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Towards a complete A(27) x SO(10) SUSY GUT
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We propose a renormalizable model based on A(27) family symmetry with an SO(10) grand unified
theory leading to a novel form of spontaneous geometrical CP violation. The symmetries, including A(27)
and Zg x Z,, x Z&, are broken close to the grand unified theory breaking scale to yield the minimal
supersymmetric standard model with the standard R parity. SO(10) is broken via SU(5) with doublet-
triplet splitting achieved by a version of the Dimopoulos-Wilczek (missing vacuum expectation value)
mechanism. Low-scale Yukawa structure is dictated by the coupling of matter to A(27) antitriplets ¢ of
which the vacuum expectation values are aligned in the constrained sequential dominance 3 directions by
the superpotential. Light physical Majorana neutrinos masses emerge from a specific implementation of the
seesaw mechanism within SO(10). The model predicts a normal neutrino mass hierarchy with the best-fit
lightest neutrino mass between 0.32 and 0.38 meV, CP-violating oscillation phase &' ~ (275-280)°, and the
remaining neutrino parameters all within 1o of their best-fit experimental values.
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I. INTRODUCTION

The Standard Model (SM) cannot possibly be a complete
theory, since it does not provide an explanation for neutrino
mass and mixing. In addition, it provides no glimmer of
insight into the flavor and CP puzzles or the origin of three
distinct gauge forces. A very ambitious approach, capable
in principle of addressing all these questions, is the idea of a
grand unified theory (GUT) combined with a family
symmetry which can control the structure of the Yukawa
couplings, leading to a predictive theory of flavor. In
addition, supersymmetry (SUSY) is the most elegant
way to ensure gauge coupling unification, also stabilizing
the Higgs mass (for a review, see, e.g., Ref. [1]). The state
of the art is to combine a realistic GUT (addressing issues
like doublet-triplet splitting) with predictive flavor struc-
tures [2,3], and we proposed a fairly complete A, x SU(5)
SUSY GUT of flavor along these lines [4]. However, the
most ambitious, but also the most challenging, of such
theories are those based on SO(10) [5] where three right-
handed neutrinos are predicted and neutrino mass is
therefore inevitable. Typically, such theories are very
difficult to reconcile with a family symmetry and generally
involve rather large dimensional Higgs representations.

In this paper, we propose a realistic and fairly complete
model, capable of addressing all the above questions
unanswered by the SM, based on A(27) x SO(10) with
a CP symmetry at the high scale. The choice of A(27) is
primarily due to its triplet and antitriplet representation,
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such that there is no invariant between two triplets, which is
convenient due to the SM fermions being placed all in a
single SO(10) 16, A(27) triplet. In addition, the nontrivial
singlets of A(27) are also useful, as they are used to give
rise CP-violating phases that are related to the group rather
than arbitrary parameters in the Lagrangian. We therefore
describe this as spontaneous geometrical CP violation [6],
in this model in a novel form, as it fixes relative of phases
between distinct flavons. The model has many attractive
features, including the use of only the lower-dimensional
“named” representations of SO(10), i.e., the singlet,
fundamental, spinor, or adjoint representations. SO(10)
is broken via SU(5) with doublet-triplet splitting achieved
by a version of the Dimopoulos-Wilczek (DW) or missing
vacuum expectation value (VEV) mechanism [7].

The renormalizable A(27) x SO(10) model also
involves a discrete Zy x Z, x ZX. The family symmetries
are broken close to the GUT breaking scale to yield the
minimal supersymmetric standard model (MSSM) supple-
mented by a right-handed neutrino seesaw mechanism
[8,9], where the ZZ% is the origin of the MSSM R parity
[10]. The model is realistic in the sense that it provides a
successful (and natural) description of the quark and lepton
(including neutrino) mass and mixing spectra, including
spontaneous CP violation. The low-scale Yukawa structure
is dictated by the coupling of matter to A(27) antitriplets ¢
of which the VEVs are aligned in the Constrained
Sequential Dominance 3 (CSD3) directions by a super-
potential. Light physical Majorana neutrino masses emerge
from a specific implementation of the seesaw mechanism
within SO(10). It is fairly complete in the sense that GUT
and family symmetry breaking are addressed, including
doublet-triplet splitting and the origin of the MSSM u term.

© 2016 American Physical Society
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We emphasize the predictive nature of the model. Large
lepton mixing is accounted for by the seesaw mechanism
[8] with CSD [11]. The basic goal of the flavor sector in
these models is to couple the SM fermions to flavons ¢y,
¢o1» and ¢y, VEVs of which are aligned in the CSD3
direction [12,13],1 1.e., where

0 1 0
(ﬁatm ~1 11, Q_bsol ~13], ‘Z)dec ~10 (11)
1 1 1

We achieve this in a way that is compatible with an SO(10)
GUT, i.e., where all fermion states may be united in a 16 of
SO(10), and left- and right-handed fermions transform
equally under the family symmetry. Since SO(10) con-
strains the Dirac couplings of all leptons and quarks to be
equal (within a family), it is actually rather nontrivial that
the successful scheme in the lepton sector will translate to
success in the quark sector. Remarkably, we find that we
can attain good fits to data for quark and lepton masses,
mixings, and phases. This is notably different from our
previous work [4] based on SU(5) with CSD3, wherein the
three generations of fermions were not all unified into
triplets of the family symmetry.

The full literature on flavored SUSY GUTs [9], i.e.,
which involve a family symmetry, is quite extensive (for an
incomplete list, see, e.g., Refs. [15,16]), but there have been
relatively few attempts in the literature to combine an
SO(10) GUT with a discrete non-Abelian family symmetry
[16], and we would argue that none are as successful or
complete as the present one. The goal of all these models is
clear: to address the questions left unanswered by the SM.
It will take some time and (experimental) effort to resolve
these models. However, the most promising models are
those that make testable predictions while being theoreti-
cally complete and consistent.

The layout of the remainder of the paper is as follows. In
Sec. II, we present a renormalizable Yukawa superpotential
and discuss how it leads to the fermion mass matrices. In
Sec. III, we show how the CSD3 alignment is produced in
A(27), how the flavon VEVs are driven, and how their
relative phases are fixed. In Sec. IV, we show how SO(10)
is broken and how we achieve doublet-triplet splitting. In
Sec. V, we give a numerical fit of model parameters to the
masses and mixing parameters as given by data. Section VI
concludes.

II. MODEL BASED ON A(27) x SO(10) WITH CSD3

A. Yukawa superpotential and field content

The most important field content is given in Table 1. In
Table II, we have the messengers with R-charge 1, which

'CSD4 models have been discussed in Ref. [14].
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TABLE I.  Superfields important for quark and lepton Yukawa
couplings.
Field Representation

A(27) SO(10) Z, Z, Zx
v 3 16 0 0 1
Hiy 1 10 6 0 0
H 6110 1 10 5 0 0
Hys 1 45 0 0 0
His 1 45 0 3 0
Hpyw 1 45 6 0 >
zZ" 1 1 0 6 2
Hrg 1 16 6 0 0
Hg 1 16 2 0 )
q_sdec 3 1 6 0 0
q_ﬁatm 3 1 1 0 0
J’sol 5 1 5 6 0

result in the superpotential in Eq. (2.2). Higgs fields are
typically denoted by their SO(10) representation, with two
10s that couple respectively to the up-type and down-type
MSSM fields at the low scale. The fields ¢; are flavons that
are antitriplets under A(27) and are named in accordance
with their respective roles in the CSD3 scheme. The
messenger fields are typically indexed by their Zy charge,
while each prime tick corresponds to an additive Z,, charge
of 3.

The MSSM matter content is collected in ¥, a 16 of
SO(10) and a triplet under A(27). The two Higgs doublets
arise from HY, and H{,, both 10 representations of SO(10),
where one only gets a VEV in the [SU(2)] H,, direction and
the other in the H, direction. If we did not have the two
H,y, we would get the erroneous relation

tan fmy; = m, (2.1)
which gives no Cabibbo-Kobayashi-Maskawa (CKM)
mixing. The Hy; breaks SO(10) — SU(5) and gives

masses to right-handed neutrinos.

TABLE II. Messengers with unit R charge.
Field Representation

A(27) SO(10) Zy Z, zF
i 1 16 i€{l1,56,7} 0 1
Xi 1 16 ie{8.432 0 i
X 1 16 i€ {567} 6 1
z ! 16 ie{432) 6 1
X6 1 16 6 3 1
7 ! 16 3 0o 1
&, 1 1 ie{0,...8) 0 |
& ! 1 i {3,456 6 1
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The H,s obtains a VEV that breaks SU(S5) to the
Standard Model group, i.e., SU(5)—SU(3)xSU(2) x
U(1). It also gives the necessary Clebsch-Gordan coef-
ficients to give the correct masses. Since it has no Z

charge and the messengers should be in the 16
|
2 A((j”)
u ec,n
Wy = W, ¥, H, |:¢dec decgm+¢atm¢mm§ Z
() ()
/1§d1 j’§d2
ot (G
P\ (Hs)* M, <H25>2<H4s>
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representation, they can have a renormalizable mass or
a mass depending on the VEV of the 45. This is discussed
further in Sec. IIB 1.

The Yukawa superpotential that produces the quark and
lepton mass matrices is

/1(14) <”l)
atm,n so n
nM3 n sol¢ 16 Z nM4 n

(d) 2@
- d l
+ 0,0 HY, {rpaec decf} 13;’43 =+ PhnPrmE § ‘“%-n PPl E H45“; ]{’45 ]

W)
+ \Ij W; H16H16 |:¢dec¢dec§3 dee

2
MIMQdeL

where ﬂg_fn) are constants; Pyee, Pso» and ¢y, are GUT

singlets that are antitriplets under A(27) and acquire VEVs
according to the CSD3 alignment shown in Eq. (1.1). The
details of this alignment are discussed in Sec. III. The
singlet field £ acquires a VEV slightly below the GUT scale
and is primarily responsible for the mass hierarchy between
fermions through the Froggatt-Nielsen mechanism [17].

Each term in the above superpotential has an associated
scale derived from the VEVs of the messengers that
produce it. These are generally different, but for simplicity,
we refer to them all as M, when they are produced by pairs
of SO(10) spinor messengers y and y. We make a special
note of cases in which scale differences have important
consequences for the model, in particular, writing Mg,
Mg, and Mg  as the combinations of messenger masses
that appear in these respective terms. This is discussed
further in Sec. II C and Fig. 6.

B. Quarks and charged leptons

1. Diagrams and Clebsch-Gordan coefficients

The diagrams involving messengers that give the
Yukawa terms in the up sector [first two lines of
Eq. (2.2)] are shown in Fig. 1, while the diagrams for
the down sector [which produce the third and fourth lines of
Eq. (2.2)] are in Fig. 2. Note that in these and all future
diagrams solid lines correspond to fields with odd R charge,
while dashed lines signify even R charge.

There are several more diagrams that can be written
wherein messenger pairs couple to the H,s. Specifically,
since the H,5 has no Z charge and is a real representation, it
may replace a renormalizable mass diagram as in Fig. 3.

The Hys acquiring a VEV leads to Clebsch-Gordan
relations, and it will be aligned in such a way that it only
affects colored particles, as will be discussed later. This is a

+ PP o

A+ Pl P } , (2.2)
M;Mgdlm el M4M?2

[

GUT-scale VEV, that we will call w5, and breaks
SU(5) - SU(3) x SU(2) x U(1). As an example, con-
sider the charged leptons and down quarks. At the low
scale, the superpotential resembles

- Y1 Y2 Y3 Y1
Whwissm ~ deRHd< + + ) + eLé’RHd*
M2 M, vis M;

(2.3)

We may use the parameters y; to fit all the masses.” As we
take w45 to be complex (one of two possibilities; see
Sec. IV A), the linear combinations of coefficients y; yield
a single effective complex coefficient which is typically
different for each generation and different for each of the
up, down, charged lepton, and neutrino sectors.

2. Mass matrices

As a consequence of SO(10) unifying the quarks and
leptons, all fermion Dirac matrices have the same generic
structure. After the flavons acquire VEVs in the CSD3
alignment, the mass matrices are given by

mf :/45 <(i7atm>i<‘i7atm>j +H{<a}sol>i<q_ﬁsol>j +/"£<§$dec>i<$dec>j

000 131
=mheXran [ 011 | +mle¥ira] 393
011 131
000
+mletire| 000 |, (2.4)
001

2For the third family, we have three y;, with four for the second
family and five for the first family.
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:(Z;sol :£ :H{LU :E :J)sol
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
T VR eV el Al VI
(b)
| Bl 13 His  Hiy  His Qe
| | | | | |
1 1 1 1 1 1
1 1 1 1 1 1
I*// //I -l L ! L n L — L
v X4 X5 X3 X6 X6 X3 v
(d)

Diagrams for up-type quark and Dirac neutrino Yukawa terms.

| Patm :5 : Hld() :§ : Patm
: : : : :
1 1 1 1 1
1 1 1 1 1
I I I I I
v Xs X1 X7 Xz Xz X7 X1 X8 v
(b)
:Hf() f :q;sol

: &dec : Hﬁ] : J)dec
| | |
1 1 1
1 1 1
1 1 1
v X3 Xe Xo X3 v
(a)
[ 1 ' 110 [
I Qatm I£ I H10 1 Patm
| | | |
1 1 1 1
1 1 1 1
1 1 1 1
U X8 X1 X7 X2 X1 X8 v
(c)
FIG. 1.
: quec : £ : Hld() : fdec
| | | |
1 1 1 1
1 1 1 1
1 1 1 1
v X3 Xe Xz X7 X6 X3 v
(a)
: ésol :6 :5
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
v Xi X5 X5 Xo Xa
FIG. 2.

where ylf are coefficients derived from the H Ll‘(’)d, Hys,and &

VEVs and p; are the phases of flavon VEVs. This structure
does not include an additional contribution to the up-quark
mass matrix, which arises from a term in Wy [Eq. (2.2),
line 2]. Allowed by the symmetries and messengers, it is
proportional to ¢ e and couples to H {, but not H?O.
This term leads to the additional contribution to the up-
quark mass matrix

0 0 1
miera| 00 3 (2.5)
1 3 2
I
| Hys
> I
M, :
1
X X X X

FIG. 3. The model symmetries allow for any mass insertion M,
to be replaced by an Hysyy vertex, leading to extra
superpotential terms.

X7 X6 X5 X5 Xi 1\

Diagrams for down-type and charged-lepton Yukawa terms.

This mixed term is not allowed for the H¢; due to a lack of
messengers able to produce it. In Fig. 4, we see how this
mixed term would have had to be built with an HY,. Since
there is no field x4’ to build this diagram, it is not allowed.
There are no messengers that allow us to build other mixed
terms (involving different pairs of flavons); even if there
were, they would be highly suppressed. Without the term in
Eq. (2.5), the fit to CKM parameters is quite poor, whereas
with this term included, a reasonable fit can be made (for
more, see Sec. V).

The additional term in Eq. (2.2) does not contribute to
down quarks or charged leptons, since it only involves HY,.
Furthermore, because of its structure, it does not contribute
to neutrino masses either. To see this, we may decompose
the contribution to neutrinos from the fourth diagram in
Fig. 1 in SU(5) terms. We adopt the naming convention
where the SU(5) representation is labelled by its dimen-
sion, with its parent SO(10) field given in parentheses. The
left-handed neutrinos are in 5(¥), and the right-handed
neutrinos are the 1(¥). The diagram would be in Fig. 5. We
see that the subdiagram that is emphasized involves one
adjoint and two SU(5) singlets, which is zero, and therefore
the whole diagram is zero.
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: H 4/15 f : (Z_Sdec

|

7 X4 X5 X5 X6

FIG. 4. Hypothetical diagram that would produce a mixed term involving H¢,, ¢, and ¢g... Because of an absence of the field x4,

this term is forbidden.

X7 X2 X6 X3 v

"

Psol 3 24(His)  5(Hip)  24(His)  daec
1 1 1 1 | 1
1 1 1 1 | 1
1 1 1 1 | 1
| | | | I |
| | | | I |
| | | | I |
] 3¢ ] ] ] () 1
5(¥) s OB s Bk @) 1w 1(0)
FIG. 5. Null contribution from the ¢y e mixed term to neutrinos.

3. Relative phases of flavons

Since H,s acquires a VEV that only affect colored
particles, the lepton and neutrino Dirac matrices will not
depend on w45 (which is generally complex). As such, the
only phases contributing to these matrices are pym, Pso1, and
Pdecs the phases of <§$atm>’ <§$sol>’ and <(27dec>’ respectively, as
well as pg, the phase of (£). We define the dominant phase
as the phase of the subdominant (second) matrix in the
seesaw basis where the dominant matrix is real, i.e.,

Similarly, the subdominant phase is

¢ ec > 1
v = [égjtmiz @:| B _2(pdec - patm) + pe. (27)

Each mass matrix derived from the superpotential will have
an overall phase dependent on the (generally different)
phases of the Higgs VEVs, but these are not physical and
may be factored out. We defined the phases in this way
because, as we will see shortly, these definitions are the
ones that apply for the effective neutrino mass matrix after
the seesaw.

7 \2
n=—arg [<f_l5sol>2 ( {:ﬁ = —2(psol = Pam) — Pe- (2.6) This phase structure does not exist in the quark mass
(Daim) matrices, as the factor in front of each submatrix is given as
7 1 1 1 1 1 [y
1 Odec 1 Hig i€ 1S i€ g 1@dec
| | | | | | |
1 1 1 1 1 1 1
1 1 1 1 1 1 1
v Xso xe % Q3 Q0 Q4 U Q5 B Q%o oxe X v
(a)
7 1 1 1 1 1 1 17
1 Patm 1§ IHE i€ i€ i€ Hig 1®atm
| | | | | | | |
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
v Xso x1 Xroox2 0 Qs Qo Qo QT T D x1ToXs v
(b)
1ol 1€ g ¢ 13 13 Hig ¢ 1 Beol
| | | | | | | | |
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
VW o oy o o] ol 99 i 4N
(c)
FIG. 6. Diagrams for right-handed neutrino Majorana masses.
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a linear combination of superpotential couplings [see
Eq. (2.3)], which in turn depend on w4s5. As such, the
relative phases in the quark sector are arbitrary.

C. Neutrino masses

Finally, the right-handed neutrino Majorana terms [last
line of Eq. (2.2)] are produced by the diagrams in Fig. 6. If
we decompose these diagrams into SU(5) components, the
base line would be all singlets. Therefore, there can be no
contribution coming from the H,s nor the H)5, and there is
no mixed term allowed.

Even though they seem quite suppressed, these terms get
the correct order. It is usual for the right-handed neutrino
masses to be in the range 10'°-10'* GeV. The VEV Hyg
breaks SO(10) — SU(S) and thus is higher than the GUT
scale, while the scale M for the messengers is yet higher,
such that they may be integrated out. Thus, we have
¢ < (Hyg) S M, and this way we may obtain the correct
scale for right-handed neutrino masses.

It is true, though not immediately obvious, that the mass
matrix structure given in Eq. (2.4) is true also for the
effective neutrino masses after the seesaw. To show this,
consider the neutrino sector after SO(10) — SU(5) break-
ing, where the left- and right-handed neutrinos v and v¢ are
contained, respectively, in a 5 and 1 of SU(5), in triplets of
the family symmetry. We denote the 5 by F and the singlet
by N¢. The Dirac mass matrix is then sourced by the terms

u atmé: i c sol 52 c
HlO (¢atm )(¢atmN ) M <¢SO]F) (¢501N )
X
/1(”) _
+ —dee (¢dec )(¢decNC) ’ (28)

PHYSICAL REVIEW D 94, 016006 (2016)

when the HY ), £, and ¢ fields acquire VEVs. Pairs of terms
in parentheses, like (¢F) and (¢N°¢), signify a contraction
of a A(27) triplet-antitriplet pair, yielding a flavor singlet.
In a similar fashion, the right-handed Majorana matrix
originates from the terms

A&t - .
<H_H_> S (¢ m )(¢ mNL)
167716 M}?; MQMm at ati
(M) g5
MMes
+ s> <¢501Nc)(¢501N6)
M;Mésol
8 N e 29)
+ o ¢dec ¢decN€ ’ 2.9
M)%Mgdec

where we have made a distinction between the average
scales of the messengers that produce each of the above
three terms, giving us three distinct mass scales for the Q-
type messengers, denoted Mg, , Mg, and Mg . We will
see that the best fit to data suggests that the third effective
neutrino mass is small. Implementing the seesaw mecha-
nism, requiring the third right-handed neutrino to be
decoupled, means that the last term in Eq. (2.9), leading
to a very large third right-handed neutrino mass M., can
be achieved if Mg, < Mg , Mg .

We now demonstrate how the seesaw mechanism is
implemented in our model.’

Collecting the Higgs and ¢ fields along with A coef-
ficients into generic parameters x (with dimensions of
inverse mass), we can write Eqgs. (2.8) and (2.9) in the
simplified form

thm (&ath) (&atmNC) + KZOI(‘Z’SOIF) (&solNc) + Kﬁec (‘EsdecF> (&dchc)

+ K%m(&atmNC> (&atqu + K'%](QBSO]NC) ((%SOINC) + Kg/éc (g;sdecNC><4_5dchc)7 (2 10)
noting also that generically k¥ < k™. This can be written in matrix form as
_ <q_5ath) (g;ssolF) ((zdecF) (g;satmNc> (&solNC) (&decNC)
(PamF) 0 0 0 Kam 0 0
(&solF) 0 0 0 0 KI;OI 0
y oo F 0 0 0 0 0 Klec
(PaccF) ¢ (2.11)
(¢atmNC) K;trn 0 0 K{:{m 0 0
(PsalN°) 0 Kol 0 0 Kl 0
(g_bdecNC) 0 0 Kﬁe 0 0 K?i/éc

This is a variation of the mechanism described in Ref. [18].
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Diagonalization gives, to O((k*/kM)?), the effective Ma-
jorana mass terms

ytm 2 i 3 K':o 2 - -
‘%@WW@M) - M> (Pl F) (BsoiF)
2
_(l:<§+)(<;§decF)<$decF)- (212)
dec

These in turn reproduce a light neutrino Majorana mass
matrix of the form given in Eq. (2.4), when the flavons
acquire the CSD3 VEVs.

One final step that is particularly relevant to determining
the physical phases is to change to the seesaw basis, as in
Ref. [4]. From the neutrino superpotential terms, Eqgs. (2.8)
and (2.9), we define the neutrino Yukawa and right-handed
Majorana matrices 4 and M€,

W, = H{FN° + M°N°N°, (2.13)
with the structure of 4 and M€ arising directly from the
flavon VEVs, as in Eq. (2.4). This is the SUSY basis. In the
so-called seesaw basis, in a left-right (LR) convention,
|

0O 0 O

Y= kit | 01 1| + R
0 1 1
0 0 O

Mg =i | 0 1 1| +xiod
0 1 1

using the effective parameters introduced in Eq. (2.10).

PHYSICAL REVIEW D 94, 016006 (2016)

the Yukawa and Majorana matrices Y and M are instead
defined by the Lagrangian

- 1 _
LR = —Hﬁ‘OY’;jL’Lufe — EMRZ/CRZ/R + H.c., (2.14)
where the three families are labeled by i, j = 1, 2, 3; L, are

the lepton doublets; and v{e are the right-handed neutrinos
below the GUT scale. The light effective Majorana neutrino
mass matrix m”, defined by

1
££‘L = —EmUDLI/z + H.C., (215)
is then determined by the seesaw mechanism
m* = v2Y*Mz' YT (2.16)

The matrices in the seesaw basis are obtained by complex
conjugation of the matrices in the SUSY basis, i.e.,

YY = ()F, My = (M°)*. (2.17)
We proceed in the seesaw basis, wherein
1 3 1 0 0 O
39 3|+ K’éﬁcv;jgc 0o 0 0],
1 3 1 0 0 1
1 3 1 0 0 O
39 3|+ Kﬁfgvzgc 0O 0 0], (2.18)
1 3 1 0 0 1

To verify that the relative phases are again 7 and #’ [as defined in Egs. (2.6) and (2.7)], we may insert VEVs of all fields

(denoted v, for given field f) to give

m’ =

* 2 M *2 x4
(UH(()) ﬂ‘(ltm)M; vatmvg

dec

(/1(”) )ZMéglzdeC 1]*4

dec

*2 %3
Vdec U.f

(05 )7 | (2 )2 M, (032,02)? (
0
0
0

/1(M>M2
X

dec

y - 1 3 1
(/léosz?zwl (Usglyfz)z

/1(M)M4 ,U*Z U*S 393

sol My sol 7¢ 1 3 1

(2.19)

where the conjugation of the VEVs is due to changing to the seesaw basis (described above) and we define
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= | () G M (10|
(P AT Gt
a=—arg {(UHTOV Ugtm} ;
UHE)2 vé
oy = | ) QDM (02
o 0 oyt
- (UH70)2 Vel
p=—arg { on)? UJ,
= (v, ) (AP My ol
=m0 et
v = —are {(111-1?0)2 vgec} ’ (2.20)
(WHE)Z U?

where messenger masses and A couplings are all real due to
CP conservation. The remarkable fact that the effective
left-handed Majorana neutrino mass matrix has the same
structure as the neutrino Yukawa matrix and heavy right-
handed Majorana neutrino mass matrix can be understood
from the argument presented in Eqgs. (2.10)—(2.12).

As before, the physical phases 77 and 7’ are defined as the
relative phases between the dominant (atm) matrix and,
respectively, the subdominant (sol) matrix and sub-
subdominant (dec) matrix, i.e.,

r2 2

_ Usol Vat
n=pf—-a=—arg —;0} +arg[ azm}
L Ve Us

= _2(psol _patm> — Pes

/ -v(zjec Z]gtm
N=y—a=—-ag|—5 + arg 3
L Ve e

= _2(pdec _patm) ‘|‘P§, (221)

which is identical to Egs. (2.6) and (2.7).

D. Renormalizability of the top

The terms in the superpotential in Eq. (2.2) that are
primarily responsible for the masses of the third family of
fermions are, naively,

2 (u)

u i 7] dec,n
\Pi\I’jHlogbdec dec E : <H >nM2—n :
n=0 45 X

(2.22)
When g, gets a VEV like (0,0, vge. ), With vge. assumed
to be near the GUT scale, these terms reduce to

2 /1(“)

2 u dec,n
Udec\IJ3 \I]3H10 §
n=0

Ty (2.23)
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In fact, we can only consistently write these nonrenor-
malizable terms when (Pg..) < M, but as we will justify
in Sec. III C, we actually have (¢pge.) ¥ M ,» 0 the simple
integrating out of the messengers is not possible. We
actually need to work out the mixing between the mes-
sengers and the field W. This is only necessary for this term
since all of the others involve other flavons that have a VEV
(Damsol) K (Paec) ® M, and powers of (&) <M, that
allow a consistent integrating out of the messengers.

To prove that this in fact gives us a renormalizable top
mass, it is sufficient to examine the first term in the above
sum (with n = 0). It is sourced by the renormalizable terms

W ~ Wehgecs + Myeis + Hioxexs (2.24)
In matrix form, this gives
0 0 Udec/z \113
W~ (Vs x6 X3) 0 (HYy) M,/2 X6
Udec/z M)(/Z 0 )_(3
(2.25)

Since (Hf{)) < vgec ~ M,,, diagonalizing this mass matrix
reveals two heavy and one light eigenstates, the latter being
at the electroweak scale and which we can associate with
the third family, and crucially with the top quark.
Supposing  vge. # M, (as justified in Sec. IIIC), the
electroweak scale eigenstate is

1
x (0 + 0) (2.26)
i.e., the third family up-type fermion, specifically the top
quark, is a linear combination of W5 and y4, where the latter
has a renormalizable coupling to the Higgs. The other
eigenstates have a mass at the GUT scale and are therefore
identified as messenger eigenstates.

III. VACUUM ALIGNMENT IN A(27)

In this section, we describe the basic properties of the
A(27) group and how the CSD3 alignment is produced by
F-term alignment and orthogonality arguments. We further
write down a superpotential which drives the VEVs of the
flavons, such that they acquire expectation values at a fixed
scale (slightly below the GUT scale), with phases fixed to
discrete roots of unity. In particular, the relative phases
between ¢, Pso1, and Py are constrained to discrete
choices, which subsequently fixes the physical phases 7, 17/
in the lepton mass matrices to exact values.

A. Group products

The A(27) rules for taking the product of a triplet A and
an antitriplet B are
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[ABlog = (a1 " + ayb* + azb?)q

[ABJyy = (a1b? + axb' + azb?)y,

[AB]g, = (a1b* + ayb® + azb')

[AB]}y = (a\b' + @*ayb* + wasb?)

[AB];, = (wa,b* + a;b" + w?azb?),,

[AB), = (0a;b* + wayb® + azb'),,

[AB)5y = (a;b' + wa,b? + @?azb’),,

[AB], = (0?a,b® + a,b' + wazb?),,

[AB)y, = (wa,b* + @?a,b3 + azb')y,, (3.1)

where @ = ¢>/3. The product of two triplets or two

antitriplets yields, respectively, an antitriplet and a triplet.
There are three possible products that can be made in each
case, labelled 7 (identity), S (symmetric), and A (antisym-
metric). Defining triplets A = (ay, a,, a3), B = (by, b, b3)
and antitriplets A = (a',a?,a@*), B = (b',b? b’), their
products are given by

[AB]; = (a1by, azb,, azbs)

[AB|, = (a'b'.a*b*.@’b’),,

[AB|s = (ayb3 + azb,, azby + a b3, a1by + azby),
[AB]g = (a*b® + @b%, @b + a'b?,a'b* + ab")y,
[AB], = (axb; — a3b2’a%bl —ayby, a1by — a3by)

[AB), = (a*b® - a*b?,a’b' —a'b?, a'b* — a*b'),,

(3.2)

Note that the bar on antitriplet fields serves merely a
reminder of their assignment under A(27).

B. CSD3 directions in A(27)

The special directions for A(27) are VEVs with two
zeros and VEVs with three equal magnitudes, with phases
that are powers of @ = ¢>*/3, There are three distinct ways
to obtain either the (0,0,1) class of VEVs or the (1,1,1) class
of VEVs [19]. One of the possibilities that we make use of
here uses invariants built out of an antitriplet and triplet, and
out of three triplets, of the type

c[Adloo + c1Alpd] loo + cs[AlDdlsoo-

where ¢ is an antitriplet unrelated with triplet ¢» and A is
itself a triplet, giving rise to three F terms,

cd' + cipipy + 2¢sapy =0
cd? + crpahr + 2cs¢p3p, =0

cd® + ¢33 + 2csp1pr = 0. (3.4)

To obtain the VEVs we require in the (0,0,1) and (1,1,1)
direction class of VEVs, an economical solution is the
superpotential,

(3.3)

PHYSICAL REVIEW D 94, 016006 (2016)

Wy = ca[toAolooa00 + ¢ [¢0A0l0200;
cc[A1pilooM +cqlA1dilon0,
+ Ce[AsslooM + ¢ p[A3[hacbal oo + ¢4 [As[abalsloo
+ chlpaAslooM + cil[3bslAsloo + ¢ [ b3 3] sAsloo
+ 002 [¢h2h3]01 + Ocol 2100 (3.5)

where the ¢, (x = a,...,J) are coefficients that we show
explicitly and the coefficients for the other terms are not
shown as they are not relevant when taking the respective F'
term. The triplet flavon ¢, is aligned to (1, w, ®?) similarly
to how the antitriplet flavon ¢, is aligned to (1,1,1), through
the alignment antitriplet A or triplet A, and flavon singlets
600 09; VEVs with a relative phase of @ and o}, taking a
real VEV.

The antitriplet flavon ¢5 is aligned in a (0,0,1) direction
together with triplet ¢,. This proceeds from the F terms of
the components of A; and A,, which are of the type shown
in Eq. (3.4). Taken together, the six equations only allow a
discrete set of solutions where both flavons are aligned in
the same direction. One of the solutions has them aligned
like (0,0, v3) and (0,0, 114),4 with their magnitudes »5 and
vy fixed. The relevant VEV magnitudes are

2 2

c,C Cc,C
==, ==,
CrC3 C7C;
fei fi
C
(oh) = —=“M. (3.6)

Cq

We impose trivial CP symmetry on the fields, including the
triplets and antitriplets. This is consistent with the con-
tractions that make invariants with the 1; set of singlets that
we are using. Since the coupling constants ¢, are forced to
be real by CP conservation, up to minus signs (which can
be reabsorbed into the real coefficients), the VEVs v 4 can
have a phase only as a third root of unity while (¢}, ) has to
be real. We expect this mass scale M to be around the GUT
scale, and with O(1) ¢ parameters, these VEVs should be at
this scale also.

The triplet ¢, is then forced into the (0, y,, z,) direction
due to the alignment singlet Oy,, and the alignment singlet
Oq ensures y, = —z, by orthogonality with (1,1,1).

To have CSD3, we want the directions (0,1,1) and
(1,3,1). We can use a chain of orthogonality relations,
where in A(27) they must be between the triplet and
antitriplets. Using the three directions above, we can arrive
relatively easily at (0,1,1), through orthogonality with ¢,
and ¢y,

“The phenomenologically viable solution is where both
flavons are aligned in the (0,0,1) direction; another possibility
is that they would both be aligned in the (1,1,1) direction.
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TABLE III.  Flavon fields. TABLE IV. Alignment field content.
Representation Representation
Field A(27) 50(10) Z, Z, ZF  Field A(27) S0(10) Zy Zy zR
Dec 3 1 6 0 0 A 3 1 0 8 2
q_ﬁatm 3 1 1 0 0 Aj 3 1 3 0 2
55501 5 1 5 6 0 %0 ? ! 7 3 2
Fy 3 i 0 4 0 A 3 ! 6 0 2
& 3 1 0 5 0 Op Loy 1 0 5 2
bo 3 1 ) 6 0 Oqo loo 1 6 1 2
b 3 1 3 7 0 Oy Loo ! 5 5 2
bs 3 1 1 8 0 04, Lo 1 5 0 2
b4 3 1 3 0 0 0% loo 1 3 1 2
/.
¢g 13 i 8 111 8 ogg Loy 1 6 0 2
(78() 00 000 100 1 0 8 2
%) 1o; 1 0 1 0 0 Log 1 0 8 2
oo Lo 1 0 0 0 0}, loo 1 8 11 2
o 1oo 1 7 4 2
031 Loy 1 1 11 2
Wyt = Ogoldabsloo + Opi [hadhslon- (3.7) 0% Loo 1 3 10 2
With this, we obtain a 4715 antitriplet in the (0,1,1) direction
(note the [Jo, contraction matches the first component of the  TABLE V. Field content for driving the flavon VEVs.
antitriplet with the third component of the triplet, putting
the zero in the right place in ¢s). Representation
To get to (1,3,1), we require a (2, —1, 1) direction, which ~ Field ~ A(27)  SO(10) Zy Z,, 7%
itself requires _(1, 1,—1). To obtain the latter, we also P, Tng ) g ] )
duplicate the ¢ direction into_a triplet ¢, which is a P, Too 1 1 6 2
different field and unrelated to ¢s other than the fact that P Lo; 1 2 0 2
they both have VEVs in the same direction. A way to do ¢, Loo 1 ie€{0,1,2,3} 1 2
both things in one step is ¢ Loo 1 i€{0,6,7,8} 11 0
! Loy 1 ie{3,4,5) 0 2
z/ 1o 1 ie{4,56} 0 0

Wys = O%[deb3lor + O 7)o

+ Ofoldsrloo + OG1 [dspilon-  (3.8)
Starting with the first two orthogonalities, we ensure the
zero is in a specific component for ¢4 as (0, y¢, z¢) and that
¢7 is in the (x;,x7,z7) direction. The other two mutual
orthogonalities  give  Ox; + ygx7 + 2627 =0  and
0x7 + y¢27 + z6x7 = 0, which completes the (0,1,1) and
(1,1,—1) alignments. Strictly speaking, this alignment
allows both an wundesired solution where we get
(0,1,-1) with (1,1,1) and the desired solution of (0,1,1)
with (1,1,-1).

The next step is obtaining the (2, —1, 1) as a triplet. For
this, we want to use the (0,1,1) antitriplet direction and the
antitriplet with the recently obtained (1, 1,—1) direction,

Wys = Ogdhshloo + Ofo[¢shsoo- (3.9)
Finally, by orthogonality,
Wrya = Ogy[batbolon + Ofoldsolon,  (3.10)

one obtains the (1,3,1) direction as an antitriplet. We did not
need to align a (1,0, —1) direction as the [...],, contraction
with the triplet (0, 1, —1) (¢b,) puts its zero together with the
second component of the antitriplet .

Noting now that the VEVs of antitriplets ¢, ¢bs, and ¢y
are the desired directions for uec, Pam» and ¢, respec-
tively, we now rename these fields to match the notation
used in other sections, so v3; = vy, and

¢3 = ¢dec’ ¢5 = ¢atm’ ¢9 = ¢sol' (311)
This notation is also used in Table III, which together with
Table IV summarizes the field content and the representa-
tion of each field under the symmetries. For the sake of
completeness, we collect all alignment terms into one
superpotential,

Wy =Wy + Wy + Wy + Wys + Wy, (3.12)

such that, omitting the coefficients, we have
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Wy ~ [hoAolonoo + [#0A0]0200; + [A1d1]0oM + [A1d1]02601 + [AsdslooM + [Asldadbal loo + [A3[hadhalsloo
+ [psAdlooM + [[§303]1A4]00 + [[D33)5A4)00 + Oo2ldh2bslor + Ovolh2d1]oo + Ofo[d2daumloo + Oby [Paaum]on
+ O%[d6dacclor + Ol b2d7)01 + OfoldsBrloo + 05 [hebrlon + Ofoldsdrloo + O DsPamloo

+ 031 [¢24_§s01]02 + 030 [¢84_ﬁs01]00‘

We summarize the alignments produced by the above
superpotential as follows:

Pl (Lo.w?),  (f) e (1. 1.1),

(

(¢2) (0,1, -1), (Paee)  (0,0,1),

(¢4) (0,0, 1), (Bam) o (0,1, 1),

() < (0.1, 1), (#7) & (1,1,-1),

(fg) o (2.-1.1), (o) & (1,3, 1). (3.14)

C. Driving flavon VEVs and phases

To drive the flavon VEVs, we introduce a set of fields
given in Table V. They are GUT singlets with nontrivial
representations under A(27) and the Z symmetries and
couple to the flavon fields.

To obtain the necessary superpotential, we need to add
more messengers ¢, ¢, with a characteristic mass M, ¢» also
listed in Table V. The superpotential which drives the
flavons is

4_ _
Wy =P, |:Kl (AZ) BDaecPs — K2¢atm¢6]
+ P [k3hso190s — Kagpaectho)

_ 3_
+ P |:K5¢sol¢0 — K¢ <Mi¢> ¢atm¢4] ; (3.15)

where k; are real dimensionless constants. As discussed in
Sec. V, to acquire a good fit to the data without tuning, we
need to assume that (§) < M. The F-term equations for the
P fields give relationships between the VEVs of the flavons
that couple to the SM fields. The (nontrivial) representa-
tions of the P fields under A(27) are chosen specifically so
that the pairs of flavon VEVs they are multiplied by do not
give zero when they acquire VEVs.

The constants «; are forced to be real by CP conserva-
tion, but the VEV (¢,) has complex components that
introduce phases to the other VEVs. Specifically, the terms
multiplied by the constants k, 5 obtain the factors

[<¢dec><¢0>}00 = wzvdecvo
(3.16)

[<$sol> <¢0>]02 = 2UsolUO»

(3.13)

|
when contracting the A(27) triplets, so we may effectively
treat as k, in Eq. (3.15) carrying a factor of w?.

We proceed to solve the F-term equations coming
from the P fields, yielding VEVs for the important
flavons ¢, and @y, While (dye.) is given in Eq. (3.6)
(recall that v3 = vg..). It is useful to note the relation
vy = ¢ v3../ (c;M), which can be seen from comparing the
VEVs in Eq. (3.6). We obtain

K4KeC 7 K2 8
K3Ks5Cj ¢ 4x5 c
(3.17)

where, since (£)/M; < 1, we conclude that vge; >> Vyym~
ve1- Given these VEVs, the physical phases defined in
Egs. (2.6) and (2.7) are given by

n=—arg [@ <§>} = —argw?],

atm

=g [ ) —ougl(e). Gay)

Viim (&)

where the real coupling constants c,, x; do not contribute to
phases. These phases are in fact completely fixed. As will
be shown in Eq. (4.2), the phase of (£) is a ninth root of
unity; by the cancellation of this phase, we finally have

(3.19)

Strictly speaking, these phases are fixed only up to a
relative phase 7z, depending on the signs of the real
constants. However, this additional phase is unphysical,
as it may always be subsumed into other real parameters at
the low scale.

VEVs of other flavons that are not set by the super-
potential terms described above are driven through radia-
tive breaking [20].

IV. GUT BREAKING

In this section, we detail how the SO(10) GUT is broken
down to the MSSM via SU(5), how doublet-triplet splitting
is achieved, and how only two light Higgs doublets are
present below the GUT scale, as in the MSSM. We note
that, due to A(27) x SO(10), at the GUT scale, there is a
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small number of relevant soft parameters: i, the universal
soft mass for the W ~ (3,16); nonuniversal soft Higgs
masses myu and mya; and the universal gaugino mass M ;.

|

H/4
Waur = M?Z + M Z? + L ZZ"* + 3 Z"Hl + /142M—425

T
Mz

53
+HDWW AoHys + A1
7 Y

& - & - & - & . -
+Z </114 == 102 + his g D193 + Aie Tz PsoPs + 4775 Dso1Po + AigPaccPa |-
M5 M, M;, M

The renormahzable diagrams that give rise to this super-
potential are glven in Fig. 7 (giving lines 1 and 3) and
Fig. 8 (giving line 2), and the corresponding messenger
fields (X, Y, and Z;) are detailed in Table VI. Most fields
are familiar from the Yukawa sector discussed previously,
while the field Hpy is an SO(10) adjoint that governs
doublet-triplet splitting, as we will see shortly. Requiring
that every field’s F' term vanishes yields a set of equations
that fixes the VEVs of the above fields.

The first line contains terms involving different powers
of Z, Z", and H);5, which ensures that their corresponding
F-term conditions fix all VEVs to be nonzero. The exact
expressions for the VEVs are complicated and thus are not
shown, since they are not enlightening.

The second line has terms involving the fields H; “d that
will be discussed carefully in the next section on doublet—
triplet splitting. At this level, the fields H”fbd have a zero
VEV, so any term involving two of them does not
contribute to the F-term equations. The F-term conditions

coming from H Lf(’)d themselves relate the H,; 7z VEVs and
also fix the VEV of £ to be
AsA7\ /9
= My, 4.2
€= (/18/16) : 42)

which subsequently fixes the phase of (£) to be one of the
ninth roots of unity.

Atthis stage, it is relevant to consider superfields Hpy and
Y4, which have the same quantum numbers. In terms of
superfields ¢, Tg, the mass term for the messenger pair
reads My(c,Y¢ + ¢, TE)T;. We define Yg= (c,T¢+
cp Tg) and Hpy as the orthogonal combination. The F term

°In Eq. (4.1), we include all the terms allowed by the
symmetries and messenger fields. We omit those diagrams with
seven or eight powers of £, as they are constructed in a similar
way using the same messengers but are not particularly illumi-
nating. Similarly, we omit the diagrams that produce the final line
of Eq. (4.1), as these terms, while allowed, have no significant
impact on physics.

z &
</15H16H16H10 + 7w H16H16H10 + JgHygHrgHYo + 4 7
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A. Breaking potential and diagrams
The superpotential that breaks SO(10) is given by

56

DW M6

¢ H <Hr H‘fo) + A9ZH}

H3 A
72 ) + HsHyg </112§+i¢1¢8>

(4.1)

with respect to Y5 forces Y4 to have a zero VEV, meaning it
will not contribute elsewhere and justifies identifying it as
half of the messenger pair. Therefore, the third line contains
different powers of Hpyw and H,s and gives them VEVs.

The model actually allows an infinity of terms involving
H 5, each with a higher power of this field. We keep only
the first two terms since they are enough to give the Hys a
general VEV, whereas adding the other terms will make its
VEV look more complicated but will not affect the physics.
Its own F-term equation fixes its VEV to be

A
Vg5 = H_ﬁMT’

which must define the GUT scale, while we may choose the
signs of A; 1 so that it is imaginary (this is the phenom-
enologically favored solution). The F' term for & will fix the
VEVof H 4 1z. The F terms coming from H ¢ 7z will drive
the VEVs of the flavons ¢; and ¢, (seen on line 2).

The last line, allowed by the symmetries and messengers,
only adds terms to the F terms for Z and &, relating their
VEVs to the flavon ones. The flavon F terms will fix some
of the O field VEVs.

The VEVs (H | 1) specifically break SO(10) — SU(S).
The VEVSs (H s, H),5, Hpw) specifically break SU(5) — SM.
The VEV (&) completely breaks Z,. Finally, the VEVs
(Z,7"), carrying two units of charge under Z¥%, break it into
the usual Z§ R parity at the GUT scale.

(4.3)

B. Obtaining two light Higgs doublets

In this section, we show how the SU(2) doublets and
SU(3) triplet Higgses contained within the H ¢ 1z and H'; d
acquire masses, as dictated by the model. They do so in
such a way that all triplets are heavy, while only two light
Higgs doublets remain at low scales, which we may
associate with the MSSM Higgs doublets. This is important
because any light colored Higgs states would lead to very
rapid proton decay, so we need a justification for why
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| Hi | His \ His | Has 1 Hys 1§ 1§
I I I I I I I
I I I I I I I
I I I I I I I
_____ I Y [ G P, R L9 20 ) O S R S (R
Z S S S His Hpw Y3 " Yo Zs " Zs Zo Zn §
(a) (b)
| Hs \ His s s 13
I I I I I
I I I I I
I I I I I
_____ P [ ) 9 Ay M U
HDH Tg Tﬁ Tg Tg Zg Z6 ZQ Z7 5
(c)
FIG. 7. Diagrams that give rise to GUT breaking terms.
I u I I I I I I
IHl() Ig Ig |£ |£ |€ |£
I I I I I I I
I I I I I I I
I I I I I I I
_____ N N iy RO i S AN ey R U [
Hij Zs Js Zy Ly Ly s Z; ZG Zy Z7 Zy Zs A
(a)
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I I ! I I
I I I I 1
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_____ (Y I P, ) iV R R G FEp
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(b) (c)
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I I ! I
I I I 1
I I I I
_____ L:_x__ -—-=- ——___L:_x_:_J_____
HDH TQ T7 Hf() H1d0 22 27 Z
(d) (e)
FIG. 8. Diagrams that give rise to doublet-triplet splitting.

certain doublet states remain light, while triplets remain
heavy, a problem known as doublet-triplet splitting. We
solve this 4 la Dimopolous-Wilczek [7]. In SO(10), there is
a further complication, where each H;, has two SU(2)
doublet states within it, and we have two additional
doublets from the H ;7. Only two of these six doublets

should be light, so as to reduce to the MSSM. We also show
how we achieve this.

1. Doublet-doublet splitting

The superpotential that gives masses to doublets is

u u 56 u 5 é:
W, ~ZHY HY\ >~ 7 + ZHY,HY, o yr7 + ZH{,HY, M5 + EH ¢ Hyg
+ = HHH"+§HHH + HeHgHY, + S H_H_H 4.4
MZ 16441641410 M8 1644164470 MZ 1677167710 |)» ( . )

where the corresponding diagrams that produce the nonrenormalizable terms are given in Fig. 8. The second line is a
reproduction of the second line in Eq. (4.1), while the first line includes those terms involving more than one insertion of

H 76‘1, which had previously been omitted.
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The fields H 16.16 contain doublets that mix with the

ones in H'l‘(‘)d and will also contribute to masses, since
they both get VEVs above the GUT scale. Defining

H 15 = (H ¢ 15)/Mx, we assume it to be reasonably close

to 1. We similarly define & ~ (&) /M ~ (£)/Ms, where M,
and My are the typical scales of the messengers that
produce Eq. (4.4). We will find that they are necessarily
different from the scale M, that governs the flavon driving
potential.

To make the connection to the two MSSM Higgs
doublets, typically denoted H, and H, in reference to
their behavior under SU(2), we call the H,-like doublets
inside the HY,, H{,, and Hy fields, respectively, H%, H,

and H},_é. The H,-like doublets are named similarly,
replacing the subindex u — d. In other words,

ZM(HIfO) = HZ’
ZM(Htljo) = HZ,
Hi6

2,(HYy) = Hy,
2d(H(IjO) = HZ’

(4.5)

The doublet mass matrix can then be written in matrix
form as

HY H¢ HIS
my (& & g
Mp~Hy| & & &y [(2). (46)
H \ B8 i &/(2)
Its eigenvalues m, are
mp~&Z), &2z &2 (4.7)

Two doublets receive large masses, which we assume are
slightly larger than Mgyt such that they do not upset gauge
coupling unification. The remaining eigenvalue is sup-
pressed by a factor ;38. We can choose the mass of the Z and
¥ messengers so that &~ 0.03, i.e., &(Z) ~ 1 TeV. This
generates the MSSM y term ZES<Z)HZHZ at the correct
scale, where we make the connection to MSSM Higgs
doublets by

H,~Hy,

Hy~ HY. (4.8)

2. Doublet-triplet splitting

The Dimopoulos-Wilczek mechanism [7] is based on
having an SO(10) 45, which we call Hpy, that obtains a
VEV with the structure

0 (Hys)) >

(How) = (_<HU(5)> 0

(4.9)
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TABLE VI. Messenger superfields required for the doublet and
triplet mass terms. Note that the model also includes Z;, (but not
ZO), which we considered earlier as Z, and that Y4 has the same
quantum number as Hpy (see Table I).

Representation
Field A(27) SO(10) Z, Zy, zk
Z; 1 1 ief{l,....8} 0 2
Z; 1 1 ief{l,....8} 0 0
27 1 16 6,7 0 2
X5, 1 16 32 0 0
3 1 16 ie{0,....,8} 0 2
3, 1 16 ief0,....8} 0 0
15, 1 45 3,2 0 0
Yo7 1 45 6,7 0 2
T 1 45 0 9 0
T 1 45 0 3 2
1 1 45 0 6 0
o 1 45 0 6 2

which is traceless regardless of the structure of (Hys)). We
can actually choose (Hys)) = vysdiag(1,1,1,0,0) such
that it contributes only to the mass of the triplets [7]. This
VEV alignment is not possible in an SU(5) adjoint
representation but is possible in the SO(10) one. The field
Hpyw has an R charge of 2 and a Zq charge of 6, allowing us
to write the term

Wpr ~ HpwH'{oHf Mi (4.10)
T
where, due to the antisymmetry of (Hpy ), only the mixed
term is possible. The renormalizable diagram that produces
this term is given in Fig. 8.
In analogy to Eq. (4.5), we define Higgs triplets T arising

from HY,, H{,, and H; by
3u(HIfO) =Ty,
3,(Hy) =T,

3“(HE = T}f,

34(HYy) =Ty,
3d(H§lo) = Tj,

34Hi) =T, (4.11)

The terms involving these triplets arising from the super-
potential in Eq. (4.4) produces the mass matrix

T Td Tio
Ty £° E(Hpw)/(Z) I:IT6
My~ TZ %<HDW>/<Z> 58 EHE <Z>’
T\ Hs &2

(4.12)

where the only structural difference between this and
Eq. (4.6) is in the (12) and (21) entries, which arise from
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Eq. (4.10). All the eigenvalues of this matrix are at the scale

E(Z) S Mgy, ie., there are no light triplet eigenstates,
which gives doublet-triplet splitting.

Finally, we remark that the mechanisms shown above
will fix the mass scale of most fields. The messenger fields
have renormalizable masses that we expect to be all above
the GUT scale, and we have shown how most of the
remaining fields receive GUT scale masses when the GUT
breaks. The MSSM fields are the only SO(10)-charged
fields that remain light, while a few flavon fields receive
masses below the GUT scale radiatively. Collectively, this
ensures that gauge coupling unification is as good as in
the MSSM.

C. Proton decay

A classic problem in GUT theories, including SO(10), is
the prediction of excessively fast proton decay. The most
dangerous processes come from the “dimension 5” oper-
ators WWWW (for a discussion of dimension 6 operators, we
refer the reader to Ref. [3]). These dimension 5 operators
are forbidden by the symmetries of the model, but related
higher-order operators of the form

vovu?? (5) (4.13)
M> \M

are allowed, where 7 is some positive integer. Since we are
working with the renormalizable theory, in order for this
type of effective term to be present with M ~ Mgy, there
would have to be GUT scale messengers allowing them.
Specifically, to produce the above term, we would need
messengers that are A(27) triplets, which are completely
absent from our model. Hence, such terms cannot be
produced at (or below) the GUT scale.

Such operators may, however, arise with Planck scale
suppression, i.e., M ~ Mp. Specifically, the lowest-order
term arising from fields that acquires nonvanishing VEVs
and therefore contributes to proton decay in our model is

i 3
RRVAR] Zgbdf:c‘:‘:e ;
M6

P

(4.14)

which would generate dangerous proton decay terms of the
type

{X)

gQQQLMT%’ (4.15)

where g is a dimensionless coupling and (X) is a generic
VEV of a field, as discussed in Ref. [21]. These terms must
be suppressed enough to generate a proton lifetime
7, > 10% yrs, which is achieved when
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g(X) <3 x10° GeV. (4.16)
In our model,
3
(X) = <Z>”dej<‘f> ~ 150 GeV, (4.17)
M
P

such that with O(1) dimensionless couplings it predicts
very suppressed proton decay. This suppression means
proton decay rates are several orders of magnitude below
the current experimental bounds. This is to be compared to
a model such as Ref. [22], where observation would be
possible with an improvement of experimental sensitivity
of an order of magnitude, making threshold corrections
extremely relevant in order to make an accurate prediction
of the amplitudes. In our case, a robust order of magnitude
estimate is possible even though a treatment of threshold
corrections is beyond the scope of the current paper—the
conclusion remains that proton decay is well beyond
experimental sensitivity in our model.

V. NUMERICAL FIT

A. Low-scale mass matrices

At the low scale, the VEVs of flavons and messenger
fields combine to give the mass matrices

0 0 0 1 3 1
mt=v"[y4[ O 1 1 |+yde]|3 9 3
0 1 1 1 3 1
0 0 0 0 0 1
+y4%™ |0 0 0| +yse™| 0 0 3
0 0 1 1 32
(5.1a)
0 0 0 1 31
md=vl |yl 0 1 1>+yde”72 3 93
0 1 1 1 31
0 0 0
+ydel‘"%‘(o 00 (5.1b)
0 0 1
00 0 1 3 1
m¢ = v? ¥il 0 1 1)+yee”7 39 3
0 1 1 1 3 1
00 0
+yeef'1’<o 0 0 (5.1¢c)
0 0 1
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00 0 1 3 1
m' =p, [ 0 1 1| +me|3 9 3
01 1 1 3 1
0 0 0
+pue”f 0 0 0], (5.1d)
0 0 1

where v* = vsinf and v¢ = vcosf are the VEVs of the
MSSM Higgs fields and v = 174 GeV. We recall from
Eq. (3.19) thaty = 2z/3, while ' = 0, while the remaining
phases are free. Hence, there are 12 free parameters in the
quark matrices and six in the lepton matrices.

Assuming all superpotential terms have O(1) couplings,
we may derive a “natural” scale for each of the coefficients
ylf . First, we recall that there are several messenger scales

present in our model. The ones that appear in y{ are M,
M., Mg e MQW, and M Qo As previously established, we
have (&) <M, < M,. More specifically, we will assume
the following ratios:

—~
)
~
\
o
9
—~
%
~
—

(5.2)

We further define the GUT scale by Mgyt = v45 S M,
Finally, as discussed previously, we assume that Mg
Mgy, > Mg, , by roughly 1 order of magnitude.

The coefficients y, derive from terms in Eq. (2.2), which
take a generic form,

alm

i
H45 nMN n’
o N g.(f)

Yo = ¢sol¢sol - Z ,1;41\/ )

n=0 X

N (f )
d)dec(ﬁdecéj Z [{45 nMN n’
=0

N
Y = GumPumé Z

(5.3)

where A are O(1) couplings and N is a number between
2 and 5. We will assume there are no large cancellations
between terms in the sums. The flavon VEVs are discussed
in Sec. IIC, from which we may approximate their
VEVs by

4
(o) = Maur. {Ban) = g M,
B 7/2
(o) ~ %M (54)

We note immediately that these VEVs have large powers of
(£)/ M, which is primarily bounded below [see Eq. (5.2)].
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This translates to only a loose upper bound on the fitting
parameters. From Egs. (5.2) and (5.3), we expect the
following scales for the fitted coefficients:

YW24x107, y¢24x1075, y{24x1075, p,~1072eV,
YAZ8x 1075, y§28x1070, y§>8x107%, pu,~1073eV,
y5~1, y§~10_1, y3~10_1, ~1073eV, yZ>5><10_

(5.5)

B. Fitting procedure

To fit the real coefficients yi , 5 4, ¥{, 3. ¥§ 3. and g,
as well as phases 7% 5, and 74 5, we wish to minimize a y
function that relates the N physical predictions P;({x}) for
a given set of input parameters {x} to their current best-fit
values p; and their associated 1o errors, denoted o;. It is

defined by
-y <Pi({x}‘) _/"i)z‘

i=1

(5.6)

The errors o; are equivalent to the standard deviation of the
experimental fits to a Gaussian distribution. For most
parameters, their distribution is essentially Gaussian, with
the exception of the (lepton) atmospheric angle 65;.

For a normal hierarchy (as predicted by the model), the
distribution is roughly centered on the maximal atmos-
pheric angle, i.e., (0};)%-fit ~ 45°, while the best-fit value
is given by 8123 = 42.3°% i.e., there is a small preference for
65 to be in the first octant. As such, there are two possible
scenarios to consider when performing our fit.

(i) Scenario 1: We assume that the (weak) preference

for 6, < 45°is true and approximate its distribution
by a Gaussian about 42.3° setting g, = = 1.6° as

the error.

TABLE VII. Model predictions in the quark sector, for
tan = 5. The quark contribution to the total y> is 2.0. The
observables are at the GUT scale.

Observables Model Data fit 1o range (from Ref. [25])
01,/° 13.024 12.985 — 13.067
01,/° 0.1984 0.1866 — 0.2005
04,/° 2.238 2.202 - 2.273
51/° 69.32 66.12 — 72.31
m, /MeV 0.575 0.351 = 0.666
m./MeV 248.4 240.1 - 257.5
m,;/GeV 92.79 89.84 — 95.77
my/MeV 0.824 0.744 — 0.929
my 15.55 15.66 - 17.47
my,/GeV 0.939 0.925 — 0.948
Sy? 2.0
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TABLE VIII. Quark sector input parameter values.

Parameter Fitted value
i 3314 x 107°
vy 2.060 x 104
5 5.503 x 107!
V4 7.423 x 1073
ny 0.6177
3 1.047z
ny 1.718x%
¥e 3.288 x 107
¥4 3.308 x 1073
¥4 2.785 x 1072
nd 0.521z
ng 1.0657

(i1) Scenario 2: We remain octant agnostic by assuming
a Gaussian distribution centred at the midpoint
between the two lo bounds, ie., (65;)0stfit =
45.9° with g, = 3.5°.
Below, we present the results of our fit in each of these two
scenarios.

In this analysis, N = 18, corresponding to six mixing
angles Hﬁ ; (neutrinos) and G?j (quarks), the CKM phase 69,
nine Yukawa eigenvalues for the quarks and charged leptons,
and two neutrino mass-squared differences Am3, and Am3,.
In the lepton sector, we use the Particle Data Group (PDG)
parametrization of the Pontecorvo-Maki-Nakagawa-Sakata
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(PMNS) matrix [23] Upyns = Rb3 U3 R!, Pppg in terms of
s;j = sin@};, c;; = cos 0, the Dirac CP-violating phase &,
and further Majorana phases contained in Pppg =
diag(1, e, eiq%). Experimentally, the leptonic phase &' is
poorly constrained at 1o (and completely unconstrained at
30), so is not fitted, and left as a pure prediction of the model,
as are the (completely unconstrained) Majorana phases a5,
and a3.

We wish to emphasize that, of the above 18 observed
parameters, ten belong to the quark sector, fitted by 12 free
parameters, while eight belong to the lepton sector, fitted by
six free parameters. These two sectors are distinct; the model
is predictive in the lepton sector but not in the quark sector.

The running of best-fit and error values to the GUT scale
are generally dependent on SUSY parameters, notably tan f3,
as well as contributions from SUSY threshold corrections,
which are relevant even for small tan f [24]. We extract the
GUT-scale CKM parameters and all Yukawa couplings
(with associated errors) from Ref. [25] for tanf = 5. The
value of tanf does not have a significant impact on the
quality of our model, so we only present results fortan f = 5
here. Given that our model is not predictive in the quark
sector (and also does not predict the charged lepton masses),
the effect of threshold corrections can be subsumed into a
redefinition of the model input parameters. In further
reference to Ref. [25], this is equivalent to setting the
parameters #j; to zero. Experimental neutrino parameters
are extracted from Ref. [26].

TABLEIX. Model predictions in the lepton sector, for tan # = 5. The observables are at the GUT scale. The lepton
contributions to the total 2 are 1.3 and 0.7 in scenario 1 and 2, respectively. Note the two different data fit 1o ranges
for 9123, depending on the choice of scenario, as discussed in Sec. V B.

Model

Observables Scenario 1 Scenario 2 Data fit 1o range

O = 42.3°) (O™ = 45.9°) (from Refs. [25-27])
0,/° 33.13 32.94 32.83 - 34.27
0,/° 8.59 8.55 8.29 — 8.68
6.,/° 40.81 40.63 — 43.85
= e 46.65 42.40 — 49.40
sl/e 280 275 192 > 318
m,/MeV 0.342 0.342 0.340 — 0.344
m, /MeV 72.25 72.25 71.81 — 72.68
m,/GeV 1.229 1.229 1.223 - 1.236
Am3, /eV? 7.58 x 107 7.46 x 1075 (7.33 = 7.69) x 107
Am3, [eV? 244 x 1073 247 x 1073 (2.41 = 2.50) x 1073
my/meV 0.32 0.38 e
m,/meV 8.64 8.65
ms/meV 49.7 49.7 e
S m;/meV 58.7 59.4 <230
ax /° 264 264 .
a3 /° 323 333
m,,|/meV R .
lm,.|/ 2.46 2.42
8y? 1.3 0.7
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TABLE X. Lepton input parameter values (with 7, 1’ fixed by
the theory).

Fitted value

Parameter Scenario 1 Scenario 2
O = 42.3°) (05" = 45.9°)

¥e 2.217 x 1073 —1.966 x 1073

y5 —1.025 x 1073 1.027 x 1073

v5 3.366 x 1072 3.790 x 1072

o/ meV 26.60 25.90

up/meV 2.571 2.546

U,/ meV 2.052 2.461

n 27/3

78 0

Tables VII and VIII show the numerical fit of all relevant
parameters to quark mass and mixing data, while Tables IX
and X show the fit to lepton mass and mixing. The fit gives
x>~ 3.3 and > ~ 2.7 in scenarios 1 and 2, respectively.

Although the model is not technically predictive in the
quark sector due to an excess of free parameters, the
structure of the mass matrices forces some tension between
parameters, notably the ~1lo deviation from the experi-
mental fit value in the strange quark mass, as seen in
Table VII. The best-fit GUT scale mass m; = 15.55 GeV
corresponds to a pull of —1.12, while the (absolute
magnitude of) pulls for all other parameters are less than 1.

In the lepton sector, there are two fixed discrete phases
plus six continuous input parameters that we fit to three
charged lepton masses, two neutrino mass-squared
differences, and three mixing angles (a total of eight
observables), while predicting the CP phase &', two
Majorana phases, and the effective neutrino mass |m,,|.
Although our fit does not constitute a full analysis of the
parameter space, it agrees with the results of a more
dedicated numerical analysis of CSD(n) models [13].

VI. CONCLUSION

We have proposed a renormalizable A(27) x SO(10)
SUSY GUT of flavor. All symmetries, including an addi-
tional Zg X Z,, x Z% discrete symmetry, are broken close
to the GUT breaking scale due to the action of explicit
superpotential terms to yield the MSSM with the standard
R parity as the surviving theory at low energies.

The model is very ambitious since it is not only a full
SO(10) SUSY GUT theory, with GUT symmetry breaking
sectors including doublet-triplet splitting and guaranteeing
the absence of extra light doublets, but also addresses the
flavor problem due to additional commuting discrete
family symmetries. The mystery of why there are three
families of quarks and leptons including their observed
pattern of masses and mixing angles is addressed, and a
novel form of spontaneous geometrical CP violation arises
from the nature of the A(27) group.

PHYSICAL REVIEW D 94, 016006 (2016)

In many respects SO(10) is the “holy grail” of GUT
groups since it involves probably the most elegant uni-
fication of quarks and leptons, including a right-handed
neutrino, making neutrino mass and mixing inevitable
[unlike SU(5) where neutrino masses could quite happily
be set to zero]. When combined with the family symmetry
A(27), all quarks and leptons are unified into a single
multiplet (3,16) providing a very elegant and simple
unification of all matter. Such a complete flavor unification
has been attempted before, but until now, the technicalities
involved have led to only partial success. The contribution
of the present paper lies in showing how many of these
technical difficulties may be successfully overcome within
a fully fledged A(27) x SO(10) SUSY GUT of flavor.

We emphasize that in our model all quark and lepton
(including neutrino) mass matrices take a particularly
simple universal form, with a small correction to the up-
type quark mass matrix being responsible for quark mixing.
The heavy right-handed neutrino Majorana matrix also has
the same universal form, and even including the seesaw
mechanism, the low-energy effective light left-handed
Majorana neutrino mass matrix also has this form, indeed
corresponding to CSD3, leading to a highly predictive
scheme for leptonic mixing. The model predicts a normal
neutrino mass hierarchy with the best-fit lightest neutrino
mass m; ~ 0.32 or m; ~ 0.38 meV and all neutrino param-
eters fitted to within 1o of the values predicted by global fits
to experiment. In particular, we predict a CP-violating
oscillation phase &' ~ 280° or &' ~ 275°, in agreement with
current experimental hints.

The model has the following virtues:

(1) It is fully renormalizable at the GUT scale, with an
explicit SO(10) breaking sector and a spontaneously
broken CP symmetry.

(i1) It involves only the smaller named representations
of SO(10).

(iii) The MSSM is reproduced below the GUT scale,
with R parity emerging from a discrete ZZ%.

(iv) Doublet-triplet splitting is achieved through the
Dimopoulos-Wilczek mechanism.

(v) A p term is generated at the correct scale.

(vi) Proton decay is sufficiently suppressed.

(vii) A(27) justifies the CSD3 alignment.

(viii) Spontaneous geometrical CP violation, where the
input phase is the cube root of unity w = ¢*#/3,
originates from the A(27).

(ix) We successfully fit all quark and lepton masses, with
the PMNS mixing matrix predicted (with no free
parameters) once the physical neutrino masses are
specified.

These features are desirable for any flavor or GUT model.

Achieving them all in the same model represents a

significant step toward a complete flavored SO(10)

GUT. At the cost of its large field content, the model is

rather successful and fairly complete. Nevertheless, some
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relevant topics remain beyond the scope of the paper.
Notably, while we discuss how the model leads to an
effective MSSM after the symmetries are broken, we do not
discuss the details of SUSY breaking nor the mass
spectrum of SUSY partners at low energy. Because the
field content is reduced to the MSSM, a Landau pole would
not be produced below the GUT scale. Beyond the MSSM
fields, all other gauge multiplets have masses close to or at
the Planck scale. To avoid the use of global symmetries, we
may envisage that gauged SU(3) and U(1) symmetries are
broken at the Planck scale to give rise to the A(27) and Z
groups, respectively. In such a case, anomaly cancellation
imposes constraints on the charges which we did not
consider, but which can always be satisfied by adding

PHYSICAL REVIEW D 94, 016006 (2016)

superfields at the Planck scale. Furthermore, we have not
considered GUT threshold corrections and their effect at
high energy on gauge coupling unification nor a possible
string theory completion for this model.
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