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We propose a renormalizable model based on Δð27Þ family symmetry with an SOð10Þ grand unified
theory leading to a novel form of spontaneous geometrical CP violation. The symmetries, including Δð27Þ
and Z9 × Z12 × ZR

4 , are broken close to the grand unified theory breaking scale to yield the minimal
supersymmetric standard model with the standard R parity. SOð10Þ is broken via SUð5Þ with doublet-
triplet splitting achieved by a version of the Dimopoulos-Wilczek (missing vacuum expectation value)
mechanism. Low-scale Yukawa structure is dictated by the coupling of matter to Δð27Þ antitriplets ϕ̄ of
which the vacuum expectation values are aligned in the constrained sequential dominance 3 directions by
the superpotential. Light physical Majorana neutrinos masses emerge from a specific implementation of the
seesaw mechanism within SOð10Þ. The model predicts a normal neutrino mass hierarchy with the best-fit
lightest neutrino mass between 0.32 and 0.38 meV,CP-violating oscillation phase δl ≈ ð275–280Þ°, and the
remaining neutrino parameters all within 1σ of their best-fit experimental values.
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I. INTRODUCTION

The Standard Model (SM) cannot possibly be a complete
theory, since it does not provide an explanation for neutrino
mass and mixing. In addition, it provides no glimmer of
insight into the flavor and CP puzzles or the origin of three
distinct gauge forces. A very ambitious approach, capable
in principle of addressing all these questions, is the idea of a
grand unified theory (GUT) combined with a family
symmetry which can control the structure of the Yukawa
couplings, leading to a predictive theory of flavor. In
addition, supersymmetry (SUSY) is the most elegant
way to ensure gauge coupling unification, also stabilizing
the Higgs mass (for a review, see, e.g., Ref. [1]). The state
of the art is to combine a realistic GUT (addressing issues
like doublet-triplet splitting) with predictive flavor struc-
tures [2,3], and we proposed a fairly complete A4 × SUð5Þ
SUSY GUT of flavor along these lines [4]. However, the
most ambitious, but also the most challenging, of such
theories are those based on SOð10Þ [5] where three right-
handed neutrinos are predicted and neutrino mass is
therefore inevitable. Typically, such theories are very
difficult to reconcile with a family symmetry and generally
involve rather large dimensional Higgs representations.
In this paper, we propose a realistic and fairly complete

model, capable of addressing all the above questions
unanswered by the SM, based on Δð27Þ × SOð10Þ with
a CP symmetry at the high scale. The choice of Δð27Þ is
primarily due to its triplet and antitriplet representation,

such that there is no invariant between two triplets, which is
convenient due to the SM fermions being placed all in a
single SOð10Þ 16, Δð27Þ triplet. In addition, the nontrivial
singlets of Δð27Þ are also useful, as they are used to give
rise CP-violating phases that are related to the group rather
than arbitrary parameters in the Lagrangian. We therefore
describe this as spontaneous geometrical CP violation [6],
in this model in a novel form, as it fixes relative of phases
between distinct flavons. The model has many attractive
features, including the use of only the lower-dimensional
“named” representations of SOð10Þ, i.e., the singlet,
fundamental, spinor, or adjoint representations. SOð10Þ
is broken via SUð5Þ with doublet-triplet splitting achieved
by a version of the Dimopoulos-Wilczek (DW) or missing
vacuum expectation value (VEV) mechanism [7].
The renormalizable Δð27Þ × SOð10Þ model also

involves a discrete Z9 × Z12 × ZR
4 . The family symmetries

are broken close to the GUT breaking scale to yield the
minimal supersymmetric standard model (MSSM) supple-
mented by a right-handed neutrino seesaw mechanism
[8,9], where the ZR

4 is the origin of the MSSM R parity
[10]. The model is realistic in the sense that it provides a
successful (and natural) description of the quark and lepton
(including neutrino) mass and mixing spectra, including
spontaneous CP violation. The low-scale Yukawa structure
is dictated by the coupling of matter to Δð27Þ antitriplets ϕ̄
of which the VEVs are aligned in the Constrained
Sequential Dominance 3 (CSD3) directions by a super-
potential. Light physical Majorana neutrino masses emerge
from a specific implementation of the seesaw mechanism
within SOð10Þ. It is fairly complete in the sense that GUT
and family symmetry breaking are addressed, including
doublet-triplet splitting and the origin of the MSSM μ term.
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We emphasize the predictive nature of the model. Large
lepton mixing is accounted for by the seesaw mechanism
[8] with CSD [11]. The basic goal of the flavor sector in
these models is to couple the SM fermions to flavons ϕ̄atm,
ϕ̄sol, and ϕ̄dec, VEVs of which are aligned in the CSD3
direction [12,13],1 i.e., where

ϕ̄atm∼

0
B@
0

1

1

1
CA; ϕ̄sol∼

0
B@
1

3

1

1
CA; ϕ̄dec∼

0
B@
0

0

1

1
CA: ð1:1Þ

We achieve this in a way that is compatible with an SOð10Þ
GUT, i.e., where all fermion states may be united in a 16 of
SOð10Þ, and left- and right-handed fermions transform
equally under the family symmetry. Since SOð10Þ con-
strains the Dirac couplings of all leptons and quarks to be
equal (within a family), it is actually rather nontrivial that
the successful scheme in the lepton sector will translate to
success in the quark sector. Remarkably, we find that we
can attain good fits to data for quark and lepton masses,
mixings, and phases. This is notably different from our
previous work [4] based on SUð5Þ with CSD3, wherein the
three generations of fermions were not all unified into
triplets of the family symmetry.
The full literature on flavored SUSY GUTs [9], i.e.,

which involve a family symmetry, is quite extensive (for an
incomplete list, see, e.g., Refs. [15,16]), but there have been
relatively few attempts in the literature to combine an
SOð10Þ GUTwith a discrete non-Abelian family symmetry
[16], and we would argue that none are as successful or
complete as the present one. The goal of all these models is
clear: to address the questions left unanswered by the SM.
It will take some time and (experimental) effort to resolve
these models. However, the most promising models are
those that make testable predictions while being theoreti-
cally complete and consistent.
The layout of the remainder of the paper is as follows. In

Sec. II, we present a renormalizable Yukawa superpotential
and discuss how it leads to the fermion mass matrices. In
Sec. III, we show how the CSD3 alignment is produced in
Δð27Þ, how the flavon VEVs are driven, and how their
relative phases are fixed. In Sec. IV, we show how SOð10Þ
is broken and how we achieve doublet-triplet splitting. In
Sec. V, we give a numerical fit of model parameters to the
masses and mixing parameters as given by data. Section VI
concludes.

II. MODEL BASED ON Δð27Þ × SOð10Þ WITH CSD3

A. Yukawa superpotential and field content

The most important field content is given in Table I. In
Table II, we have the messengers with R-charge 1, which

result in the superpotential in Eq. (2.2). Higgs fields are
typically denoted by their SOð10Þ representation, with two
10s that couple respectively to the up-type and down-type
MSSM fields at the low scale. The fields ϕ̄i are flavons that
are antitriplets under Δð27Þ and are named in accordance
with their respective roles in the CSD3 scheme. The
messenger fields are typically indexed by their Z9 charge,
while each prime tick corresponds to an additiveZ12 charge
of 3.
The MSSM matter content is collected in Ψ, a 16 of

SOð10Þ and a triplet under Δð27Þ. The two Higgs doublets
arise fromHu

10 andH
d
10, both 10 representations of SOð10Þ,

where one only gets a VEV in the [SUð2Þ]Hu direction and
the other in the Hd direction. If we did not have the two
H10, we would get the erroneous relation

tan βmd
ij ¼ mu

ij; ð2:1Þ
which gives no Cabibbo-Kobayashi-Maskawa (CKM)
mixing. The H

16
breaks SOð10Þ → SUð5Þ and gives

masses to right-handed neutrinos.

TABLE I. Superfields important for quark and lepton Yukawa
couplings.

Field Representation

Δð27Þ SOð10Þ Z9 Z12 ZR
4

Ψ 3 16 0 0 1
Hu

10 1 10 6 0 0
Hd

10
1 10 5 0 0

H45 1 45 0 0 0
H0

45 1 45 0 3 0
HDW 1 45 6 0 2
Z 1 1 0 0 2
Z00 1 1 0 6 2
H

16
1 16 6 0 0

H16 1 16 2 0 2
ϕ̄dec 3̄ 1 6 0 0
ϕ̄atm 3̄ 1 1 0 0
ϕ̄sol 3̄ 1 5 6 0
ξ 1 1 1 0 0

TABLE II. Messengers with unit R charge.

Field Representation

Δð27Þ SOð10Þ Z9 Z12 ZR
4

χi 1 16 i ∈ f1; 5; 6; 7g 0 1
χ̄i 1 16 i ∈ f8; 4; 3; 2g 0 1
χ00i 1 16 i ∈ f5; 6; 7g 6 1
χ̄00i 1 16 i ∈ f4; 3; 2g 6 1
χ06 1 16 6 3 1
χ̄0003 1 16 3 9 1
Ωi 1 1 i ∈ f0;…; 8g 0 1
Ω00

i 1 1 i ∈ f3; 4; 5; 6g 6 11CSD4 models have been discussed in Ref. [14].
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The H45 obtains a VEV that breaks SUð5Þ to the
Standard Model group, i.e., SUð5Þ→SUð3Þ×SUð2Þ×
Uð1Þ. It also gives the necessary Clebsch-Gordan coef-
ficients to give the correct masses. Since it has no Z
charge and the messengers should be in the 16

representation, they can have a renormalizable mass or
a mass depending on the VEVof the 45. This is discussed
further in Sec. II B 1.
The Yukawa superpotential that produces the quark and

lepton mass matrices is

WY ¼ ΨiΨjHu
10

�
ϕ̄i
decϕ̄

j
dec

X2
n¼0

λðuÞdec;n

hH45inM2−n
χ

þ ϕ̄i
atmϕ̄

j
atmξ

X3
n¼0

λðuÞatm;n

hH45inM3−n
χ

þ ϕ̄i
solϕ̄

j
solξ

2
X4
n¼0

λðuÞsol;n

hH45inM4−n
χ

þ ϕ̄i
solϕ̄

j
decξ

�
λðuÞsd;1

hH0
45i2Mχ

þ λðuÞsd;2

hH0
45i2hH45i

��

þΨiΨjHd
10

�
ϕ̄i
decϕ̄

j
decξ

X3
n¼0

λðdÞdec;n

hH45inM3−n
χ

þ ϕ̄i
atmϕ̄

j
atmξ

2
X4
n¼0

λðdÞatm;n

hH45inM4−n
χ

þ ϕ̄i
solϕ̄

j
solξ

3
X5
n¼0

λðdÞsol;n

hH45inM5−n
χ

�

þΨiΨjH16
H

16

�
ϕ̄i
decϕ̄

j
decξ

3
λðMÞ
dec

M2
χM4

Ωdec

þ ϕ̄i
atmϕ̄

j
atmξ

4
λðMÞ
atm

M3
χM4

Ωatm

þ ϕ̄i
solϕ̄

j
solξ

5
λðMÞ
sol

M4
χM4

Ωsol

�
; ð2:2Þ

where λðfÞi;n are constants; ϕ̄dec, ϕ̄sol, and ϕ̄atm are GUT
singlets that are antitriplets under Δð27Þ and acquire VEVs
according to the CSD3 alignment shown in Eq. (1.1). The
details of this alignment are discussed in Sec. III. The
singlet field ξ acquires a VEV slightly below the GUT scale
and is primarily responsible for the mass hierarchy between
fermions through the Froggatt-Nielsen mechanism [17].
Each term in the above superpotential has an associated

scale derived from the VEVs of the messengers that
produce it. These are generally different, but for simplicity,
we refer to them all asMχ when they are produced by pairs
of SOð10Þ spinor messengers χ and χ̄. We make a special
note of cases in which scale differences have important
consequences for the model, in particular, writing MΩdec

,
MΩatm

, and MΩsol
as the combinations of messenger masses

that appear in these respective terms. This is discussed
further in Sec. II C and Fig. 6.

B. Quarks and charged leptons

1. Diagrams and Clebsch-Gordan coefficients

The diagrams involving messengers that give the
Yukawa terms in the up sector [first two lines of
Eq. (2.2)] are shown in Fig. 1, while the diagrams for
the down sector [which produce the third and fourth lines of
Eq. (2.2)] are in Fig. 2. Note that in these and all future
diagrams solid lines correspond to fields with oddR charge,
while dashed lines signify even R charge.
There are several more diagrams that can be written

wherein messenger pairs couple to the H45. Specifically,
since theH45 has noZ charge and is a real representation, it
may replace a renormalizable mass diagram as in Fig. 3.
The H45 acquiring a VEV leads to Clebsch-Gordan

relations, and it will be aligned in such a way that it only
affects colored particles, as will be discussed later. This is a

GUT-scale VEV, that we will call v45, and breaks
SUð5Þ → SUð3Þ × SUð2Þ ×Uð1Þ. As an example, con-
sider the charged leptons and down quarks. At the low
scale, the superpotential resembles

WMSSM ∼ d̄LdRHd

�
y1
M2

χ
þ y2
v45Mχ

þ y3
v245

�
þ ēLeRHd

y1
M2

χ
:

ð2:3Þ

We may use the parameters yi to fit all the masses.2 As we
take v45 to be complex (one of two possibilities; see
Sec. IVA), the linear combinations of coefficients yi yield
a single effective complex coefficient which is typically
different for each generation and different for each of the
up, down, charged lepton, and neutrino sectors.

2. Mass matrices

As a consequence of SOð10Þ unifying the quarks and
leptons, all fermion Dirac matrices have the same generic
structure. After the flavons acquire VEVs in the CSD3
alignment, the mass matrices are given by

mf¼μfahϕ̄atmiihϕ̄atmijþμfs hϕ̄soliihϕ̄solijþμfdhϕ̄deciihϕ̄decij

¼mf
ae2iρatm

0
B@
0 0 0

0 1 1

0 1 1

1
CAþmf

se2iρsol

0
B@
1 3 1

3 9 3

1 3 1

1
CA

þmf
de

2iρdec

0
B@
0 0 0

0 0 0

0 0 1

1
CA; ð2:4Þ

2For the third family, we have three yi, with four for the second
family and five for the first family.
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where μfi are coefficients derived from the Hu;d
10 , H45, and ξ

VEVs and ρi are the phases of flavon VEVs. This structure
does not include an additional contribution to the up-quark
mass matrix, which arises from a term in WY [Eq. (2.2),
line 2]. Allowed by the symmetries and messengers, it is
proportional to ϕ̄solϕ̄dec and couples to Hu

10 but not Hd
10.

This term leads to the additional contribution to the up-
quark mass matrix

mu
sde

iρsd

0
B@

0 0 1

0 0 3

1 3 2

1
CA: ð2:5Þ

This mixed term is not allowed for the Hd
10 due to a lack of

messengers able to produce it. In Fig. 4, we see how this
mixed term would have had to be built with an Hd

10. Since
there is no field χ0007 to build this diagram, it is not allowed.
There are no messengers that allow us to build other mixed
terms (involving different pairs of flavons); even if there
were, they would be highly suppressed. Without the term in
Eq. (2.5), the fit to CKM parameters is quite poor, whereas
with this term included, a reasonable fit can be made (for
more, see Sec. V).
The additional term in Eq. (2.2) does not contribute to

down quarks or charged leptons, since it only involvesHu
10.

Furthermore, because of its structure, it does not contribute
to neutrino masses either. To see this, we may decompose
the contribution to neutrinos from the fourth diagram in
Fig. 1 in SUð5Þ terms. We adopt the naming convention
where the SUð5Þ representation is labelled by its dimen-
sion, with its parent SOð10Þ field given in parentheses. The
left-handed neutrinos are in 5̄ðΨÞ, and the right-handed
neutrinos are the 1ðΨÞ. The diagram would be in Fig. 5. We
see that the subdiagram that is emphasized involves one
adjoint and two SUð5Þ singlets, which is zero, and therefore
the whole diagram is zero.

FIG. 1. Diagrams for up-type quark and Dirac neutrino Yukawa terms.

FIG. 2. Diagrams for down-type and charged-lepton Yukawa terms.

FIG. 3. The model symmetries allow for any mass insertionMχ

to be replaced by an H45χ̄χ vertex, leading to extra
superpotential terms.
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3. Relative phases of flavons

Since H45 acquires a VEV that only affect colored
particles, the lepton and neutrino Dirac matrices will not
depend on v45 (which is generally complex). As such, the
only phases contributing to these matrices are ρatm, ρsol, and
ρdec, the phases of hϕ̄atmi, hϕ̄soli, and hϕ̄deci, respectively, as
well as ρξ, the phase of hξi. We define the dominant phase
as the phase of the subdominant (second) matrix in the
seesaw basis where the dominant matrix is real, i.e.,

η≡ − arg

�hϕ̄soli2
hϕ̄atmi2

hξi
�
¼ −2ðρsol − ρatmÞ − ρξ: ð2:6Þ

Similarly, the subdominant phase is

η0 ≡ − arg

�hϕ̄deci2
hϕ̄atmi2

1

hξi
�
¼ −2ðρdec − ρatmÞ þ ρξ: ð2:7Þ

Each mass matrix derived from the superpotential will have
an overall phase dependent on the (generally different)
phases of the Higgs VEVs, but these are not physical and
may be factored out. We defined the phases in this way
because, as we will see shortly, these definitions are the
ones that apply for the effective neutrino mass matrix after
the seesaw.
This phase structure does not exist in the quark mass

matrices, as the factor in front of each submatrix is given as

FIG. 4. Hypothetical diagram that would produce a mixed term involving Hd
10, ϕ̄sol, and ϕ̄dec. Because of an absence of the field χ0007 ,

this term is forbidden.

FIG. 5. Null contribution from the ϕ̄solϕ̄dec mixed term to neutrinos.

FIG. 6. Diagrams for right-handed neutrino Majorana masses.
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a linear combination of superpotential couplings [see
Eq. (2.3)], which in turn depend on v45. As such, the
relative phases in the quark sector are arbitrary.

C. Neutrino masses

Finally, the right-handed neutrino Majorana terms [last
line of Eq. (2.2)] are produced by the diagrams in Fig. 6. If
we decompose these diagrams into SUð5Þ components, the
base line would be all singlets. Therefore, there can be no
contribution coming from the H45 nor the H0

45, and there is
no mixed term allowed.
Even though they seem quite suppressed, these terms get

the correct order. It is usual for the right-handed neutrino
masses to be in the range 1010–1014 GeV. The VEV H

16
breaks SOð10Þ → SUð5Þ and thus is higher than the GUT
scale, while the scale M for the messengers is yet higher,
such that they may be integrated out. Thus, we have
ξ < hH

16
i≲M, and this way we may obtain the correct

scale for right-handed neutrino masses.
It is true, though not immediately obvious, that the mass

matrix structure given in Eq. (2.4) is true also for the
effective neutrino masses after the seesaw. To show this,
consider the neutrino sector after SOð10Þ → SUð5Þ break-
ing, where the left- and right-handed neutrinos ν and νc are
contained, respectively, in a 5̄ and 1 of SUð5Þ, in triplets of
the family symmetry. We denote the 5̄ by F and the singlet
by Nc. The Dirac mass matrix is then sourced by the terms

Hu
10

�
λðνÞatmξ

M3
χ
ðϕ̄atmFÞðϕ̄atmNcÞ þ λðνÞsolξ

2

M4
χ

ðϕ̄solFÞðϕ̄solNcÞ

þ λðνÞdec

M2
χ
ðϕ̄decFÞðϕ̄decNcÞ

�
; ð2:8Þ

when the Hu
10, ξ, and ϕ̄ fields acquire VEVs. Pairs of terms

in parentheses, like ðϕFÞ and ðϕNcÞ, signify a contraction
of a Δð27Þ triplet-antitriplet pair, yielding a flavor singlet.
In a similar fashion, the right-handed Majorana matrix
originates from the terms

hH
16
H

16
i
�

λðMÞ
atm ξ4

M3
χM4

Ωatm

ðϕ̄atmNcÞðϕ̄atmNcÞ

þ λðMÞ
sol ξ

5

M4
χM4

Ωsol

ðϕ̄solNcÞðϕ̄solNcÞ

þ λðMÞ
dec ξ

3

M2
χM4

Ωdec

ðϕ̄decNcÞðϕ̄decNcÞ
�
; ð2:9Þ

where we have made a distinction between the average
scales of the messengers that produce each of the above
three terms, giving us three distinct mass scales for the Ω-
type messengers, denoted MΩatm

, MΩsol
, and MΩdec

. We will
see that the best fit to data suggests that the third effective
neutrino mass is small. Implementing the seesaw mecha-
nism, requiring the third right-handed neutrino to be
decoupled, means that the last term in Eq. (2.9), leading
to a very large third right-handed neutrino mass Mdec, can
be achieved if MΩdec

< MΩatm
, MΩsol

.
We now demonstrate how the seesaw mechanism is

implemented in our model.3

Collecting the Higgs and ξ fields along with λ coef-
ficients into generic parameters κ (with dimensions of
inverse mass), we can write Eqs. (2.8) and (2.9) in the
simplified form

κνatmðϕ̄atmFÞðϕ̄atmNcÞ þ κνsolðϕ̄solFÞðϕ̄solNcÞ þ κνdecðϕ̄decFÞðϕ̄decNcÞ
þ κMatmðϕ̄atmNcÞðϕ̄atmNcÞ þ κMsolðϕ̄solNcÞðϕ̄solNcÞ þ κMdecðϕ̄decNcÞðϕ̄decNcÞ; ð2:10Þ

noting also that generically κν ≪ κM. This can be written in matrix form as

ðϕ̄atmFÞ
ðϕ̄solFÞ
ðϕ̄decFÞ
ðϕ̄atmNcÞ
ðϕ̄solNcÞ
ðϕ̄decNcÞ

0
BBBBBBBB@

0 0 0 κνatm 0 0

0 0 0 0 κνsol 0

0 0 0 0 0 κνdec
κνatm 0 0 κMatm 0 0

0 κνsol 0 0 κMsol 0

0 0 κνdec 0 0 κMdec

1
CCCCCCCCCA

ðϕ̄atmFÞ ðϕ̄solFÞ ðϕ̄decFÞ ðϕ̄atmNcÞ ðϕ̄solNcÞ ðϕ̄decNcÞ

: ð2:11Þ

3This is a variation of the mechanism described in Ref. [18].
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Diagonalization gives, to Oððκν=κMÞ2Þ, the effective Ma-
jorana mass terms

−
ðκνatmÞ2
κMatm

ðϕ̄atmFÞðϕ̄atmFÞ −
ðκνsolÞ2
κMsol

ðϕ̄solFÞðϕ̄solFÞ

−
ðκνdecÞ2
κMdec

ðϕ̄decFÞðϕ̄decFÞ: ð2:12Þ

These in turn reproduce a light neutrino Majorana mass
matrix of the form given in Eq. (2.4), when the flavons
acquire the CSD3 VEVs.
One final step that is particularly relevant to determining

the physical phases is to change to the seesaw basis, as in
Ref. [4]. From the neutrino superpotential terms, Eqs. (2.8)
and (2.9), we define the neutrino Yukawa and right-handed
Majorana matrices λν and Mc,

Wν ¼ λνHu
10FN

c þMcNcNc; ð2:13Þ

with the structure of λν and Mc arising directly from the
flavon VEVs, as in Eq. (2.4). This is the SUSY basis. In the
so-called seesaw basis, in a left-right (LR) convention,

the Yukawa and Majorana matrices Yν and MR are instead
defined by the Lagrangian

LLR ¼ −Hu
10Y

ν
ijL̄

i
Lν

j
R −

1

2
MRν̄

c
RνR þ H:c:; ð2:14Þ

where the three families are labeled by i, j ¼ 1, 2, 3; Li are
the lepton doublets; and νjR are the right-handed neutrinos
below the GUT scale. The light effective Majorana neutrino
mass matrix mν, defined by

LLL
ν ¼ −

1

2
mνν̄Lν

c
L þ H:c:; ð2:15Þ

is then determined by the seesaw mechanism

mν ¼ v2uYνM−1
R YνT: ð2:16Þ

The matrices in the seesaw basis are obtained by complex
conjugation of the matrices in the SUSY basis, i.e.,

Yν ¼ ðλνÞ�; MR ¼ ðMcÞ�: ð2:17Þ

We proceed in the seesaw basis, wherein

Yν ¼ κν�atmv�2atm

0
B@

0 0 0

0 1 1

0 1 1

1
CAþ κν�solv

�2
sol

0
B@

1 3 1

3 9 3

1 3 1

1
CAþ κν�decv

�2
dec

0
B@

0 0 0

0 0 0

0 0 1

1
CA;

MR ¼ κM�
atmv�2atm

0
B@

0 0 0

0 1 1

0 1 1

1
CAþ κM�

sol v
�2
sol

0
B@

1 3 1

3 9 3

1 3 1

1
CAþ κM�

decv
�2
dec

0
B@

0 0 0

0 0 0

0 0 1

1
CA; ð2:18Þ

using the effective parameters introduced in Eq. (2.10).
To verify that the relative phases are again η and η0 [as defined in Eqs. (2.6) and (2.7)], we may insert VEVs of all fields

(denoted vf for given field f) to give

mν ¼
ðv�Hu

10
Þ2

ðv�H1̄6
Þ2

2
64ðλðνÞatmÞ2M4

Ωatm

λðMÞ
atmM3

χ

ðv�2atmv�ξÞ2
v�2atmv�4ξ

0
B@

0 0 0

0 1 1

0 1 1

1
CAþ ðλðνÞsolÞ2M4

Ωsol

λðMÞ
sol M

4
χ

ðv�2solv�2ξ Þ2
v�2solv

�5
ξ

0
B@

1 3 1

3 9 3

1 3 1

1
CA

þ ðλðνÞdecÞ2M4
Ωdec

λðMÞ
dec M

2
χ

v�4dec
v�2decv

�3
ξ

0
B@

0 0 0

0 0 0

0 0 1

1
CA
3
75

∴mν ≡ μaeiα

0
B@

0 0 0

0 1 1

0 1 1

1
CAþ μbeiβ

0
B@

1 3 1

3 9 3

1 3 1

1
CAþ μceiγ

0
B@

0 0 0

0 0 0

0 0 1

1
CA; ð2:19Þ

where the conjugation of the VEVs is due to changing to the seesaw basis (described above) and we define
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μa ≡
���� ðvHu

10
Þ2

ðvH
16
Þ2
ðλðνÞatmÞ2M4

Ωatm

λðMÞ
atmM3

χ

ðv2atmvξÞ2
v2atmv4ξ

����;
α≡ − arg

�ðvHu
10
Þ2

ðvH
16
Þ2
v2atm
v2ξ

�
;

μb ≡
���� ðvHu

10
Þ2

ðvH
16
Þ2
ðλðνÞsolÞ2M4

Ωsol

λðMÞ
sol M

4
χ

ðv2solv2ξÞ2
v2solv

5
ξ

����;
β≡ − arg

�ðvHu
10
Þ2

ðvH
16
Þ2
v2sol
vξ

�
;

μc ≡
���� ðvHu

10
Þ2

ðvH
16
Þ2
ðλðνÞdecÞ2M4

Ωdec

λðMÞ
dec M

2
χ

v4dec
v2decv

3
ξ

����;
γ ≡ − arg

�ðvHu
10
Þ2

ðvH
16
Þ2
v2dec
v3ξ

�
; ð2:20Þ

where messenger masses and λ couplings are all real due to
CP conservation. The remarkable fact that the effective
left-handed Majorana neutrino mass matrix has the same
structure as the neutrino Yukawa matrix and heavy right-
handed Majorana neutrino mass matrix can be understood
from the argument presented in Eqs. (2.10)–(2.12).
As before, the physical phases η and η0 are defined as the

relative phases between the dominant (atm) matrix and,
respectively, the subdominant (sol) matrix and sub-
subdominant (dec) matrix, i.e.,

η≡ β − α ¼ − arg

�
v2sol
vξ

�
þ arg

�
v2atm
v2ξ

�

¼ −2ðρsol − ρatmÞ − ρξ;

η0 ≡ γ − α ¼ − arg

�
v2dec
v3ξ

�
þ arg

�
v2atm
v2ξ

�

¼ −2ðρdec − ρatmÞ þ ρξ; ð2:21Þ
which is identical to Eqs. (2.6) and (2.7).

D. Renormalizability of the top

The terms in the superpotential in Eq. (2.2) that are
primarily responsible for the masses of the third family of
fermions are, naively,

ΨiΨjHu
10ϕ̄

i
decϕ̄

j
dec

X2
n¼0

λðuÞdec;n

hH45inM2−n
χ

: ð2:22Þ

When ϕ̄dec gets a VEV like ð0; 0; vdecÞ, with vdec assumed
to be near the GUT scale, these terms reduce to

v2decΨ3Ψ3Hu
10

X2
n¼0

λðuÞdec;n

hH45inM2−n
χ

: ð2:23Þ

In fact, we can only consistently write these nonrenor-
malizable terms when hϕ̄deci ≪ Mχ , but as we will justify
in Sec. III C, we actually have hϕ̄deci ≈Mχ , so the simple
integrating out of the messengers is not possible. We
actually need to work out the mixing between the mes-
sengers and the field Ψ. This is only necessary for this term
since all of the others involve other flavons that have a VEV
hϕ̄atm;soli ≪ hϕ̄deci ≈Mχ and powers of hξi ≪ Mχ that
allow a consistent integrating out of the messengers.
To prove that this in fact gives us a renormalizable top

mass, it is sufficient to examine the first term in the above
sum (with n ¼ 0). It is sourced by the renormalizable terms

W ∼Ψϕ̄decχ̄3 þMχχ6χ̄3 þHu
10χ6χ6: ð2:24Þ

In matrix form, this gives

W ∼ ðΨ3 χ6 χ̄3 Þ

0
B@

0 0 vdec=2

0 hHu
10i Mχ=2

vdec=2 Mχ=2 0

1
CA
0
B@

Ψ3

χ6

χ̄3

1
CA:

ð2:25Þ
Since hHu

10i ≪ vdec ∼Mχ , diagonalizing this mass matrix
reveals two heavy and one light eigenstates, the latter being
at the electroweak scale and which we can associate with
the third family, and crucially with the top quark.
Supposing vdec ≈Mχ (as justified in Sec. III C), the
electroweak scale eigenstate is

t ≈
1ffiffiffi
2

p ðΨ3 þ χ6Þ; ð2:26Þ

i.e., the third family up-type fermion, specifically the top
quark, is a linear combination ofΨ3 and χ6, where the latter
has a renormalizable coupling to the Higgs. The other
eigenstates have a mass at the GUT scale and are therefore
identified as messenger eigenstates.

III. VACUUM ALIGNMENT IN Δð27Þ
In this section, we describe the basic properties of the

Δð27Þ group and how the CSD3 alignment is produced by
F-term alignment and orthogonality arguments. We further
write down a superpotential which drives the VEVs of the
flavons, such that they acquire expectation values at a fixed
scale (slightly below the GUT scale), with phases fixed to
discrete roots of unity. In particular, the relative phases
between ϕ̄atm, ϕ̄sol, and ϕ̄dec are constrained to discrete
choices, which subsequently fixes the physical phases η, η0
in the lepton mass matrices to exact values.

A. Group products

The Δð27Þ rules for taking the product of a triplet A and
an antitriplet B̄ are
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½AB̄�00 ≡ ða1b̄1 þ a2b̄2 þ a3b̄3Þ00
½AB̄�01 ≡ ða1b̄3 þ a2b̄1 þ a3b̄2Þ01
½AB̄�02 ≡ ða1b̄2 þ a2b̄3 þ a3b̄1Þ02
½AB̄�10 ≡ ða1b̄1 þ ω2a2b̄2 þ ωa3b̄3Þ10
½AB̄�11 ≡ ðωa1b̄3 þ a2b̄1 þ ω2a3b̄2Þ11
½AB̄�12 ≡ ðω2a1b̄2 þ ωa2b̄3 þ a3b̄1Þ12
½AB̄�20 ≡ ða1b̄1 þ ωa2b̄2 þ ω2a3b̄3Þ20
½AB̄�21 ≡ ðω2a1b̄3 þ a2b̄1 þ ωa3b̄2Þ21
½AB̄�22 ≡ ðωa1b̄2 þ ω2a2b̄3 þ a3b̄1Þ22; ð3:1Þ

where ω≡ ei2π=3. The product of two triplets or two
antitriplets yields, respectively, an antitriplet and a triplet.
There are three possible products that can be made in each
case, labelled I (identity), S (symmetric), and A (antisym-
metric). Defining triplets A ¼ ða1; a2; a3Þ, B ¼ ðb1; b2; b3Þ
and antitriplets Ā ¼ ðā1; ā2; ā3Þ, B̄ ¼ ðb̄1; b̄2; b̄3Þ, their
products are given by

½AB�I ≡ ða1b1; a2b2; a3b3Þ02
½Ā B̄�I ≡ ðā1b̄1; ā2b̄2; ā3b̄3Þ01
½AB�S ≡ ða2b3 þ a3b2; a3b1 þ a1b3; a1b2 þ a2b1Þ02
½Ā B̄�S ≡ ðā2b̄3 þ ā3b̄2; ā3b̄1 þ ā1b̄3; ā1b̄2 þ ā2b̄1Þ01
½AB�A ≡ ða2b3 − a3b2; a3b1 − a1b3; a1b2 − a2b1Þ02
½Ā B̄�A ≡ ðā2b̄3 − ā3b̄2; ā3b̄1 − ā1b̄3; ā1b̄2 − ā2b̄1Þ01:

ð3:2Þ
Note that the bar on antitriplet fields serves merely a
reminder of their assignment under Δð27Þ.

B. CSD3 directions in Δð27Þ
The special directions for Δð27Þ are VEVs with two

zeros and VEVs with three equal magnitudes, with phases
that are powers of ω ¼ ei2π=3. There are three distinct ways
to obtain either the (0,0,1) class of VEVs or the (1,1,1) class
of VEVs [19]. One of the possibilities that we make use of
here uses invariants built out of an antitriplet and triplet, and
out of three triplets, of the type

c½Aϕ̄�00 þ cI½A½ϕϕ�I�00 þ cS½A½ϕϕ�S�00; ð3:3Þ
where ϕ̄ is an antitriplet unrelated with triplet ϕ and A is
itself a triplet, giving rise to three F terms,

cϕ̄1 þ cIϕ1ϕ1 þ 2cSϕ2ϕ3 ¼ 0

cϕ̄2 þ cIϕ2ϕ2 þ 2cSϕ3ϕ1 ¼ 0

cϕ̄3 þ cIϕ3ϕ3 þ 2cSϕ1ϕ2 ¼ 0: ð3:4Þ
To obtain the VEVs we require in the (0,0,1) and (1,1,1)

direction class of VEVs, an economical solution is the
superpotential,

WV0¼ ca½ϕ0Ā0�00σ000þcb½ϕ0Ā0�02σ001
þcc½A1ϕ̄1�00Mþcd½A1ϕ̄1�02σ101
þce½A3ϕ̄3�00Mþcf½A3½ϕ4ϕ4�I�00þcg½A3½ϕ4ϕ4�S�00
þch½ϕ4Ā4�00Mþci½½ϕ̄3ϕ̄3�IĀ4�00þcj½½ϕ̄3ϕ̄3�SĀ4�00
þO02½ϕ2ϕ̄3�01þO00½ϕ2ϕ̄1�00; ð3:5Þ

where the cx (x ¼ a;…; j) are coefficients that we show
explicitly and the coefficients for the other terms are not
shown as they are not relevant when taking the respective F
term. The triplet flavon ϕ0 is aligned to ð1;ω;ω2Þ similarly
to how the antitriplet flavon ϕ̄1 is aligned to (1,1,1), through
the alignment antitriplet Ā0 or triplet A1 and flavon singlets
σ000, σ

0
01 VEVs with a relative phase of ω and σ101 taking a

real VEV.
The antitriplet flavon ϕ̄3 is aligned in a (0,0,1) direction

together with triplet ϕ4. This proceeds from the F terms of
the components of A3 and Ā4, which are of the type shown
in Eq. (3.4). Taken together, the six equations only allow a
discrete set of solutions where both flavons are aligned in
the same direction. One of the solutions has them aligned
like ð0; 0; v3Þ and ð0; 0; v4Þ,4 with their magnitudes v3 and
v4 fixed. The relevant VEV magnitudes are

v33 ¼ −
cec2h
cfc2i

M3; v34 ¼ −
c2ech
c2fci

M3;

hσ101i ¼ −
cc
cd

M: ð3:6Þ

We impose trivial CP symmetry on the fields, including the
triplets and antitriplets. This is consistent with the con-
tractions that make invariants with the 10i set of singlets that
we are using. Since the coupling constants cx are forced to
be real by CP conservation, up to minus signs (which can
be reabsorbed into the real coefficients), the VEVs v3;4 can
have a phase only as a third root of unity while hσ101i has to
be real. We expect this mass scaleM to be around the GUT
scale, and withOð1Þ c parameters, these VEVs should be at
this scale also.
The triplet ϕ2 is then forced into the ð0; y2; z2Þ direction

due to the alignment singlet O02, and the alignment singlet
O00 ensures y2 ¼ −z2 by orthogonality with (1,1,1).
To have CSD3, we want the directions (0,1,1) and

(1,3,1). We can use a chain of orthogonality relations,
where in Δð27Þ they must be between the triplet and
antitriplets. Using the three directions above, we can arrive
relatively easily at (0,1,1), through orthogonality with ϕ2

and ϕ4,

4The phenomenologically viable solution is where both
flavons are aligned in the (0,0,1) direction; another possibility
is that they would both be aligned in the (1,1,1) direction.
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WV1 ¼ O1
00½ϕ2ϕ̄5�00 þO1

01½ϕ4ϕ̄5�02: ð3:7Þ

With this, we obtain a ϕ̄5 antitriplet in the (0,1,1) direction
(note the ½�02 contraction matches the first component of the
antitriplet with the third component of the triplet, putting
the zero in the right place in ϕ̄5).
To get to (1,3,1), we require a ð2;−1; 1Þ direction, which

itself requires ð1; 1;−1Þ. To obtain the latter, we also
duplicate the ϕ̄5 direction into a triplet ϕ6, which is a
different field and unrelated to ϕ̄5 other than the fact that
they both have VEVs in the same direction. A way to do
both things in one step is

WV2 ¼ O2
02½ϕ6ϕ̄3�01 þO02

02½ϕ2ϕ̄7�01
þO2

00½ϕ6ϕ̄7�00 þO2
01½ϕ6ϕ̄7�02: ð3:8Þ

Starting with the first two orthogonalities, we ensure the
zero is in a specific component for ϕ6 as ð0; y6; z6Þ and that
ϕ̄7 is in the ðx7; x7; z7Þ direction. The other two mutual
orthogonalities give 0x7 þ y6x7 þ z6z7 ¼ 0 and
0x7 þ y6z7 þ z6x7 ¼ 0, which completes the (0,1,1) and
ð1; 1;−1Þ alignments. Strictly speaking, this alignment
allows both an undesired solution where we get
ð0; 1;−1Þ with (1,1,1) and the desired solution of (0,1,1)
with ð1; 1;−1Þ.
The next step is obtaining the ð2;−1; 1Þ as a triplet. For

this, we want to use the (0,1,1) antitriplet direction and the
antitriplet with the recently obtained ð1; 1;−1Þ direction,

WV3 ¼ O3
00½ϕ8ϕ̄7�00 þO03

00½ϕ8ϕ̄5�00: ð3:9Þ

Finally, by orthogonality,

WV4 ¼ O4
01½ϕ2ϕ̄9�02 þO4

00½ϕ8ϕ̄9�00; ð3:10Þ

one obtains the (1,3,1) direction as an antitriplet. We did not
need to align a ð1; 0;−1Þ direction as the ½…�02 contraction
with the triplet ð0; 1;−1Þ (ϕ2) puts its zero together with the
second component of the antitriplet ϕ̄9.
Noting now that the VEVs of antitriplets ϕ̄3, ϕ̄5, and ϕ̄9

are the desired directions for ϕ̄dec, ϕ̄atm, and ϕ̄sol, respec-
tively, we now rename these fields to match the notation
used in other sections, so v3 ¼ vdec and

ϕ̄3 ≡ ϕ̄dec; ϕ̄5 ≡ ϕ̄atm; ϕ̄9 ≡ ϕ̄sol: ð3:11Þ

This notation is also used in Table III, which together with
Table IV summarizes the field content and the representa-
tion of each field under the symmetries. For the sake of
completeness, we collect all alignment terms into one
superpotential,

WV ¼ WV0 þWV1 þWV2 þWV3 þWV4; ð3:12Þ

such that, omitting the coefficients, we have

TABLE IV. Alignment field content.

Representation

Field Δð27Þ SOð10Þ Z9 Z12 ZR
4

A1 3 1 0 8 2
A3 3 1 3 0 2
Ā0 3̄ 1 7 5 2
Ā4 3̄ 1 6 0 2
O02 102 1 0 5 2
O00 100 1 6 1 2
O1

00
100 1 5 5 2

O1
01

101 1 5 0 2
O2

02
102 1 3 1 2

O02
02

102 1 6 0 2
O2

00
100 1 0 8 2

O2
01

101 1 0 8 2
O3

00
100 1 8 11 2

O03
00

100 1 7 4 2
O4

01
101 1 1 11 2

O4
00

100 1 3 10 2

TABLE III. Flavon fields.

Representation

Field Δð27Þ SOð10Þ Z9 Z12 ZR
4

ϕ̄dec 3̄ 1 6 0 0
ϕ̄atm 3̄ 1 1 0 0
ϕ̄sol 3̄ 1 5 6 0
ϕ̄1 3̄ 1 0 4 0
ϕ̄7 3̄ 1 0 5 0
ϕ0 3 1 2 6 0
ϕ2 3 1 3 7 0
ϕ8 3 1 1 8 0
ϕ4 3 1 3 0 0
ϕ6 3 1 0 11 0
σ000 100 1 0 1 0
σ001 101 1 0 1 0
σ101 101 1 0 0 0

TABLE V. Field content for driving the flavon VEVs.

Representation

Field Δð27Þ SOð10Þ Z9 Z12 ZR
4

P1 100 1 8 1 2
P2 100 1 1 6 2
P3 101 1 2 0 2
ζi 100 1 i ∈ f0; 1; 2; 3g 1 2
ζ̄i 100 1 i ∈ f0; 6; 7; 8g 11 0
ζi

0 101 1 i ∈ f3; 4; 5g 0 2
ζ̄i

0 102 1 i ∈ f4; 5; 6g 0 0
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WV ∼ ½ϕ0Ā0�00σ000 þ ½ϕ0Ā0�02σ001 þ ½A1ϕ̄1�00M þ ½A1ϕ̄1�02σ101 þ ½A3ϕ̄3�00M þ ½A3½ϕ4ϕ4�I�00 þ ½A3½ϕ4ϕ4�S�00
þ ½ϕ4Ā4�00M þ ½½ϕ̄3ϕ̄3�IĀ4�00 þ ½½ϕ̄3ϕ̄3�SĀ4�00 þO02½ϕ2ϕ̄3�01 þO00½ϕ2ϕ̄1�00 þO1

00½ϕ2ϕ̄atm�00 þO1
01½ϕ4ϕ̄atm�02

þO2
02½ϕ6ϕ̄dec�01 þO02

02½ϕ2ϕ̄7�01 þO2
00½ϕ6ϕ̄7�00 þO2

01½ϕ6ϕ̄7�02 þO3
00½ϕ8ϕ̄7�00 þO03

00½ϕ8ϕ̄atm�00
þO4

01½ϕ2ϕ̄sol�02 þO4
00½ϕ8ϕ̄sol�00: ð3:13Þ

We summarize the alignments produced by the above
superpotential as follows:

hϕi0 ∝ ð1;ω;ω2Þ; hϕ̄1i ∝ ð1; 1; 1Þ;
hϕ2i ∝ ð0; 1;−1Þ; hϕ̄deci ∝ ð0; 0; 1Þ;
hϕ4i ∝ ð0; 0; 1Þ; hϕ̄atmi ∝ ð0; 1; 1Þ;
hϕ6i ∝ ð0; 1; 1Þ; hϕ̄7i ∝ ð1; 1;−1Þ;
hϕ8i ∝ ð2;−1; 1Þ; hϕ̄soli ∝ ð1; 3; 1Þ: ð3:14Þ

C. Driving flavon VEVs and phases

To drive the flavon VEVs, we introduce a set of fields
given in Table V. They are GUT singlets with nontrivial
representations under Δð27Þ and the Z symmetries and
couple to the flavon fields.
To obtain the necessary superpotential, we need to add

more messengers ζ, ζ̄, with a characteristic mass Mζ, also
listed in Table V. The superpotential which drives the
flavons is

Wϕ ¼ P1

�
κ1

�
ξ

Mζ

�
4

ϕ̄decϕ6 − κ2ϕ̄atmϕ6

�

þ P2½κ3ϕ̄solϕ4 − κ4ϕ̄decϕ0�

þ P3

�
κ5ϕ̄solϕ0 − κ6

�
ξ

Mζ

�
3

ϕ̄atmϕ4

�
; ð3:15Þ

where κi are real dimensionless constants. As discussed in
Sec. V, to acquire a good fit to the data without tuning, we
need to assume that hξi ≲Mζ. The F-term equations for the
P fields give relationships between the VEVs of the flavons
that couple to the SM fields. The (nontrivial) representa-
tions of the P fields under Δð27Þ are chosen specifically so
that the pairs of flavon VEVs they are multiplied by do not
give zero when they acquire VEVs.
The constants κi are forced to be real by CP conserva-

tion, but the VEV hϕ0i has complex components that
introduce phases to the other VEVs. Specifically, the terms
multiplied by the constants κ4;5 obtain the factors

½hϕ̄solihϕ0i�02 ¼ 2vsolv0; ½hϕ̄decihϕ0i�00 ¼ ω2vdecv0

ð3:16Þ

when contracting the Δð27Þ triplets, so we may effectively
treat as κ4 in Eq. (3.15) carrying a factor of ω2.
We proceed to solve the F-term equations coming

from the P fields, yielding VEVs for the important
flavons ϕ̄sol and ϕ̄atm, while hϕ̄deci is given in Eq. (3.6)
(recall that v3 ≡ vdec). It is useful to note the relation
v4 ¼ cjv2dec=ðchMÞ, which can be seen from comparing the
VEVs in Eq. (3.6). We obtain

v2sol ¼ ω2
κ4κ6ch
2κ3κ5cj

�
ξ

Mζ

�
7

v2dec; v2atm ¼ κ21
4κ22

�
ξ

Mζ

�
8

v2dec;

ð3:17Þ
where, since hξi=Mζ < 1, we conclude that vdec ≫ vatm∼
vsol. Given these VEVs, the physical phases defined in
Eqs. (2.6) and (2.7) are given by

η ¼ − arg

�
v2sol
v2atm

hξi
�
¼ − arg½ω2�;

η0 ¼ − arg

�
v2dec
v2atm

1

hξi
�
¼ 9 arg½hξi�; ð3:18Þ

where the real coupling constants cx, κi do not contribute to
phases. These phases are in fact completely fixed. As will
be shown in Eq. (4.2), the phase of hξi is a ninth root of
unity; by the cancellation of this phase, we finally have

η ¼ 2π

3
; η0 ¼ 0: ð3:19Þ

Strictly speaking, these phases are fixed only up to a
relative phase π, depending on the signs of the real
constants. However, this additional phase is unphysical,
as it may always be subsumed into other real parameters at
the low scale.
VEVs of other flavons that are not set by the super-

potential terms described above are driven through radia-
tive breaking [20].

IV. GUT BREAKING

In this section, we detail how the SOð10Þ GUT is broken
down to the MSSM via SUð5Þ, how doublet-triplet splitting
is achieved, and how only two light Higgs doublets are
present below the GUT scale, as in the MSSM. We note
that, due to Δð27Þ × SOð10Þ, at the GUT scale, there is a
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small number of relevant soft parameters: m0, the universal
soft mass for the Ψ ∼ ð3; 16Þ; nonuniversal soft Higgs
massesmHu andmHd ; and the universal gaugino massM1=2.

A. Breaking potential and diagrams

The superpotential that breaks SOð10Þ is given by

WGUT ¼ M2Z þ λ1Z3 þ λ2ZZ002 þ λ3Z00H02
45 þ λ4Z

H04
45

M2
ϒ

þ Z
MΣ

�
λ5H16H16Hd

10 þ λ6
ξ8

M8
Σ
H16H16Hu

10 þ λ7H16
H

16
Hu

10 þ λ8
ξ

MΣ
H

16
H

16
Hd

10

�
þ λ9ZH2

DW
ξ6

M6
Z

þHDW
ξ3

M2
Z

�
λ10H45 þ λ11

H3
45

M2
ϒ

�
þH16H16

�
λ12ξþ

λ13
MZ

ϕ̄1ϕ8

�

þ Z

�
λ14

ξ6

M6
Z
ϕ̄7ϕ2 þ λ15

ξ8

M8
Z
ϕ̄1ϕ8 þ λ16

ξ5

M5
Z

ϕ̄solϕ4 þ λ17
ξ2

M2
Z
ϕ̄solϕ0 þ λ18ϕ̄decϕ4

�
: ð4:1Þ

The renormalizable diagrams that give rise to this super-
potential are given5 in Fig. 7 (giving lines 1 and 3) and
Fig. 8 (giving line 2), and the corresponding messenger
fields (Σ, ϒ, and Zi) are detailed in Table VI. Most fields
are familiar from the Yukawa sector discussed previously,
while the field HDW is an SOð10Þ adjoint that governs
doublet-triplet splitting, as we will see shortly. Requiring
that every field’s F term vanishes yields a set of equations
that fixes the VEVs of the above fields.
The first line contains terms involving different powers

of Z, Z00, and H0
45, which ensures that their corresponding

F-term conditions fix all VEVs to be nonzero. The exact
expressions for the VEVs are complicated and thus are not
shown, since they are not enlightening.
The second line has terms involving the fields Hu;d

10 that
will be discussed carefully in the next section on doublet-
triplet splitting. At this level, the fields Hu;d

10 have a zero
VEV, so any term involving two of them does not
contribute to the F-term equations. The F-term conditions
coming from Hu;d

10 themselves relate the H
16;16 VEVs and

also fix the VEV of ξ to be

hξi ¼
�
λ5λ7
λ8λ6

�
1=9

MΣ; ð4:2Þ

which subsequently fixes the phase of hξi to be one of the
ninth roots of unity.
At this stage, it is relevant to consider superfieldsHDW and

ϒ6, which have the same quantum numbers. In terms of
superfields ϒa

6 , ϒ
b
6 , the mass term for the messenger pair

reads Mϒðcaϒa
6 þ cbϒb

6Þϒ̄3. We define ϒ6 ≡ ðcaϒa
6 þ

cbϒb
6Þ andHDW as the orthogonal combination. The F term

with respect to ϒ̄3 forcesϒ6 to have a zero VEV, meaning it
will not contribute elsewhere and justifies identifying it as
half of the messenger pair. Therefore, the third line contains
different powers of HDW and H45 and gives them VEVs.
The model actually allows an infinity of terms involving

H45, each with a higher power of this field. We keep only
the first two terms since they are enough to give the H45 a
general VEV, whereas adding the other terms will make its
VEV look more complicated but will not affect the physics.
Its own F-term equation fixes its VEV to be

v45 ¼
ffiffiffiffiffiffiffiffiffiffi
−
λ10
λ11

s
Mϒ; ð4:3Þ

which must define the GUT scale, while we may choose the
signs of λ10;11 so that it is imaginary (this is the phenom-
enologically favored solution). The F term for ξ will fix the
VEVof H

16;16. The F terms coming from H
16;16 will drive

the VEVs of the flavons ϕ̄7 and ϕ2 (seen on line 2).
The last line, allowed by the symmetries and messengers,

only adds terms to the F terms for Z and ξ, relating their
VEVs to the flavon ones. The flavon F terms will fix some
of the O field VEVs.
The VEVs hH

16;16i specifically break SOð10Þ → SUð5Þ.
TheVEVs hH45;H0

45;HDWi specifically break SUð5Þ→SM.
The VEV hξi completely breaks Z9. Finally, the VEVs
hZ; Z00i, carrying two units of charge under ZR

4 , break it into
the usual ZR

2 R parity at the GUT scale.

B. Obtaining two light Higgs doublets

In this section, we show how the SUð2Þ doublets and
SUð3Þ triplet Higgses contained within the H

16;16 and H
u;d
10

acquire masses, as dictated by the model. They do so in
such a way that all triplets are heavy, while only two light
Higgs doublets remain at low scales, which we may
associate with the MSSMHiggs doublets. This is important
because any light colored Higgs states would lead to very
rapid proton decay, so we need a justification for why

5In Eq. (4.1), we include all the terms allowed by the
symmetries and messenger fields. We omit those diagrams with
seven or eight powers of ξ, as they are constructed in a similar
way using the same messengers but are not particularly illumi-
nating. Similarly, we omit the diagrams that produce the final line
of Eq. (4.1), as these terms, while allowed, have no significant
impact on physics.
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certain doublet states remain light, while triplets remain
heavy, a problem known as doublet-triplet splitting. We
solve this á la Dimopolous-Wilczek [7]. In SOð10Þ, there is
a further complication, where each H10 has two SUð2Þ
doublet states within it, and we have two additional
doublets from the H

16;16. Only two of these six doublets

should be light, so as to reduce to the MSSM.We also show
how we achieve this.

1. Doublet-doublet splitting

The superpotential that gives masses to doublets is

Wμ ∼ ZHu
10H

u
10

ξ6

M6
Z
þ ZHu

10H
d
10

ξ7

M7
Z
þ ZHd

10H
d
10

ξ8

M8
Z
þ ξH16H16

þ Z
MΣ

�
H16H16Hd

10 þ
ξ8

M8
Σ
H16H16Hu

10 þH
16
H

16
Hu

10 þ
ξ

MΣ
H

16
H

16
Hd

10

�
; ð4:4Þ

where the corresponding diagrams that produce the nonrenormalizable terms are given in Fig. 8. The second line is a
reproduction of the second line in Eq. (4.1), while the first line includes those terms involving more than one insertion of
Hu;d

10 , which had previously been omitted.

FIG. 8. Diagrams that give rise to doublet-triplet splitting.

FIG. 7. Diagrams that give rise to GUT breaking terms.
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The fields H
16;16 contain doublets that mix with the

ones in Hu;d
10 and will also contribute to masses, since

they both get VEVs above the GUT scale. Defining
~H
16;16 ¼ hH

16;16i=MΣ, we assume it to be reasonably close

to 1. We similarly define ~ξ ∼ hξi=MZ ∼ hξi=MΣ, whereMZ
and MΣ are the typical scales of the messengers that
produce Eq. (4.4). We will find that they are necessarily
different from the scale Mζ that governs the flavon driving
potential.
To make the connection to the two MSSM Higgs

doublets, typically denoted Hu and Hd in reference to
their behavior under SUð2Þ, we call the Hu-like doublets
inside the Hu

10, H
d
10, and H

16
fields, respectively, Hu

u, Hd
u,

and H16
u . The Hd-like doublets are named similarly,

replacing the subindex u → d. In other words,

2uðHu
10Þ≡Hu

u; 2dðHu
10Þ≡Hu

d;

2uðHd
10Þ≡Hd

u; 2dðHd
10Þ≡Hd

d;

2uðH16
Þ≡H16

u ; 2dðH16
Þ≡H16

d : ð4:5Þ
The doublet mass matrix can then be written in matrix

form as

MD ∼

Hu
d

Hd
d

H16
d

0
BBB@

~ξ6 ~ξ7 ~H
16

~ξ7 ~ξ8 ~ξ ~H
16

~H16
~ξ8 ~H16 ξ=hZi

1
CCCA

Hu
u Hd

u H16
u

hZi: ð4:6Þ

Its eigenvalues mD are

mD ∼ ~ξhZi; ~ξhZi; ~ξ8hZi: ð4:7Þ

Two doublets receive large masses, which we assume are
slightly larger thanMGUT such that they do not upset gauge
coupling unification. The remaining eigenvalue is sup-
pressed by a factor ~ξ8. We can choose the mass of the Z and
Σ messengers so that ~ξ ∼ 0.03, i.e., ~ξ8hZi ∼ 1 TeV. This
generates the MSSM μ term ~ξ8hZiHu

uHd
d at the correct

scale, where we make the connection to MSSM Higgs
doublets by

Hu ∼Hu
u; Hd ∼Hd

d: ð4:8Þ

2. Doublet-triplet splitting

The Dimopoulos-Wilczek mechanism [7] is based on
having an SOð10Þ 45, which we call HDW, that obtains a
VEV with the structure

hHDWi ¼
�

0 hHUð5Þi
−hHUð5Þi 0

�
; ð4:9Þ

which is traceless regardless of the structure of hHUð5Þi. We
can actually choose hHUð5Þi ¼ v45diagð1; 1; 1; 0; 0Þ such
that it contributes only to the mass of the triplets [7]. This
VEV alignment is not possible in an SUð5Þ adjoint
representation but is possible in the SOð10Þ one. The field
HDW has an R charge of 2 and aZ9 charge of 6, allowing us
to write the term

WDT ∼HDWHu
10H

d
10

ξ

Mϒ
; ð4:10Þ

where, due to the antisymmetry of hHDWi, only the mixed
term is possible. The renormalizable diagram that produces
this term is given in Fig. 8.
In analogy to Eq. (4.5), we define Higgs triplets T arising

from Hu
10, H

d
10, and H16 by

3uðHu
10Þ≡ Tu

u; 3dðHu
10Þ≡ Tu

d;

3uðHd
10Þ≡ Td

u; 3dðHd
10Þ≡ Td

d;

3uðH16
Þ≡ T16

u ; 3dðH16
Þ≡ T16

d : ð4:11Þ

The terms involving these triplets arising from the super-
potential in Eq. (4.4) produces the mass matrix

MT ∼

Tu
d

Td
d

T16
d

0
B@

~ξ6 ~ξhHDWi=hZi ~H
16

~ξhHDWi=hZi ~ξ8 ~ξ ~H
16

~H16
~ξ8 ~H16 ξ=hZi

1
CA

Tu
u Td

u T16
u

hZi;

ð4:12Þ

where the only structural difference between this and
Eq. (4.6) is in the (12) and (21) entries, which arise from

TABLE VI. Messenger superfields required for the doublet and
triplet mass terms. Note that the model also includes Z0 (but not
Z̄0), which we considered earlier as Z, and that ϒ6 has the same
quantum number as HDW (see Table I).

Representation

Field Δð27Þ SOð10Þ Z9 Z12 ZR
4

Zi 1 1 i ∈ f1;…; 8g 0 2
Z̄i 1 1 i ∈ f1;…; 8g 0 0
Σ̄6;7 1 16 6,7 0 2
Σ3;2 1 16 3,2 0 0
~Σi 1 16 i ∈ f0;…; 8g 0 2

~̄Σi
1 16 i ∈ f0;…; 8g 0 0

ϒ̄3;2 1 45 3,2 0 0
ϒ6;7 1 45 6,7 0 2
ϒ̄000 1 45 0 9 0
ϒ0 1 45 0 3 2
ϒ̄00 1 45 0 6 0
ϒ00 1 45 0 6 2
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Eq. (4.10). All the eigenvalues of this matrix are at the scale
~ξhZi ≲MGUT, i.e., there are no light triplet eigenstates,
which gives doublet-triplet splitting.
Finally, we remark that the mechanisms shown above

will fix the mass scale of most fields. The messenger fields
have renormalizable masses that we expect to be all above
the GUT scale, and we have shown how most of the
remaining fields receive GUT scale masses when the GUT
breaks. The MSSM fields are the only SOð10Þ-charged
fields that remain light, while a few flavon fields receive
masses below the GUT scale radiatively. Collectively, this
ensures that gauge coupling unification is as good as in
the MSSM.

C. Proton decay

A classic problem in GUT theories, including SOð10Þ, is
the prediction of excessively fast proton decay. The most
dangerous processes come from the “dimension 5” oper-
atorsΨΨΨΨ (for a discussion of dimension 6 operators, we
refer the reader to Ref. [3]). These dimension 5 operators
are forbidden by the symmetries of the model, but related
higher-order operators of the form

ΨΨΨΨ
Zϕ̄
M3

�
ξ

M

�
n

ð4:13Þ

are allowed, where n is some positive integer. Since we are
working with the renormalizable theory, in order for this
type of effective term to be present with M ∼MGUT, there
would have to be GUT scale messengers allowing them.
Specifically, to produce the above term, we would need
messengers that are Δð27Þ triplets, which are completely
absent from our model. Hence, such terms cannot be
produced at (or below) the GUT scale.
Such operators may, however, arise with Planck scale

suppression, i.e., M ∼MP. Specifically, the lowest-order
term arising from fields that acquires nonvanishing VEVs
and therefore contributes to proton decay in our model is

ΨΨΨΨ
Zϕ̄decξ

3

M6
P

; ð4:14Þ

which would generate dangerous proton decay terms of the
type

gQQQL
hXi
M2

P
; ð4:15Þ

where g is a dimensionless coupling and hXi is a generic
VEVof a field, as discussed in Ref. [21]. These terms must
be suppressed enough to generate a proton lifetime
τp > 1032 yrs, which is achieved when

ghXi < 3 × 109 GeV: ð4:16Þ

In our model,

hXi ¼ hZivdechξi3
M4

P
∼ 150 GeV; ð4:17Þ

such that with Oð1Þ dimensionless couplings it predicts
very suppressed proton decay. This suppression means
proton decay rates are several orders of magnitude below
the current experimental bounds. This is to be compared to
a model such as Ref. [22], where observation would be
possible with an improvement of experimental sensitivity
of an order of magnitude, making threshold corrections
extremely relevant in order to make an accurate prediction
of the amplitudes. In our case, a robust order of magnitude
estimate is possible even though a treatment of threshold
corrections is beyond the scope of the current paper—the
conclusion remains that proton decay is well beyond
experimental sensitivity in our model.

V. NUMERICAL FIT

A. Low-scale mass matrices

At the low scale, the VEVs of flavons and messenger
fields combine to give the mass matrices

mu ¼ vu

2
64yu1

0
B@

0 0 0

0 1 1

0 1 1

1
CAþ yu2e

iηu
2

0
B@

1 3 1

3 9 3

1 3 1

1
CA

þ yu3e
iηu

3

0
B@

0 0 0

0 0 0

0 0 1

1
CAþ yu4e

iηu
4

0
B@

0 0 1

0 0 3

1 3 2

1
CA
3
75
ð5:1aÞ

md ¼ vd

2
64yd1

0
B@

0 0 0

0 1 1

0 1 1

1
CAþ yd2e

iηd
2

0
B@

1 3 1

3 9 3

1 3 1

1
CA

þ yd3e
iηd

3

0
B@

0 0 0

0 0 0

0 0 1

1
CA
3
75 ð5:1bÞ

me ¼ vd

2
64ye1

0
B@

0 0 0

0 1 1

0 1 1

1
CAþ ye2e

iη

0
B@

1 3 1

3 9 3

1 3 1

1
CA

þ ye3e
iη0

0
B@

0 0 0

0 0 0

0 0 1

1
CA
3
75 ð5:1cÞ
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mν ¼ μa

0
B@

0 0 0

0 1 1

0 1 1

1
CAþ μbeiη

0
B@

1 3 1

3 9 3

1 3 1

1
CA

þ μceiη
0

0
B@

0 0 0

0 0 0

0 0 1

1
CA; ð5:1dÞ

where vu ¼ v sin β and vd ¼ v cos β are the VEVs of the
MSSM Higgs fields and v ¼ 174 GeV. We recall from
Eq. (3.19) that η ¼ 2π=3, while η0 ¼ 0, while the remaining
phases are free. Hence, there are 12 free parameters in the
quark matrices and six in the lepton matrices.
Assuming all superpotential terms have Oð1Þ couplings,

we may derive a “natural” scale for each of the coefficients
yfi . First, we recall that there are several messenger scales
present in our model. The ones that appear in yfi are Mχ ,
Mζ, MΩdec

, MΩsol
, andMΩatm

. As previously established, we
have hξi≲Mζ < Mχ . More specifically, we will assume
the following ratios:

hξi
Mζ

≳ 0.5;
hξi
Mχ

≲ 0.1: ð5:2Þ

We further define the GUT scale by MGUT ≡ v45 ≲Mχ.
Finally, as discussed previously, we assume that MΩatm

≈
MΩsol

> MΩdec
, by roughly 1 order of magnitude.

The coefficients yfi derive from terms in Eq. (2.2), which
take a generic form,

yf1 ¼ ϕ̄atmϕ̄atmξ
N−2

XN
n¼0

λðfÞX;n

hH45inMN−n
χ

;

yf2 ¼ ϕ̄solϕ̄solξ
N−2

XN
n¼0

λðfÞX;n

hH45inMN−n
χ

;

yf3 ¼ ϕ̄decϕ̄decξ
N−2

XN
n¼0

λðfÞX;n

hH45inMN−n
χ

; ð5:3Þ

where λ are Oð1Þ couplings and N is a number between
2 and 5. We will assume there are no large cancellations
between terms in the sums. The flavon VEVs are discussed
in Sec. III C, from which we may approximate their
VEVs by

hϕ̄deci ∼MGUT; hϕ̄atmi ∼
hξi4
M4

ζ

MGUT;

hϕ̄soli ∼
hξi7=2
M7=2

ζ

MGUT: ð5:4Þ

We note immediately that these VEVs have large powers of
hξi=Mζ, which is primarily bounded below [see Eq. (5.2)].

This translates to only a loose upper bound on the fitting
parameters. From Eqs. (5.2) and (5.3), we expect the
following scales for the fitted coefficients:

yu1≳4×10−4; ye1≳4×10−5; yd1≳4×10−5; μa∼10−2 eV;

yu2≳8×10−5; ye2≳8×10−6; yd2≳8×10−6; μb∼10−3 eV;

yu3∼1; ye3∼10−1; yd3∼10−1; μc∼10−3 eV; yu4≳5×10−4:

ð5:5Þ

B. Fitting procedure

To fit the real coefficients yu1;2;3;4, y
d
1;2;3, y

e
1;2;3, and μa;b;c

as well as phases ηu2;3;4 and ηd2;3, we wish to minimize a χ2

function that relates the N physical predictions PiðfxgÞ for
a given set of input parameters fxg to their current best-fit
values μi and their associated 1σ errors, denoted σi. It is
defined by

χ2 ¼
XN
i¼1

�
PiðfxgÞ − μi

σi

�
2

: ð5:6Þ

The errors σi are equivalent to the standard deviation of the
experimental fits to a Gaussian distribution. For most
parameters, their distribution is essentially Gaussian, with
the exception of the (lepton) atmospheric angle θl23.
For a normal hierarchy (as predicted by the model), the

distribution is roughly centered on the maximal atmos-
pheric angle, i.e., ðθl23Þbest−fit ∼ 45°, while the best-fit value
is given by θl23 ¼ 42.3°; i.e., there is a small preference for
θl23 to be in the first octant. As such, there are two possible
scenarios to consider when performing our fit.

(i) Scenario 1: We assume that the (weak) preference
for θl23 < 45° is true and approximate its distribution
by a Gaussian about 42.3°, setting σθl

23
¼ 1.6° as

the error.

TABLE VII. Model predictions in the quark sector, for
tan β ¼ 5. The quark contribution to the total χ2 is 2.0. The
observables are at the GUT scale.

Observables Model Data fit 1σ range (from Ref. [25])

θq12=° 13.024 12.985 → 13.067
θq13=° 0.1984 0.1866 → 0.2005
θq23=° 2.238 2.202 → 2.273
δq=° 69.32 66.12 → 72.31
mu=MeV 0.575 0.351 → 0.666
mc=MeV 248.4 240.1 → 257.5
mt=GeV 92.79 89.84 → 95.77
md=MeV 0.824 0.744 → 0.929
ms 15.55 15.66 → 17.47
mb=GeV 0.939 0.925 → 0.948
δχ2 2.0
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(ii) Scenario 2: We remain octant agnostic by assuming
a Gaussian distribution centred at the midpoint
between the two 1σ bounds, i.e., ðθl23Þbest−fit ¼
45.9° with σθl

23
¼ 3.5°.

Below, we present the results of our fit in each of these two
scenarios.
In this analysis, N ¼ 18, corresponding to six mixing

angles θlij (neutrinos) and θqij (quarks), the CKM phase δq,
nineYukawa eigenvalues for the quarks and charged leptons,
and two neutrino mass-squared differencesΔm2

21 andΔm2
31.

In the lepton sector, we use the Particle Data Group (PDG)
parametrization of the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix [23] UPMNS ¼ Rl
23U

l
13R

l
12PPDG in terms of

sij ¼ sin θlij, cij ¼ cos θlij, the Dirac CP-violating phase δ
l,

and further Majorana phases contained in PPDG ¼
diagð1; eiα212 ; eiα312 Þ. Experimentally, the leptonic phase δl is
poorly constrained at 1σ (and completely unconstrained at
3σ), so is not fitted, and left as a pure prediction of themodel,
as are the (completely unconstrained) Majorana phases α21
and α31.
We wish to emphasize that, of the above 18 observed

parameters, ten belong to the quark sector, fitted by 12 free
parameters, while eight belong to the lepton sector, fitted by
six free parameters. These two sectors are distinct; themodel
is predictive in the lepton sector but not in the quark sector.
The running of best-fit and error values to the GUT scale

are generally dependent on SUSY parameters, notably tan β,
as well as contributions from SUSY threshold corrections,
which are relevant even for small tan β [24]. We extract the
GUT-scale CKM parameters and all Yukawa couplings
(with associated errors) from Ref. [25] for tan β ¼ 5. The
value of tan β does not have a significant impact on the
quality of ourmodel, sowe only present results for tan β ¼ 5
here. Given that our model is not predictive in the quark
sector (and also does not predict the charged leptonmasses),
the effect of threshold corrections can be subsumed into a
redefinition of the model input parameters. In further
reference to Ref. [25], this is equivalent to setting the
parameters η̄i to zero. Experimental neutrino parameters
are extracted from Ref. [26].

TABLE VIII. Quark sector input parameter values.

Parameter Fitted value

yu1 3.314 × 10−5

yu2 2.060 × 10−4

yu3 5.503 × 10−1

yu4 7.423 × 10−3

ηu2 0.617π
ηu3 1.047π
ηu4 1.718π
yd1 3.288 × 10−4

yd2 3.308 × 10−5

yd3 2.785 × 10−2

ηd2 0.521π
ηd3 1.065π

TABLE IX. Model predictions in the lepton sector, for tan β ¼ 5. The observables are at the GUT scale. The lepton
contributions to the total χ2 are 1.3 and 0.7 in scenario 1 and 2, respectively. Note the two different data fit 1σ ranges
for θl23, depending on the choice of scenario, as discussed in Sec. V B.

Model

Observables Scenario 1
(θexp;bf23 ¼ 42.3°)

Scenario 2
(θexp;bf23 ¼ 45.9°)

Data fit 1σ range
(from Refs. [25–27])

θl12=° 33.13 32.94 32.83 → 34.27
θl13=° 8.59 8.55 8.29 → 8.68
θl23=° 40.81 40.63 → 43.85
� � � � � � 46.65 42.40 → 49.40
δl=° 280 275 192 → 318

me=MeV 0.342 0.342 0.340 → 0.344
mμ=MeV 72.25 72.25 71.81 → 72.68
mτ=GeV 1.229 1.229 1.223 → 1.236
Δm2

21=eV
2 7.58 × 10−5 7.46 × 10−5 ð7.33 → 7.69Þ × 10−5

Δm2
31=eV

2 2.44 × 10−3 2.47 × 10−3 ð2.41 → 2.50Þ × 10−3

m1=meV 0.32 0.38 � � �
m2=meV 8.64 8.65 � � �
m3=meV 49.7 49.7 � � �P

mi=meV 58.7 59.4 < 230
α21=° 264 264 � � �
α31=° 323 333 � � �
jmeej=meV 2.46 2.42 � � �
δχ2 1.3 0.7
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Tables VII and VIII show the numerical fit of all relevant
parameters to quark mass and mixing data, while Tables IX
and X show the fit to lepton mass and mixing. The fit gives
χ2 ≈ 3.3 and χ2 ≈ 2.7 in scenarios 1 and 2, respectively.
Although the model is not technically predictive in the

quark sector due to an excess of free parameters, the
structure of the mass matrices forces some tension between
parameters, notably the ∼1σ deviation from the experi-
mental fit value in the strange quark mass, as seen in
Table VII. The best-fit GUT scale mass ms ¼ 15.55 GeV
corresponds to a pull of −1.12, while the (absolute
magnitude of) pulls for all other parameters are less than 1.
In the lepton sector, there are two fixed discrete phases

plus six continuous input parameters that we fit to three
charged lepton masses, two neutrino mass-squared
differences, and three mixing angles (a total of eight
observables), while predicting the CP phase δl, two
Majorana phases, and the effective neutrino mass jmeej.
Although our fit does not constitute a full analysis of the
parameter space, it agrees with the results of a more
dedicated numerical analysis of CSDðnÞ models [13].

VI. CONCLUSION

We have proposed a renormalizable Δð27Þ × SOð10Þ
SUSY GUT of flavor. All symmetries, including an addi-
tional Z9 × Z12 × ZR

4 discrete symmetry, are broken close
to the GUT breaking scale due to the action of explicit
superpotential terms to yield the MSSM with the standard
R parity as the surviving theory at low energies.
The model is very ambitious since it is not only a full

SOð10Þ SUSY GUT theory, with GUT symmetry breaking
sectors including doublet-triplet splitting and guaranteeing
the absence of extra light doublets, but also addresses the
flavor problem due to additional commuting discrete
family symmetries. The mystery of why there are three
families of quarks and leptons including their observed
pattern of masses and mixing angles is addressed, and a
novel form of spontaneous geometrical CP violation arises
from the nature of the Δð27Þ group.

In many respects SOð10Þ is the “holy grail” of GUT
groups since it involves probably the most elegant uni-
fication of quarks and leptons, including a right-handed
neutrino, making neutrino mass and mixing inevitable
[unlike SUð5Þ where neutrino masses could quite happily
be set to zero]. When combined with the family symmetry
Δð27Þ, all quarks and leptons are unified into a single
multiplet (3,16) providing a very elegant and simple
unification of all matter. Such a complete flavor unification
has been attempted before, but until now, the technicalities
involved have led to only partial success. The contribution
of the present paper lies in showing how many of these
technical difficulties may be successfully overcome within
a fully fledged Δð27Þ × SOð10Þ SUSY GUT of flavor.
We emphasize that in our model all quark and lepton

(including neutrino) mass matrices take a particularly
simple universal form, with a small correction to the up-
type quark mass matrix being responsible for quark mixing.
The heavy right-handed neutrino Majorana matrix also has
the same universal form, and even including the seesaw
mechanism, the low-energy effective light left-handed
Majorana neutrino mass matrix also has this form, indeed
corresponding to CSD3, leading to a highly predictive
scheme for leptonic mixing. The model predicts a normal
neutrino mass hierarchy with the best-fit lightest neutrino
mass m1 ≈ 0.32 or m1 ≈ 0.38 meV and all neutrino param-
eters fitted to within 1σ of the values predicted by global fits
to experiment. In particular, we predict a CP-violating
oscillation phase δl ≈ 280° or δl ≈ 275°, in agreement with
current experimental hints.
The model has the following virtues:
(i) It is fully renormalizable at the GUT scale, with an

explicit SOð10Þ breaking sector and a spontaneously
broken CP symmetry.

(ii) It involves only the smaller named representations
of SOð10Þ.

(iii) The MSSM is reproduced below the GUT scale,
with R parity emerging from a discrete ZR

4 .
(iv) Doublet-triplet splitting is achieved through the

Dimopoulos-Wilczek mechanism.
(v) A μ term is generated at the correct scale.
(vi) Proton decay is sufficiently suppressed.
(vii) Δð27Þ justifies the CSD3 alignment.
(viii) Spontaneous geometrical CP violation, where the

input phase is the cube root of unity ω ¼ e2iπ=3,
originates from the Δð27Þ.

(ix) We successfully fit all quark and lepton masses, with
the PMNS mixing matrix predicted (with no free
parameters) once the physical neutrino masses are
specified.

These features are desirable for any flavor or GUT model.
Achieving them all in the same model represents a
significant step toward a complete flavored SOð10Þ
GUT. At the cost of its large field content, the model is
rather successful and fairly complete. Nevertheless, some

TABLE X. Lepton input parameter values (with η, η0 fixed by
the theory).

Fitted value

Parameter Scenario 1
(θexp;bf23 ¼ 42.3°)

Scenario 2
(θexp;bf23 ¼ 45.9°)

ye1 2.217 × 10−3 −1.966 × 10−3

ye2 −1.025 × 10−5 1.027 × 10−5

ye3 3.366 × 10−2 3.790 × 10−2

μa=meV 26.60 25.90
μb=meV 2.571 2.546
μc=meV 2.052 2.461
η 2π=3
η0 0
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relevant topics remain beyond the scope of the paper.
Notably, while we discuss how the model leads to an
effective MSSM after the symmetries are broken, we do not
discuss the details of SUSY breaking nor the mass
spectrum of SUSY partners at low energy. Because the
field content is reduced to the MSSM, a Landau pole would
not be produced below the GUT scale. Beyond the MSSM
fields, all other gauge multiplets have masses close to or at
the Planck scale. To avoid the use of global symmetries, we
may envisage that gauged SUð3Þ and Uð1Þ symmetries are
broken at the Planck scale to give rise to the Δð27Þ and ZN
groups, respectively. In such a case, anomaly cancellation
imposes constraints on the charges which we did not
consider, but which can always be satisfied by adding

superfields at the Planck scale. Furthermore, we have not
considered GUT threshold corrections and their effect at
high energy on gauge coupling unification nor a possible
string theory completion for this model.
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