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Weakly coupled models for the 750 GeV diphoton resonance often invoke new particles carrying both
color and/or electric charges to mediate loop-induced couplings of the resonance to two gluons and two
photons. The new colored particles may not be stable and could decay into final states containing standard
model particles. We consider an electroweak doublet of vectorlike quarks (VLQs) carrying electric charges
of 5=3 and 2=3, respectively, which mediate the loop-induced couplings of the 750 GeV resonance. If the
VLQ has a mass at around 1 TeV, it naturally gives rise to the observed diphoton signal strength while all
couplings remain perturbative up to a high scale. At the same time, if the charge-5=3 VLQ decays into final
states containing top quark and W boson, it would contribute to the multilepton excesses observed in both
run 1 and run 2 data. It is also possible to incorporate a dark matter candidate in the decay final states to
explain the observed relic density.
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I. INTRODUCTION

After the discovery of the 125 GeV Higgs boson at run 1
of the Large Hadron Collider (LHC) [1,2], the standard
model (SM) of particle physics is now complete. However,
SM is far from being perfect, since there is much empirical
evidence pointing to its failures, ranging from the compel-
ling case for cold dark matter to the baryon asymmetry in
the universe. The evidence strongly calls for existence of
physics beyond the SM (BSM).
Not surprisingly, there are many measurements exhibit-

ing excesses over SM expectations at the LHC run 1. While
some, or perhaps all, of the excesses may be statistical
fluctuations, it is difficult to over-emphasize the importance
of pursuing the theoretical implications of the first signs of
BSM physics, which if remains true, would be a discovery
that is more profound and no less grand than that of the
Higgs boson.
Among the run 1 excesses, there is one which seems to

persist in the early run 2 results, showing up in searches for
final states containing multilepton, b jets, and missing
transverse momentum (MET). The multilepton searches are
often further divided into a same-sign dilepton (2L)
category, a three-lepton (3L) category, and a four-lepton
(4L) category. As was pointed out in Refs. [3,4], the
multilepton excesses were observed with varying degrees
of significance in many run 1 analyses in both ATLAS and
CMS collaborations, which include searches for ttH
production [5,6], for scalar bottom quarks in supersym-
metry [7,8], for SM production of ttW [9,10] and for heavy
VLQs [11]. (The CMS run 1 search for VLQ’s, which
imposes very hard cuts on the kinematics, is the only

exception which didn’t see an excess [12].) At run 2, the
multilepton excesses were seen by ATLAS in searches for
scalar bottom quarks [13] and SM ttW production [14].
CMS, which collected 50% less “good” data than the
ATLAS at run 2 so far, sees a deficit in the 2L channel and
an excess in the 3L channel [15,16].
The left panel of Fig. 1 summarizes the best-fit signal

strength μ ¼ σ=σSM in the ttH multilepton channel from
the public run 1 and run 2 results, as well as a statistical
combination of μ obtained from using the online script at
Ref. [17], which is based on Ref. [18]. The resulting signal
strength is μ ¼ 2.4þ0.8

−0.7 from combining both ATLAS and
CMS run 1=2 results.1 In the right panel of Fig. 1 we
display measurements of σðpp → tt̄WÞ from ATLAS, at
both run 1 and 2, and CMS at run 1. The presence of
excesses in the multilepton channel at both run 1 and run 2
is clear, although uncertainties in the measurements remain
large. A number of works have theorized on the nature of
these excesses [3,4,19,20].
Nevertheless, the most significant sign of BSM physics

in run 2 undoubtedly comes from the observation of
excessive events in the diphoton channel that are clustered
at around an invariant mass of 750 GeV [21,22]. Moreover,
kinematic distributions of events in the signal region seem
consistent with those expected from SM background [23],
indicating single production of a resonance, with no or very

1We have added an offset of −0.3 in the combined central
value to take into account correlated systematic uncertainties.
This procedure reproduces the individual central values from
ATLAS and CMS, respectively, with good precision.
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soft extra particles, decaying into diphoton final states. On
the other hand, compatibility with the null result from
ATLAS run 1 searches for a heavy resonance in the
diphoton channel [24] prefers a production mechanism
from the gluon initial states, due to the larger increase in the
parton luminosity of the gluon.
If one further assumes the resonance is a spin-0 boson,

then in weakly coupled theories the neutral scalar couplings
to massless gauge bosons such as the photon and the gluon
are induced only at one-loop level by particles carrying
QCD color and/or electric charges (see, for example,
Ref. [25].) The particles in the loop, however, cannot be
the SM particles, for it would immediately imply tree-level
decays of the resonance into the SM particles, which in turn
would swamp the loop-induced decays into diphotons and
reduce the signal strength far below the observed ones.
Therefore, in these scenarios additional new particles, other
than the 750 GeV scalar itself, must be present. These new
particles should carry color and/or electric charges and be
heavier than 375 GeV so as to turn off the tree-level decay
channel of the 750 GeV resonance.2 A popular possibility
for the new particles mediating the loop-induced couplings
is VLQ’s carrying QCD color and electric charges
[27–133].
There have been few discussions on the collider phe-

nomenology of VLQs associated with the 750 GeV scalar
[128–132], although VLQs have been proposed in other
contexts, as partners of the third generation quarks in the
SM [134,135], which could decay into third generation

quarks andW, Z, or the Higgs bosons. In this work we aim
to demonstrate that, if the VLQ is an electroweak doublet
with hypercharge 7=6, and has a mass at around 1 TeV, it
could simultaneously explain the signal strength of the
750 GeV diphoton resonance and contribute to the afore-
mentioned multilepton excesses associated with b jets and
MET. And the model could remain perturbative all the way
up to a very high scale [132,133].
This work is organized as follows: in the next section, we

demonstrate the connection between VLQs and the
750 GeV diphoton resonance, as well as the RG running
of the relevant gauge and Yukawa couplings, which is
followed by a Monte Carlo study on the contribution of the
VLQs to the multilepton excesses at the LHC, using the ttH
and ttW channels as examples. In the last section, we
conclude.

II. VECTORLIKE QUARKS AND DIPHOTON
EXCESS

Assuming that the 750 GeV scalar S is produced by the
gluon fusion, the diphoton signal rate is given by

σðpp → S → γγÞ≃ Cgg

s ·mS

ΓðS → γγÞΓðS → ggÞ
ΓS;total

≃ 6.4 fb ×
�
ΓðS → γγÞ
1 MeV

�
BrðS → ggÞ

ð1Þ

where mS ≃ 750 GeV is the scalar mass,
ffiffiffi
s

p ¼ 13 TeV
and Cgg ¼ ðπ2=8Þ R 1

0 dx1
R
1
0 dx2 δðx1x2 −m2

S=sÞgðx1Þgðx2Þ
with gðxÞ being the gluon parton distribution function. In

FIG. 1. Left: Best-fit signal strength μ ¼ σ=σSM in the ttH multilepton channel at both the 8 and 13 TeV LHC. Right: Measured
σðpp → ttWÞ in the multilepton channel at both the 8 and 13 TeV LHC. Shaded areas are the expected cross sections with theoretical
uncertainties.

2This argument holds in weakly coupled theories as we state in
the text. For other possible models with strong interactions, see a
recent review [26] and references therein.
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the second equation, we have used Cgg ≃ 2.1 × 103 which
is obtained from MSTW2008 NLO set [136] evaluated at
the scale μ ¼ mS. The reported signal strengths at run 2 are
somewhere between 1 and 10 fb [21,22].
We assume that couplings of the scalar S to photons and

gluons are induced by a VLQ X which transforms as
ð3; 2; 7=6Þ under SUð3Þc × SUð2ÞL × Uð1ÞY of the SM
gauge group:

−Lint ¼ ySX̄iγ5X; ð2Þ

where S is assumed to be CP-odd.3 Then, the partial decay
width of S into the diphoton is given by

ΓðS → γγÞ ¼ α2

64π3
m3

S

�
y
mX

TrðQ2Þfðm2
S=4m

2
XÞ
�
2

≃ 1.4 MeV × y2
�
1 TeV
mX

�
2

½fðm2
S=4m

2
XÞ�2

ð3Þ

where TrðQ2Þ ¼ 3½ð5=3Þ2 þ ð2=3Þ2� ¼ 29=3 and the loop
function is given by fðτÞ ¼ τ−1arcsin2

ffiffiffi
τ

p
[137].

In Fig. 2, we show contours of σðpp → S → γγÞ in
ðmX; yÞ plane. The observed diphoton signal rate can be
obtained withmX ≲ 1 TeV and y≲Oð1Þ. In the right panel
of Fig. 2, the running of the SM gauge couplings and the
Yukawa coupling y are shown for a benchmark pointmX ¼
950 GeV and y ¼ 0.8, which leads to σðpp → S → γγÞ≃
5.4 fb. As can be seen in the figure, the model remain
perturbative up to about 1017 GeV.4

III. VECTORLIKE QUARKS AND
MULTILEPTON EXCESS

The VLQ X, introduced in Sec. II to explain the diphoton
excess, cannot be stable nor long-lived in order to avoid
severe collider bound [138]. We will assume the lifetime of
the VLQ is short enough to decay promptly inside the
detector, when produced through QCD interactions at the
LHC. Given the X carries SM quantum numbers, its decay
product would include SM particles such as quarks and
gauge bosons. In particular, if the charge-5=3 VLQ, X5=3,
decays into the top quark and the W boson, it could
potentially contribute to the multilepton excesses observed
at both run 1 and run 2 of the LHC.
Weconsider two simplifiedmodels in the spirit ofminimal-

ity, one with a dark matter candidate and one without. Matter
contents of both models are shown in Table. I. In the first
model,Model S, the only new particles are the S andX which
are introduced in Sec. II. We assume that the X field mainly
couples to the third generation SM quark:

−LModel S
int ¼ −λðH · X̄ÞtR þ H:c:þ ySX̄iγ5X: ð4Þ

where tR is the right-handed SM top quark and ðH · X̄Þ ¼
HþX̄5=3 þH0T̄ with ðHþ; H0Þ and ðX5=3; TÞ being the
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FIG. 2. Left: contours of σðpp → S → γγÞ in ðmX; yÞ plane. Solid, dashed and dotted lines respectively show contours for 10, 5, 3 fb.
Right: the running of the SM gauge couplings and the Yukawa coupling y for a benchmark point mX ¼ 950 GeV and
y ¼ 0.8.

TABLE I. Matter contents of two simplified models. Model 3
contains a new parity under which the SM and S are even, while
X ¼ ðX5=3; TÞ, T 0 and ϕ are odd. ϕ is the lightest particle charged
under the parity and could serve as a dark matter candidate ϕ.

Model S Model 3

S ð1; 1Þ0 S ð1; 1Þ0 þ
X ð3; 2Þ7=6 X ð3; 2Þ7=6 −

T 0 ð3; 1Þ2=3 −
ϕ ð1; 1Þ0 −

3In the case of the CP-even S, the diphoton signal rate is
suppressed by a factor of about 4=9.

4If we add an additional VLQ T 0, which is introduced in model
3 discussed in the next section, the Landau pole of the Uð1ÞY
coupling becomes slightly lower, about 1016 GeV.
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component fields of the SUð2ÞL doublets. In this setup, the
decay chain of the VLQ X5=3 is given by

X5=3 → Wþt → WþWþb: ð5Þ
Therefore, pair-produced X5=3 can lead to signatures con-
taining multilepton, b jets, and MET, where the MET comes
from the neutrino in the W decay.
In the second model containing the dark matter,

Model 3, we introduce a singlet scalar dark matter field
ϕ together with an additional VLQ, T 0, and assign an odd
parity to X ¼ ðX5=3; TÞ, T 0, and ϕ under a Z2 parity to
ensure the stability of the dark matter. The interaction is
then given by5

−LModel 3
int ¼ ðH · X̄Þðλþ λ5γ

5ÞT 0 þ yϕϕT̄ 0tR þ H:c:

þ ySX̄iγ5X: ð6Þ
In the following, we assume λ5 ¼ 0, for simplicity. In this
model the decay of X5=3 leads to

X5=3 → WþT 0 → Wþtϕ → WþWþbϕ; ð7Þ
which again leads to the multilepton signal, with the
additional MET contribution from the DM candidate ϕ.
Furthermore, T 0 decays as follows

T 0 → tþ ϕ; ð8Þ
therefore pair-production of T 0 at the LHC could lead to the
final state tt̄þMET. In the early universe, the dark matter
ϕ could annihilate through the process ϕϕ → tt̄. In Fig. 3
we show the region of parameter space leading to the
observed relic density of the dark matter in the mϕ −mT 0

plane for some choices of yϕ.
6 For numerical calculation,

we generate model files using FeynRules 2.3 [139] and
obtain the relic density of dark matter using micrOMEGAs
4.1.7 [140]. In addition, in this simple model the only
SM particle that directly couples to the dark matter particle
ϕ is the top quark. Therefore the direct detection constraint
does not apply.
There are collider searches for X5=3 → tWþ at the LHC.

In this channel the latest result from CMS using the early
run 2 data puts a lower bound mX ≳ 950 GeV at the
95% confidence level (C.L.) [16], which would apply to
the X5=3 in Model S. In Model 3 X5=3 decays into tWþϕ
and the strong bound from CMS does not necessarily apply
since the decay final state is different. On the other hand,
the charge 2=3 component of the doublet, T, decays mainly
to tþ Z=h, and does not contribute to the tWþ search
channel. The current constraint on T production via tZ and
th channels is weaker than that of X5=3 [141,142]. For the
electroweak singlet T 0, no dedicated searches exist,
although there exist searches for the scalar top quark (stop)
in supersymmetry which also decays to tt̄þMET. These
limits, however, are sensitive to a variety of kinematic
variables including the mass of the particle carrying away
the extra MET. In particular, constraints on direct stop
productions in the tt̄þMET final states disappear when the
LSP mass becomes larger than ∼300 GeV [143–146]. Due
to these considerations, we choose the following bench-
mark in our study:

Model S∶ mX ¼ 950 GeV; ð9Þ

Model 3∶ mX ¼ 950 GeV; mT 0 ¼ 750 GeV;

mϕ ¼ 380 GeV: ð10Þ

The choice ofmX in Model S maximizes the contribution to
the multilepton excess without contradicting the limits from
searches for X5=3 at the LHC.7 If one considers
mX > 950 GeV, the signal strength for multilepton

y 0.7
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y 0.5

500 600 700 800

300
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FIG. 3. Region of parameter space of Model 3 leading to the
observed dark matter relic density.

TABLE II. Total signal strengths for the same-sign dilepton
final state, normalized to the SM expectations, of our benchmark
models in ttH channel at both 8 and 13 TeVand in ttW channel at
13 TeV. The mass spectrum is mX ¼ 950 GeV, mT 0 ¼ 750 GeV
and mϕ ¼ 380 GeV.

8 TeV μttH 13 TeV μttH 13 TeV μttW

Model S 1.5 3.1 1.3
Model 3 1.4 2.9 1.3

5The T 0 field can also have a coupling with S as y0ST̄ 0iγ5T 0,
which slightly increases the diphoton rate.

6The λ term in Eq. (6) induces a mixing between T 0 and T after
electroweak symmetry breaking. We choose a small mixing, λ ¼
0.01 in Fig. 3.

7We emphasize that the CMS bound on X5=3 from Ref. [15]
does not apply to our Model 3. However, we choose the same mX
in both models for simplicity.
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becomes smaller than that in our benchmark scenarios due to
smaller production cross section of X5=3, while diphoton
excess can be explained by larger coupling y as shown in left
panel of Fig. 2. The value formϕ is motivated not only by the
stop constraints but also the need to turn off possible tree-level
decay S → ϕϕ,8 so as not to overwhelm the loop-induced
decays into diphotons.mT 0 is then chosen to allow for on-shell
W bosons and top quarks in the decay product.
In Table II, we show the total signal strength for the

same-sign dilepton final state, in unit of SM expectations,
of our two benchmarks in the ttH and ttW channels at the
LHC.9 In the Monte Carlo simulation we generate signal
events using Madgraph [147] þ Pythia [148] þ
Delphes [149] and a tagging efficiency of b jet at
77%. In the ttH channel, the final state contains exactly
two leptons with the same electric charge and at least four
jets of which two are b jets. We implement the same cuts as
in Refs. [4,6] at both 8 and 13 TeV: pl

T > 20 GeV,
pj
T > 25 GeV, LD > 30 GeV; ST > 100 GeV, where

ST ¼ pl1
T þ pl2

T þ Emiss
T is the scalar sum of transverse

momentum of two charged leptons and the missing trans-
verse momentum Emiss

T and LD ¼ 0.6 × Emiss
T þ 0.4 ×Hmiss

T
withHmiss

T being the negative vector pT sum of selected jets
and two same-sign leptons. In the ttW channel, based on
the same-sign di-muon analysis in Sec. 5. 1 of Ref. [14],
events containing two muons with the same electric charge
and at least two b jets are selected. The kinematic cuts
being applied are: pμ

T > 25 GeV, pb
T > 25 GeV, Emiss

T >
40 GeV and HT > 240 GeV, where HT denotes the scalar
sum of pμ

T and transverse momentum of jets. The total
signal strength is then the sum of the SM expectation and
the contribution from the X5=3 VLQ,

μ≡ σSM þ σVLQ
σSM

¼ 1þ μVLQ; ð11Þ

which is shown in Table II. For comparison, we note that
the 95% C.L. upper limit in the ttH multilepton channel
from CMS run 2 data is [15]

μttH < 3.3 ð2.6 expectedÞ at 95% C:L: ð12Þ

We see that both benchmarks give good fits to the multi-
lepton excesses observed at both run 1 and run 2.
In the future, should the multilepton excess persist,

it would be crucial to understand the nature of the
excess. In this regard, we compare some kinematic
distributions of events in the same-sign di-muon channel
from our benchmark models with those from SM ttW in
Fig. 4. In particular, we plot pT of the leading jet and the
leading muon, respectively, as well as the MET distri-
bution. It is clear that events from our benchmarks in
general have harder decay spectra than those from
the SM.
Figure 4 also highlights the importance of conducting

dedicated searches for VLQs whose decay product
contains a dark matter candidate carrying away extra
MET, as the kinematic distributions are quite different
between the two benchmarks. Such searches have not
been performed at the LHC to the best of our knowledge.
Although the MET distribution for Model 3 is harder than
Model S, pT distributions of the leading jet and the
leading muon are softer in Model 3. Therefore we expect
the selection efficiency will be different between the two
benchmarks.

IV. CONCLUSION

In this work, we studied the LHC phenomenology of the
VLQ that is often invoked to mediate loop-induced
couplings of the 750 GeV diphoton resonance. In particu-
lar, we considered an electroweak doublet VLQ with
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FIG. 4. From left to right: distributions of pT of the leading jet, pT of the leading muon, and MET for events from our Model S (X5=3
without the dark matter), Model 3 (X5=3 with the dark matter), and SM ttW.

8Such a decay could arise from the interaction Sϕϕ, which is
irrelevant for our study for mϕ ≥ mS=2.

9The same-sign dilepton final state is the most sensitive
channel for our model, and currently the other multilepton
channels are less sensitive.
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hypercharge 7=6, giving rise to an exotic charge-5=3 VLQ
and a toplike VLQ with charge-2=3. When the mass of the
VLQ is at around 1 TeV, the desired diphoton signal
strength can be obtained for a Yukawa coupling y≲Oð1Þ.
In this scenario, all gauge couplings as well as the VLQ
Yukawa coupling remain perturbative up to a very high
energy scale, of the order of 1017 GeV.
Decay phenomenology of the VLQ is quite distinct at

the LHC, especially if they decay into the third gen-
eration fermions and the SM gauge bosons. For example,
the charge-5=3 VLQ, X5=3, could decay into a top quark
and a Wþ boson. Alternatively, it is possible to include a
stable neutral particle as the dark matter candidate with
the correct relic density. Then the VLQ always decays
into SM particles and the dark matter particle, which
carries away additional MET in the collider detectors.
Interestingly, we demonstrated that decays of X5=3 could
contribute to the mild excess in the multilepton, b jets,
and MET channel that are observed at both run 1 and run
2 of the LHC.
We performed numerical studies on two benchmark

models, one with the dark matter particle and one without,
and compared their kinematic distributions with those from
the SM ttW processes. Should the multilepton excess

persists in the future, such comparisons will shed light on
the nature of the excess. Furthermore, we showed that
kinematic distributions between the two benchmarks are
quite distinct, calling out the need for dedicated experi-
mental efforts to search for a new decay topology of VLQs,
into final states containing a dark matter candidate.
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