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Through the development of a parallel code called TMSWIFT, an extensive light-front quantization study
of the nonperturbative spectrum of the bound state ðμþμ−Þ, true muonium, has been performed. Using Padé
approximants, it has been possible to extract continuum and infinite-cutoff limits for the singlet and triplet
states for a range of values of the coupling constant α. This data set allows for an investigation of the α
dependence of the light-front spectra, the results of which are compared to standard calculations. Decay
constants have also been obtained. Improved calculations have been undertaken for the energy shifts due to
the presence of a second, lighter flavor (e). Finally, initial results for three-flavor (e, μ, τ) calculations are
presented.
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I. INTRODUCTION

True muonium is the as-yet undiscovered ðμþμ−Þ bound
state. Its spectrum, with lifetimes in the range of pico-
seconds to nanoseconds [1], is well defined since the 2.2 μs
weak-decay lifetime of the muon is much longer. The levels
and transitions of true muonium are dominated by QED
effects because its purely leptonic nature relegates the
influence of QCD to vacuum polarization, where it con-
tributes a small effect at Oðα5Þ [2,3]. Electroweak effects
are suppressed further and become relevant only when all
Oðα7Þ terms are considered [4]. The existing discrepancies
in muon physics [the muon anomalous magnetic moment
ðg − 2Þμ [5], the proton charge radius rP [6], Bþ →
Kþlþl− decays [7], B̄0 → D�þl−ν̄l [8]] motivate a
serious investigation of true muonium, which has been
shown to have strong discriminating power among alter-
native resolutions to these anomalies [4,9–11]. Using the
methods developed in this paper, nonperturbative correc-
tions to bound states from these new physics proposals
could be investigated through the inclusion of new matrix
elements, allowing for more stringent constraints than those
obtained through conventional perturbative studies.
The atom’s nonobservation to date is due to difficulties in

producing associated low-energy muon pairs, as well as its
short lifetime. Many proposed methods of production exist
[1,12–20]. The Heavy Photon Search (HPS) experiment in
2016 will begin a search for true muonium at a fixed target
[19,21]. Additionally, the DImeson Relativistic Atom
Complex (DIRAC) might observe the atom in an upgraded
run [22,23]. Given enough statistics, DIRAC could obtain a
value for the Lamb shift using methods developed for
(πþπ−) [24]. These experiments produce relativistic true

muonium: In general, the μþ and μ− are produced relativ-
istically, both with respect to the lab frame and each other.
Unfortunately, instant-form (conventional fixed-time) wave
functions are not functions of boost-invariant variables
(because the μþ and μ− rest frames are not the same); thus,
production and decay rates can be modified. To reduce this
uncertainty, we produce boost-invariant wave functions
through light-front techniques [25,26].
To establish the context for the work presented here, a

discussion of the history of this and related problems is
appropriate. Weinberg, interested in the infinite-momentum
frame (in which a state’s momentum component pz → ∞),
discovered in the case of the ϕ3 theory that creating or
annihilating particles from the vacuum was forbidden [27].
This observation eventually led to the understanding that
the vacuum of such a field theory is trivial (i.e., empty of
ordinary particles), and that Fock states with fixed particle
content are well defined. Instead of taking the infinite-
momentum limit of instant-form field theory, one can
obtain equivalent results by quantizing at fixed values of
light-front time xþ ≡ tþ z (called front form) [28]. In front
form, one is able to develop a rigorous, closed-form
Hamiltonian formalism [29]. In this formalism, an analogue
of the Schrödinger equation exists, since an infinite but
denumerable set of coupled integral equations for eigen-
states of the Hamiltonian occurs. The front form admits a
perturbation theory, and its Feynman rules were derived by
Kogut and Soper [30]. Because of the inequivalent nature
of instant-form and front-form quantization, it has been a
crucial, but highly nontrivial, matter to show that the
traditional instant-form calculations give equivalent results
to those from the front form [31–39].
Perturbative front-form methods have shown success in

the study of non-Abelian gauge theories. In QCD, these
methods have been used to obtain results for exclusive
processes by Lepage and Brodsky [40], where equivalent
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instant-form expressions did not exist. Analytical results
using light-front techniques have also reproduced the
correct leading-order Lamb shift and hyperfine splitting
(HFS) for QED bound states [41–44]. The Yukawa theory
has been used to understand the differences between instant-
form and front-form approaches and how they can be
reconciled [35,38,45–47]. The complete standard model
has also been formulated in light-front quantization [48].
As mentioned, the existence of a closed-form

Hamiltonian allows for a Schrödinger-like equation that
can be expressed in an infinite-dimensional Fock space,
which can be used to solve nonperturbative field theory,
and allows techniques from nonrelativistic quantum
mechanics to be applied to quantum field theory. To make
these problems tractable, the infinite set of coupled
equations must be truncated in a suitable way. In analogy
to results in instant form, these truncations can produce
divergent results and must be regularized to obtain sensible
answers. The topic of how to renormalize such a
Hamiltonian was first considered in [49]. One method
proceeds by truncating the Fock space to a finite number of
states based on particle content. In this truncation, renorm-
alization is possible through Fock state sector-dependent
counterterms [46,47,50–55], Pauli-Villars regulators
[56–60], or the use of flow equations [61–64]. While each
method works in principle, the practical difficulty of
renormalizing nonperturbative Hamiltonians remains
daunting.
In order to solve these field theories numerically, the

Fock states are furthermore discretized in momentum
Fourier modes on a lattice, a method called discretized
light cone quantization (DLCQ). This method was pio-
neered by Pauli and Brodsky, working with a (1þ 1)-
dimensional Yukawa theory [65]. The special feature of
superrenormalizability of field theories in 1þ 1 has been
particularly amenable to DLCQ, and these theories have
been investigated in depth. Sawicki used the method to
solve scalar QED1þ1 [66,67], while Harindranath and
Vary investigated the structure of the vacuum and bound
states of ϕ3

1þ1 and ϕ4
1þ1 models [68–70]. Pushing further,

Hornbostel et al. presented results for the meson and
baryon eigenstates of QCD1þ1 [71], while Swenson and
Hiller studied more field-theoretical properties of the light
front in the Wick-Cutkosky model [72]. The Schwinger
model, which admits analytical solutions in both instant
form and front form, was first studied by Eller et al. in 1986
[73], and since has become an important test bed for
developing improvements that can then be used in other
theories [74–81].
Since DLCQ produces both the wave functions and the

energy levels, Hiller was able to compute the R ratio in
QED1þ1 [82]. In one spatial dimension, DLCQ has also
been applied to solving ’t Hooft’s model of large-N QCD
[83], adjoint QCD [84–86], and supersymmetric models
[87–97]. Although spontaneous symmetry breaking is

manifested in a distinctly different way in 1þ 1, it is also
possible to study using DLCQ [98–100]. Finally, research
has been undertaken using DLCQ to test Maldecena’s
AdS=CFT conjecture in 1þ 1 theories [95,101].
Extending DLCQ beyond 1þ 1 dimensions is compli-

cated in two ways: first, higher-dimensional theories
require regularization and renormalization, as discussed
above. Second, the number of Fock states grows so rapidly
that tractable numerical calculations allow only a small
number of states to be included. Despite these difficulties,
DLCQ was applied first to positronium by Tang et al.
[102]. In that work, the effective Hamiltonian matrix
equation was derived for a model including only the
jeþe−i and jeþe−γi Fock states. Variational methods were
applied to this effective model and produced upper limits
on the triplet state. Attempts to apply DLCQ to QCD were
undertaken at the same time by Hollenberg [103], but
renormalization and computational resources prevented
much success. Further developments in understanding
the connection between light-front and instant-form tech-
niques were studied by Kaluža and Pauli, reproducing the
expected results for the HFS and Bohr states in the limit of
α → 0 [104]. Krautgärtner et al., implementing the
Coulomb counterterm techniques developed by Wölz
[105], solved the effective matrix equation for positronium
[106]. They found that it was possible to reproduce the
correct Bohr spectrum, as well as the leading relativistic
HFS, for both αQED ¼ 1=137 and α ¼ 0.3, albeit with some
cutoff dependence. Concerned with the effect of zero
modes (nontrivial field configurations in the Fock vacuum),
Kalloniatis and Pauli undertook numerical simulations
based upon perturbative solutions to the zero-mode con-
straint equations [107].
Krautgärtner further developed these techniques and

began to analytically study the two-photon exchange
interaction and its relationship to the observed divergences
in his dissertation [108]. Wölz, in his dissertation, applied
DLCQ to QCD by including the jqq̄ggi Fock state [109].
Numerical limitations at the time prevented implementation
of the counterterm techniques being concurrently devel-
oped, so that a slow convergence in the number of
discretization points and a strong dependence on the
momentum cutoff precluded these results from suggesting
any conclusive statements. Synthesizing all these tech-
niques, Trittmann computed the first results for positronium
with the inclusion of the annihilation eþe− → γ channel
[110–112]. Utilizing the good quantum number Jz, he was
able to split the problem into sectors and investigate the
breaking of rotational invariance inherent in light-front
form in the effective equation. Cutoff dependence and
inadequate computational resources were the major limits
to Trittmann’s work. With improved computing resources
and the introduction of a special counterterm to cancel a
divergent matrix element, DLCQ was applied by the
current authors to two-flavor QED to obtain bound states
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of positronium and true muonium simultaneously [25].
This work built upon the prior methods by incorporating a
number of features of QED bound states in front-form field
theory.
Beyond DLCQ, other numerical methods have been

developed for light-front systems. Basis light-front quan-
tization (BLFQ) follows from discretizing the momenta
into harmonic-oscillator modes in the transverse direction
instead of using Fourier modes. This method aspires to
decrease the number of basis states needed by more
accurately representing the functional behavior of the wave
function. BLFQ has shown initial success in solving
bound-state problems in QED [113–119] and QCD
[120]. Using Monte Carlo methods developed for
instant-form lattice gauge theory, transverse lattice theory
has investigated simple models of QCD in 3þ 1 dimen-
sions [121–124]. Tube-based, collinear QCD and other
effective-Hamiltonian methods also exist [125–127]. In
recent years, the AdS/QCD conjecture has been extended to
light-front field theory to produce the low-energy meson
and baryon spectra [128–137].
The limitations of Fock-state truncation in renormaliza-

tion have also prompted the study of other methods of
truncation. Drawing upon the techniques found in many-
body physics, coupled-cluster [138–140] and coherent-
basis truncations [37,141–145] have shown promise in
simpler systems.
This paper is organized as follows. In Sec. II we briefly

review the model of true muonium studied here. Section III
is devoted to presenting the numerical results obtained for
the energy levels and the decay constants, with emphasis on
the effect of the annihilation channel and of the presence of
multiple flavors on the states. We conclude in Sec. IV with
some discussion of our results and possible directions for
future work.

II. TRUE MUONIUM MODEL

We review here the major points of our model, which are
described in detail in a previous work [25]. In front form,
the eigenvalue equation for a bound state is given by

�
M2 −

X
i

m2
i þ k2⊥i

xi

�
ψðxi; k⊥i;hiÞ

¼
X
hj

Z
D
dx0jd

2k0⊥jhxi; k⊥i; hijVeff jx0j; k0⊥j; hji

× ψðx0j; k0⊥;j; hjÞ; ð1Þ

where M is the invariant mass of the state, m indicates a
mass term, i, j are component particle indices, x and k⊥ are
the conventional longitudinal and transverse momentum
light-front coordinates, respectively, h is shorthand for all
intrinsic quantum numbers of a state, and Veff are inter-
action terms given by the light-front Hamiltonian. The

domain D of Eq. (1) is made well defined by the
introduction of cutoff Λ, and we choose [40]

m2 þ k2⊥
xð1 − xÞ ≤ Λ2 þ 4m2: ð2Þ

Our model considers only the truncated Fock space of
jlil̄ii, jlil̄iγi, and jγi. The single-photon interaction
allows for mixing between flavors via the annihilation
channel. The wave functions are in the form of helicity
states only for pure lepton states (e.g., jμþμ−i). The jγi and
jlil̄iγ > components are folded into Veff by means of the
method of iterated resolvents [110,146].
Discretization in ðx; k⊥Þ space results in an asymmetric

matrix in the discretized form of Eq. (1), which signifi-
cantly increases the computational effort, so instead it is
numerically superior to use the polar coordinates utilized
initially by Karmanov [147] to study a toy model of the
deuteron, and later by Sawicki [66,67] to study relativistic
scalar-field bound states on the light front. These coor-
dinates are defined by

x ¼ 1

2

�
1þ μ cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
i þ μ2

p
�
; ð3Þ

k⊥ ¼ μðsin θ cosϕ; sin θ sinϕ; 0Þ: ð4Þ

Using these variables, one may exchange ϕ for the discrete
quantum number Jz [110] and compute using only μ, θ. The
new variable μ can be considered an off-shell momentum,
due to the relation

m2
i þ k2⊥

xð1 − xÞ ¼ 4ðμ2 þm2
i Þ: ð5Þ

Since these coordinates depend upon the fermion mass mi,
different sets of μ, θ values result from the same sets of x
and k⊥ values in the multiple-flavor system.
It has been shown [25,106,110] that strong dependence

in 1S0 states on Λ arises from the matrix element between
antiparallel-helicity states called G2. In the limit of k⊥ ≡
jk⊥j or k0⊥ ≡ jk0⊥j → ∞, this interaction approaches

lim
k⊥→∞

G2 ¼ −
α

π

2

xþ x0 − 2xx0
δJz;0; ð6Þ

which, in the absence of the dependence of jψlþl−i upon
k⊥, would result in a δ functionlike behavior in configu-
ration space. The authors of Ref. [106] chose to regularize
this singularity by deleting the entire divergent term.
Instead, a numerically superior subtraction scheme is
obtained by only removing its limit as k⊥ or k0⊥ → ∞,

G2;reg ¼ G2 þ
�
α

π

2

xþ x0 − 2xx0
δJz;0

�
; ð7Þ
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which retains part of the term (including x and x0 depend-
ence). This scheme removes the strongest Λ dependence of
1S0 states in both QED [25,148] and QCD [120] models. It
is important to note that the k⊥ dependence of jψlþl−i
varies with α, and therefore it should be anticipated that the
strength of this apparent divergence should also depend
upon α. With this regularization scheme, the model allows
for taking the Λ → ∞ limit, albeit with a regularization
dependence determined by mathematical, rather than
purely physical, considerations.
Much of the previous work on QED with DLCQ has

focused upon the unphysically large value α ¼ 0.3. In this
regime, QED perturbative calculations can potentially
become unreliable. We use this strong coupling value of
α to study flavor mixing. New to this work, we investigate
the approach to the physical Oð10−2Þ value of the QED
coupling constant.

III. RESULTS

Previous work has given results sensitive to numerical
artifacts, limiting the reliability of the results that could be
obtained. To overcome some of these limitations, we have
produced a new numerical code, TMSWIFT (True Muonium
Solver With Front-form Techniques), which is available
online [149]. This code uses the parallel eigenvalue-solver
package SLEPc [150], both to increase the number of Fock
states and to decrease the time of calculation. TMSWIFT

allows an arbitrary number of flavors, each specified by a
distinct mass mi, cutoff Λ, and discretization numbers Nμ

and Nθ (although throughout this work we will fix
Nμ ¼ Nθ ¼ N). Different discretization schemes are avail-
able in TMSWIFT for exploration of numerical errors and
efficiency. Our code also allows easy implementation of
new effective interactions (e.g., from jγγi states). These
improvements have also allowed us to investigate lower
values of α, where the extrapolation to Λ, N → ∞ becomes
more difficult. In order to examine these limits, except for
Sed. III E which explicitly studies multiple-flavor effects,

we restrict ourselves to the case of single-flavor true
muonium.
In this section, we explore a number of properties of true

muonium, dedicating a subsection to each: the invariant
squared mass M2

n, the ground-state HFS, the singlet and
triplet wave functions, the decay constants, and multiflavor
effects.

A. Invariant squared mass

With larger N and improved regularization, we found it
possible to fit the energy levels, M2

n, to Padé approximants
of second order. To perform these fits, we first fit the N
dependence for each value of Λ for which simulations were
computed,

M2ðN;ΛÞ ¼ M2ðΛÞ þ b
N þ c

N2

1þ d
N þ e

N2

: ð8Þ

Then, the final N → ∞ and Λ → ∞ results can be obtained
from a second fit to

M2ðΛÞ ¼ M2
∞ þ f

Λ þ g
Λ2

1þ h
Λ þ i

Λ2

: ð9Þ

These functions are well defined separately in the N → ∞
and Λ → ∞ limits, and therefore one can extract the
continuum- and cutoff-independent values, M2

∞. While
in principle the entire data set could be simultaneously
fit in N and Λ, the large cancellations that can occur
between Padé coefficients, and the large number of
parameters to fit in practice, make the process more
difficult, and initial conditions for the fit must be carefully
chosen to avoid local minima of the fits. Moreover, the two
parameters have different origins: N is a numerical artifact,
while Λ is a theoretical artifact. By fitting separately, these
issues are largely avoided. Results for the ground-state
singlet and triplet states are tabulated in Table I.

TABLE I. Extrapolated results for the bound-state invariant squared massM2 in units ofm2
μ, and the decay constants fV , fP in units of

mμ, for a range of α values. The column labeled CHFS;LF is the computed hyperfine coefficient CHFS from Eq. (13). The column labeled
CHFS;ET is the instant-form prediction for CHFS from Eq. (14).

α M2ð11S0Þ fVð11S0Þ M2ð13S1Þ fPð13S1Þ CHFS;LF CHFS;ET

0.01 3.99989993(3) 4.18ð10Þ × 10−5 3.99989996(3) 3.893ð6Þ × 10−5 0.76(77) 0.5834
0.02 3.9995997(2) 1.1ð4Þ × 10−4 3.9996002(2) 1.088ð7Þ × 10−4 0.79(42) 0.5837
0.03 3.9990987(4) 2.05ð9Þ × 10−4 3.999101(2) 1.93ð6Þ × 10−4 0.74(34) 0.5841
0.04 3.998397(4) 3.15ð5Þ × 10−4 3.998404(5) 3.07ð7Þ × 10−4 0.76(56) 0.5847
0.05 3.9974914(4) 4.466ð2Þ × 10−4 3.9975098(3) 3.95ð2Þ × 10−4 0.74(2) 0.5855
0.07 3.995068(3) 7.404ð7Þ × 10−4 3.9951351(8) 5.908ð5Þ × 10−4 0.7(4) 0.5877
0.1 3.98987(6) 1.273ð2Þ × 10−3 3.990137(3) 9.16ð3Þ × 10−4 0.67(2) 0.5922
0.2 3.9576(6) 3.9ð2Þ × 10−3 3.9614(5) 1.9ð2Þ × 10−3 0.6(2) 0.6204
0.3 3.8996(6) 1.02ð3Þ × 10−2 3.91538(4) 2.39ð2Þ × 10−3 0.49(2) 0.6735
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An example of the dependence of M2 upon N is shown
in Fig. 1 for a fixed value of Λ and α. This dependence is
qualitatively the same for all values of α and Λ. As can be
seen, with increasing N,M2 at first rises to a peak and then
decreases toward a continuum value. The location of this
peak is found to be proportional to 1=α2 and linear in Λ. It
is therefore more difficult to numerically simulate small α
and large Λ, because any results that only sample to the left
of the peaks systematically overestimate M2, by not
respecting that the functions decrease to the right of the
peaks. From Fig. 1 it can also be seen that the triplet state
reaches its (smaller) maximum at a larger N. It is also
empirically found that, while the singlet state peaks at
lower N, the variance of M2 is much larger. With this
understanding of the space of N, α, and Λ, one can study
the approach to the perturbative regime of α. The analytic,
instant-form values of M to Oðα4Þ are given for 11S0 and
13S1 by [151]

M2
11S0

¼
�
2m −

1

4
mα2 −

21

64
mα4

�
2

; ð10Þ

M2
13S1

¼
�
2m −

1

4
mα2 þ 49

192
mα4

�
2

: ð11Þ

Since m ¼ 1 in our units, to test these formulas, one can fit
to

M2ðαÞ ¼ ðN0 þ N2α
2 þ N4α

4 þ N4α
5Þ2: ð12Þ

From the Fock space considered in our model, a perturba-
tive calculation should not have any higher-order contri-
butions, but one could anticipate a possibleOðα5Þ term due
to the contributions of higher-order terms arising from our
nonperturbative procedure and regularization scheme. The
results of the fit are found in Table II.

Comparing the singlet-state results to Eqs. (10), one sees
that TMSWIFT reproduces within uncertainty the Oðα4Þ
calculation over the entire range of α. Extracting possible
higher-order coefficients would be possible by increasing
N beyond what has been presented here. In contrast, for the
triplet state, only the terms up to α2 of Eqs. (11) are
correctly reproduced. The α4 coefficient reproduced the
anticipated sign, but it is larger than the result of the instant-
form calculation. Additionally, there is a large, unantici-
pated α5 coefficient. Such results are indicative of issues in
the annihilation channel, which affects only the triplet at
this order.

B. Hyperfine splitting

To study these effects further, one can check how
accurately our front-form model reproduces the expected
instant-form results through the hyperfine coefficient,
which is defined as

CHFS ≡ EHFS

mμα
4
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð13S1Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ð11S0Þ

p
mμα

4
: ð13Þ

If all Fock states were included in our model, then the full
known Oðα7Þ instant-form prediction of EHFS of Ref. [4]
could be compared to our results. But because of our Fock-
state truncations, there is a mismatch in the higher-order
contributions. Since we can only extract up to Oðα4Þ, it is
useful to compare to the leading-order value of CHFS ¼ 7

12
.

Our model would be expected to partially resum the
relativistic corrections from the single-photon exchange
and annihilation diagrams. Therefore, we present the values
of CHFS given by the exact Dirac-Coulomb solutions [152],

CHFS ¼ 1

mμα
4

�
EFffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − α2
p

½2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
− 1�

�

¼ 7

12

�
1þ 3

2
α2 þ 17

8
α4 þOðα6Þ

�
; ð14Þ

where EF ¼ 7
12
mμα

4 is the lowest-order HFS of true
muonium. If higher precision could be attained, these
effects might be resolvable, but at the current levels they
are not yet visible.
Previous results for CHFS at α ¼ 0.3 without the regu-

larization term are found in Table 4.2 of Ref. [110] and can
be calculated from the results found in Ref. [62]. The CHFS
obtained in these works appears to have a logarithmic
singularity in the singlet state, indicating that no Λ → ∞
limit could be taken. The severity of the divergence can be
seen in Ref. [110], where CHFS rises from ≈0.313 at Λ ¼
mf to ≈1.27 at Λ ¼ 18mf. In contrast, we find that for our
regularization scheme, CHFS is finite because the two
energy levels are finite in the N → ∞ and Λ → ∞ limits.
The numerical results in Table I are roughly consistent over
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M
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2 ∞

N
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13S1

FIG. 1. Example of the dependence of M2 upon N, normalized
to the continuum and infinite limit for α ¼ 0.2, Λ ¼ 5mμα.

HIGH RESOLUTION NONPERTURBATIVE LIGHT-FRONT … PHYSICAL REVIEW D 94, 016004 (2016)

016004-5



the entire range of α, albeit with large uncertainty. While
the results are finite, we find that the central values are
systematically larger than the anticipated 7

12
≈ 0.58, being in

the range 0.7–0.8 except for α ¼ 0.3, where observables
approach their asymptotic values more slowly due to
changes in the wave function large-k dependence, as
discussed in the next section.
Clearly, a disagreement is seen between the two instant-

form predictions and the results on the light front.
Previously, several authors [102,106,110] have also pointed
out that the correct value of CHFS is best obtained for
Λ ≈mα, and the results from TMSWIFT support this point of
view. Unfortunately, the divergences spoil this agreement at
larger Λ, necessitating renormalization. The larger splitting
in the infinite-Λ limit can be understood thusly: Although
the regularization procedure developed allows for extrapo-
lation to Λ → ∞, the Λ dependences of the singlet and
triplet states are different, as was seen in [25], leading to an
asymptotic HFS that, while finite, is larger than the known
result.
These results are in contrast to the situation in which the

annihilation-channel interaction is excluded. Choosing the
intermediate case of α ¼ 0.1, we performed an exploratory
search with a smaller number of simulations. In this case,
we found in the continuum and infinite-Λ limits that
CHFS ¼ 0.35ð11Þ, in agreement with the anticipated value
at leading order of CHFS ≈ 0.333. A similar small study for
α ¼ 0.3 with Jz ¼ 1 also found a value of CHFS ≈ 0.75,
indicating that both the dynamical and the instantaneous
annihilation interactions are affected. This evidence further
suggests that the annihilation-channel interaction is the
source of the discrepancies.
To understand why the annihilation channel gives

trouble, it is useful to recall how this term is included in
instant form. In standard, perturbative nonrelativistic cal-
culations, these contributions in coordinate space are
represented as a contact term ∝ δð3ÞðrÞ; therefore, in
momentum space these terms are very sensitive to large
momenta, and imposing a cutoff Λ prevents these momenta
from contributing. Furthermore, we have already seen that
obtaining numerical results for large Λ is complicated by
the need to include much larger N than is currently
possible. Put together, these facts indicate that regulariza-
tion and renormalization are more complicated in the
annihilation channel.

C. Wave functions

In order to understand the effect of the regularization
term on the effective interaction, we have studied the large-
μ behavior of the wave functions. The momentum-space
wave function obtained from the nonrelativistic
Schrödinger equation is

ΨðkÞ ¼
ffiffiffi
8

p

π

1

ð1þ k2Þ2 ; ð15Þ

where the instant-form 3-momentum carries units of Bohr
momentum 1

2
mα. It is known that higher-order corrections

to the interaction lead to a modified power law, changing
the large-k power scaling from the nonrelativistic value of
−4. Since according to Eq. (5) k is linear in μ, for our
studies it suffices to compute the dependence upon α at
large μ. The large-μ behavior is parametrized as

ΨðμÞ ¼ aμ−κ; ð16Þ

where κ ¼ 4 is the result for the nonrelativistic Schrödinger
equation.
In [106], it was found that for αQED ¼ 1=137, the large-μ

behavior of the ↑↓ singlet wave function is κ ¼ 4.0, in
agreement with expectations, and that for α ¼ 0.3 the
behavior is κ ¼ 2.5. We believe this large reduction in κ
is related to the strong Λ dependence found in [106,110].
To further understand the relation between regularization
and κ, we fit the large-μ tail of our wave functions to
Eq. (16) with the results for a selected few values of α
shown in Fig. 2. In all of these cases, we have implemented
our regularization subtraction scheme. The values of κ for
α ¼ 0.01, 0.07 appear to show only small deviations from
the nonrelativistic value, consistent with [106]. In contrast,
our value of κ ¼ 3.59 for α ¼ 0.3 is dramatically larger
than found in the unregulated results of [106]. Since the
large-μ tail decays much faster than in [106], the contri-
bution of any potentially divergent terms will be reduced,
explaining why the results of [25] showed such a dramatic
improvement.
Using our entire set of α results, it is possible to study the

effect of varying α upon κ. Shown in Fig. 3 are the extracted
values of κ for both the dominant ↑↓ component of the
singlet state and the subleading ↑↑ component. We have

TABLE II. Parameters of Eq. (12) for the singlet and triplet states of true muonium, fit over two ranges of α. The Oðα4Þ perturbative
predictions are N0 ¼ 2, N2 ¼ − 1

4
, N4;11S0 ¼ − 21

64
≈ −0.328, N4;13S1 ¼ 49

192
≈ 0.255. The expected value of N5 is unknown but is

anticipated to be small. Reported uncertainties result solely from the fitting procedure.

En α N0 N2 N4 N5

11S0 [0.01, 0.3] 1.99999998(2) −0.2500ð2Þ −0.37ð5Þ −0.04ð21Þ
[0.01, 0.1] 1.999999990(2) −0.25004ð2Þ −0.35ð2Þ 0.08(10)

13S1 [0.01, 0.3] 1.99999998(2) −0.24990ð8Þ 0.39(3) −0.78ð8Þ
[0.01, 0.1] 1.999999979(6) −0.24993ð5Þ 0.38(3) −0.60ð26Þ
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also obtained values of κ for a smaller set of αwithout using
our regularization scheme. Because the regularization term
is only needed for G2, it makes sense that only the ↑↓ has a
dramatic change in its α dependence by the introduction of
the regularization term, whereas the ↑↑ wave functions are
mostly unaffected.

D. Decay constants

In addition to the invariant masses, the decay constants
offer an interesting observable that can be extracted from
the wave functions. They also serve as a good test bed for
understanding how the properties of the wave function are
affected by regularization and renormalization. The decay
constants in the vector V and pseudoscalar P channels are
defined by

h0jψ̄γμψ jVðpÞ; λi ¼ ϵμλmVfV;

h0jψ̄γμγ5ψ jPðpÞi ¼ ipμfP; ð17Þ

where ϵμλðpÞ is the polarization vector for the boson, and
λ ¼ 0, �1. In front-form field theory, the decay constants
can be computed directly from the þ components of these
currents which, following Refs. [120,153], are given for
QED bound states by

fVðPÞ ¼
Z

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp d2k⊥

ð2πÞ3 ½ψ
J
Jz¼0ðk⊥; x;↑↓Þ

∓ψJ
Jz¼0ðk⊥; x;↓↑Þ�; ð18Þ

where the vector (pseudoscalar) decay constant is given by
the difference (sum) of the two terms in the equation.
Taking the component wave functions from TMSWIFT

calculations, it is possible to obtain fV for the singlet state
and fP for the triplet state as a function of α. Like the
invariant masses, the decay constants are found to be well
fit to the functional form of Eq. (8), and therefore infinite-
cutoff values for them can be obtained. These results can be
found in Table I.
For the decay constants, one expects fi ∝ jψ ið0Þj=

ffiffiffiffiffiffi
Mi

p
,

which suggests a α3=2 power law at leading order. To check
this prediction, a fit is performed to the function

10-8
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10-4

10-2

100

102

104

10-3 10-2 10-1 100 101

μ-3.59

μ-3.93

μ-3.99

Ψ
↑ 

↓ 

μ

0.01
0.07
0.3

FIG. 2. Dependence of the ↑↓ component of the 11S0 state
upon μ for a fixed value of x ¼ 0.5 for different values of α. The
points indicate the numerical results, and the solid lines are the
fits used to extract κ.

-4

-3.5

-3

-2.5

-2

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

κ

α

Without Counterterm ↑ ↑ 
With Counterterm ↑ ↑ 

Without Counterterm ↑ ↓ 
With Counterterm ↑ ↓ 

FIG. 3. κ vs α for the ↑↑ and ↑↓ components of the 11S0 state.
Open (closed) symbols indicate results excluding (including) the
regularization term.

TABLE III. Fit parameters of Eq. (19) for the vector decay
constant fV of the singlet state and the pseudoscalar decay
constant fP of the triplet state for two ranges of α. N has units of
m. The leading-order perturbative prediction is β ¼ 3=2.

fi α N β

fV [0.01, 0.3] 0.0412(9) 1.510(7)
[0.01, 0.1] 0.0411(3) 1.509(3)

fP [0.01, 0.3] 0.022(3) 1.37(4)
[0.01, 0.1] 0.0240(8) 1.394(10)
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Δ M
2

me

Mesonix
TMSWIFT

IF

FIG. 4. ΔM2 corrections from a second flavor of leptons to true
muonium as a function of the second flavor’s mass me. Errors are
estimated from the numerical fit alone.

HIGH RESOLUTION NONPERTURBATIVE LIGHT-FRONT … PHYSICAL REVIEW D 94, 016004 (2016)

016004-7



fiðαÞ ¼ Nαβ; ð19Þ

and the results are exhibited in Table III.
Similar to the invariant masses, the fV values for the

singlet state seem to reproduce the perturbative form to
leading order very well over for all values of α. The
agreement between fP for the triplet state shows a poorer
agreement, especially for large α, where the inclusion of the
annihilation channel enables higher-order corrections to the
decay rate.

E. Multiple-flavor effects

True muonium is acutely sensitive to the effects of
multiple flavors. The large mass difference mμ=me ≈ 207
causes electronic loop corrections to be the largest correc-
tions to the spectrum of true muonium. Additionally, the
ratio mτ=mμ ≈ 16 is small enough to produce appreciable
effects on the system at Oðα5Þ. While the vacuum polari-
zation in the exchange diagrams is neglected by our model,
it is possible to study these effects in the annihilation
channel.
Previous results [25] found large, nonlinear N and Λe

dependence from the electronic contribution, even for the
unphysically large ratio of mμ=me ¼ 2. With TMSWIFT, we
have been able to further study this dependence. Numerical
limitations prevent the collection of a sufficiently large
number of simulations to fit to Padé approximants. Instead,
we fix α ¼ 0.3, Nμ ¼ 21, Λμ ¼ 10 (Λi is given in units of
miα), and then obtain estimates for ΔM2 (the shift of
squared mass eigenvalues due to the inclusion of additional
lepton flavors) by averaging over the ranges Ne ∈ ½27; 35�
and Λe ∈ ½1; 35�.
We have been able to further reduce the uncertainty

through two new ideas. First, simulations were made using
two different discretization schemes, Gauss-Legendre and
Curtis-Clenshaw. The use of two discretization schemes for
the same Ne allows us to explore the effects of discretiza-
tion on the continuum electron states with smaller N.

Additionally, fP is a sensitive probe of the coupling of
electron continuum states to the bound state. Empirically,
we find that if the value of fP differs by more than 10%
from the single-flavor case, the simulation has sampled the
continuum in an inaccurate way and can be excluded from
the average.
Producing results for the physical value of the electron

mass remains difficult numerically because of the large
separation of scales. Our results for the corrections to true
muonium from electronic loops in the annihilation channel
are shown in Fig. 4, compared to the anticipated instant-
form result, and the previous results of [25]. One can see
that TMSWIFT’s parallel implementation, while still numeri-
cally limited, can produce better agreement with the instant
form than found in [25], with smaller uncertainty.

TMSWIFT has also been written to allow for an arbitrary
number of flavors. We present here results from a three-
flavor true muonium model, albeit with unphysical ratios
mμ=me ¼ mτ=mμ ¼ 2, keeping α ¼ 0.3. In Fig. 5 are
shown the probability densities of the ↑↓ components of
each flavor for the triplet state. In Table IV we present the
relative probability for each component in this case.

IV. DISCUSSION AND CONCLUSION

In this work we have presented results for the invariant
mass and decay constants of the true muonium system. For
the first time, we have gone beyond the case α ¼ 0.3 and

ee ↑ ↓  component of Triplet State
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FIG. 5. The 13S01 probability density of the ↑↓ components of (left) eþe−, (center) μþμ−, and (right) τþτ−, with Jz ¼ 0, as a function
of x and k⊥, for α ¼ 0.3, mμ=me ¼ mτ=mμ ¼ 2, Λi ¼ 5αmi, and Nμ ¼ 37, Nτ ¼ 31, Ne ¼ 71.

TABLE IV. Integrated probability for each flavor in the true
muonium 13S01 state. The parameters used are α ¼ 0.3,
mμ=me ¼ mτ=mμ ¼ 2, Λi ¼ 5αmi, and Nμ ¼ 37, Nτ ¼ 31,
Ne ¼ 71.

Flavor
R
dxd2k⊥Pðx; k⊥Þ

jμþμ−i 0.992
jeþe−i 0.008
jτþτ−i ≈1.2 × 10−5
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shown that the approach to αQED is possible with sufficient
numerical resources. The purpose of this program is not to
produce energy levels competitive in the weak-field limit
with perturbative calculations. Instead, our goals in calcu-
lating at αQED are to produce true muonium wave functions
that can be used in relativistic situations, and as to provide
an independent check on our methods, allowing one to be
confident in the strong-field predictions. Furthermore,
using our previously developed regularization scheme,
the simultaneous limits of N → ∞ and Λ → ∞ have been
taken and stable results found. These values have been
compared to the instant-form perturbative calculations, and
reasonable agreement has been obtained. Finally, initial
studies have been undertaken to compute the fully non-
perturbative contribution to the bound state arising from
additional flavors, both lighter and more massive than the
muon. Improved agreement with instant-form predictions
have been obtained for a range of masses of a second flavor,
and simulations of the three-flavor model have been
produced.
Currently, work is underway to include the jγγi state and

the pair of states jll̄ll̄i and jll̄l0l̄0i, which are required
for gauge invariance. These corrections are crucial for
precision true muonium predictions and are a necessary
step for QCD bound states as well.
Proper renormalization of the Hamiltonian is the remain-

ing obstacle. In order to make accurate predictions, the Λ
dependence found in this work must be systematically

removed,whichinvolvesnot just includingnewFocksectors,
but imposing gauge invariance at each stage. A proper
implementation of charge renormalization and the running
of the coupling α should address a large part of the issue. A
first step in this direction would focus upon implementing a
renormalized vacuum polarization into the effective inter-
actions. With a robust renormalization scheme, multiple
values ofΛwould not be needed to take theΛ → ∞, greatly
reducingthenumericaleffort toproducereliable results.With
TMSWIFT, Fock-space limitations have been greatly
decreased. This improvement allows for the implementation
of explicit Fock-state renormalization methods like Pauli-
Villars regulators [56–58] and sector-dependent counter-
terms[52,55].Using theexchangepropertiesof leptonscould
further reduce the number of basis states, similar to the
methods used in Ref. [154] for bosons. More time-intensive
renormalization schemes like the Hamiltonian-flow method
[61,62] also become viable with a parallel implementation.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation under Grants No. PHY-1068286 and
No. PHY-1403891. This work used the Extreme Science
and Engineering Discovery Environment (XSEDE), which
is supported by National Science Foundation Grant
No. ACI-1053575, and the ASU Physics Computing
Cluster.

[1] S. J. Brodsky and R. F. Lebed, Phys. Rev. Lett. 102,
213401 (2009).

[2] U. Jentschura, G. Soff, V. Ivanov, and S. G. Karshenboim,
Phys. Rev. A 56, 4483 (1997).

[3] U. Jentschura, G. Soff, V. Ivanov, and S. G. Karshenboim,
Phys. Lett. B 424, 397 (1998).

[4] H. Lamm, Phys. Rev. D 91, 073008 (2015).
[5] G. Bennett et al. (Muon G-2 Collaboration), Phys. Rev. D

73, 072003 (2006).
[6] A. Antognini et al., Science 339, 417 (2013).
[7] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 113,

151601 (2014).
[8] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115,

111803 (2015); 115, 159901(E) (2015).
[9] D. Tucker-Smith and I. Yavin, Phys. Rev. D 83, 101702

(2011).
[10] H. Lamm, arXiv:1509.09306.
[11] H. Lamm, Phys. Rev. D 92, 055007 (2015).
[12] L. Nemenov, Yad. Fiz. 15, 1047 (1972).
[13] J. Moffat, Phys. Rev. Lett. 35, 1605 (1975).
[14] E. Holvik and H. A. Olsen, Phys. Rev. D 35, 2124

(1987).
[15] G. Kozlov, Sov. J. Nucl. Phys. 48, 167 (1988).

[16] I. Ginzburg, U. Jentschura, S. G. Karshenboim, F. Krauss,
V. Serbo, and G. Soff, Phys. Rev. C 58, 3565 (1998).

[17] N. Arteaga-Romero, C. Carimalo, and V. Serbo, Phys. Rev.
A 62, 032501 (2000).

[18] Y. Chen and P. Zhuang, arXiv:1204.4389.
[19] A. Banburski and P. Schuster, Phys. Rev. D 86, 093007

(2012).
[20] S. Ellis and J. Bland-Hawthorn, Phys. Rev. D 91, 123004

(2015).
[21] A. Celentano (HPS Collaboration), J. Phys. Conf. Ser. 556,

012064 (2014).
[22] A. Benelli (DIRAC Collaboration), EPJ Web Conf. 37,

01011 (2012).
[23] P. Chliapnikov, Report No. DIRAC-NOTE-2014-05, 2014.
[24] L. L. Nemenov and V. D. Ovsyannikov, Phys. Lett. B 514,

247 (2001).
[25] H. Lamm and R. F. Lebed, J. Phys. G 41, 125003 (2014).
[26] H. Lamm and R. F. Lebed, Few-Body Syst. 57, 663 (2016).
[27] S. Weinberg, Phys. Rev. 150, 1313 (1966).
[28] P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).
[29] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rep.

301, 299 (1998).
[30] J. B. Kogut and D. E. Soper, Phys. Rev. D 1, 2901 (1970).

HIGH RESOLUTION NONPERTURBATIVE LIGHT-FRONT … PHYSICAL REVIEW D 94, 016004 (2016)

016004-9

http://dx.doi.org/10.1103/PhysRevLett.102.213401
http://dx.doi.org/10.1103/PhysRevLett.102.213401
http://dx.doi.org/10.1103/PhysRevA.56.4483
http://dx.doi.org/10.1016/S0370-2693(98)00206-8
http://dx.doi.org/10.1103/PhysRevD.91.073008
http://dx.doi.org/10.1103/PhysRevD.73.072003
http://dx.doi.org/10.1103/PhysRevD.73.072003
http://dx.doi.org/10.1126/science.1230016
http://dx.doi.org/10.1103/PhysRevLett.113.151601
http://dx.doi.org/10.1103/PhysRevLett.113.151601
http://dx.doi.org/10.1103/PhysRevLett.115.111803
http://dx.doi.org/10.1103/PhysRevLett.115.111803
http://dx.doi.org/10.1103/PhysRevLett.115.159901
http://dx.doi.org/10.1103/PhysRevD.83.101702
http://dx.doi.org/10.1103/PhysRevD.83.101702
http://arXiv.org/abs/1509.09306
http://dx.doi.org/10.1103/PhysRevD.92.055007
http://dx.doi.org/10.1103/PhysRevLett.35.1605
http://dx.doi.org/10.1103/PhysRevD.35.2124
http://dx.doi.org/10.1103/PhysRevD.35.2124
http://dx.doi.org/10.1103/PhysRevC.58.3565
http://dx.doi.org/10.1103/PhysRevA.62.032501
http://dx.doi.org/10.1103/PhysRevA.62.032501
http://arXiv.org/abs/1204.4389
http://dx.doi.org/10.1103/PhysRevD.86.093007
http://dx.doi.org/10.1103/PhysRevD.86.093007
http://dx.doi.org/10.1103/PhysRevD.91.123004
http://dx.doi.org/10.1103/PhysRevD.91.123004
http://dx.doi.org/10.1088/1742-6596/556/1/012064
http://dx.doi.org/10.1088/1742-6596/556/1/012064
http://dx.doi.org/10.1051/epjconf/20123701011
http://dx.doi.org/10.1051/epjconf/20123701011
http://dx.doi.org/10.1016/S0370-2693(01)00802-4
http://dx.doi.org/10.1016/S0370-2693(01)00802-4
http://dx.doi.org/10.1088/0954-3899/41/12/125003
http://dx.doi.org/10.1007/s00601-016-1075-3
http://dx.doi.org/10.1103/PhysRev.150.1313
http://dx.doi.org/10.1103/RevModPhys.21.392
http://dx.doi.org/10.1016/S0370-1573(97)00089-6
http://dx.doi.org/10.1016/S0370-1573(97)00089-6
http://dx.doi.org/10.1103/PhysRevD.1.2901


[31] N. E. Ligterink and B. L. G. Bakker, Phys. Rev. D 52, 5954
(1995).

[32] S.-J. Chang, R. G. Root, and T.-M. Yan, Phys. Rev. D 7,
1133 (1973).

[33] T.-M. Yan, Phys. Rev. D 7, 1760 (1973).
[34] S.-J. Chang and T.-M. Yan, Phys. Rev. D 7, 1147 (1973).
[35] B. L. G. Bakker, M. van Iersel, and F. Pijlman, Few-Body

Syst. 33, 27 (2003).
[36] B. L. G. Bakker, M. A. DeWitt, C.-R. Ji, and Y.

Mishchenko, Phys. Rev. D 72, 076005 (2005).
[37] A. Misra and S. Warawdekar, Phys. Rev. D 71, 125011

(2005).
[38] B. L. G. Bakker, J. K. Boomsma, and C.-R. Ji, Phys. Rev.

D 75, 065010 (2007).
[39] S. M. Patel and A. Misra, Phys. Rev. D 82, 125024 (2010).
[40] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157

(1980).
[41] B. D. Jones and R. J. Perry, Phys. Rev. D 55, 7715 (1997).
[42] B. D. Jones, R. J. Perry, and S. D. Głazek, Phys. Rev. D 55,

6561 (1997).
[43] B. D. Jones, High-energy Physics and Cosmology, in

Proceedings, 25th Coral Gables International Conference
on Orbis Scientiae, Miami Beach, USA, 1997, (Plenum,
New York, 1997), pp. 201–207.

[44] B. D. Jones, Ph. D. thesis, Ohio State University, 1997.
[45] S. D. Głazek, A. Harindranath, S. Pinsky, J. Shigemitsu,

and K. Wilson, Phys. Rev. D 47, 1599 (1993).
[46] M. Mangin-Brinet, J. Carbonell, and V. A. Karmanov,

Phys. Rev. D 64, 125005 (2001).
[47] M. Mangin-Brinet, J. Carbonell, and V. A. Karmanov,

Phys. Rev. C 68, 055203 (2003).
[48] P. P. Srivastava and S. J. Brodsky, Phys. Rev. D 66, 045019

(2002).
[49] S. D. Głazek and K. G. Wilson, Phys. Rev. D 48, 5863

(1993).
[50] V. A. Karmanov, J. Carbonell, and M. Mangin-Brinet, AIP

Conf. Proc. 603, 271 (2001).
[51] J. Carbonell, M. Mangin-Brinet, and V. A. Karmanov,

arXiv:nucl-th/0202042.
[52] V. A. Karmanov, J. F. Mathiot, and A. V. Smirnov, Phys.

Rev. D 77, 085028 (2008).
[53] V. A. Karmanov, J. F. Mathiot, and A. V. Smirnov, Phys.

Rev. D 82, 056010 (2010).
[54] V. A. Karmanov, J. F. Mathiot, and A. V. Smirnov, Nucl.

Phys. B, Proc. Suppl. 199, 35 (2010).
[55] V. A. Karmanov, J. F. Mathiot, and A. V. Smirnov, Phys.

Rev. D 86, 085006 (2012).
[56] S. S. Chabysheva and J. R. Hiller, Phys. Rev. D 81, 074030

(2010).
[57] S. S. Chabysheva and J. R. Hiller, Phys. Rev. D 82, 034004

(2010).
[58] M. Yu. Malyshev, S. A. Paston, E. V. Prokhvatilov, and

R. A. Zubov, Int. J. Theor. Phys. 54, 169 (2015).
[59] J. R. Hiller, Few-Body Syst. 57, 557 (2016).
[60] S. S. Chabysheva and J. R. Hiller, arXiv:1506.05429.
[61] E. L. Gubankova, H.-C. Pauli, and F. J. Wegner, arXiv:hep-

th/9809143.
[62] E. L. Gubankova and G. Papp, arXiv:hep-th/9904081.
[63] E. Gubankova, C.-R. Ji, and S. R. Cotanch, Phys. Rev. D

62, 074001 (2000).

[64] E. Gubankova, C.-R. Ji, and S. R. Cotanch, Phys. Rev. D
62, 125012 (2000).

[65] H. C. Pauli and S. J. Brodsky, Phys. Rev. D 32, 2001
(1985).

[66] M. Sawicki, Phys. Rev. D 33, 1103 (1986).
[67] M. Sawicki, Phys. Rev. D 32, 2666 (1985).
[68] A. Harindranath and J. P. Vary, Phys. Rev. D 36, 1141

(1987).
[69] A. Harindranath and J. P. Vary, Phys. Rev. D 37, 1076

(1988).
[70] A. Harindranath and J. P. Vary, Phys. Rev. D 37, 1064

(1988).
[71] K. Hornbostel, S. J. Brodsky, and H. C. Pauli, Phys. Rev. D

41, 3814 (1990).
[72] J. B. Swenson and J. R. Hiller, Phys. Rev. D 48, 1774

(1993).
[73] T. Eller, H. C. Pauli, and S. J. Brodsky, Phys. Rev. D 35,

1493 (1987).
[74] T. Heinzl, S. Krusche, and E. Werner, Phys. Lett. B 275,

410 (1992).
[75] G. McCartor, Z. Phys. C 52, 611 (1991).
[76] G. McCartor, Z. Phys. C 64, 349 (1994).
[77] G. McCartor, Int. J. Mod. Phys. A 12, 1091 (1997).
[78] Y. Nakawaki and G. McCartor, Prog. Theor. Phys. 103,

161 (2000).
[79] S. Strauss and M. Beyer, Phys. Rev. Lett. 101, 100402

(2008).
[80] S. Strauss and M. Beyer, Prog. Part. Nucl. Phys. 62, 535

(2009).
[81] S. Strauss and M. Beyer, Nucl. Phys. B, Proc. Suppl. 199,

160 (2010).
[82] J. R. Hiller, Phys. Rev. D 43, 2418 (1991).
[83] B. van de Sande, Phys. Rev. D 54, 6347 (1996).
[84] U. Trittmann, Nucl. Phys. B587, 311 (2000).
[85] U. Trittmann, Phys. Rev. D 66, 025001 (2002).
[86] U. Trittmann, Phys. Rev. D 92, 085021 (2015).
[87] S. Pinsky and U. Trittmann, Phys. Rev. D 62, 087701

(2000).
[88] J. R. Hiller, S. Pinsky, and U. Trittmann, Phys. Rev. D 64,

105027 (2001).
[89] J. R. Hiller, S. S. Pinsky, and U. Trittmann, Phys. Rev. D

65, 085046 (2002).
[90] J. R. Hiller, S. S. Pinsky, and U. Trittmann, Phys. Rev. D

66, 125015 (2002).
[91] J. R. Hiller, S. S. Pinsky, and U. Trittmann, Phys. Lett. B

541, 396 (2002).
[92] J. R. Hiller, S. S. Pinsky, and U. Trittmann, Nucl. Phys.

B661, 99 (2003).
[93] J. R. Hiller, S. S. Pinsky, and U. Trittmann, Phys. Rev. D

67, 115005 (2003).
[94] J. R. Hiller, M. Harada, S. S. Pinsky, N. Salwen, and U.

Trittmann, Phys. Rev. D 71, 085008 (2005).
[95] J. R. Hiller, S. S. Pinsky, N. Salwen, and U. Trittmann,

Phys. Lett. B 624, 105 (2005).
[96] J. R. Hiller, S. Pinsky, Y. Proestos, N. Salwen, and U.

Trittmann, Phys. Rev. D 76, 045008 (2007).
[97] U. Trittmann and S. S. Pinsky, Phys. Rev. D 80, 065005

(2009).
[98] S. S. Pinsky and B. van de Sande, Phys. Rev. D 49, 2001

(1994).

HENRY LAMM and RICHARD F. LEBED PHYSICAL REVIEW D 94, 016004 (2016)

016004-10

http://dx.doi.org/10.1103/PhysRevD.52.5954
http://dx.doi.org/10.1103/PhysRevD.52.5954
http://dx.doi.org/10.1103/PhysRevD.7.1133
http://dx.doi.org/10.1103/PhysRevD.7.1133
http://dx.doi.org/10.1103/PhysRevD.7.1760
http://dx.doi.org/10.1103/PhysRevD.7.1147
http://dx.doi.org/10.1007/s00601-003-0006-2
http://dx.doi.org/10.1007/s00601-003-0006-2
http://dx.doi.org/10.1103/PhysRevD.72.076005
http://dx.doi.org/10.1103/PhysRevD.71.125011
http://dx.doi.org/10.1103/PhysRevD.71.125011
http://dx.doi.org/10.1103/PhysRevD.75.065010
http://dx.doi.org/10.1103/PhysRevD.75.065010
http://dx.doi.org/10.1103/PhysRevD.82.125024
http://dx.doi.org/10.1103/PhysRevD.22.2157
http://dx.doi.org/10.1103/PhysRevD.22.2157
http://dx.doi.org/10.1103/PhysRevD.55.7715
http://dx.doi.org/10.1103/PhysRevD.55.6561
http://dx.doi.org/10.1103/PhysRevD.55.6561
http://dx.doi.org/10.1103/PhysRevD.47.1599
http://dx.doi.org/10.1103/PhysRevD.64.125005
http://dx.doi.org/10.1103/PhysRevC.68.055203
http://dx.doi.org/10.1103/PhysRevD.66.045019
http://dx.doi.org/10.1103/PhysRevD.66.045019
http://dx.doi.org/10.1103/PhysRevD.48.5863
http://dx.doi.org/10.1103/PhysRevD.48.5863
http://dx.doi.org/10.1063/1.1436614
http://dx.doi.org/10.1063/1.1436614
http://arXiv.org/abs/nucl-th/0202042
http://dx.doi.org/10.1103/PhysRevD.77.085028
http://dx.doi.org/10.1103/PhysRevD.77.085028
http://dx.doi.org/10.1103/PhysRevD.82.056010
http://dx.doi.org/10.1103/PhysRevD.82.056010
http://dx.doi.org/10.1016/j.nuclphysbps.2010.02.005
http://dx.doi.org/10.1016/j.nuclphysbps.2010.02.005
http://dx.doi.org/10.1103/PhysRevD.86.085006
http://dx.doi.org/10.1103/PhysRevD.86.085006
http://dx.doi.org/10.1103/PhysRevD.81.074030
http://dx.doi.org/10.1103/PhysRevD.81.074030
http://dx.doi.org/10.1103/PhysRevD.82.034004
http://dx.doi.org/10.1103/PhysRevD.82.034004
http://dx.doi.org/10.1007/s10773-014-2212-8
http://dx.doi.org/10.1007/s00601-016-1098-9
http://arXiv.org/abs/1506.05429
http://arXiv.org/abs/hep-th/9809143
http://arXiv.org/abs/hep-th/9809143
http://arXiv.org/abs/hep-th/9904081
http://dx.doi.org/10.1103/PhysRevD.62.074001
http://dx.doi.org/10.1103/PhysRevD.62.074001
http://dx.doi.org/10.1103/PhysRevD.62.125012
http://dx.doi.org/10.1103/PhysRevD.62.125012
http://dx.doi.org/10.1103/PhysRevD.32.2001
http://dx.doi.org/10.1103/PhysRevD.32.2001
http://dx.doi.org/10.1103/PhysRevD.33.1103
http://dx.doi.org/10.1103/PhysRevD.32.2666
http://dx.doi.org/10.1103/PhysRevD.36.1141
http://dx.doi.org/10.1103/PhysRevD.36.1141
http://dx.doi.org/10.1103/PhysRevD.37.1076
http://dx.doi.org/10.1103/PhysRevD.37.1076
http://dx.doi.org/10.1103/PhysRevD.37.1064
http://dx.doi.org/10.1103/PhysRevD.37.1064
http://dx.doi.org/10.1103/PhysRevD.41.3814
http://dx.doi.org/10.1103/PhysRevD.41.3814
http://dx.doi.org/10.1103/PhysRevD.48.1774
http://dx.doi.org/10.1103/PhysRevD.48.1774
http://dx.doi.org/10.1103/PhysRevD.35.1493
http://dx.doi.org/10.1103/PhysRevD.35.1493
http://dx.doi.org/10.1016/0370-2693(92)91610-L
http://dx.doi.org/10.1016/0370-2693(92)91610-L
http://dx.doi.org/10.1007/BF01562335
http://dx.doi.org/10.1007/BF01557409
http://dx.doi.org/10.1142/S0217751X97000815
http://dx.doi.org/10.1143/PTP.103.161
http://dx.doi.org/10.1143/PTP.103.161
http://dx.doi.org/10.1103/PhysRevLett.101.100402
http://dx.doi.org/10.1103/PhysRevLett.101.100402
http://dx.doi.org/10.1016/j.ppnp.2008.12.027
http://dx.doi.org/10.1016/j.ppnp.2008.12.027
http://dx.doi.org/10.1016/j.nuclphysbps.2010.02.022
http://dx.doi.org/10.1016/j.nuclphysbps.2010.02.022
http://dx.doi.org/10.1103/PhysRevD.43.2418
http://dx.doi.org/10.1103/PhysRevD.54.6347
http://dx.doi.org/10.1016/S0550-3213(00)00469-7
http://dx.doi.org/10.1103/PhysRevD.66.025001
http://dx.doi.org/10.1103/PhysRevD.92.085021
http://dx.doi.org/10.1103/PhysRevD.62.087701
http://dx.doi.org/10.1103/PhysRevD.62.087701
http://dx.doi.org/10.1103/PhysRevD.64.105027
http://dx.doi.org/10.1103/PhysRevD.64.105027
http://dx.doi.org/10.1103/PhysRevD.65.085046
http://dx.doi.org/10.1103/PhysRevD.65.085046
http://dx.doi.org/10.1103/PhysRevD.66.125015
http://dx.doi.org/10.1103/PhysRevD.66.125015
http://dx.doi.org/10.1016/S0370-2693(02)02270-0
http://dx.doi.org/10.1016/S0370-2693(02)02270-0
http://dx.doi.org/10.1016/S0550-3213(03)00344-4
http://dx.doi.org/10.1016/S0550-3213(03)00344-4
http://dx.doi.org/10.1103/PhysRevD.67.115005
http://dx.doi.org/10.1103/PhysRevD.67.115005
http://dx.doi.org/10.1103/PhysRevD.71.085008
http://dx.doi.org/10.1016/j.physletb.2005.08.003
http://dx.doi.org/10.1103/PhysRevD.76.045008
http://dx.doi.org/10.1103/PhysRevD.80.065005
http://dx.doi.org/10.1103/PhysRevD.80.065005
http://dx.doi.org/10.1103/PhysRevD.49.2001
http://dx.doi.org/10.1103/PhysRevD.49.2001


[99] S. S. Pinsky, B. van de Sande, and J. R. Hiller, Phys. Rev.
D 51, 726 (1995).

[100] C. M. Bender, S. Pinsky, and B. Van de Sande, Phys. Rev.
D 48, 816 (1993).

[101] J. R. Hiller, O. Lunin, S. Pinsky, and U. Trittmann, Phys.
Lett. B 482, 409 (2000).

[102] A. C. Tang, S. J. Brodsky, and H. C. Pauli, Phys. Rev. D
44, 1842 (1991).

[103] L. C. L. Hollenberg, Discretized light cone quantization
applied to QCD in four-dimensions, 1991, http://alice.cern
.ch/format/showfull?sysnb=0129374.

[104] M. Kaluža and H. C. Pauli, Phys. Rev. D 45, 2968
(1992).

[105] F. Wölz, Master’s thesis, Heidelberg, 1990.
[106] M. Krautgärtner, H. C. Pauli, and F. Wölz, Phys. Rev. D

45, 3755 (1992).
[107] A. C.Kalloniatis andH. C. Pauli, Z. Phys. C 60, 255 (1993).
[108] M. Krautgärtner, Ph. D. thesis, Heidelberg, 1992.
[109] F. Wölz, Ph. D. thesis, Heidelberg, 1995.
[110] U. Trittmann and H.-C. Pauli, arXiv:hep-th/9704215.
[111] U. Trittmann, arXiv:hep-th/9705072.
[112] U. Trittmann and H. C. Pauli, Nucl. Phys. B, Proc. Suppl.

90, 161 (2000).
[113] J. P. Vary, H. Honkanen, J. Li, P. Maris, S. J. Brodsky, A.

Harindranath, G. F. de Téramond, P. Sternberg, E. G. Ng,
and C. Yang, Phys. Rev. C 81, 035205 (2010).

[114] X. Zhao, H. Honkanen, P. Maris, J. P. Vary, and S. J.
Brodsky, Few-Body Syst. 52, 339 (2012).

[115] P. Maris, P. Wiecki, Y. Li, X. Zhao, and J. P. Vary, Acta
Phys. Pol. B Proc. Suppl. 6, 321 (2013).

[116] X. Zhao, A. Ilderton, P. Maris, and J. P. Vary, Phys. Rev. D
88, 065014 (2013).

[117] X. Zhao, A. Ilderton, P. Maris, and J. P. Vary, Phys. Lett. B
726, 856 (2013).

[118] D. Chakrabarti, X. Zhao, H. Honkanen, R. Manohar, P.
Maris, and J. P. Vary, Phys. Rev. D 89, 116004 (2014).

[119] X. Zhao, H. Honkanen, P. Maris, J. P. Vary, and S. J.
Brodsky, Phys. Lett. B 737, 65 (2014).

[120] Y. Li, P. Maris, X. Zhao, and J. P. Vary, Phys. Lett. B 758,
118 (2016).

[121] H.-C. Pauli, A. C. Kalloniatis, and S. S. Pinsky, Phys. Rev.
D 52, 1176 (1995).

[122] S. Dalley and B. van de Sande, Nucl. Phys. B, Proc. Suppl.
53, 827 (1997).

[123] B. van de Sande and S. Dalley, Neutrino Mass, Dark
Matter, Gravitational Waves, Monopole Condensation, and
Light Cone Quantization, in Proceedings, International
Conference, Orbis Scientiae 1996, Miami Beach, USA
(Springer, New York, 1996), pp. 241–250.

[124] S. Dalley, AIP Conf. Proc. 494, 45 (1999).
[125] B. van de Sande and M. Burkardt, Phys. Rev. D 53, 4628

(1996).

[126] M. M. Brisudova, R. J. Perry, and K. G. Wilson, Phys. Rev.
Lett. 78, 1227 (1997).

[127] D. Chakrabarti and A. Harindranath, Phys. Rev. D 64,
105002 (2001).

[128] G. F. de Téramond and S. J. Brodsky, Phys. Rev. Lett. 102,
081601 (2009).

[129] G. F. de Téramond and S. J. Brodsky, AIP Conf. Proc.
1257, 59 (2010).

[130] S. J. Brodsky, G. F. de Téramond, and A. Deur, Phys. Rev.
D 81, 096010 (2010).

[131] G. F. de Téramond and S. J. Brodsky, AIP Conf. Proc.
1296, 128 (2010).

[132] S. J. Brodsky, G. F. De Téramond, and H. G. Dosch, Phys.
Lett. B 729, 3 (2014).

[133] S. J. Brodsky, G. F. de Téramond, H. G. Dosch, and J.
Erlich, Phys. Rep. 584, 1 (2015).

[134] G. F. de Téramond, H. G. Dosch, and S. J. Brodsky, Phys.
Rev. D 91, 045040 (2015).

[135] S. J. Brodsky, A. Deur, G. F. de Téramond, and H. G.
Dosch, Int. J. Mod. Phys. Conf. Ser. 39, 1560081 (2015).

[136] H. G. Dosch, G. F. de Téramond, and S. J. Brodsky, Phys.
Rev. D 92, 074010 (2015).

[137] H. G. Dosch, G. F. de Téramond, and S. J. Brodsky, Phys.
Rev. D 91, 085016 (2015).

[138] S. S. Chabysheva and J. R. Hiller, Phys. Lett. B 711, 417
(2012).

[139] S. S. Chabysheva and J. R. Hiller, arXiv:1203.0250.
[140] B. Elliott, S. S. Chabysheva, and J. R. Hiller, Phys. Rev. D

90, 056003 (2014).
[141] A. Misra, Phys. Rev. D 50, 4088 (1994).
[142] A. Misra, Phys. Rev. D 53, 5874 (1996).
[143] A. Misra, Phys. Rev. D 62, 125017 (2000).
[144] J. D. More and A. Misra, Phys. Rev. D 86, 065037

(2012).
[145] J. D. More and A. Misra, Phys. Rev. D 87, 085035 (2013).
[146] H. C. Pauli, Perspectives of Strong Coupling Gauge

Theories, in Proceedings, International Workshop,
SCGT’96, Nagoya, Japan, 1996 (World Scientific,
Singapore, 1997), pp. 342–352.

[147] V. A. Karmanov, Nucl. Phys. A362, 331 (1981).
[148] P. Wiecki, Y. Li, X. Zhao, P. Maris, and J. P. Vary, Phys.

Rev. D 91, 105009 (2015).
[149] H. Lamm, https://github.com/operabed/tmswift.git, 2016.
[150] V. Hernandez, J. E. Roman, and V. Vidal, ACM Trans.

Math. Softw. 31, 351 (2005).
[151] H. Bethe and E. Salpeter,Quantum Mechanics of One- and

Two-Electron Atoms (Academic, New York, 1957), p. 170.
[152] G. Breit, Phys. Rev. 35, 1477 (1930).
[153] T. Branz, T. Gutsche, V. E. Lyubovitskij, I. Schmidt, and A.

Vega, Phys. Rev. D 82, 074022 (2010).
[154] S. S. Chabysheva and J. R. Hiller, Phys. Rev. E 90, 063310

(2014).

HIGH RESOLUTION NONPERTURBATIVE LIGHT-FRONT … PHYSICAL REVIEW D 94, 016004 (2016)

016004-11

http://dx.doi.org/10.1103/PhysRevD.51.726
http://dx.doi.org/10.1103/PhysRevD.51.726
http://dx.doi.org/10.1103/PhysRevD.48.816
http://dx.doi.org/10.1103/PhysRevD.48.816
http://dx.doi.org/10.1016/S0370-2693(00)00540-2
http://dx.doi.org/10.1016/S0370-2693(00)00540-2
http://dx.doi.org/10.1103/PhysRevD.44.1842
http://dx.doi.org/10.1103/PhysRevD.44.1842
http://alice.cern.ch/format/showfull?sysnb=0129374
http://alice.cern.ch/format/showfull?sysnb=0129374
http://alice.cern.ch/format/showfull?sysnb=0129374
http://dx.doi.org/10.1103/PhysRevD.45.2968
http://dx.doi.org/10.1103/PhysRevD.45.2968
http://dx.doi.org/10.1103/PhysRevD.45.3755
http://dx.doi.org/10.1103/PhysRevD.45.3755
http://dx.doi.org/10.1007/BF01474621
http://arXiv.org/abs/hep-th/9704215
http://arXiv.org/abs/hep-th/9705072
http://dx.doi.org/10.1016/S0920-5632(00)00890-2
http://dx.doi.org/10.1016/S0920-5632(00)00890-2
http://dx.doi.org/10.1103/PhysRevC.81.035205
http://dx.doi.org/10.1007/s00601-011-0273-2
http://dx.doi.org/10.5506/APhysPolBSupp.6.321
http://dx.doi.org/10.5506/APhysPolBSupp.6.321
http://dx.doi.org/10.1103/PhysRevD.88.065014
http://dx.doi.org/10.1103/PhysRevD.88.065014
http://dx.doi.org/10.1016/j.physletb.2013.09.030
http://dx.doi.org/10.1016/j.physletb.2013.09.030
http://dx.doi.org/10.1103/PhysRevD.89.116004
http://dx.doi.org/10.1016/j.physletb.2014.08.020
http://dx.doi.org/10.1016/j.physletb.2016.04.065
http://dx.doi.org/10.1016/j.physletb.2016.04.065
http://dx.doi.org/10.1103/PhysRevD.52.1176
http://dx.doi.org/10.1103/PhysRevD.52.1176
http://dx.doi.org/10.1016/S0920-5632(96)00793-1
http://dx.doi.org/10.1016/S0920-5632(96)00793-1
http://dx.doi.org/10.1063/1.1301660
http://dx.doi.org/10.1103/PhysRevD.53.4628
http://dx.doi.org/10.1103/PhysRevD.53.4628
http://dx.doi.org/10.1103/PhysRevLett.78.1227
http://dx.doi.org/10.1103/PhysRevLett.78.1227
http://dx.doi.org/10.1103/PhysRevD.64.105002
http://dx.doi.org/10.1103/PhysRevD.64.105002
http://dx.doi.org/10.1103/PhysRevLett.102.081601
http://dx.doi.org/10.1103/PhysRevLett.102.081601
http://dx.doi.org/10.1063/1.3483402
http://dx.doi.org/10.1063/1.3483402
http://dx.doi.org/10.1103/PhysRevD.81.096010
http://dx.doi.org/10.1103/PhysRevD.81.096010
http://dx.doi.org/10.1063/1.3523157
http://dx.doi.org/10.1063/1.3523157
http://dx.doi.org/10.1016/j.physletb.2013.12.044
http://dx.doi.org/10.1016/j.physletb.2013.12.044
http://dx.doi.org/10.1016/j.physrep.2015.05.001
http://dx.doi.org/10.1103/PhysRevD.91.045040
http://dx.doi.org/10.1103/PhysRevD.91.045040
http://dx.doi.org/10.1142/S2010194515600812
http://dx.doi.org/10.1103/PhysRevD.92.074010
http://dx.doi.org/10.1103/PhysRevD.92.074010
http://dx.doi.org/10.1103/PhysRevD.91.085016
http://dx.doi.org/10.1103/PhysRevD.91.085016
http://dx.doi.org/10.1016/j.physletb.2012.04.032
http://dx.doi.org/10.1016/j.physletb.2012.04.032
http://arXiv.org/abs/1203.0250
http://dx.doi.org/10.1103/PhysRevD.90.056003
http://dx.doi.org/10.1103/PhysRevD.90.056003
http://dx.doi.org/10.1103/PhysRevD.50.4088
http://dx.doi.org/10.1103/PhysRevD.53.5874
http://dx.doi.org/10.1103/PhysRevD.62.125017
http://dx.doi.org/10.1103/PhysRevD.86.065037
http://dx.doi.org/10.1103/PhysRevD.86.065037
http://dx.doi.org/10.1103/PhysRevD.87.085035
http://dx.doi.org/10.1016/0375-9474(81)90497-8
http://dx.doi.org/10.1103/PhysRevD.91.105009
http://dx.doi.org/10.1103/PhysRevD.91.105009
https://github.com/operabed/tmswift.git
https://github.com/operabed/tmswift.git
https://github.com/operabed/tmswift.git
http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/10.1103/PhysRevD.82.074022
http://dx.doi.org/10.1103/PhysRevE.90.063310
http://dx.doi.org/10.1103/PhysRevE.90.063310

