ. Notice that in this limit the Euler
equation (89) for uQ has a negligible source from gradients
in δQ, and with the initial conditions (95), its value remains
negligible. Thus, we have a real separate universe above
the sound horizon which plays the role of the Jeans scale
for initial curvature fluctuations [36].
This sets the change in the separate universe scale factor

δ ln a ¼ ln aW − ln a. In Fig. 2 (top), we show the ratio of
this change above to below the Jeans scale for the same
value of δða ¼ 1Þ ¼ δ0,

Ra ≡ δ ln aþ
δ ln a−

¼ δþðaÞ
δ−ðaÞ

δ−ð1Þ
δþð1Þ

: ð99Þ

For definiteness, we take Ωm ¼ 1 −ΩQ ¼ 0.3 here and
throughout the examples. Since above the Jeans scale δ

grows more relative to its initial value, it is actually smaller
in value at a < 1 once normalized to today. This difference
goes to zero as wQ → −1 since the gravitational source to
δQ in Eq. (88) ð1þ wQÞδ0 → 0.
The difference in aWðaÞ between the super- and

sub-Jeans scale separate universes implies that the Hubble
rate also differs. Using Eq. (8), for the same value of δ0,
the ratio is

RH ≡ δ lnHþ
δ lnH−

¼ δ0þðaÞ
δ0−ðaÞ

δ−ð1Þ
δþð1Þ

: ð100Þ

In the Hubble rate, the super-Jeans scale separate universe
is closer to the global universe than the sub-Jeans scale
one at early times and farther at late times as the universe
begins to accelerate. The latter reflects the enhanced growth
rate above the Jeans scale required to produce the same
δ0 today.
An interesting consequence of this behavior is that

objects formed at high redshift will differ in their response
to a long-wavelength mode than those formed at low
redshift. We will address the implications for halo bias in
future work.
This dependence on scale and redshift also changes the

response of the linear growth d lnDW=d ln δ of Eq. (76)
above and below the Jeans scale. This is shown in Fig. 3.
Since, relative to the same δ today, its amplitude at high
redshift is smaller above the Jeans scale as shown in Fig. 2,
the linear growth response is also smaller. In principle,
this would lead to an observable change in the matter
bispectrum, trispectrum, and supersample power spectrum

-1 -0.8 -0.6 -0.4
wQ

0.59

0.6

0.61

0.62

0.63

dl
nD

w
/d

δ

super

sub

matter

Adiabatic cQ<<1

FIG. 3. Response of the short-wavelength linear growth func-
tion DW to the long-wavelength density field δ at a ¼ 1 for
adiabatic initial conditions and scalar field dark energy with
cQ ≪ 1. This response depends on whether the long wavelength
is super- or sub-Jeans scale. Long-wavelength scale dependence
of the squeezed bispectrum and trispectrum would result but
vanishes if wQ → −1. For reference, the second order response in
the matter dominated regime 13=21 is also shown (dashed).

wQ

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
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1

1.1

1.2

0.9

0.95

1

0.9

0.1 1
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R
H

R
a

Adiabatic cQ<<1

FIG. 2. Ratios of super- to sub-Jeans scale separate universe
changes in the scale factor δ ln a [top; Eq. (99)] and Hubble rate
δ lnH [bottom; Eq. (100)] for the same long-wavelength density
δ0 today. Above the Jeans scale, the scale factor is always closer
to global, whereas the Hubble rate is closer at early times and
further at late times. Observable responses to δ0 therefore depend
on its scale, but as wQ → −1, this difference vanishes. Here,
initial conditions are adiabatic, and cQ ≪ 1.
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covariance, but the size of this change is small for
observationally viable values of wQ.

C. Initial dark energy perturbations

For pure curvature initial conditions, we have seen that
the difference between super- and sub-Jeans scale growth
and hence the scale dependencies of separate universe
responses of observables vanish as wQ → −1. This is
because the gravitational source to these dark energy
density fluctuations vanishes in this limit. The difference
can be much larger if instead these fluctuations were
provided by the initial conditions.
If the field fluctuations associated with these initial

conditions were nearly frozen outside the horizon, then
large scale fluctuations would survive to the current epoch
[31]. In the field equation (92), this occurs when the slope
of the potential V;Q is too small to overcome the Hubble
drag. The field then only rolls by a small amount during its
cosmic evolution. In that case, V;Q ≈ const for any smooth
potential, and the field equation becomes a Bernoulli
equation for Q0 which does not depend on the field value
itself. By making V;Q arbitrarily small compared with V,
we can bring the expansion history as close to ΛCDM as
desired. We therefore consider for simplicity the limiting
case where

wTðaÞ ¼ −
ΩQ

Ωma−3 þ ΩQ
; ð101Þ

in a flat Ωm þΩQ ¼ 1 universe.
In this case, Q0 reaches a terminal velocity independent

of its initial value, and the adiabatic sound speed becomes

c2Qa ¼
xðc2Q − x2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
− c2Qð1þ x2Þ sinh−1 x

ð1þ x2Þðx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
− sinh−1 xÞ ; ð102Þ

where

x ¼ a3=2

ffiffiffiffiffiffiffi
ΩQ

Ωm

s
ð103Þ

parametrizes the transition between matter and dark energy
domination.
Note that in the matter dominated epoch x ≪ 1 and

c2Qa ¼ −
c2Q þ 3

2
: ð104Þ

Since the adiabatic sound speed c2Qa ¼ p0
Q=ρ

0
Q, the small

evolution of the energy density and pressure makes
c2Qa ≠ wQ ≈ −1.
Inspecting the equations of motion, we find that initial

conditions in the matter dominated epoch are

δQðaiÞ ¼ I ;

uQðaiÞ ¼ −
2

9

k
aiHi

I ;

δðaiÞ ¼ −
1

3

ΩQ

Ωm
a3i I : ð105Þ

The constant I is equivalent to an initial entropy fluctuation
I ¼ ð1þ wQÞSQm, but given that wQ ≈ −1, this notation is
more convenient. Note that

ηTðaiÞ ¼ −
1

9

ΩQ

Ωm
a3i I ; ð106Þ

reflecting the isocurvature initial conditions jηT j ≪ jI j.
These quantities should be added to those generated by the
initial curvature fluctuations R, and so their relative
strengths are determined by I=R and their correlation.
In Fig. 4 (top), we show the evolution of δQ from these

isocurvature conditions as a function of scale for an
example with cQ ¼ 0.1. On scales larger than the current
horizon k=H0, the density perturbations are frozen even
through the acceleration epoch as expected. We can
analytically verify this behavior by dropping the velocity
divergence source kuQ=aH in the Q continuity equa-
tion (88). The Q system is then solved by

δQðaÞ ¼ I ;

uQðaÞ ¼ −
1þ c2Q

3ðc2Q − c2QaÞ
k
aH

I ;
k
aH

≪ 1: ð107Þ

These dark energy perturbations induce a growing mode in
the matter fluctuations of opposite sign (see Fig. 4, bottom).
In terms of the separate universe, a positive change in the
dark energy density acts like a universe with a larger
cosmological constant. In the construction of Eq. (65), we
introduce an entropy component with

ΩSFSðaÞ ¼ ΩQð1þ wQÞSQm ¼ ΩQI ; ð108Þ

and this represents a real separate universe with a constant
change to the cosmological constant as expected.
Technically, the curvature fluctuation is changing at the
Hubble rate during matter domination and growing loga-
rithmically during dark energy domination, but its value is
suppressed by ðk=aHÞ2 and has a negligible impact since
initial curvature fluctuations must also exist.
Between the horizon and sound horizon, the dark energy

density fluctuation grows due to the nongravitational
velocity divergence in its continuity equation. Unlike in
the case of curvature fluctuations, the total Jeans scale in
the acceleration epoch is the horizon and not the sound
horizon. In the Euler equation (89), even though density
gradients from δQ do not source nongravitational flows for
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cQ ≪ 1, their initial values are set by the isocurvature
conditions (105), and they grow until horizon crossing. At
this point, they become large enough to cause a violation of
the real separate universe. The divergence of the flow then
impacts δQ through the continuity equation (88) which
sources δ through Eq. (90) causing it to change signs. In
this regime, a positive initial dark energy density fluc-
tuation leads to a positive and growing matter fluctuation.
Below the sound horizon, the dark energy density

fluctuation oscillates and decays. The matter fluctuations
then are also suppressed, and the separate and global
universe coincide in parameters. In principle, a small
cQ ≪ 1 allows these effects to produce novel separate
universe responses between the horizon and sound horizon.
However, the matter density perturbations associated with
the curvature fluctuations R also grow during this regime
for Ωm ∼ 0.3 where the universe is not completely dark

energy dominated. One must therefore arrange the initial
spectrum of I to produce a sizable change in δ of the
desired wavelength at the current epoch. Finding an early
universe mechanism to generate such dark energy isocur-
vature fluctuations is beyond the scope of this work.

VI. DISCUSSION

In this work, we have shown how to construct a separate
universe to absorb the entire growth history of a long-
wavelength density perturbation of a multicomponent
system into the cosmological background from the per-
spective of the nonrelativistic matter. By exactly matching
the acceleration equation to the synchronous gauge matter
density fluctuations, we extend the validity of the
approach to scales smaller than the Jeans length where
nongravitational effects play a role. Above the Jeans scale,
the construction also satisfies the Friedmann equation
with real energy densities and a curvature that is constant
in comoving coordinates. Below the Jeans scales, the
curvature evolves and in the separate universe Friedmann
equation acts like a fake density component. In both cases,
the matter evolution on small scales is correctly modeled.
Once the long-wavelength density fluctuation is

absorbed into the background, we can assess its impact
on small scale cosmological observables as a change in the
expansion rate or the cosmological parameters that drive it.
Our construction highlights the fact that its influence is
nonlocal in time. For the same long-wavelength density
fluctuation, its impact on small scale observables at the
same epoch depends on its entire growth history. If this
growth depends on scale as in the case of the super- and
sub-Jeans scale fluctuations, then the response also
becomes dependent on the scale of the long-wavelength
mode.
As a concrete illustration, scalar field dark energy with a

finite sound speed introduces its sound horizon to the Jeans
scale of the system. For the same long-wavelength density
perturbation today, the different growth histories imply
different separate universes and hence different responses
in short-wavelength observables. In particular, we have
highlighted the scale dependent response to the linear
growth rate for adiabatic fluctuations and the novel changes
that can occur if initial dark energy isocurvature perturba-
tions are also present.
By employing cosmological simulations of the separate

universe, this technique should prove useful for studying
the analogous scale dependent responses in the nonlinear
matter and halo power spectrum; supersample covariance;
bispectrum, trispectrum, and halo abundance and bias.
Likewise, other systems such as massive neutrino and
modified gravity models possess scale dependent long-
wavelength growth that can also be studied with these
methods. We leave these topics for future work.
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FIG. 4. Growth of the dark energy and matter density pertur-
bations δQ and δ from dark energy isocurvature initial conditions
I for cQ ¼ 0.1. Dark energy perturbations (top) are frozen
outside the horizon k=H0 < 1, grow between the horizon and
sound horizon, and oscillate below the sound horizon. Matter
perturbations (bottom) are anticorrelated with I outside the
horizon, grow in correlation with it between the horizon and
sound horizon, and are independent of it below the sound
horizon. By adding isocurvature modes to the adiabatic modes,
the separate universe construction and observable response can
depend on scale even for wQ ≈ −1.
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