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We present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark
Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear
measurement pipeline, either NGMIX or IM3SHAPE, and robust to the choice of two-point statistic, including
both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode
contamination and direct tests for any dependence of the two-point functions on a set of 16 observing
conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We
furthermore use a large suite of simulations to compute the covariance matrix of the cosmic shear
measurements and assign statistical significance to our null tests. We find that our covariance matrix is
consistent with the halo model prediction, indicating that it has the appropriate level of halo sample
variance. We compare the same jackknife procedure applied to the data and the simulations in order to
search for additional sources of noise not captured by the simulations. We find no statistically significant
extra sources of noise in the data. The overall detection significance with tomography for our highest source
density catalog is 9.7σ. Cosmological constraints from the measurements in this work are presented in a
companion paper [DES et al., Phys. Rev. D 94, 022001 (2016).].

DOI: 10.1103/PhysRevD.94.022002

I. INTRODUCTION

Cosmic shear, the weak gravitational lensing of galaxies
due to large-scale structure, is one of the most statistically
powerful probes of dark energy, massive neutrinos, and
potential modifications to general relativity [1,2]. Due to its
powerful potential as a cosmological probe, many ongoing
and future surveys (Kilo-Degree Survey: KiDS,1 Hyper

Suprime-Cam survey: HSC,2 the Dark Energy Survey:
DES,3 the Large Synoptic Survey Telescope: LSST,4

Euclid5 and WFIRST6) will employ cosmic shear as one
of their principle cosmological probes. Cosmic shear two-
point measurements, in their simplest form, are made by
correlating the shapes of many millions of galaxies as a

*Corresponding author.
beckermr@stanford.edu

1http://kids.strw.leidenuniv.nl/.

2http://www.naoj.org/Projects/HSC/HSCProject.html.
3http://www.darkenergysurvey.org.
4http://www.lsst.org.
5http://sci.esa.int/euclid.
6http://wfirst.gsfc.nasa.gov.
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function of their separation in angle. Additionally, if the
galaxies can be separated as a function of redshift, then
tomographic cosmic shear measurements can be made by
cross-correlating galaxies at different redshifts, which can
probe the evolution of large-scale structure. The galaxies
themselves have intrinsic shapes that are an order of
magnitude larger than the cosmic shear signal, which
means that cosmic shear measurements involve extracting
small correlations from a large, shape noise-dominated
background. Competitive cosmological constraints from
cosmic shear will require of order percent level or better
measurements at all steps of the analysis, from shear
measurement to the measurements of cosmic shear two-
point functions (see, e.g., Weinberg et al. [3] or Kilbinger
[4] for a review).
Cosmic shear was first detected in 2000 [5–8]. The most

recent results have detected correlated shapes on scales
from a few to 60 arcminutes from the Deep Lens Survey
[9], the Sloan Digital Sky Survey [10,11], KiDS [12]
and the Canada-France-Hawaii Legacy Survey [13],
including in 6 redshift bins [14]. Future cosmic shear
measurements will be very high signal-to-noise and over
much larger survey areas, yielding a wealth of cosmologi-
cal information.
Cosmic shear measurements are challenging for a variety

of reasons. First and foremost, shear measurements are
subject to biases that can arise from a number of sources.
These biases are usually split into additive and multipli-
cative components. Sources of additive biases include
inaccuracies in the modeling of the point spread function
(PSF), inaccuracies in correcting for the effect of the PSF
on galaxy images, astrometric errors, and contaminating
flux from nearby galaxies. Multiplicative biases can arise
from the effects of noise on the shear measurement process,
incorrect estimates of the size of the PSF, and, for model-
fitting methods, mismatches between an object’s true
underlying structure and the model employed in the shear
measurement process. Additionally, many modern shear
measurement methods require accurate estimates of the
distribution of galaxy shapes and profiles in the absence of
lensing to either serve as priors in the extraction of shapes
from the data or to directly make corrections to the data.
These priors can be estimated from high-resolution Hubble
Space Telescope imaging, but must be matched to the
observational sample under consideration.
Significant computational and scientific challenges in

cosmic shear measurements remain, even in the presence of
perfect shear measurements. The cosmic shear field is the
result of lensing by the nonlinearly evolved matter density
field. Accurate predictions for the nonlinear matter power
spectrum, even just for pure dark matter models, are
computationally expensive and are needed at every point
in parameter space in order to extract cosmological
parameters. Emulators, like the Coyote Universe [15], have
solved this problem for typical cosmologies and dark

energy models, but neglect important physical effects,
like galaxy formation, on the matter power spectrum.
Additionally, some physical effects of galaxy formation
break the assumption that galaxies are randomly oriented
in the absence of lensing. These effects, called intrinsic
alignments, can introduce correlations in the shapes of
galaxies that are not due to lensing, complicating the
interpretation of cosmic shear measurements [see, e.g.,
[16,17]]. Furthermore, even if the mean signal can be
modeled properly, the covariance matrix of cosmic shear
measurements is dominated by sample variance, requiring
either extensive suites of numerical simulations or com-
plicated halo model calculations. The (mis-)estimation of
photometric redshifts (photo-zs) from imaging data is yet
another important source of bias in the modeling of cosmic
shear measurements. Finally, for precise cosmic shear
measurements, lensing magnification, second-order lensing
effects, and source selection effects will be important.
In this work, we present cosmic shear measurements

from Dark Energy Survey (DES) Science Verification (SV)
data (Gruendl et al. (to be published); Rykoff et al. (to be
published)) using the shear catalogs by Jarvis et al. [18].
We employ a combination of two shear estimation codes
and two photometric redshift estimation codes, each of
which takes a different approach to many of the issues
described above. Additionally, we use a suite of ray-traced
weak lensing simulations to compute the sample variance
contributions to the covariance matrix of our measure-
ments. We then present an extensive suite of tests of both
the signals in the data and the covariance matrices. These
tests include comparisons of the covariance matrices to halo
model predictions, null tests of B-mode contamination, and
null tests based on comparing the signal between halves of
the source galaxy sample split by survey metadata, like
seeing, depth, etc. Overall, we find no statistically signifi-
cant contamination. This paper is closely related to three
other papers, namely the presentation of the DES SV shear
catalog [18], the presentation of the DES SV photometric
redshifts for weak lensing [19], and a companion paper that
presents constraints on cosmological parameters using the
measurements in this paper [20].
This work is organized as follows. In Sec. II, we describe

the DES SV shear catalogs and photometric redshifts. Then
we describe the mock catalogs used in this work in Sec. III.
Next, in Sec. IV, we present our detections of cosmic shear
with DES SV data and our real-space two-point function
estimators. Appendix A describes alternate two-point
estimators besides the real-space correlation functions used
for the bulk of this work. We discuss the estimation and
validation of our covariance estimation in Sec. V. Then, we
describe our suite of null and consistency tests of our
measurements in Sec. VI. Finally, we conclude in Sec. VII.
The shear correlation functions and simulation covariance
matrices from this work are available as online
Supplemental Material [21] with this paper.
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II. DATA

The DES SV data with weak lensing measurements
consists of 139 square degrees of five-band imaging with
roughly 7 exposures per band on average [22–25]. The
depth of the data is somewhat shallower than the expected
∼10-exposure average depth of the DES five-year data.
The basic reductions and co-add source detection were
done with the DES data management (DESDM) system
as described in Desai et al. [26] and Gruendl et al.
(to be published). We use the shear measurements from
Jarvis et al. [18] performed on the DES SV Gold sample
of galaxies (Rykoff et al., to be published). For more
information on the shear measurements and recommended
cuts, we refer the reader to Jarvis et al. [18]. The shear
measurement pipelines and photo-zs used in this work are
described below for completeness. We use the “reduced
shear” ellipticity definition [27]. Finally, note that the two
shear measurement codes used in this work are not
identical, employing different cuts and different parts of
the DES SV data. Thus they have different overall source
number densities and photometric redshift distributions.
These differences, which we expect to be smaller in future
DES analyses (see Jarvis et al. [18]), have no effect on the
major conclusions of this work and are in fact important in
verifying the robustness of our results.

A. Shear measurement pipeline 1: NGMIX

The NGMIX
7 pipeline [28] uses sums of Gaussians

to represent simple galaxy models [29]. The model
parameters of each object are sampled using Markov
Chain Monte Carlo (MCMC) techniques applied to a
full likelihood which forward models the galaxy and its
convolution with the PSF. The total likelihood for each
object is a product of the likelihoods of the individual
images of each object. The r-, i- and z-bands are fit
simultaneously with the same model shape, but different
amplitudes. The samples of the likelihood are then used
with the lensfit algorithm [30] to measure the shear of
each object using a prior on the intrinsic distribution
of shapes from the GREAT3 [31] release of the
COSMOS galaxy sample. The final effective source
number density of the NGMIX catalog is ≃6.1 galaxies
per square arcminute.8 Each source has an associated
weight and we use the average sensitivity over both
directions, as described in Jarvis et al. [18].

B. Shear measurement pipeline 2: IM3SHAPE

The IM3SHAPE
9 pipeline is built on the IM3SHAPE code

described in Zuntz et al. [32], with configuration and
modifications for its application to DES SV data described
in Jarvis et al. [18]. IM3SHAPE is a forward-modeling
maximum likelihood code that uses a Levenberg-Marquardt
algorithm to fit (in the configuration used here) two different
models to galaxy images, one a deVaucouleurs bulge and the
other an exponential disc, including the effect of the PSF and
pixelization. The better-fitting model is then used to give
an ellipticity estimate. Maximum-likelihood parameter sets
computedby IM3SHAPE and similar codes have a biaswe refer
to as noise bias [33,34]. This bias is removed using a
calibration scheme based on the work of Kacprzak et al.
[34]. The scheme is applied to an ensemble of galaxies using
the mean bias calibration for the ensemble; different subsets
of objects thus use different correction factors. The final
IM3SHAPE catalog has an effective number density of ≃4.1
galaxies per square arcminute. Each source in IM3SHAPE

has a weight, two additive noise bias corrections (one each
for e1 and e2) and a single multiplicative correction.

C. Photometric redshifts

Based on an extensive comparison of four photo-z
methods’ impacts on the two-point correlation function
in Bonnett et al. [19] and a comparison of a much larger set
of photo-zmethods in Sánchez et al. [35], we have selected
SkyNet [36,37] for our fiducial photo-z tomography.
Galaxies are split into tomographic bins of equal lensing
weight for the NGMIX catalog according to the mean of the
photo-z PDF for each galaxy produced from SkyNet. The
resulting tomographic bin boundaries are then used for
galaxies in both shear catalogs. For a given shear code, the
redshift distribution of each tomographic bin is estimated
from summing the redshift probability distributions of each
individual galaxy according to their weights assigned by
the shear code. The relative agreement between the photo-z
estimates and its impact on the correlation function is
discussed in more detail in Bonnett et al. [19].

III. MOCK CATALOGS

We use a set of 126 mock catalogs to compute the
covariance matrix of the shear correlation functions, E/B-
mode statistics, power spectra and null statistics described in
the following sections. These mock catalogs are constructed
from seven sets of simulations consisting of three N-body
light cones pieced together along the line of sight. We use
1050 h−1Mpc, 2600 h−1Mpc and 4000 h−1Mpc boxes with
14003, 20483 and 20483 particles respectively. We use a flat,
ΛCDM model with Ωm ¼ 0.286, ΩΛ ¼ 0.714, ns ¼ 0.96,
h ¼ 0.7, Ωb ¼ 0.047, w ¼ −1 and σ8 ¼ 0.820. The initial
conditions are generated at redshift 49 with 2LPTic, a

7https://github.com/esheldon/ngmix.
8We use the following definitions of effective source density

neff and the effective shape noise per component σSN,
which are appropriate for the two-point function estimators
employed in this work. neff ¼ ðPi wisiÞ2=ðΩ

P
i w

2
i s

2
i Þ and

σ2SN ¼ ðPi w
2
i ðe21 þ e22ÞÞ=ð2

P
i w

2
i s

2
i Þ where wi are the weights,

si are the sensitivities, ei are the shear components, Ω is the
survey areas and the index i runs over all of the galaxies. 9https://bitbucket.org/joezuntz/im3shape.
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second-order Lagrangian perturbation theory initial condi-
tions generator [38] using linear power spectra from the
CAMB Boltzmann code [39]. The N-body evolution is
computed with an efficient dark-matter-only version of the
Gadget-2 code [40], LGadget-2. We have implemented
our own on-the-fly light cone generator directly into the
LGadget-2 code (Busha et al. in preparation).We produce
a full-sky light cone which formally replicates the N-body
box eight times. However, each final simulation covers only
one octant of the full-sky, ≃5; 000 square degrees, elimi-
nating the replications. As the DES SV area with weak
lensing measurements is only 139 square degrees, we divide
each simulation into 18 different pieces using the observed
SV mask to construct 126 total mock catalogs. This pro-
cedure has the advantage of properly computing the halo
sample variance contributions to the lensing covariance
matrices due to the fact that each patch is embedded in
the large-scale modes of the box.
We place lensing sources randomly in angle with in the

DES SV mask (see Jarvis et al. [18] for the details of the
mask), and with the redshift distribution of the tomographic
bins defined above. Then the weak lensing shear for each
source is computed using the CALCLENS ray-tracing code
[41]. In this application of CALCLENS, we use the pure
spherical harmonic transform versionwithNside ¼ 8192.
Appendix B presents tests of the underlying simulations in
comparison to simple expectations from fitting functions to
the matter power spectrum. We find that the simple expect-
ations from matter power spectrum fitting functions agree
with the simulation to within sample variance, but that some
resolution issues remain on small scales. Note, however, that
these small scales are excluded from the companion cos-
mological analysis [20] and that despite the resolution issues,
we find excellent agreement between the covariances com-
puted from the mock catalogs and the halo model, as
discussed below. Thus for purposes of computing covariance
matrices, the mock catalogs we have constructed are suffi-
cient. Futurework may require higher-resolution shear fields
for covariance estimation.
Finally,wegenerate the shapenoise andother properties in

the mock by randomly drawing from the observations
separately for each tomographic bin. Importantly, we draw
the intrinsic shape of eachmock shear source separately from
its other properties, like signal-to-noise, size, etc. Properties
which have intrinsic spatial dependence in the survey (e.g.
seeing, airmass, etc.) are drawn from the nearest real galaxy
to each mock galaxy. See Section VI C for more details.
These procedures randomize the shear field in the data and
ensure that the mock catalogs have no correlations between
the systematic parameters and the shear field.

IV. MEASUREMENTS OF COSMIC SHEAR
TWO-POINT STATISTICS

In this work, we focus on cosmic shear measurements
made with two-point statistics, which are detailed in the

following sections. A companion paper [20] presents the
associated cosmological parameter constraints using these
measurements, which use the real-space two-point corre-
lation functions as the fiducial two-point estimator. We
summarize results from alternate estimators in Sec. IV C
and Appendix A. Note that although the choice of which
two-point statistic to use is somewhat arbitrary, the
companion cosmological analysis of this data [20] dem-
onstrates that the exact choice of two-point statistic does
not change the cosmological parameter constraints from
this data in a statistically significant way.

A. Real-space two-point function estimators

We follow Miller et al. [42] and estimate the two-point
functions with

ξ� ¼ Xþ � X×

Xþ=× ¼
P

i;jwiwjðe − cÞi;þ=×ðe − cÞj;þ=×P
i;jwiwjsisj

ð1Þ

where i, j index the galaxies in the two sets we are
correlating. Here eþ=× are the estimated shears from the
lensing analysis projected into the þ (tangential) and ×
(cross) components rotated into the reference frame con-
necting each pair of galaxies fi; jg in the sum. The wi are
weights applied to each galaxy (typically inverse variance
weighting; see Sec. II for each lensing code). The si are
multiplicative noise bias and/or lensing sensitivity correc-
tions that are applied to the shears. We follow Miller et al.
[42] and apply these corrections to the entire population
of shears as opposed to applying them to each shear
individually. We compared several different methods for
incorporating the sensitivities into the two-point function
estimator and find that they differ by at most ∼2%. The ci
are the additive bias corrections used for IM3SHAPE and
are identically zero for NGMIX per the definition of the
lensfit method [30]. Finally, we use TreeCorr10 [43]
to compute the shear correlation functions.

B. Real-space Correlation Functions

The real-space correlation functions without tomography
are shown in Figure 1. We show NGMIX on the left and
IM3SHAPE on the right, with ξþ in the top rows and ξ− in the
bottom rows. Negative measurements are shown as upper
limits. The redshift distribution of sources for the non-
tomographic analysis is shown in the top panel of Fig. 3 for
the SkyNet code. It appears in Fig. 1 that the ξþ correlation
function may approach a constant value at large scales.
Interestingly, Jarvis et al. [18] find that the mean shear
across the survey for NGMIX and IM3SHAPE is
≈7–10 × 10−4. This level of mean shear would produce
a constant floor in the shear correlation functions of

10https://github.com/rmjarvis/TreeCorr.
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≈5–10 × 10−7. For the DES SV survey, the root-mean-
square mean shear just due to shape noise and cosmic
variance is ≈4 × 10−4. Thus it is not clear if this feature is
an indication of systematic effects or a few sigma fluc-
tuation in the mean shear due to a real physical effect.
However, in the cosmological analysis of this data,
all ξþ data points above 60 arcminutes were cut to avoid
systematics in the PSF models [18,20]. Thus we do not
explore this issue further in this work.
We generate estimates of the 1σ uncertainties for each

measurement by computing the covariance of the two-point
functions over the simulation mock catalogs described in
Sec. III. These mock catalogs are built separately for each
shear catalog in order to match the nontomographic redshift
distribution of the sources. The correction factor described
in Hartlap et al. [44] is then applied to produce an unbiased
estimate (see Section VA for a further discussion of the
statistical properties of the covariance matrix estimate
from the mock catalogs). The significance of the resulting
measurement is then calculated from this covariance as

S=N ¼ ξdataC−1ξmodelffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξmodelC−1ξmodel

p ; ð2Þ

where C−1 is the inverse covariance matrix estimated from
the mock catalogs, ξdata is the vector of real-space shear
two-point function measurements from the data, and ξmodel
is the vector of real-space shear two-point function

measurements predicted from the cosmological model
given above in Sec. III. This quantity corresponds to the
signal-to-noise of a least-squares estimate of a scaling
parameter comparing our measurements to the theoretical
model. This signal-to-noise measure will be an under-
estimate if the model employed is not well matched to the
data. However, given the good match of our fiducial model
to the data as shown in Figs. 1 and 2, the degree to which
the signal-to-noise is underestimated is small in this case.
We use the COSMOSIS package11 by Zuntz et al. [45] to
compute the shear correlation functions with the Takahashi
et al. [46] nonlinear power spectrum fitting function.
See the companion paper [20] presenting cosmological
constraints from these measurements for additional details
on the model correlation function ξmodel computation. The
covariance matrix has been validated through comparisons
to both a detailed halo model prediction and jackknife
estimates in single mock patches versus the survey data,
which are discussed in detail in the Sec. V. We find
nontomographic cosmic shear detections at 6.5σ and 4.7σ
significance for NGMIX and IM3SHAPE respectively.
Figure 2 shows the full three-bin tomographic shear

correlation function measurements for NGMIX on the left
and IM3SHAPE on the right. The redshift distributions of the
three tomographic bins for the SkyNet code are given in the

FIG. 1. The measured shear correlation functions ξþ=− for a single tomographic bin for the NGMIX shape catalog (left) and IM3SHAPE
shape catalog (right). The single tomographic bin corresponds to redshift distribution shown in Fig. 3, z ≈ 0.3–1.3. Note that the redshift
distributions of the two catalogs are not identical, so that the shear correlation functions are not expected to match. A detailed
comparison of the two catalogs is described in Sec. VI B. Negative measurements are shown as upper limits. The error bars show the 1σ
uncertainties from the mock catalogs with the appropriate level of shape noise for each shear pipeline. The black solid lines show the
predictions from a flat, ΛCDM model described in Sec. III—not chosen to fit the data.

11https://bitbucket.org/joezuntz/cosmosis.
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lower panels of Fig. 3. In order to compute the covariance
matrix of these measurements, we use the same procedure
in the mock catalogs as for the nontomographic case,
except that we use the tomographic redshift distributions to
assign the mock galaxies to different tomographic bins. We
additionally draw the shape noise in the mock from only the
galaxies in the data in the same tomographic bin. We find
overall tomographic cosmic shear detections of 9.7σ and
7.0σ for NGMIX and IM3SHAPE, respectively. Note that the

NGMIX catalog has more sources and extends to slightly
higher redshift on average, yielding higher significance
detections of cosmic shear. We have chosen three tomo-
graphic bins as a compromise between gaining signal-to-
noise in the data and having too many data points in order
to use the mocks to compute the covariance matrix of
the data.
In Figs. 1 and 2, the solid black line shows the expected

amplitude and shape of the shear correlation functions in

FIG. 2. The measured shear correlation functions ξþ=− times θ in six angular bins and three tomographic bins for the NGMIX shape
catalog (left) and IM3SHAPE shape catalog (right). The tomographic bins correspond to those shown in Fig. 3, z ≈ 0.30–0.55, 0.55–0.83,
0.83–1.30, and are labeled from 1 to 3, increasing with redshift. Thus, panel “3-2” shows the cross-correlation between the highest and
middle redshift bins. The error bars show the 1σ uncertainties from the mock catalogs with the appropriate level of shape noise for each
shear pipeline. As in Fig. 1, the black solid lines show the predictions from our fiducial ΛCDM model—not chosen to fit the data.

FIG. 3. The estimated redshift distributions from SkyNet for the NGMIX shape catalog (left) and the IM3SHAPE shape catalog (right). The
full nðzÞ for objects with mean redshifts in the redshift range 0.3 < z̄ < 1.3 (top) and the nðzÞ for three tomographic bins (bottom) are
shown. The redshift distributions are estimated by summing and rescaling the photometric redshift probability distributions for each
galaxy in the tomographic bin using the weights applied to the shear catalog.
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the cosmological model given above. This curve is not a fit,
and is merely presented as a reference for comparison. Due
to the fact that the two catalogs have different redshift
distributions, a direct comparison of the shear correlation
functions between the two catalogs is not possible without
further work matching the two catalogs and accounting for
the shared shape noise, sample variance, and image noise
between the two catalogs. This matched comparison is
described further in Sec. VI B.

C. Alternative two-point statistics

In Appendix A, we describe results from two alternative
two-point statistics of the shear field. These include the
methods of: (i) Becker and Rozo [47], which use a
weighting of the real-space correlation estimates to con-
struct efficient estimates of the Cl values and (ii) a second
estimation of the spherical harmonic shear power spectrum
using PolSpice12 [48,49]. Note that these estimators
weight the data at different angular scales differently than
the default two-point correlation functions so that we do not
expect to get identical results in terms of the significance of
the cosmic shear detection. We do find detections of cosmic
shear that are consistent with the conventional real-space
estimators we use by default, indicating no strong prefer-
ence for any given estimator. Tests of B-mode statistics
from these estimators are discussed in Sec. VI A, where we
again find consistency between different two-point function
estimation methods.

V. ESTIMATING AND VALIDATING THE
COVARIANCE MATRIX

In this section, we present our covariance matrix and a
set of validation tests. The fiducial covariance matrix for
our measurements is estimated from the mock catalogs
presented in Section III. First we compare the covariance
matrix from the mock catalogs to halo model computations.
Second, we compare jackknife covariances in the data to
the jackknife covariance computed from the mock catalogs.
This procedure allows us to look for additional sources of
noise and correlations in the data that are not present in the
mock catalogs.

A. Simulation and halo model comparison

We compare the covariance matrix computed from the
simulations to that obtained from a halo model in Fig. 4.
The simulation-based covariance matrix is computed by
populating the mock catalogs with shear sources as
described above in Sec. III, and then computing the
covariance of the measurements performed on the full
ensemble of mock catalogs. The halo model covariance was
computed with the CosmoLike covariance module (see
Eifler et al. [50] and Krause et al. [51] for details). Further

details of our halo model computation and the full tomo-
graphic covariance matrix are given in Appendix C. Briefly,
we include the Gaussian, non-Gaussian and halo sample
variance terms [e.g., [52]] and compute the halo model
covariance at the same cosmology and with the same
redshift distribution as was used in the mock catalogs.
We compare the general structure of the mock (upper

triangle) and halo model (lower triangle) covariance in the
left panel of Figure 4, which shows part of the correlation
matrix. Here we have shown a subset of the full set of
tomographic bin combinations. The full correlation matrix
is shown in Appendix C. The right panel compares the
amplitude of the two covariances by plotting the variance.
Overall, we find good agreement in both structure and
amplitude.
We quantitatively test the agreement using a Fisher

matrix computation. We compute the expected error on
the degenerate parameter combination σ8ðΩm=0.3Þ0.5,
where σ8 is the RMS amplitude of the linear matter power
spectrum at redshift zero in a top hat window of 8 h−1Mpc
and Ωm is the matter density in units of the critical density
at z ¼ 0. This combination of parameters is typically the
best constrained by low-redshift cosmic shear data sets like
the DES SV data. The exact degeneracy is computed in the
companion cosmological constraints paper to this work
[20]. We use the standard Fisher matrix formalism for
cosmic shear [see, e.g., [53]] and the same cosmological
model as described above. We vary only the spectral index
ns, σ8 and Ωm in the Fisher matrix.
We find that the error bars on σ8ðΩm=0.3Þ0.5 from the

halo model and mock covariances agree to approximately
10% without tomography, with the halo model yielding
larger parameter uncertainties. When repeating the same
exercise with tomography, we find a larger,≈35% disagree-
ment in the error bars, with the mocks yielding larger
errors. However, we expect fluctuations in the uncertainties
in parameters computed with the simulations due to the
finite number of realizations used for the covariance
computation. Dodelson and Schneider [54] estimate that
this effect, in the Gaussian limit, increases the variance in
the parameter estimates by a factor of

α ¼ 1þ ðNd − NpÞðNs − Nd − 2Þ
ðNs − Nb − 1ÞðNs − Nb − 4Þ

where Nd is the number of data points, Ns is the number of
simulations and Np is the number of parameters. This
factor is ≈1þ Nd=Ns in the limit that Ns ≫ Nd ≫ Np.
Thus we expect a fractional uncertainty in the parameter
uncertainties of ≈

ffiffiffiffiffiffiffiffiffiffiffi
α − 1

p
. In our case with tomography,

Nd ¼ 72, Ns ¼ 126 and Np ¼ 1. With these numbers, we
get that the fractional uncertainty in the parameter uncer-
tainty is ≈118%. Thus the disagreement of ≈35% we find
with the halo model with tomography is not statistically
significant. Without tomography, we find a fractional12http://www2.iap.fr/users/hivon/software/PolSpice/.
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uncertainty in the uncertainty of ≈56%, again indicating
consistency.
Importantly, these numbers are the fractional uncertainty

in the uncertainty. For parameter estimates, the fractional
increase in the uncertainty on the parameter, equal to

ffiffiffi
α

p
, is

the relevant quantity. For tomography, this fractional increase
is ≈55% and without tomography it is ≈15%. Furthermore,
we have assumed that the tomographic analysis uses all
72 data points. As described in The Dark Energy Survey
Collaboration et al. [20], only 36 of the 72 data points are
used for tomography, bringing the fractional increase in the
error due to the finite number of realizations down to only
≈18%. Similar cuts are made for the nontomographic
analysis, using only 16 of the 30 data points. This number
of data points results in a fractional increase of the parameter
uncertainties of only ≈7% for the nontomographic analysis.

B. Jackknife comparisons to data

While our mock catalogs include both sample variance
and shape noise contributions, any spatially varying sys-
tematic effects, like errors in the shear calibration, should
be included in the covariance matrix of the shear correlation
functions as well. To search for these potential effects, we
use the jackknife covariance matrix of the shear correlation
functions as a statistic to be compared between the data
and the mock catalogs. Any additional sources of noise in
the data, which are captured by the spatial scale of our
jackknife regions, will show up as a difference between the
jackknife covariance as computed in the data versus the
mock catalogs.
We estimate the jackknife covariances from the data and

our mock catalogs as follows. We divide both the mock
catalog and data into 100 spatial subregions, employing

the k-means algorithm.13 These regions are then used
to perform jackknife resampling. For the details of jack-
knife covariance estimation for cosmic shear correlation
functions, we refer the reader to a (technical) companion
paper where these choices are examined in further
detail (Friedrich et al. [55], see also Norberg et al. [56]
for an application to galaxy clustering). We use the standard
jackknife scheme, where all of the shear sources in an entire
subregion are removed for each jackknife resampling,
which is called the galaxy-jackknife in Friedrich et al. [55].
Note that we are not comparing jackknife covariances

with the true covariances, but rather simply the covariance
in the shear correlation function across the DES SV survey
to the same statistic computed with the mock catalogs.
Thus the absolute correctness of the jackknife covariance
matrix is not an issue for our test, since it is just a statistic
that is sensitive to the effects for which we wish to search.
The performance of empirical covariance measures for
cosmic shear surveys is explored in Friedrich et al. [55].
The comparison of our jackknife procedure between the

mocks and the data is shown in Fig. 5. Here we plot the
correlation matrix of the averaged jackknife covariance
from the 126 mock NGMIX catalogs (left panel, on the
bottom right) and the same computation in the DES SV
data (on the top left). The right panel compares the diagonal
elements of the jackknife covariance for ξþ and ξ− when
averaged over 126 mock catalogs and when computed from
the data for NGMIX. Using the Fisher matrix procedure
described above, we find that the error on σ8ðΩm=0.3Þ0.5
from the data jackknife covariance matrix agrees with

FIG. 4. Comparison of the tomographic shear correlation function correlation matrix estimated from the mock catalogs and calculated
from the halo model. The left plot shows the correlation matrix from the mock catalogs (upper left) and halo model (lower right). We
show only the components for the first and last tomographic bins, plus their cross correlations. On the right, we show the square root of
the diagonal elements of both covariance matrices, sorted in reverse numerical order. The open symbols show the results from the halo
model and the closed symbols show the results from the mock catalogs.

13Implemented for python by Erin Sheldon, www.github.com/
esheldon/kmeans_radec.
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the mean of the ensemble of errors on this parameter from
the mock jackknife covariances to within one standard
deviation of the error over the ensemble. Thus we conclude
that there are no statistically significant sources of addi-
tional variance in the data compared to the mock catalogs.

VI. TESTS FOR RESIDUAL SYSTEMATIC
ERRORS IN THE COSMIC SHEAR SIGNAL

Systematicerrors inshearmeasurementscanbefromawide
array of sources ranging from telescope optics and observing
conditions to details in the modeling, measurement, and
calibration of shapes. The development of tests to identify
potential systematic errors is critical to verifying accurate
measurementofcosmicshear.Toward thisend,wedeviseaset
of tests that should produce a null result when applied to true
gravitational shear. Themeasurement of a significant nonzero
result is then an indication of unresolved systematic errors in
the shear catalog that could bias measurements.
The DES SV shear catalogs have passed a rigorous set of

both traditional and novel null tests that lay the groundwork
for validating the precise measurements that will be made
with ongoing DES measurements during the main survey
observing period. These tests are performed both at the
catalog level and during the process of validating specific
measurements based on the shear catalogs. We describe the
methodology and results of both traditional and new null
tests for sources of potential systematic errors in both the
nontomographic and tomographic measured cosmic shear
signal in the next two sections.
Catalog-level tests were performed by Jarvis et al. [[18],

cf. their Sec. 8] and included tests for additive systematic

errors related to spatial position, the PSF, and galaxy
properties. These tests included the cross-correlation of
the galaxies and the PSF. No significant additive systematic
errors were found, and they put upper limits on the potential
additive systematic contribution to ξþ in their Sec. 8.7. In
addition, the overall multiplicative bias of the shear esti-
mates was tested with simulations in Jarvis et al. [18].
Jarvis et al. [18] conclude that both catalogs are consistent
with having small overall multiplicative bias, but due to
uncertainties in their ability to constrain this value, they
suggest marginalizing over a prior on the multiplicative
bias with a standard deviation of 0.05 (see Equation 8–12 of
Jarvis et al. [18]). This multiplicative systematic is treated
in the cosmological analysis of this data [20], where it
contributes to an increase in the uncertainties on the final
cosmological parameters constrained with this data.

A. B-mode measurements

The cosmic shear field can be characterized by E- and
B-modes which differ in parity. At first-order in the
gravitational potential in general relativity, cosmic shear
produces a pure E-mode field [see, e.g., [57]]. However,
contaminating signals, like that from the telescope point-
spread function, tend to contain both E- and B-modes. Thus
one of the first suggested tests of cosmic shear detections
was verifying that the B-mode signal is consistent with zero
[58].14 Many methods have been suggested for B-mode

FIG. 5. Jackknife covariances in the mock catalogs and the data for the nontomographic shear correlation functions. The left panel
shows the correlation matrix using jackknifes in the data for NGMIX (top left) and when averaging the jackknife covariances in the 126
mock catalogues (bottom right). The bottom left quadrant contains the ξþ correlations, the top right the ξ− correlations and the off
diagonal components contain the cross-correlations. For each submatrix of the full correlation matrix, the angular scale increases from
2 arcminutes to 300 arcminutes. On the right, we show the diagonal elements of the jackknife covariance matrix in the data for NGMIX

(points) and when averaged over 126 mock catalogues (line). The grey band shows the standard deviation of diagonal elements over the
126 mock catalogs.

14Small levels of B-modes are produced at second order in the
gravitational potential, but these are small enough not to spoil the
null test [see, e.g., [59,60]].

M. R. BECKER et al. PHYSICAL REVIEW D 94, 022002 (2016)

022002-10



estimation [e.g., [61–66]]. Here we use the estimators from
Becker and Rozo [47], which estimate band-powers using
linear combinations of the shear two-point functions that
optimally separate E- and B-modes [41]. These estimators
are

E ¼ 1

2

�X
fþiξþi þ

X
f−iξ−i

�
ð3Þ

B ¼ 1

2

�X
fþiξþi −

X
f−iξ−i

�
; ð4Þ

where the sums run over the angular bins of the shear two-
point functions. The weight vectors fþ=− are chosen to
simultaneously minimize E- to B-mode mixing while also
producing compact band-power estimates in Fourier-space.
See Appendix A for more details.
In Figure 6, we show a measurement of the tomographic

B-mode signal using the Becker and Rozo [47] band-
powers. We find no statistically significant B-mode con-
tamination, with a total χ2=d:o:f: for NGMIX of 62.5=60 and
for IM3SHAPE of 41.2=60. The error bars in this case are
computed using the mock catalogs above. In Appendix A,
we verify this conclusion by computing a complementary
measurement of the non-tomographic B-mode signal using
an alternate estimation of the spherical harmonic shear
power spectrum. We find the B-modes from this alternate
technique are consistent with zero with a χ2=d:o:f: ¼ 4.5=7

for NGMIX and 6.3=7 for IM3SHAPE. Finally, note that
Becker and Rozo [47] band-power measurements of the
nontomographic B-mode signal are presented in Jarvis
et al. [18] using the methods and mock catalogs of this
work. The nontomographic B-mode measurements were
again found to be consistent with zero, with χ2=d:o:f: ¼
22.3=20 for NGMIX and 16.1=20 for IM3SHAPE.

B. Consistency between the shear pipelines

We further test for consistency between the shear
catalogs split into tomographic bins by selecting only
sources which pass the selection cuts for both codes. For
this subset of sources, we then compare the shear auto- and
cross-correlation functions for each bin. Due to the fact that
the two catalogs have the same sample variance, have
similar shape noise and have correlated shear measurement
errors, the error bars on the difference between the two
correlation functions is much smaller than that on the
correlation functions themselves. We account for this effect
by constructing mock catalogs where a given mock galaxy
is assigned its shape noise for each shear measurement
code, NGMIX or IM3SHAPE, from the same real galaxy.
This comparison is shown in Fig. 7 for the shear

correlation function for IM3SHAPE minus NGMIX.15 We find

FIG. 6. Tomographic B-modes in DES SV data for NGMIX (left) and IM3SHAPE (right). The error bars are calculated from the
simulation realizations using the shape noise appropriate for each catalog. The tomographic bins correspond to those shown in Fig. 3 and
are labeled from 1 to 3, increasing with redshift. Thus, panel “3-2” shows the cross-correlation between the highest and middle redshift
bins. The total χ2=d:o:f:, accounting for the correlations between the points in each panel, for NGMIX is 62.5=60 and for IM3SHAPE
is 41.2=60.

15We have completed this test for the ratio of the shear
correlation functions and without tomography, finding similar
results.
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that the shear correlation functions from the codes are
statistically consistent over the full range of scales from 2 to
300 arcminutes, giving a χ2=d:o:f: ¼ 46.8=72. Finally, note
that this test is similar to the differenced shear correlation
function test presented in Sec. 8.6 of Jarvis et al. [18]. For
their test, they examine the shear correlation function of the
difference in the NGMIX and IM3SHAPE shear estimates
using the matched catalogs. They find that below ≈3
arcminutes, the catalogs do not meet the requirements
for additive systematic errors, set by the expected precision
of the cosmological constraints. The test presented in this
work is generally less sensitive, but complementary, to the
differenced shear correlation function.

C. Two-point null tests

Even with a carefully chosen set of null tests at the
catalog level, it is still possible that systematic errors, which
can be due to complex interplays between different aspects
of data and analysis, may influence the cosmic shear
measurement. To test for any uncorrected systematic errors
remaining in the measured cosmic shear signal, we attempt
to measure the variation in ξþ as a function of survey and
galaxy properties that may be correlated with sources
systematic errors. For each survey or galaxy property,
the shear data is split in half, and the correlation functions
of each half are compared. We use a reweighting method to
ensure that the redshift distribution of each half is the same
in order to remove any cosmological dependence from this
null test. If the photo-zs and shear measurements are

correct, then the shear correlation functions of the two
halves should be consistent to within the noise of the shear
measurements and the redshift reweighting. If they are not,
this would indicate either uncorrected systematics, selec-
tion effects from the split, or non-shear differences in the
two halves such as intrinsic alignments.
Due to the fact that each half is drawn from the same area

in many cases, the standard error bars computed for the
shear correlation functions are not correct for this test. We
instead use the mock catalogs described above to compute
the error on the difference between the two halves relative
to the full sample, accounting for shared sample variance,
as described below. It is important to note that this is a
simultaneous test of both the photometric redshifts and the
shear calibrations. This feature is in fact desirable because
both of these quantities can contribute to biases in the
shear correlation functions. We have used both the survey
property maps described by Leistedt et al. [67] and also
properties directly produced by the shape measurement
codes. The 16 various systematic parameters are described
in Table I. Finally, Jarvis et al. [18] found that making cuts
on signal-to-noise and size could lead to a selection bias in
the population of shear values due to preferentially select-
ing galaxies that look more or less like the PSF. We attempt
to minimize this problem by using the “round” measures of
signal-to-noise, size and surface brightness.

1. Methodology

The galaxies in each half-sample must be reweighted so
that the total nðzÞ, computed from summing the individual
pðzÞ for each galaxy according to its weight, matches
between the two half-samples. Matching the redshift dis-
tributions of the two halves removes any cosmological
dependence in each null test. For the data, the extra weights
are computed using Ridge Regression (or Tikhonov regu-
larization) [68]. We use the Ridge Regression algorithm to
solve for an additional weight for each galaxy, which when
usedwith the shearmeasurementweights described in Sec. II
to compute the nðzÞ, produces a matching redshift distribu-
tion between the two half-samples. The Ridge Regression
algorithm solves the linear least-squares problem with an
additional regularization parameter α, minimizing

‖Rv − t‖þ ‖αðv − IÞ‖ ð5Þ
where ‖…‖ denotes the least-squares norm,R is the matrix
of galaxy pðzÞ’s each weighted by the lensing weights given
in Sec. II,

R ¼

2
6666664

w1p11 w2p12 w3p13 … wnp1n

w1p21 w2p22 w3p23 … wnp2n

w1p31 w2p32 w3p33 … wnp3n

… … … … …

w1pm1 w2pm2 w3pm3 … wnpmn

3
7777775

ð6Þ

FIG. 7. Difference over error in the tomographic correlation
functions for matched shear catalogues from NGMIX and
IM3SHAPE. We show IM3SHAPE minus NGMIX. The total
χ2=d:o:f: accounting for all correlations is 46.8=72.
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forngalaxies andm photo-z binswith lensingweightswi and
galaxy pðzÞ’s pji, t is the target photo-z distribution, v is the
vector of new weights for which we are solving and I is the
identity vector. The parameter α governs the flexibility of
the weight selection—the smaller the value, the better
matched the reweighed nðzÞ are—and is adjusted to prevent
a significant contribution of negative or large weight values,
which may impact the validity of the null tests. We find that
α ¼ 5 × 10−11 produces an optimal match between the two
half-samples while keeping theweights v sufficiently regular
for our photo-zs and lensing weights. This value may not

generalize to other lensingweights or photo-zs.Wematch the
redshift distribution of each half-sample to that of the full
sample (i.e. t is the redshift distribution of the full sample).
This procedure is more stable than matching one half to
another since smaller weights are needed for each half. The
application of the Ridge Regression algorithm then produces
a new weight v, which is combined multiplicatively with the
lensing weight in the calculation of the correlation functions.
The resulting reweighting for galaxies split into bins of low
andhighgalaxydetection signal-to-noise forNGMIX is shown
in Fig. 8. The left panel shows the nðzÞ for each half before

TABLE I. Summary of null tests for NGMIX and IM3SHAPE. Results are given as NGMIX (IM3SHAPE). The χ2 values are given for the
differences between the two-point correlation function calculated from galaxies that fall within one of two bins in each catalog or survey
property. Also shown is the magnitude of the difference relative to the 1σ error of the measurement of ξþ on the full sample.

Property χ2 [d:o:f: ¼ 8] NGMIX (IM3SHAPE) Δξþ=σðξþÞ NGMIX (IM3SHAPE) Description

Signal-to-Noise 4.9 (5.2) 0.05 (0.49) Signal-to-noise of galaxy detection
Galaxy Size 5.3 (10.7) −0.3 ð0.15Þ Galaxy size (deconvolved with PSF)
Galaxy Color 7.3 (2.2) −0.31 ð−0.32Þ g − z colour
Surface Brightness 7.8 (8.7) 0.33 ð−0.32Þ Galaxy surface brightness
RA 7.0 (8.8) 0.24 (0.28) Galaxy right ascension
Dec 4.0 (6.2) −0.24 ð−0.57Þ Galaxy declination
E(B-V) 5.1 (6.2) 0.23 (0.06) Mean extinction
Air Mass 20.7 (13.8) 0.31 (0.46) Mean r-band air mass
Exposure Time 4.7 (6.8) 0.18 (0.3) Mean total r-band exposure time
Mag. Limit 4.4 (7.4) 0.18 (0.45) Mean r-band limiting magnitude
Sky Sigma 1.7 (13.0) −0.02 ð−0.08Þ Mean r-band RMS sky brightness
Sky Brightness 5.0 (14.3) −0.05 ð−0.27Þ Mean r-band sky brightness
FWHM 6.4 (3.3) −0.23 ð−0.13Þ Mean r-band PSF FWHM
PSF e1 16.8 (13.5) 0.12 ð−0.37Þ Galaxy PSF e1
PSF e2 17.1 (7.5) −0.58 ð−0.22Þ Galaxy PSF e2
PSF Size 2.6 (5.6) −0.1 ð0.42Þ Galaxy PSF size

FIG. 8. An example of the redshift reweighting procedure used when comparing the correlation function between galaxies split
into bins of galaxy or survey properties. Left: The SkyNet redshift distribution for each half of the NGMIX data, split into upper (blue)
and lower (red) bins of signal-to-noise ratio ðS=NÞr before (dashed) and after (solid) re-weighting, compared to the full sample nðzÞ
(black solid curve). Right: The distribution of weights applied to each galaxy to produce the solid nðzÞ lines, generated as described
in Sec. VI C 1.
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(dashed) and after (solid) reweighting compared to the full
sample. The corresponding weight histograms are shown in
the right panel.
We use the 126 DES SV-shaped mock catalogs described

above to compute the variance and significance of the
differences between the shear correlation functions in each
half-sample. In the mock catalogs, we select a subset of
galaxies in narrow redshift slices to match the nðzÞ
distribution for the full galaxy catalog. Random shape
noise is generated from the shear catalog and applied to the
mock catalogs, and the property with which we split the
galaxy sample in half is then mapped onto the galaxies in
each mock via a nearest neighbor algorithm in angular
position, and redshift. This preserves the same spatial
patterns as exist in the data, but the shears have been
randomized so that there is no correlation with this
property. We then apply the same procedure to each mock
as applied to the data to directly compute the error bars on
the difference via Monte Carlo, with the exception of using
the true mock point redshift values to reweight the nðzÞ
histograms of each half instead of a pðzÞ estimate for each
galaxy. We expect this difference will only underestimate

the variance. Any statistically significant deviations then
indicate that there may be a residual systematic error in the
shear catalogs related to the quantity split upon, which has
affected the measured two-point correlation function.

2. Results

The split null tests on ξþ are presented in Figure 9 for
NGMIX and Figure 10 for IM3SHAPE. This is repeated in
Appendix D for ξ−. For each quantity (panel), the differ-
ence in ξþ is shown at each value of θ relative to the 1σ
error in the difference from the mock catalogs. Grey bands
corresponding to 1σ and 2σ errors are shown for compari-
son. The corresponding statistical significance of the null
tests for IM3SHAPE and NGMIX are given in Table I. We find
that for both NGMIX and IM3SHAPE the null tests pass with
deviations smaller than 2σ (χ2=d:o:f: ¼ 17.8=8) for all tests
except for NGMIX airmass. Note that because NGMIX has a
higher source density, it is generally more sensitive to
residual systematic errors in these tests. While this detec-
tion is still weak, it warrants evaluating whether this
difference in the galaxy population halves will have a

FIG. 9. Null tests for the NGMIX two point correlation function based on a variety of catalog and survey properties as described in
Table 1. Each panel for a given property shows the difference between the ξþ relative to its error for the galaxies in the upper and lower
halves of the sample split into bins by the magnitude of the quantity. The two halves of the sample have been reweighted to have the
same redshift distribution. The error on the difference is computed directly via the mock catalogs. Grey bands are shown representing the
1σ and 2σ variance at each value of θ. Adjacent points in angle are correlated.
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significant bias on the correlation function. To test this, we
also show in Table I the difference Δξþ ¼ ξþðupperÞ −
ξþðlowerÞ relative to the 1σ error on the full sample
measurement. For NGMIX airmass, this difference is approx-
imately one-third of the statistical error on the measure-
ments and consistent with the level of bias in several other
quantities. Of slightly lesser significance are splits in the
magnitude of NGMIX PSF e1 and e2, for which PSF e2 has
the largest difference in ξþ between upper and lower
halves—though still small compared to the statistical error.
There is some subtlety in interpreting the significance of

these null tests. First, due to physical effects not accounted
for in the simulations, some tests could yield nonzero
results but not indicate systematic errors in the data analysis
itself. For example, if the level of intrinsic alignments
differs between galaxies split by color, then these null tests
could fail and yet the shear measurements themselves could
be free of systematic errors. Second, these tests could also,
in principle, flag differences between the shear calibrations
of galaxies of different types, which although interesting,
may not ultimately impact cosmological constraints from
the full sample, which could be unbiased on average. Third,
as stated above, it is not clear from these tests alone if any
deviations are due to the shear measurements or the
photometric redshifts. Finally, note that the χ2 values from

these tests are not independent, due to correlations in the
underlying quantities used to construct the tests (e.g., the
survey depth is correlated with the seeing). We have
performed a large number of null tests, so to the extent
that the χ2 values between many of the tests should be
independent, we do expect some apparent deviations purely
from statistical fluctuations. However, we have not
attempted to combine the tests in order to quote an overall
significance.

VII. CONCLUSIONS

In this work, we present cosmic shear two-point mea-
surements from Dark Energy Survey Science Verification
data. We find an overall detection significance of 9.7σ for
our higher source density catalog, NGMIX. We additionally
present multiple advances in band-power estimation,
covariance estimation, simulations versus theory, and null
tests for shear two-point correlations. Through this work
we demonstrate that our measurements are robust and free
of statistically significant systematic errors.
We demonstrate that the covariance matrices derived

from the DES SV mock simulations presented in this work
are consistent with the halo model, including the halo
sample variance terms. We also compare the variance in the

FIG. 10. Null tests for the IM3SHAPE two point correlation function based on a variety of catalog and survey properties as described in
Table 1. See Fig. 9 for details.
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mock catalogs to the variance in the DES SV data by
comparing jackknife covariances computed in the data and
mock catalogs. The structure of the covariance matrices is
very similar and we detect no statistically significant
sources of additional variance in the data.
We find that the B-mode signals in the data are consistent

with zero and that the two shear estimation codes agree
well. We additionally present a set of simultaneous null
tests of the photo-zs and shear measurements, performed by
splitting the shear sample in half according to some
parameter and comparing the shear correlation functions
of the halves. We find that these tests pass with no
statistically significant indications of biases. We expect
null tests similar to those developed here to have increased
utility in future cosmic shear analyses, where the statistical
power is larger and the requirements for controlling
systematic errors and shear selection effects are more
stringent. The DES itself will have nearly ≈36× more
data and will measure cosmic shear at significantly higher
signal-to-noise, so that these tests will be very useful.
Future cosmic shear two-point function measurements in

the Dark Energy Survey face a variety of challenges. First,
while we have a sufficient number of simulations for the SV
data, simulating the increased area of the full DES will
present a significant computational challenge. This chal-
lenge will need to be met by a combination of large
simulation campaigns, information compression schemes
applied directly to the data, and combinations of theoretical
models for the covariances with simulations in order to
reduce the noise in the covariance matrix elements. Second,
in order to use simulations to evaluate the statistical
significance of null tests on future DES data, like those
presented in this work, we will need to increase the fidelity
of the treatment of both the galaxies and the shear signals.
Third, we must better address the formal aspects of the
construction of the two-point function statistic estimators in
order to make higher precision measurements. Finally,
while this work has focused exclusively on broad-bin
tomography of the two-point function measurements of
cosmic shear, future exploration of higher order correlation
functions and finer tomographic binning will be needed to
extract the full amount of cosmological information from
cosmic shear data. Fortunately, none of these issues are
fundamentally intractable and we expect that the new
techniques presented in this work will be of great assistance
in making future cosmic shear measurements with
DES data.
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APPENDIX A: ALTERNATIVE E- AND
B-MODE STATISTICS

In this appendix we consider alternative statistics of the
shear field, verifying that our conclusions above, especially
that the B-modes are consistent with zero, do not depend on
the choice of statistic. These alternative statistics include
the band-powers of Becker and Rozo [47] and power
spectra band-powers estimated with PolSpice16 [48,49].

1. Band-powers

The band-powers of Becker and Rozo [47] use the
methods of Becker [41] to estimate Fourier-space band-
powers directly from linear combinations of the real-space
two-point functions. The final band-power estimates can be
computed from the underlying E-mode power spectrum as

E ¼
Z

d lnll2

2π
CEEðlÞWþðlÞ ðA1Þ

where WþðlÞ is the band-power window function com-
puted from the coefficients ffþi; f−ig in Eqs. (3) and (4).
See Becker and Rozo [47] for more details. The optimal
computation of the band-powers requires computing the
effective radial bin window functions of the shear corre-
lation function points. Instead in this work we just use the
geometric approximation to the bin window functions to
compute the amplitudes ffþi; f−ig. This procedure means
that the band-powers do not separate E- and B-modes as
well as they could in principle. However, when comparing
to a fiducial cosmological model below, we do compute the
band-power window function using estimates of radial bin
window functions from the data. These window functions
are computed via interpolating the weighted counts in each
radial bin of the estimated shear two-point function. We

have compared the results of this procedure for computing
the window functions to estimates of the window functions
from counts in finer bins. We find unsurprisingly that the
bin window functions are quite smooth and thus the
interpolation is accurate enough for our purpose.

2. Spherical harmonic power spectrum

The cosmic shear power spectrum can also be estimated
in spherical harmonic space, which has the advantage of
being faster and less memory intensive than working in
real-space. In view of upcoming wide field galaxy lensing
surveys, e.g. the full five year DES data set, we therefore
investigate the applicability of standard spherical harmonic
space methods to weak lensing. For this purpose, we use
the PolSpice [48,49] code together with the HEALPix
[69] package, which has been applied to, amongst other
things, CMB polarization data [e.g., [70]]. PolSpice is
based on the fast correlation function approach described in
[48] and [49]. The method is designed to exploit the
advantages of both real and spherical harmonic space: to
limit computation time and resources, the data are analyzed
in spherical harmonic space. In order to facilitate demask-
ing, the power spectrum is transformed to real-space in an
intermediate step. In real-space, the survey mask can
simply be corrected for, since the masked correlation
function is the product of the unmasked correlation
function and the correlation function of the mask. More
precisely, the algorithm first calculates pseudo-Cl’s from
pixelized and masked galaxy ellipticity maps which are
then transformed to the correlation function. The real-space
correlation function is then divided by the correlation
function of the mask to correct for finite survey effects
and inverted to obtain the full-sky power spectrum,
removing E- to B-mode leakage in the mean. Incomplete
sky coverage implies that the inversion can only be
performed on angular scales for which the correlation
function can be estimated thus introducing Fourier ringing
in the inversion process, which can be reduced by apod-
izing the correlation function. Both the apodization and
finite integration range introduce kernels which relate the
power spectra measured by PolSpice to the underlying
true power spectra. These kernels can be computed for a
given apodization scheme and integration range and can
therefore be corrected for when comparing measurement to
theory (for details see Chon et al. [49]).
For our analysis, we pixelize the galaxy ellipticities onto

a HEALPix pixelization of the sphere with a resolution of
Nside ¼ 1024, where each pixel covers a solid angle of
≈11.8 arcmin2. In order to obtain a robust estimate of the
shear field, we need to correct for multiplicative bias in the
measured ellipticities. Since the correction factors
described in Secs. II A and II B are noisy estimates of
the true corrections, we determine the mean sensitivity or
multiplicative bias correction for our galaxy sample and
apply this mean correction to the pixelized maps. As the16http://www2.iap.fr/users/hivon/software/PolSpice/.
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power spectrum is estimated from maps constructed from
the discrete values of the galaxy ellipticities, we apply a
conservative masking scheme to maximize galaxy number
density. We therefore adopt the DES SV LSS mask used for
galaxy clustering measurements [71]. This mask is iden-
tical to the DES SV mask used for weak lensing except
that it restricts analyses to the largest contiguous region
overlapping the SPT-E field by selecting the area with
60 < ra½deg� < 95 and −60 < dec½deg� < −40. It further
considers only regions with survey limiting magnitude in
the i-band > 22.5 (i.e. all regions considered to provide at
least 10σ measurements for objects at i-band ¼ 22.5; [71]).
For the power spectrum measurement, we limit all inte-
grations to scales smaller than θmax ¼ 15 degrees and we
apodize the correlation function with a Gaussian window of
θFWHM ¼ 10 degrees. Finally, we correct the measured
power spectra for the HEALPix pixel window function and
compress them into 7 band-powers with PolSpice band-
power kernels.
The noise power spectrum needs to be computed from

simulations. In order to produce noise only maps from
the data, we remove correlations in the ellipticity maps by
rotating each galaxy ellipticity by a random angle. We then
estimate the noise power spectrum as the mean of the power
spectra of 100 such random realizations. This procedure

yields shape noise estimates consistent with Cl;SN ¼ σ2ϵ;pix
npix

where σ2ϵ;pix is the variance of either component of the mean
ellipticity per pixel and npix is the angular number density
of HEALPix pixels. Comparing the measured shape
noise to the galaxy-based Gaussian shape noise estimate

Cl;SN ¼ σ2ϵ;gal
ngal

, where σ2ϵ;gal is the variance of either compo-

nent of the galaxy ellipticities and ngal denotes the galaxy
number density, we find that the latter underestimates
the measured shape noise. This suggests that the galaxy
ellipticity distribution is non-Gaussian and the Gaussian
approximation can therefore only be applied after averag-
ing the galaxy ellipticities over pixels. We test the pipeline
using Gaussian field realizations and the mock catalogs.

3. Results

Figure 11 shows the nontomographic band-powers
using the methods of Becker and Rozo [47], their window
functions as the dotted lines, and their error bars computed
with themock catalogs as the grey bands.We find a detection
significance 6.1σ and 5.7σ for NGMIX and IM3SHAPE,
respectively. These detection significances are similar to
the real-space two-point functions. Finally, the solid
line shows the expected shear power spectrum amplitude
assuming the flat, ΛCDM model given above. The dashed
line shows for each band-power the integral of the band-
power window function over the shear power spectrum.
Figure 12 shows the results for the PolSpice statistics.

We find a detection of cosmic shear of 5.6σ and 5.4σ for

NGMIX and IM3SHAPE respectively for the PolSpice
statistics. Note that the PolSpice statistics do not use
as many high-lmodes as the real-space band-powers or the

FIG. 11. Band-powers in DES SV data for NGMIX (top) and
IM3SHAPE (bottom). The error bars indicated by the grey bands
are calculated from the simulation realizations using the shape
noise appropriate for each catalog. The dotted lines show the
band-power window functions WþðlÞ scaled so that their peak
values are 2 × 10−6. The solid line is the prediction for the shear
power spectrum for the flat, ΛCDM model given above. The
dashed line shows the integral of the band-power window
functions over the shear power spectrum.

FIG. 12. Spherical harmonic shear power spectrum estimated
using PolSpice. The left and right panels correspond to the
NGMIX and IM3SHAPE catalogs, respectively. The top and bottom
panels show the E- and B-modes, respectively. The measurement
uncertainties are estimated using the mock catalogs. The black
solid lines show the predictions for the flat, ΛCDM model given
above. Note that the theoretical prediction has been convolved
with the PolSpice kernels, which relate the true to measured
power spectra. The S=N values for the E-modes are computed as
outlined in Sec. IVA and the χ2 values for the B-modes indicate
consistency with zero. The reported values take into account
correlations between the band-powers.
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real-space correlation functions, so that one expects a lower
detection significance. We also find that the B-modes are
statistically consistent with zero for the PolSpice
statistics.
Finally, note that these two estimators process the data in

different ways (e.g., averaging the data in pixels versus
computing real-space correlation functions), have different
sensitivities to shot noise, and have different Fourier-space
window functions. We thus do not expect them to give
precisely the same results in Fourier-space for the shear
power spectrum. However, we do expect that when treated
self-consistently they should give statistically consistent
results for cosmological parameters, as demonstrated in the
accompanying cosmological analysis of this data [20].

APPENDIX B: VALIDATION OF THE
MOCK CATALOGS

In this section we present a validation test for the mock
catalogs. We compare the shear correlation functions
measured in the mock catalogs in tomographic bins with
the theoretical expectation from the Takahashi et al. [46]
fitting function for the matter power spectrum. The result of

this test is shown in Fig. 13. We find that at high redshift the
small-scale shear correlation functions are suppressed
relative to the theoretical expectation. Note however that
this numerical effect is below the scales where the two-
point functions are being used for cosmological parameter
estimation (≈2–4 arcminutes for ξþ and ≈25–55 arcmi-
nutes for ξ−; see Table 2 of The Dark Energy Survey
Collaboration et al. [20]). Additionally, we only estimate
the covariance of the two-point functions from the mock
catalogs, not the mean signal. Within the noise of our mock
covariance matrix, the overall parameter uncertainties are
consistent when using the halo model versus the simulation
covariance (see Sec. V for a quantitative comparison). This
fact may indicate that the covariance is less sensitive to
these numerical effects than the mean signal. Future work
may require higher-resolution shear fields for covariance
estimation.

APPENDIX C: DETAILED COVARIANCE
MATRIX VALIDATION

In this section, we present further details of the validation
of the covariance matrices, including our tomographic halo

FIG. 13. The shear correlation functions in the mock catalogs compared to the expected values from Takahashi et al. [46] for all three
tomographic bins (labeled in the top left corner from left to right). In the top panel, the solid lines show the theoretical expectation, the
bands show the 1σ sample variance estimate and the dashed line shows the mean from the mock catalogs. ξþ is in red and ξ− is in blue. In
the bottom panels, we show the fractional deviation of the mean signal in the mock catalogs from the expected values from Takahashi
et al. [46] in units of the sample variance. ξþ data below ≈2–4 arcminutes and ξ− data below ≈25–55 arcminutes is not used for the final
cosmological analysis in The Dark Energy Survey Collaboration et al. [20] due to the expected baryonic effects in the matter power
spectrum.
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model computations and the comparison to the simulations. The halo model covariance was computed with the COSMOLIKE
covariance module (see Eifler et al. [50] and Krause et al. [51] for details).
In the halo model, the covariance of tomographic shear power spectra Cij

κ ðlÞ is given by [72–74]

CovðCij
κ ðl1Þ; Ckl

κ ðl2ÞÞ ¼
2πδl1l2
Ωsl1Δl1

��
Cik
κ ðl1Þ þ δik

σ2ϵ
2ni

��
Cjl
κ ðl2Þ þ δjl

σ2ϵ
2nj

�
þ
�
Cil
κ ðl1Þ þ δil

σ2ϵ
2ni

��
Cjk
κ ðl2Þ þ δjk

σ2ϵ
2nj

��
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Z
jlj∈l1

d2l
Aðl1Þ

Z
jl0j∈l2

d2l0

Aðl2Þ
�
1

Ωs
Tijkl
κ;0 ðl;−l; l0;−l0Þ þ Tijkl

κ;HSVðl;−l; l0;−l0Þ
�
; ðC1Þ

with ni the number of source galaxies in tomography bin i,
σϵ the ellipticity dispersion, AðliÞ ¼

R
jlj∈li d

2l ≈ 2πliΔli the
integration area associated with a power spectrum bin
centered at li and width Δli, and Tijkl

κ;0 and Tijkl
κ;HSV the

convergence trispectrum of source redshift bins i, j, k and l
in the absence of finite volume effects and the halo sample
variance contribution to the trispectrum [52,74]. Our halo
model implementation for these terms is described in Eifler
et al. [75].

Note that Eq. (C1) ignores the so called finite-area effect
(cf. Sato et al. [76] or Friedrich et al. [55]), linear beat-
coupling terms [e.g., [77]] and linear dilation terms Li et al.
[e.g., [78]]. For a survey of the size of DES-SV the finite-
area effect is expected to be negligible. Furthermore,
ignoring this effect is at most conservative since it will
slightly overestimate the statistical uncertainties. The beat-
coupling terms are negligible compared to the halo sample
variance terms (and even the non-Gaussian terms, see e.g.,

FIG. 14. Comparison of the shear correlation function correlation matrix estimated from mock catalogs and calculated from the halo
model. Figure 4 shows a subset, those for tomographic bin combinations (1,1), (1,3) and (3,3), of the covariance matrix elements shown
in this figure. The correlation matrix from mock catalogs is on the upper-left and that from the halo model is on the lower-right.

M. R. BECKER et al. PHYSICAL REVIEW D 94, 022002 (2016)

022002-20



Takada and Jain [77]). Further, the linear dilation terms
reduce the effect of the beat-coupling terms and are
negligible [78]. Finally, we have ignored the effects of
masking (except for the total area of the survey in the halo
sample variance terms). We have found with Gaussian
simulations that the effects of the details of the mask,
besides the overall survey area, are negligible when
computing cosmological constraints.
The covariance of angular shear correlation functions is

then given by

Covðξij�ðθ1Þ; ξkl�ðθ2ÞÞ ¼
Z

dl
2π

lJ0=4ðlθ1Þ
Z

dl0

2π
l0J0=4ðl0θ2Þ

× CovðCij
κ ðl1Þ; Ckl

κ ðl2ÞÞ ðC2Þ

where we use the results of Joachimi et al. [79] to simplify
the calculation of the Gaussian part of the covariance.
Figure 14 shows the full tomographic correlation matrix,

comparing the halo model on the lower-right and the mock

catalogs on the upper-left. The overall structure of the
covariance matrices is similar in both computations, but the
mock catalogs exhibit more noise in the off-diagonal
components.

APPENDIX D: ADDITIONAL TWO-POINT
NULL TESTS OF ξ−

We have repeated an identical analysis for ξ− to that
described in Sec. VI C for ξþ. We show the results of the
tests for IM3SHAPE in Fig. 15 and for NGMIX in Fig. 16.
Qualitatively, comparing to Figs. 9 and 10, there is an
indication that some of the larger deviations in the figures
for ξþ may be due to additive systematic errors. For
example, there is an offset in the difference of ξþ based
on values of airmass at the 2σ level that disappears for ξ−.
The corresponding χ2 and difference values are given in
Table II. There are no significant indications of systematic
errors in these null tests for ξ−, though this may simply be
due to the poorer constraining power of ξ−.

FIG. 15. Null tests for the NGMIX two point correlation function based on a variety of catalog and survey properties as described in
Table 1. See Fig. 9 for details.
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TABLE II. Summary of null tests for NGMIX and IM3SHAPE. Results for NGMIX and IM3SHAPE are given as NGMIX (IM3SHAPE). The χ2

values are given for the differences between the two-point correlation function calculated from galaxies that fall within one of two bins in
each catalog or survey property. Also shown is the magnitude of the difference relative to the 1σ error of the measurement of ξ− on the
full sample.

Property χ2 [d:o:f: ¼ 8] NGMIX (IM3SHAPE) Δξ−=σðξ−Þ NGMIX (IM3SHAPE) Description

Signal-to-Noise 5.8 (1.8) −0.07 ð0.03Þ Signal-to-noise of galaxy detection
Galaxy Size 2.5 (5.0) −0.23 ð−0.35Þ Galaxy size (deconvolved with PSF)
Galaxy Color 7.1 (3.8) −0.3 ð0.04Þ g − z color
Surface Brightness 4.4 (5.2) −0.04 ð−0.06Þ Galaxy surface brightness
RA 2.9 (3.0) 0.06 ð−0.22Þ Galaxy right ascension
Dec 4.9 (3.5) −0.35 ð−0.37Þ Galaxy declination
E(B-V) 2.8 (4.9) −0.22 ð−0.02Þ Mean extinction
Air Mass 2.7 (3.4) −0.01 ð−0.08Þ Mean r-band air mass
Exposure Time 4.5 (2.5) −0.35 ð0.0Þ Mean total r-band exposure time
Mag. Limit 2.2 (3.3) −0.29 ð−0.43Þ Mean r-band limiting magnitude
Sky Sigma 3.8 (5.6) −0.21 ð−0.3Þ Mean r-band RMS sky brightness
Sky Brightness 4.0 (6.2) −0.27 ð−0.42Þ Mean r-band sky brightness
FWHM 4.1 (4.5) −0.2 ð−0.08Þ Mean r-band PSF FWHM
PSF e1 2.7 (7.9) −0.37 ð−0.55Þ Galaxy PSF e1
PSF e2 6.8 (5.8) −0.5 ð−0.33Þ Galaxy PSF e2
PSF Size 1.2 (3.8) −0.08 ð−0.1Þ Galaxy PSF size

FIG. 16. Null tests for the IM3SHAPE two point correlation function based on a variety of catalog and survey properties as described in
Table 1. See Fig. 9 for details.
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