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If the LHC should fail to observe direct signals for new physics, it may become necessary to look for new
physics effects in rare events such as flavor-changing decays of the top quark, which, in the standard model,
are predicted to be too small to be observed. We set up the theoretical framework in which experimentally
accessible results can be expected in models of new physics, and go on to discuss two models of
supersymmetry—one with conserved R-parity, and one without R-parity—to illustrate how the flavor-
changing signals are predicted in these models. In the latter case, there is a distinct possibility of detecting
the rare decay t → cþ Z0 at the LHC. We also present a detailed set of very general formulas which can be
used to make similar calculations in diverse models of new physics.
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I. INTRODUCTION: FCNC PORTAL
TO NEW PHYSICS

The Run-I of the CERN Large Hadron Collider (LHC)
has already led to the discovery of the long-sought Higgs
boson [1], and, probably, the elusive pentaquark [2] as well.
As the LHC has now commenced its crucial Run-II, the
eyes of the whole world are focused on CERN with the
hope that there will be startling discoveries at this machine,
which is designed to probe an energy regime hitherto
inaccessible to terrestrial experiments. Indeed, some hints
of this kind [3] have already created considerable excite-
ment [4].
It is natural, at this stage, to inquire into the different

possibilities, and ask how sure we are that any such
discovery will be made. Unfortunately, it turns out that
there is no really compelling reason to expect a new
discovery at the LHC Run-2—though it is certainly
possible. This is because the whole range of experiments
done at low, intermediate and the highest available energies
are beautifully explained by the standard model (SM), a
portmanteau theory which incorporates three or four dis-
parate ideas and holds them together with a set of
phenomenological parameters. Ad hoc as it may seem,
this clumsy model has been remarkably successful—
perhaps too successful—in explaining every known meas-
urement, sometimes to four or five decimal places.
Ironically, it is the LHC, in its Run-I, which has put the

strongest stamp of authenticity on the SM by discovering
the missing Higgs boson, measuring its properties to be
consistent with the SM predictions and, at the same time,
failing to find any significant deviations from the SM in a
host of highly precise measurements. The discovery of the
pentaquark is as consistent with the SM as any of the other
results.
When we extend our consideration beyond purely

terrestrial experiments to the cosmos at large, we immedi-
ately realize that the SM fails to explain several outstanding
problems. These include the problems of dark matter [5],
dark energy [6] and ultra-high energy cosmic rays above
the GZK (Greisen-Zatsepin-Kuzmin) bound [7]. In par-
ticular, if the Earth is immersed in a distribution of dark
matter, as appears to be the case, there must be some way to
detect this fact. This is a subject of intense experimental
investigation around the world [8–11]. It is also hoped that
discoveries at the LHC could shed light on the problem of
dark matter, which, if particulate, would appear in a
collision as missing energy and momentum. Some of the
theoretical deficiencies of the SM are addressed in theories
which extend or go beyond it to postulate new structures
and symmetries at higher energy scales—these are generi-
cally referred to as “new physics.” A few of these models
also have dark matter candidates. The great hope of the
present moment is that unambiguous signals for such new
physics will be discovered in Run-II of the LHC.
There are two ways in which new physics can be

discovered at the LHC. The first—and simplest—way is
to “directly” discover evidence for new particles, which
could appear either as resonances or pairs, or be produced
in association with SM particles. Denoting a “new” particle
by P, the simplest tree-level processes are
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pp → P or P� → X þ Y

pp → Pþ P̄ pp → Pþ X ð1:1Þ

where X and Y stand for SM particles. Taking into account
the fact that a new particle will either decay into SM
particles, or, if it is a component of dark matter, lead to
missing energy and momentum signals, one can enumerate
the possible final states and then analyze the LHC data to
see if there is any evidence for such signals. An answer in
the affirmative would, of course, be very exciting, and
hopefully this is what will occur in the near future.
While we have no wish to pour cold water on optimistic

predictions of the above nature, one cannot ignore the
possibility that the mass of the new particle(s) may very
well lie outside the kinematic reach of the LHC. Curiously,
the last undiscovered particle for whose mass we had a
theoretical upper bound was the Higgs boson, and, in fact,
the LHC was designed to find it within the entire range of
possibilities1. For new particles, however, all that we have
are experimental lower bounds [12–18]—which are more a
measure of the failure of experimental searches than a
reflection of any physical principle. Thus, future failures to
find any signals of new physics can always be explained
away as due to higher and higher masses of the new
particle(s). In such a case, there would arise a serious
problem in falsifying the theories in question.
There does, however, exist an escape route, and this

happens when we consider the quantum effects of the new
physics. When we consider, say, tree-level decays of a SM
particle which have been mediated by a heavy new particle
P, e.g. a decay of the form

Q → X þ P� → X þ Y þ Z

where the Q, X, Y, Z are all SM particles, then these are
generally subject to a propagator suppression by a factor
M2

Q=M
2
P—which can be quite severe if MQ ≪ MP, which

is usually the case. However, if, instead of a decaying
particle, we have a scattering experiment

Qþ X̄ → P� → Y þ Z

conducted at an energy
ffiffiffi
s

p
< MP, the corresponding

“suppression” factor will be s=M2
P—which may be orders

of magnitude larger than the earlier factor since it is
possible to make

ffiffiffi
s

p
≫ MQ. Even then, it could very well

be that MP is so large that even with the effective valuesffiffiffi
s

p
∼ 1 − 2 TeV available at the LHC, the propagator

suppression will still make the process unobservable at
the LHC, especially if there are large backgrounds arising
from purely SM production of Y þ Z final states.

What we need to find, therefore, is a process which, for
some reason, is severely suppressed in the SM, but, for
some equally valid reason, is not so severely suppressed in
the new physics sector. Here we are lucky, for there exists a
whole class of SM processes which are severely suppressed
by the unitarity constraints of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. These are the so-called flavor-
changing neutral current (FCNC) processes involving at
least two generations of fermions in the initial and final
states, and all the generations in the loop. Though this
suppression, commonly called the Glashow-Iliopoulos-
Maiani (GIM) mechanism [19], is described in any text-
book on the SM [20], it is worthwhile to take a quick look
at the main argument, since it will form the crux of some of
the discussions in this article. The idea is that if we have an
initial quark flavor q and a final quark flavor q0 of the same
charge, and the only flavor-changing couplings we have are
due to the charged currents coupling to the W-boson, then
the transition amplitude must have the form

Mqq0 ¼
X3
i¼1

V�
qiVq0iAðxi;MWÞ ¼

X3
i¼1

λiAðxi;MWÞ ð1:2Þ

where xi ≡m2
i =M

2
W carries the generation dependence and

MW sets the mass scale for charged-current interactions.
Moreover, λi ¼ V�

qiVq0i, and the unitarity of the CKM
matrix ensures that if q ≠ q0, then

P
iλi ¼ 0. Obviously, we

can expand the Aðxi;MWÞ in a Maclaurin series

Aðxi;MWÞ ¼ A0ðMWÞ þ xiA0
iðMWÞ þ

1

2
x2i A

00
i ðMWÞ þ � � �

ð1:3Þ

where

A0ðMWÞ ¼ Að0;MWÞ; A0
iðMWÞ ¼

�∂A
∂xi

�
xi¼0

;

A00
i ðMWÞ ¼

�∂2A
∂x2i

�
xi¼0

and so on, where we make the assumption that xi ≪ 1. The
leading term inMqq0 cancels out and what is left is therefore
suppressed by xi. Obviously, this will work nicely if we
take the quarks q, q0 to have charge þ2=3, for then we
automatically get a suppression in the probability by
xb ¼ ðmb=MWÞ2 ∼ 10−3, or by even smaller factors for
the other generations2.
If we now assume that the new particle(s) P make(s)

contributions of the form

1As it happens, the Higgs boson was found rather soon, and
that too, near its lower mass bound rather than the upper.

2For FCNC decays of the b quark, we need to expand about xt
rather than xi ¼ 0, since xt > 1. However, this article focuses
only on decays of the t quark.
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Mnew
qq0 ¼

X3
i¼1

λiηi ~Aðyi;MPÞ ð1:4Þ

where the yi ≡m2
i =M

2
P are similar to the xi and the ηi are

arbitrary flavor-dependent factors, then we immediately see
that the leading order contribution stays, for

P
iλiηi ≠ 0.

Such contributions are unaffected by the GIM suppression,
and, therefore, could, in principle, be three orders of
magnitude larger than the SM contributions.
The beauty of the above argument lies in the fact that in

the above process, all that we need to observe is the
transition of a t quark to a quark of a different flavor but the
same charge, i.e. a u or a c. There is no requirement to
produce heavy new particles on-shell. Thus, in the disap-
pointing situation that all direct searches for new physics at
the LHC fail, one can fall back upon GIM-suppressed
processes as a portal through which we can still peer into
that otherwise-inaccessible new world.
The major loop-induced FCNC processes involving the

top quark which have been studied in the literature are
(1) the decays t → qþ S, where q ¼ u, c and S is a

scalar—either the Higgs boson H0 or its counterpart
(s) in new physics models; and

(2) the decays t → qþ V, where q ¼ u, c and V is a
vector gauge boson—which can be a photon or a
gluon or a Z0-boson or any counterpart(s) in new
physics models;

In the SM, we have well-known results for the branching
ratio

Bðt → cþH0Þ ∼ 10−15 Bðt → cþ Z0Þ ∼ 10−13: ð1:5Þ

These are many, many orders of magnitude too small to be
measured at Run-2 of the LHC, where estimates are that at
best branching ratios at the level of 10−5 may become
accessible when enough data are eventually collected (see
Fig. 8). There have been several predictions in the literature
that new physics processes could provide the necessary
enhancement and predict branching ratios at this level. The
purpose of this article is to investigate these claims
critically and try to determine the model requirements
which could lead to an actual discovery of new physics at
the LHC through the top quark FCNC portal.
Before proceeding further, we address the question of the

rare decay t → qþ γ, which is bound to happen if its
counterpart t → qþ Z is possible. Electromagnetic gauge
invariance demands that t → qþ γ be mediated only by the
magnetic dipole moment operator [21]. This process,
however, turns out to be less interesting for two reasons.
In the first place, one loop contributions to t → qþ γ are
suppressed by about an order of magnitude compared to the
corresponding process with a final-state Z. This turns out to
be essentially because the coupling of a photon to di-quark
pairs is suppressed by their fractional charge of −1=3.

A more serious hurdle is that experimental measurement of
the rare decay t → qþ γ is plagued with much larger
backgrounds because of the ease with which photons can
be radiated at tree-level. For this reason, experiments [22]
can only achieve an accuracy for t → cþ γ which is an
order of magnitude poorer than that for t → cþ Z. Taken
together, these two factors ensure that the search for t →
qþ Z should clearly take precedence3 over that for
t → qþ γ. Hence, we do not discuss the latter process
further. For similar reasons, we do not consider the process
t → qþ g either.
This article is organized as follows. In the following

section, we consider generic FCNC decays of the top quark
[23], taking a toy model, and determine the conditions
required to have maximal contributions to an FCNC
process like t → cþ B, where B is a scalar or a vector
boson. As an example we take up, in the next section, a
supersymmetric model which is quite likely to evade direct
searches at the LHC. The following section extends this to
the case of a supersymmetric model with R-party violation,
which relies on non-CKM sources of FCNC. Finally we
present a summary of our results and a conclusion. In the
interest of smooth reading, most of the more cumbersome
formulas are relegated to the Appendix.

II. GENERIC FCNC DECAYS OF THE TOP
QUARK IN A TOY MODEL

In this section, we investigate a toy model which could
be taken as a prototype for FCNC decays for the top quark.
Let us assume there are a pair of charged scalars ω� with
couplings of the form

Lint ¼ ξωþω−H

þ
X3
i;j¼1

ðηVijūiLdjRωþ þ H:c:Þ ð2:1Þ

where H is the SM Higgs boson and ξ, η are unknown
couplings. These ω�’s are rather like scalar versions of the
W�-bosons. The choice of scalars makes the calculation
simple and sidesteps complications due to gauge choice
which arise with the W�. For this part we stay within the
minimal flavor violation (MFV) paradigm (see for exam-
ple, Ref. [24]) insofar as the only flavor-changing effects
happen through the “CKM” matrix elements Vij.
Let us now consider the decay t → cþH as predicted in

this model. Using the SM Yukawa couplings for the H-
boson and Feynman rules for ω� (which can quite easily be
read off from the above Lagrangian), we obtain four
diagrams, shown in Fig. 1. It is then a straightforward

3As we will see in the final section, the process t → cþ Z is
somewhat marginal at the LHC. This makes the case hopeless for
t → cþ γ. Replacing c by u leads to even smaller decay widths.
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matter to calculate the helicity amplitudes for the decay
t → cþH. In terms of the λi ¼ V�

tiVci, these can be written
in the generic form

Mhcht ¼
X3
i¼1

λiAiðhc; htÞ ð2:2Þ

where hc and ht are the helicities of the c and the t quarks
respectively, and λ1 þ λ2 þ λ3 ¼ 0 by unitarity of the
CKM-like matrix V. Explicit expressions for these in terms
of Passarino-’tHooft-Veltman functions [25] are given in
Appendix A. We require to calculate only two nonvanish-
ing amplitudes

ðaÞMþþ ¼
X3
i¼1

λiAiðþ1;þ1Þ

ðbÞM−− ¼
X3
i¼1

λiAið−1;−1Þ ð2:3Þ

which become analogues of the SM amplitudes if we put
ξ ¼ gMW and η ¼ g=

ffiffiffi
2

p
. To calculate the branching ratio,

we note that the squared and spin-summed/averaged matrix
element, in terms of the helicity amplitudes of Eq. (2.3), is

jMj2 ¼ 1

2
½jMþþj2 þ jM−−j2� ð2:4Þ

The partial width can now be written as

Γðt → cþHÞ ¼ 1

16πmt

�
1 −

M2
H

m2
t

�
jMj2 ð2:5Þ

and (if necessary) the branching ratio is easily obtained by
dividing by the total decay width Γt ≃ 1.29 GeV.

At this point we pause to make a rough numerical
estimate of the above quantities. As may be seen from
Eq. (2.5), the helicity amplitudes must have a mass
dimension þ1. Since these arise from one-loop computa-
tions, and if Mω is close to MW , a crude approximation for
the amplitude factor will be

jMj2 ≈
�

mt

16π2

�
2

ð2:6Þ

Substituting this into Eq. (2.5), leads to a numerical
estimate

Γðt → cþHÞ ≈ 5.9 × 10−5 GeV ð2:7Þ

which is ten orders of magnitude larger than the SM
prediction.
It is natural to ask why the SM prediction is so much

smaller than what one would naively have expected. The
answer is that the SM amplitude is suppressed by a
combination of three different effects, each reducing the
amplitude by a few orders of magnitude. These are
explained below.

(i) The first of these suppression effects is, of course,
the GIM cancellation, which we have already shown
to lead to suppression by a factor�

mbðmtÞ
MW

�
2

¼
�
2.6 GeV
80.4 GeV

�
2 ≃ 1.0 × 10−3

in the decay amplitude.
(ii) In this toy model, we have taken the flavor-violating

coupling to be ηVij (or ηiVij), where the flavor-
violation arises exactly as in the SM—from the off-
diagonal terms in the CKM matrix. This makes it a
model with minimal flavor violation (MFV). Since
the CKM matrix exhibits a strong hierarchy as we
move away from the diagonal, this results in a further
suppression in all MFVmodels—which may not hold
in a new physics model which deviates from theMFV
paradigm. To make matters explicit, we have λi ¼
V2iV�

3i for i ¼ 1, 2, 3. If we choose the ηi as in
Eq. (2.10), the only relevant one is λ3 ¼ V23V�

33 ≃
V23 since V33 ≃ 1. Now, jV23j ≈ 0.04 [26]. This
gives us a suppression by two orders of magnitude.

There is a subtle issue, however. If we consider the
flavor mixing in a model of new physics to be
arbitrary and of unknown origin, it is perfectly fine
to set λ3 ¼ 1 and thereby obtain an enhancement
factor of 1=0.04 ¼ 25. In fact, this is what we shall
assume in Sec. V of this paper. However, in a large
class of non-MFV models, flavor mixing does arise
from mixing effects of the quarks, and there exists
some unitary matrix V 0

ij which is not the measured
CKMmatrix. To get a maximal value of V 0

23, we take

FIG. 1. Set of Feynman diagrams leading to the decay t →
cþH in our toy model.
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V 0 ¼

0B@ 1 0 0

0 cos θ sin θ

0 − sin θ cos θ

1CA ð2:8Þ

so that λ03 ¼ sin θ cos θ ¼ 1
2
sin 2θ. Obviously, the

maximum occurs for θ ¼ π=4 and the corresponding
value of λ3 is 0.5—an enhancement by a factor of
12.5 instead of 25. Thus, what we can achieve by
abandoning theMFV paradigm is an enhancement by
half of what we would get by discarding the CKM-
type mechanism altogether.

(iii) Finally, in a model of new physics, there is always
the possibility that the actual couplings may be
enhanced over the SM ones. To see this, we put4

ξ ¼ Mω instead of gMW and η3 ¼ 1 instead of
g=

ffiffiffi
2

p
, and recalculate the amplitudes, thereby

achieving a modest enhancement by a factor of
2=g3 ≃ 7.3, assuming that Mω ≃MW . This means
that the “SM” amplitude is suppressed by a factor
1=7.3≃ 0.14 .

If we now combine the three effects, then the amplitude will
have an overall suppression factor

ð1.0 × 10−3Þ × 0.04 × 0.14≃ 5.6 × 10−6: ð2:9Þ

Multiplying the amplitude by this factor and squaring leads
to a suppression of the estimated partial decay width in
Eq. (2.7) by ten orders of magnitude to 1.85 × 10−15—
which is in the right ballpark.
Now that we have a clear understanding of the nature of

the FCNC suppression in the SM (or a SM-like model), we
can remove these effects one by one to see how much the

amplitude can be enhanced in a new physics model. In
order to predict really significant deviations from the SM
branching ratio any new physics model requires that we
meet the following conditions:
(A) Frustration of the GIM cancellation.
(B) Non-MFV pattern of flavor mixing.
(C) Enhanced couplings.

To illustrate these in a concrete manner, we perform
detailed numerical computations of the helicity amplitudes
of Eq. (2.3) using the formulas of Appendix A. 1. The loop
integrals in these formulas are evaluated using the well-
known package FF [27], and our numerical results are
given in Fig. 2.
The “normal case,” when the couplings in Eq. (2.2) are

exactly like those in the SM corresponds to the black curves
marked SM in Fig. 2. The dots correspond to the values
Mω ¼ 80, 300 GeV (see Table I). These amplitudes are
suppressed due to a combination of all the three effects
described above5 (see below).
We can disrupt the GIM cancellation partially or wholly

by replacing the coupling constant η in Eq. (2.2) by a
generation-dependent factor ηi. The maximal effect will be
obtained if, for example, we consider

η1 ¼ η2 ¼ 0 η3 ¼
gffiffiffi
2

p : ð2:10Þ

The corresponding numerical curves are shown in Fig. 2 in
magenta, and labeled “no GIM.” It is immediately obvious

10
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FIG. 2. The two nonvanishing helicity amplitudes for the decay t → cþH, as calculated in our toy model as a function of the mass
Mω of the scalar field ω. The legends next to each curve are explained in the text. The small solid circles indicate the values Mω ¼ 80,
300 GeV used in Table I.

4Strictly speaking, the couplings can be taken up to
ffiffiffiffiffi
4π

p
≈ 3.5,

but then we will have to worry about higher-order effects.

5It may be seen in Appendix A. 1 that the form factors FðbÞ
1i and

FðbÞ
2i would violate the GIM cancellation. This is indeed true, and

arises from the helicity-flipping nature of the scalar ω interaction.
However, the contributions of FðbÞ

1i and FðbÞ
2i are very small, and

hence, for all practical purposes, may be ignored in the numerical
evaluation.

DETAILED ANALYSIS OF FLAVOR-CHANGING DECAYS … PHYSICAL REVIEW D 94, 015026 (2016)

015026-5



that the amplitude increases by 2–3 orders of magnitude,
exactly as expected.
Next, we eschew MFV and consider the case λ3 ¼ 1.

This gives an enhancement by a factor of 25. The blue lines
marked “no MFV” in Fig. 2 represent the case in question.
Finally, we set the couplings to the maximal values ξ ¼ Mω

and η3 ¼ 1 and obtain a further enhancement illustrated by
the curves shown in red in Fig. 2 and marked “max coup.”
This, as predicted, is enhanced by one order of magnitude.
If we consider the combination of all these effects, as we

have done in Fig. 2, we get an enhancement factor around
2.04 × 104 (5.43 × 104) for jMþþj (jM−−j) taking
Mω ¼ 80 GeV. This is a more modest enhancement than
estimated in Eq. (2.9), but that is not surprising, given the
fact that the earlier estimate was made under a very crude
approximation to the decay amplitude. The actual enhance-
ments available are made explicit in Table I, where we list
the partial widths for t → cþH in the toy model for
Mω ¼ 80, 300 GeV, for the SM-like case as well as with the
three suppression mechanisms successively disabled.
Another process of interest at the LHC is the decay

t → cþ Z. The diagrams for this are identical to those in
Fig. 1, except that the scalar H line must be replaced by a
wiggly Z line. We do not exhibit these diagrams in the
interest of brevity, though we keep the same configuration
and numbering. In this case, the computation is rendered a
little more complicated because of the vector nature of the
Z boson. The toy Lagrangian will be

Lint ¼ iξωþ∂μ

⟷
ω−Zμ þ

X3
i;j¼1

ðηVijūiLdjRωþ þ H:c:Þ

ð2:11Þ

where ξ, η are unknown couplings, as before. We can now
compute the partial width for the decay t → cþ Z. The
Feynman amplitude will assume the form

MðhZÞ
hcht

¼
X3
i¼1

λiAiðhZ; hc; htÞ ð2:12Þ

where the sum over hZ runs over the longitudinal polari-
zation εL ¼ εðhZÞjhZ¼0 and the transverse polarizations
ε�T ¼ εðhZÞjhZ¼�1. The only nonvanishing amplitudes are

ðaÞ MðþÞ
−þ ¼

X3
i¼1

λiAiðþ1;−1;þ1Þ

ðbÞ Mð−Þ
þ− ¼

X3
i¼1

λiAið−1;þ1;−1Þ

ðcÞ Mð0Þ
þþ ¼

X3
i¼1

λiAið0;þ1;þ1Þ

ðdÞ Mð0Þ
−− ¼

X3
i¼1

λiAið0;−1;−1Þ ð2:13Þ

and these may be regarded as SM amplitudes, if we take
ξ ¼ gMω and η ¼ g=

ffiffiffi
2

p
as before. Once again, we plot

these amplitudes in Fig. 3 as a function of Mω and relegate
the detailed formulas to Appendix A.
In Fig. 3, the four panels marked (a)–(d) correspond to

the four amplitudes (a)–(d) indicated in Eq. (2.13). The
color coding and conventions for this figure are identical to
those in Fig. 2. It is not difficult to see that once again, we
get enhancement factors for these amplitudes which are
very similar to those for the t → cþH case, when we
successively (a) relax the GIM cancellation, (b) abandon
the minimal flavor-violation paradigm and (c) enhance the
couplings. This enables us to predict much larger partial
widths, as shown in Table II.
For this calculation, we require the squared and spin-

summed/averaged matrix element, which is

jMj2 ¼ 1

2
½jMðþÞ

−þj2 þ jMð−Þ
þ−j2 þ jMð0Þ

þþj2 þ jMð0Þ
−−j2�

ð2:14Þ

in terms of the helicity amplitudes of Eq. (2.13). The partial
width can now be written

Γðt → cþ ZÞ ¼ 1

16πmt

�
1 −

M2
Z

m2
t

�
jMj2 ð2:15Þ

as before, with MZ replacing MH. In this case, of course,
the partial width in more enhanced cases far exceeds the
measured top quark width of 1.29 GeV, but this is not a
serious matter, since this is, after all, a toy model. The
enhancement in this case due to, successively, frustration of
the GIM mechanism, saturation of the flavor off-diagonal
terms and saturation of the coupling constant, have the
same magnitudes as in the case of the top decaying through
a scalar H boson. We may, therefore, apply the same
insights to both cases.
In general, the summed amplitudes for the decay t →

cþ Z0 are about an order of magnitude larger than the
similar summed amplitudes for the decay t → cþH0. This
is principally because a major contribution comes from the
diagram with a ωþω−Z or ωþω−Z vertex, which are

TABLE I. Partial decay widths for the decay t → cþH in the
toy model, with successive application of the three enhancement
conditions. All numerical values are in units of GeV.

Mω SM ⊕ no GIM ⊕ no MFV ⊕ max coup

80 1.81 × 10−14 2.04 × 10−9 4.74 × 10−6 5.31 × 10−5

300 4.31 × 10−18 5.12 × 10−11 1.19 × 10−7 1.33 × 10−6
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proportional to g cos θW and λ respectively, other factors
being equal or similar. Since the measurement of the Higgs
boson mass tells us that λ≃ 0.12 it follows that
g cos θW=λ≃ 5. A further factor of around 2 is obtained
because of the four nonvanishing helicity amplitudes for
t → cþ Z0 as opposed to the two obtained for t → cþH0.
Thus, we get an enhancement of around 10, which becomes
around 102 when we consider the partial decay width.
As this is a generic feature of the SM and most new
physics models, it is obvious that the decay mode t →
cþ Z0 is more promising for discovery than the t → cþ
H0 mode.

III. FCNC DECAYS OF THE TOP QUARK
IN THE SM

We are now in a position to explore the decays t →
cþH and t → cþ Z in the standard model, using insights
from the toy model in the previous section. We start with
t → cþH. This time, of course, we have to take into
account the exchange of the weak gauge bosons W� in the
loops, and this requires a choice of gauge in which to work.
For loop diagrams, it is convenient to choose the ’tHooft-
Feynman gauge, since that keeps the ultraviolet divergen-
ces at a manageable level. Of course, this comes at the cost
of having extra diagrams with unphysical Higgs bosons,
and hence, in the SM, the four diagram topologies of Fig. 1
become the ten diagrams in Fig. 4.
There is a small catch in using the ’tHooft-Feynman

gauge, however, and that lies in the appearance of the
unphysical Higgs bosons. The couplings of these to quarks
depend on the d-quark masses mi, and hence, would
apparently lead to frustration of the GIM mechanism.
However, these contributions cancel out when all the
diagrams are added, as may be expected, since after all,
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FIG. 3. Helicity amplitudes for the decay t → cþ Z in our toy model. The notations and conventions follow those of Fig. 2.

TABLE II. Partial widths for the decay t → cþ Z in the toy
model, with successive application (L to R) of the three enhance-
ment conditions. All numerical values are in units of GeV.

Mω SM No GIM No MFV Max coup

80 4.23 × 10−11 3.55 × 10−4 5.15 × 10−2 0.58
300 8.16 × 10−12 8.32 × 10−3 1.21 13.5
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they constitute a gauge artefact. The largest contributions to
the amplitudes from individual diagrams (once the singu-
larities are isolated) are of the order of 10−3—this already
contains the suppression of one order due to the electro-
weak couplings and the factor 1=16π2 which appears in all
loop diagrams. When all the contributions are summed-up,
the GIM cancellation becomes manifest, and there is a
reduction by Oðm2

b=m
2
t Þ ≈ 6 × 10−4. This brings down the

amplitude to Oð10−7Þ and hence, its square to Oð10−14Þ.
Another order is lost in kinematics, and thus we get the final
result 5.8 × 10−15, as quoted in Eq. (1.5).
When we turn to the decay t → cþ Z, we have a

situation similar to the toy model in the previous section.
The Feynman diagrams for this can be obtained from those
of Fig. 4 by replacing the dashed lines for H by wiggly
lines for Z and changing the labels accordingly.

We then go on to calculate the helicity amplitudes of
Eq. (2.13) in terms of four form factors, which are given in
Appendix B. Most of the arguments given in the case of
t → cþH above hold for this case as well, except that the
presence of four separate helicity amplitudes leads to a
somewhat larger branching ratio, Oð10−13Þ as quoted
in Eq. (1.5).
The most important thing we learn from this exercise has

already been stated in the Introduction—the branching
ratios for flavor-changing t-quark decays in the SM are
severely suppressed, being far too small to be detected at
the LHC, or even the most ambitious futuristic machine that
can be conceived. This has the effect of making these
decays a very sensitive probe of new physics, for any
enhancement to measurable levels must arise from new
physics beyond the SM.

IV. FCNC DECAYS OF THE TOP QUARK
IN THE CMSSM

When we turn to new physics beyond the SM, the very
first option must be the one which has captivated the
imagination of high energy physicists for the last few
decades, viz., supersymmetry (SUSY). The merits and
demerits of SUSY have been exhaustively discussed in
the literature [28] and are not required to be repeated here.
Instead, we focus on the effects of SUSY on the flavor-
changing processes t → cþH and t → cþ Z which are
the subject of this work.
Apart from the fact that every SM field has a super-

symmetric partner differing from it in spin by one half,
one of the most significant new features of SUSY models
is the fact that they all require the existence of two scalar
Higgs doublets. Thus, after the electroweak symmetry-
breaking, these models contain five physical scalar fields,
viz. a pair of charged Higgs bosons H� and a triplet of
neutral Higgs bosons, of which two (h0, H0) are even
under CP and one (A0) is odd under CP. The lighter one
h0 of the CP-even pair can be identified with the near-
125 GeV scalar state found at the LHC in recent times.
All the other states, H�, H0 and A0, are presumed to be
heavier, and, in fact, too heavy to have been detected in
any experiments so far, including the LHC. As we
shall see, it is likely that these states are all heavier
than the t-quark, and hence, the only kinematically-
permitted decay will be t → cþ h0, which is analogous
to the SM decay.
The more important difference from the SM in SUSY

models arises because of the contributions of new
particles in the loops. The most important of these are
the contributions due to the charged Higgs bosons H�,
which have flavor-changing coupling like the W-boson.
However, since these couplings originate from the
Yukawa sector, they are proportional to the quark masses
and hence will frustrate the GIM mechanism. Then there

FIG. 4. Feynman diagrams leading to the decay t → cþH in
the SM.
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are contributions where the SM particles are replaced
by their SUSY partners, viz. squarks and charginos. Here
the flavor-changing effects will arise from the mixing
matrices for squarks. In the so-called minimal flavor
violation (MFV) models, the squark mixing matrices are
aligned with the quark mixing matrix, i.e. the CKM
matrix. This is the paradigm we shall adopt in the present
study. Non-MFV models have been studied in the
literature and we shall have occasion to discuss them
in the final section.
Though there are many SUSY versions of the SM and its

extensions, the minimal version of this is the so-called
constrained minimal supersymmetric SM, or cMSSM [28].
This is the SUSYmodel which has the minimum number of
extra parameters (four parameters and a sign), when
compared with all the others. Not surprisingly, it is also
the SUSY model which is most constrained by experiment.
However, since a light Higgs boson h0 is a common feature
of all SUSY models, including the cMSSM, the only
features which will be affected will be the couplings and
the super-partner masses. As we have seen, this is not too
serious a constraint on loop-induced processes, so it is
sensible to use the cMSSM as a paradigm case for FCNC
processes in SUSY. This is adopted in our work and it fixes
the particle content and the vertex factors, though there will
be large variations in the latter as the model parameters
change.
In the cMSSM, the process t → cþ h0 will be mediated

by the 10 diagrams of the SM listed earlier in Fig. 4 as well
as the 12 additional one-loop diagrams listed in Fig. 5.
These diagrams have not only charged Higgs bosons but
also charginos and squarks in the loops. The details for
calculating all these 22 diagrams are given in Appendix B,
in terms of the usual form factors. Numerical evaluation of
these form factors, and hence the branching ratio, is not,
however, very simple.
The problem here is that we cannot make any random

choice of the four parameters and one sign in the cMSSM,
for large ranges of these have been ruled out by exper-
imental data on a variety of measured processes. We,
therefore, must evaluate the branching ratio for t → cþ
h0 only for points in the parameter space which are
permitted by all the experimental constraints [29]. At a
first glance, this is a daunting prospect, given the wide
range and diverse nature of experimental data which impact
the cMSSM, but the task is made much easier by the
presence of public domain software which do most of the
computation automatically. We have, therefore, made free
use of these software to constrain the cMSSM parameter
space. The exact procedure followed is described below.

(i) A set of random choices is made of the four
parameters of the cMSSM, viz. the universal scalar
mass m0, the universal fermion mass m1=2, the
universal trilinear coupling A0 and the ratio of Higgs
boson vevs tan β, within the ranges

100 GeV ≤ m0 ≤ 10 TeV

100 GeV ≤ m1=2 ≤ 10 TeV

− 10 TeV ≤ A0 ≤ 10 TeV

2 ≤ tan β ≤ 50

The sign of the μ parameter is chosen positive, since
it is known that the negative sign is disfavored by
measurements of the muon anomalous magnetic
moment.

(ii) Given a choice of the above parameters, we find the
low-energy cMSSM mass spectrum by using the
software SUSPECT [30], which takes these values
at the scale of grand unification and uses the

FIG. 5. Additional Feynman diagrams leading to the decay
t → cþH in the cMSSM.
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renormalization group equations to evolve them down
to the electroweak scale, and also calculates mixing
induced by the electroweak symmetry-breaking.

(iii) We eliminate parameter sets which are inconsistent
with the observed h0 mass 125� 2 GeV. This turns
out to be a very severe constraint for low values of
m0, m1=2 and A0.

(iv) Of the surviving parameter sets, we eliminate those
that are inconsistent with the results of direct
searches for SUSY, i.e. which yield masses for
the SUSY particles which are smaller than the
experimental lower bounds given in Table III below
[12–18,26,31].

(v) With the remaining parameter sets, we calculate a
clutch of low-energy variables measured in K and B
decays, using the software SUPERISO [32]. We then
eliminate parameter sets which are inconsistent with
the 95% C.L. experimental data on these variables,
as given in Table IV.

The most restrictive of these are the branching ratios
BðB → XsγÞ and BðBs → μþμ−Þ. The former is known to
be highly sensitive to low values of the charged Higgs
boson mass and the latter is important for precluding very
large values of tan β. Once a parameter set survives all the
above filters, we consider it acceptable and use it to
evaluate the t → cþ h0 branching ratio. Our results are
then set out in Fig. 6.
The left panel in Fig. 6 shows a scatter plot indicating the

allowed regions in them0-m1=2 plane, which is probably the
best way to indicate constraints on the cMSSM.We note that
every point on this plane corresponds to all possible random
choices of the other parameters in themodel,which accounts

for the fuzziness in shapes. The black regions are disallowed
by “theory” constraints, which include the proper shape of
the electroweak potential [42,43] and the requirement that
the lightest supersymmetric particle—a prime dark matter
candidate—should be electrically neutral and have no color
quantum numbers. The extensive region in blue is ruled out
by a combination of the h0 mass constraint and the direct
searches for supersymmetry, while the comparatively lim-
ited red regions are ruled out by constraints from low-energy
measurements. Points falling in the white region are all
allowed, and it is for these that we can legitimately try to
evaluate top FCNC processes. It is important to note that
almost the entire region form0 andm1=2within aTeVis ruled
out—this is another way of stating that there are no light
squarks, unless we consider the third generation, where a
seesaw-typemechanism can give us one lighter squark state.
The panel on the right in Fig. 6 contains our actual

results. The scale on the y-axis,where we have plotted the
branching ratio of t → cþ h0 immediately tells that this
always comes of the order of 10−11, which is just two-
orders of magnitude above the SM prediction. On the x-axis
we have plotted the tan β variable, even though the actual
branching ratio is not a very sensitive function of this,
except when tan β is around 5. As before, the blue points
are ruled out by Higgs mass constraints and direct con-
straints, and the red points are ruled out by low-energy
measurements. Unlike the left panel, however, the black
points are the ones which represent the allowed parameter
sets. It is immediately obvious, therefore, that the cMSSM
prediction for Bðt → cþ hÞ is around 4.3 × 10−11, and this

TABLE III. Experimental lower bounds on new particle masses
relevant to SUSY models. The results for the second generation
of quarks and leptons are the same as those shown for the first
generation. The most conservative bounds have been taken. The
numbers shown in this Table correspond to the case when
R-parity is conserved, but they do not change very much when
R-parity is violated.

Gauginos: ~χ�1 ~χ�2 ~χ01 ~χ02 ~χ03 ~χ04 ~g

Mass bound
(GeV):

94 94 46 63 100 116 520

Squarks: ~u1 ~u2 ~d1 ~d2 ~t1 ~t2 ~b1 ~b2
Mass bound
(GeV):

1100 1100 1100 1100 96 96 89 247

Gauginos: ~e1 ~e2 ~τ1 ~τ2 ~νe ~ντ1

Mass bound
(GeV):

82 82 73 94 94 94

Higgs bosons: H0 A0 H�

Mass bound
(GeV):

500 0 80

TABLE IV. Experimental bounds [32–41] at 95% C.L. on low
energy parameters calculable in the software SUPERISO. For
detailed definitions, see [32].

Variable Lower bound Upper bound

BðB → XsγÞ 2.766 × 10−4 4.094 × 10−4

Δ0ðB → K�γÞ −3.8 × 10−2 1.0 × 10−1

BðBs → μþμ−Þ 7.261 × 10−10 6.173 × 10−9

BðBd → μþμ−Þ 4.0 × 10−11 6.8 × 10−10

BðB → Xsμ
þμ−Þ (low Q2) 2.4 × 10−7 2.96 × 10−6

BðB → Xsμ
þμ−Þ (high Q2) 1.48 × 10−7 6.88 × 10−7

BðB → τþντÞ 7.388 × 10−5 2.993 × 10−4

R½BðB → τþντÞ� 5.5 × 10−1 2.71

BðB → DτνÞ� 5.2 × 10−3 1.02 × 10−2

BðDs → τνÞ 5.06 × 10−2 5.7 × 10−2

BðDs → μνÞ 4.95 × 10−3 6.67 × 10−3

BðD → μþμ−Þ 3.49 × 10−4 4.15 × 10−4

R½BðK → μνÞ� 6.325 × 10−1 6.391 × 10−1

R23
μ 9.92 × 10−1 1.006

δðaμÞ −6.5 × 10−10 5.75 × 10−9
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holds for almost all the points in the allowed param-
eter space.
Why is this branching ratio so small in the cMSSM,

when there exist charged Higgs bosons to frustrate the GIM
mechanism, as well as a wide range of possible couplings?
The reason is quite simple. We do indeed have contribu-
tions which frustrate the GIM mechanism. This raises the
branching ratio from the SM value of Oð10−15Þ to
Oð10−11Þ. However, if the factor had been as large as
m2

W=m
2
b ≃ 5 × 105, we should have expected the prediction

to be one order larger. That this does not happen is a
phenomenon rather peculiar to the cMSSM, which is more
constrained than other SUSY models. The requirement of a
light Higgs boson with a mass as high as 125 GeV above
the tree-level value, which is MZ, requires most of the
SUSY partners in this model to be very heavy, and this,
being essentially a logarithmic effect, leads to the addi-
tional suppression of one order of magnitude in the t →
cþ Z branching ratio. Once this is understood, we cannot
get the other enhancements, since (a) we have adopted the
MFV paradigm, and (b) the couplings in SUSY closely
resemble the gauge couplings. The Yukawa couplings of
the charged Higgs boson are, indeed, dependent on tan β,
but they are proportional to

mt

MW
cot β þ mb

MW
tan β

and hence do not grow very large in the range
3 ≤ tan β ≤ 50.
As shown in the right panel in Fig. 6, the application of

the Higgs mass and direct search constraints pushes the
branching ratio down by a factor around 3, which is
expected since these are known to push up the SUSY

partner masses from the 100 GeV to the TeV range. The
application of low-energy constraints (especially
Bs → μþμ−) further kills the feeble enhancement due to
large tan β, leading to the somewhat disappointing pre-
diction of 4.3 × 10−11.
When we come to the process t → cþ Z0, this will be

mediated by the whole set of diagrams in Figs. 4 and 5
where, as in the previous case, the h0 is replaced by the
Z0 and the corresponding broken line by a wiggly line.
As in the previous section, we can calculate the four
helicity amplitudes in terms of F1–F4 form factors which
are listed in Appendix B. 2 and make a numerical
evaluation. As in the case of the toy model, we predict
branching ratios which are about two orders of magnitude
greater than the branching ratios for t → cþ h0, i.e. we
get Bðt → cþ Z0Þ ∼ 10−9, which is still far too small to
be accessed by experiment. The reason is, of course, the
same—breakdown of the GIM mechanism leads to a
value about four orders of magnitude greater than the SM
prediction, but so long as we stay within the MFV
paradigm and have couplings which are not significantly
greater than gauge coupling, no further enhancements
will be obtained.
We see, therefore, that not only does the cMSSM fail to

produce enough enhancement of the top FCNC decays for
observation, but this will be a generic feature of any MSSM
variant which follows the MFV paradigm. Not much can be
gained, therefore, by relaxing the universality constraints
on the SUSY-breaking parameters, as is done in, for
example, the so-called phenomenological MSSM or
pMSSM models. However, it is possible to break the
MFV paradigm by choosing squark mixing matrices which
are not aligned with the CKM matrix [44]. This provides
some enhancement of the branching ratios for top FCNC
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FIG. 6. The panel on the left shows the parts of the m0-m1=2 plane in the cMSSM which are ruled out for all chosen values of A0 and
tan β. In the left panel, the black region is ruled out by theory constraints, the blue dots by the Higgs boson mass constraints, and the red
dots by all low-energy constraints. In the right panel, blue and red dots follow the same convention as in the left panel, while the black
dots are allowed by all constraints.
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decay, but only to the level of about 10−7, partly because
the squarks are already constrained to be rather heavy.

V. BEYOND THE MFV PARADIGM:
R-PARITY VIOLATION

In the preceding section we have discussed how the
cMSSM and its variants fail to produce top FCNC effects at
a measurable level. Within SUSY, however, there exists
another scenario which can provide the necessary enhance-
ments, and that is the scenario when R-parity is violated. It
is well-known that the conservation of the Z2 quantum
number R ¼ ð−1ÞLþ2Sþ3B, where L, S and B stand for
lepton number, spin and baryon number of a particle, is a
condition which must be imposed by hand on all SUSY
models if we want the lightest SUSY particle, or LSP, to be
a candidate for cold dark matter. Thus, when we consider a
scenario in which the R-parity is not conserved, we
abandon the idea of explaining dark matter in a SUSY
model—a feature which has contributed to making such
models far less popular than the opposite variant. It is
important to note, however, that R-parity conservation is
not demanded by SUSY at all—it is an add-on which was
originally believed to be necessary to explain the long
lifetime of the proton [45]. However, ever since it was
pointed out that this can be done be separately conserving
either lepton number L or baryon number B, it has been
known that one can easily have R-parity violating models
which are consistent with both exact and broken SUSY. In
that case, R-parity loses its special position, for the way in
which R-parity produces a dark matter candidate is no
different from any other Z2 symmetry imposed by hand on
a new physics model, such as, for example, the KK-parity
imposed in models with a universal extra dimension [46]
and the T-parity imposed in the littlest Higgs models [47].
Thus, at the cost of decoupling SUSY from the search for
an explanation of dark matter in terms of new particles, it is
legitimate to consider models where R-parity is violated.
Once we allow R-parity violation, it is straightforward to

write down the extra interactions allowed. These will arise
from a superpotential term [48]

bWR¼
X3
i;j;k¼1

�
1

2
λijkbLi

bLj
bEc
kþλ0ijkbLi

bQj
bDc
kþ

1

2
λ00ijkbUc

i
bDc
j
bDc
k

�
ð5:1Þ

where the bL and bQ superfields are SU(2) doublets (suitably
combined) and the bEc, bUc and bDc are SU(2) singlets. The
indices i, j and k run over the three matter generations. It is
immediately clear that the λijk are antisymmetric in i and j,
i.e. there are 9 independent λijk’s and the λ00ijk are anti-
symmetric in j and k, i.e. there are 9 independent λ00ijk’s. The
λ0ijk have no such symmetry properties and hence there will
be 27 independent λ0ijk’s, bringing the total number of

independent parameters to 45. However, to avoid fast
proton decay, we must either conserve lepton number
and set all the λijk’s and λ0ijk’s to zero, or conserve baryon
number and set all the λ00ijk’s to zero. Either alternative leads
to FCNC processes, including, when the third generation is
considered, the top quark. In this work, all RPV couplings
will be considered real.
Constraints on the R-parity violating couplings from

various low-energy FCNC processes have been industri-
ously studied in the literature [48–54] and a first look
would lead to the conclusion that the λ, λ0 and λ00 couplings
must be rather small. Such constraints depend, however, on
two crucial assumptions, viz.,

(i) Only one (or at most two) of the R-parity couplings
are substantial and all the others are zero or of
negligible value. This makes a phenomenological
analysis simple, but its virtue ends there. The oft-
repeated analogy with a similar pattern observed in
the SM Yukawa couplings is not a very convincing
argument.

(ii) Most of the bounds used to be presented with scaling
factors depending on the mass of the exchanged
squark, which was assumed to be around 100 GeV.
Today, most of the lower bounds on the squark
masses (at least in the first two generations) are an
order of magnitude higher, leading to considerable
relaxation in the constraints on the R-parity violating
couplings.

Oncewe realise that theR-parity violating couplings can,
in fact, be very large, we also note that they have no need to
be aligned with the CKM matrix or even satisfy unitarity
constraints, for these are parameters of the Lagrangian, and
do not arise from the mixing of fields. The R-parity
violating scenario, therefore, can satisfy all the conditions
required for FCNC enhancement, viz. frustration of the
GIM mechanism, non-MFV mixing terms and almost
unconstrained coupling constants. We therefore choose,
in this section, the R-parity violating model (RPV-MSSM)
as a paradigm to illustrate how large top FCNC effects can
be obtained.
As a first step to this study, we note that the λijk, while

interesting enough in their own right, are not relevant for
the processes of interest in this article, since they do not
appear with operators involving quark fields. We do not
discuss them further in this article. The couplings of interest
are the λ0ijk or the λ00ijk—but obviously not both. We
therefore list, in Table V below, the constraints on the
R-parity violating couplings relevant for the processes
under consideration, taking into account the current con-
straints on the masses of the sleptons and squarks. These, of
course, still assume that one (or at most two) coupling(s) at
a time is dominant.
A glance at the last column of Tables Vand VI will make

it clear that with the current values of sfermion masses, the
constraints on most of the R-parity-violating couplings are
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very weak. These couplings can be as large as gauge
couplings, or, is specific cases, much larger. Top FCNC
processes will typically involve

(i) the products λ0i2kλ
0
i3k for the decays t → cþ h0=Z,

where i denotes the leptonic flavor in the loop and k
denotes the d-type quark flavor in the loop. For

decays to t → uþ h0=Z, we would get the products
λ0i1kλ

0
i3k, but these have not been considered in

this work.
(ii) the products λ002jkλ

00
3jk for the decays t → cþ h0=Z,

where j denotes a quark flavor of the u-type and k
denotes a d-type quark flavor. As in the previous

TABLE V. Showing the experimental constraints on the R-parity-violating couplings λ0i2j and λ
0
i3j relevant for FCNC decays of the top

quark. The abbreviations used in the second column are as follows: charged current (CC), forward-backward (FB), deep inelastic
scattering (DIS), branching ratio (BR). The upper bounds on the λ0 and λ00 couplings scale as the masses of the sfermions listed in the
third column, raised to the powers given in the fourth column. The fifth column records the upper bounds when these masses are
uniformly set to 100 GeV (except for the gluino, whose mass is set to 1000 GeV). The sixth column gives the current lower bound on the
relevant sparticle masses and the last column gives the corresponding (scaled) upper bound on the R-parity-violating couplings.

Strongest
Constraint
arises from

Scales as
mass of

Scaling
exponent

Upper
bound

(100 GeV)

Sfermion
mass
(GeV)

Current
upper
bound

λ0121 Atomic Parity Violation [49] ~qL 1 0.035 1350 [55] 0.473

λ0122 νe mass bound [56] ~dR ½ 0.004 1100 [26] 0.013

λ0123 CC Universality [49] ~b1 ½ 0.02 620 [57] 0.05

λ0131 Atomic parity violation [58] ~tL 1 0.019 300 [59] 0.057

λ0132 FB asymmetry (eþe−) [58] [48] ~tL 1 0.28 300 [59] 0.84

λ0133 νe mass bound [56] ~b1 ½ 0.0002 620 [57] 0.0005

λ0221 Bounds on Rμe [60] ~dR 1 0.18 1100 [26] 1.98

λ0222 νμ mass bound [56] ~dR ½ 0.015 1100 [26] 0.05

λ0223 Ds meson decay [60] ~b1 1 0.18 620 [57] 1.1

λ0231 νμ DIS [48,49] ~ντ 1 0.22 1700 [61] 2.00

λ0232 Bounds on RμðZÞ [62,63] ~s 1 0.39 1000 [26] 2.00

~μ −1 100 [26]

λ0233 νμ mass bound [56] ~dR ½ 0.001 1100 [26] 0.003

λ0321 Ds decays [48] ~dR 1 0.52 1100 [26] 0.66

λ0322 ντ mass bound [56] ~dR ½ 0.02 1100 [26] 0.07

λ0323 Ds decay [48] ~b1 1 0.52 620 [57] 2.00

λ0331 Bounds on RτðZÞ [62] ~d 1, 0.22 1000 [26] 2.00

λ0332 ~τ −1 0.22 100 [26] 2.00

λ0333 ντ mass bound [56] ~b1 ½ 0.001 620 [57] 0.003

TABLE VI. Showing the experimental constraints on the R-parity-violating couplings λ002jk and λ003jk relevant for
FCNC decays of the top quark. The notations and abbreviations follow the conventions of Table V.

Strongest constraint
arises from

Scales as
mass of

Scaling
exponent

Upper bound
(100 GeV)

Sfermion
mass (GeV)

Current upper
bound

λ00212
λ00213 Perturbativity [64] – – 1.24 – 1.24

λ00223
λ00312 n − n̄ oscillation [65,66] ~dR 2 10−3 1100 [26] 0.1

λ00313 ~g ½ 1000 [31] 0.1

λ00323 Bounds on RbðZÞ [67] ~b 1 1.89 500 [57] 1.89

~τ −1 1.89 80 [26]
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case, for the decays t → uþ h0=Z, we would get
products like λ001jkλ

00
3jk, which are not considered in

this work.
In Table VII, we list the pairs of R-parity-violating

couplings which can lead to top FCNC processes, together
with their maximum values corresponding to the last
column of Tables V and VI. Some of the products are
rather large, though staying well within the perturbative
limit of 4π.
The Feynman diagrams which contribute to the FCNC

decay t → cþ h0 in the RPV-MSSM have been listed in
Fig. 7. Of course, since the R-parity violating super-
potential is added to the MSSM terms, we will also have
contributions from all the diagrams in Figs. 4 and 5.
However, these are always small—as we have seen—
and hence the dominant contribution will arise from
R-parity-violating terms alone.
As before, the details of the calculation are given in

Appendix C. It is important to note that we have presented
the diagrams mediated by λ0 couplings and the diagrams
mediated by λ00 couplings in the same framework. The
former include diagrams labeled (a)–(f), while the latter
are labeled (g)–(j). The corresponding amplitudes will be
added, as described in Appendix C. However, there is no
harm done, so long as we keep all the λ00 zero when the λ0
are nonzero, and vice versa. The variation of the branching
ratios for t → cþ h0 and t → cþ Z as a function of the
sfermion mass are given in Fig. 8. The panels on the left,
carrying the header LQD̄, correspond to the λ0 couplings
and show values proportional to ðλ0i2kλ0i3kÞ2. The relevant
values of ik are marked alongside each curve. To illustrate
the variation with the sfermion masses, we have set these
couplings to the experimental upper bounds in the last
column of Table V, and consequently, the products to the
values in Table VII. These, of course, will be relaxed
further if the concerned sfermion masses are taken higher,
and would lead to even greater branching ratios, as may be
imagined. However, we have chosen to keep the couplings
fixed to the values given in Table VII. In a similar way, the
panels on the right, carrying the header UDD̄, correspond to
the λ00 couplings, and show values proportional to the
products ðλ002jkλ003jkÞ2. Here, too, we have marked the values
of jk next to the relevant curves.

In Fig. 8, the left panels illustrate the behavior of the
respective branching ratios with respect to variations in
the mass of the slepton ~eLi. Each curve starts on the left
from the current lower bound on the mass of this slepton
and goes up to a TeV. The variation of the branching
ratio as the mass of the squark ~dRk varies from 1–2 TeV
is represented by the thickness of the lines in the upper
panel, and by the hatched regions on the lower panel

TABLE VII. Showing upper limits on the products of pairs of R-parity-violating couplings relevant for the decays
t → cþ h0=Z, as well as the sparticles exchanged in the loops for each combination.

λ0121λ
0
131 λ0122λ

0
132 λ0123λ

0
133 λ0221λ

0
231 λ0222λ

0
232 λ0223λ

0
233

0.0269 0.0109 2.5 × 10−5 3.96 0.1 0.0033

~eL, ~dR ~eL, ~sR ~eL, ~bR ~μL, ~dR ~μL, ~sR ~μL, ~bR
λ0321λ

0
331 λ0322λ

0
332 λ0323λ

0
333 λ00212λ

00
312 λ00213λ

00
313 λ00223λ

00
323

1.32 0.14 0.006 0.124 0.124 2.3436

~τL, ~dR ~τL, ~sR ~τL, ~bR ~sR ~bR ~bR

FIG. 7. Further Feynman diagrams leading to the decay t →
cþH in the RPV MSSM.

DEBJYOTI BARDHAN et al. PHYSICAL REVIEW D 94, 015026 (2016)

015026-14



(with the upper boundary indicating a squark mass of
1 TeV). Quite obviously, the branching ratio Bðt→cþh0Þ
is hardly affected by changes in the squark mass, whereas
the branching ratio Bðt → cþ Z0Þ can vary by as
much as an order of magnitude as the squark grows
heavier.
The panels on the right in Fig. 8 illustrate the variation

in the respective branching ratios with change in the mass
of the squark ~dRk, which is the b-squark for jk ¼ 13, 23 and
the c-squark for jk ¼ 12. The black and blue curves
correspond to the former two cases and the red curves
to the latter. In all the panels, the upper region shaded dark
grey corresponds to bounds on the relevant branching ratios
as set by the CMS Collaboration [68], while the regions
shaded light grey corresponds to the projected discovery

limits at the 13 TeV LHC, assuming an integrated lumi-
nosity of 3000 fb−1. It is immediately obvious, that even
with all the enhancements available to us in a model withR-
parity violation, the FCNC branching ratios of the t-quark
are rather small. For λ00 couplings, in fact, these are
hopelessly small—in fact, so small, that even if we take
the couplings to their perturbative limits, detection at the
LHC will become a touch-and-go affair. The situation is
better for λ0 couplings, largely because the sleptons can still
be quite light. However, as the sleptons become heavier, the
FCNC branching ratios fall rather fast and become unob-
servable. The best case arises for Bðt → cþ Z0Þ when we
have the couplings λ0221λ

0
231 and λ0321λ

0
331, with exchange of

~μL or ~τL in the loops. In the former case, the data already
available from the LHC constrains the slepton mass to be

UDD
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FIG. 8. Illustrating the variation in the branching ratios Bðt → cþ h0Þ (upper panels) and Bðt → cþ Z0Þ (lower panels) with increase
in the sfermion masses. For the panels on the left, which show branching ratios proportional to ðλ0i2kλ0i3kÞ2 with the values of ik marked
next to each curve, the mass of the slepton ~eLi is plotted along the abscissa, and the mass of the squark ~dRk is responsible for the
thickness of the lines in the upper panel and the hatched region in the lower panel. For the panels on the right, which show branching
ratios proportional to ðλ002jkλ003jkÞ2 with the values of jkmarked next to each curve, the mass of the squark ~dRk is plotted along the abscissa.
The dark (light) grey shaded regions represent the experimental bounds (discovery limits) from the LHC, operating at 7–8 TeV (13 TeV,
projected).
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greater than about 350 GeV. In either case, a discovery at
the 13 TeV run is possible for a wide rage of slepton and
squark masses. For other combinations of the λ0 couplings,
the branching ratios are too small to be accessible at the
LHC, even at the end of its run.
Before concluding this section, we may take up the issue

mentioned before, that if the experimental bounds on the
sfermion masses increase, the upper bounds on the R-
parity-violating couplings can be relaxed still further. This
may lead to higher values of the branching ratios in
question, if the sfermion in the FCNC loop is not the
same one which leads to relaxation of the bound. However,
if we consider the only products which lead to sizable
results as shown in Fig. 8, viz. λ0221λ

0
231, λ0321λ

0
331 and

λ00223λ
00
323, we can see from Table VII that the values are,

respectively, 3.96, 1.32 and 2.34. The maximum value that
we can push these to is, of course, 4π, and that would
provide enhancements in the branching ratios at the level of
one or two orders of magnitude. This might just make it
possible to observe the decay t → cþ Z if it is mediated by
λ00223λ

00
323, with more optimistic results for the λ0 couplings.

However, only if some sign of R-parity-violating SUSY is
found at the LHC will it be worthwhile to investigate
further details in this regard.

VI. SUMMARY AND CONCLUSIONS

This work was undertaken with a definite view, viz. to
investigate FCNC decays of the t quark which involve
heavy particles that cannot be discovered directly at the
LHC. Several such claims exist in the literature, but the
results obtained are not always mutually consistent (see
Table VIII below). By starting with a toy model which
closely resembles the SM, we have shown that the
extremely low values of FCNC branching ratios of the t-
quark in the SM arise from three different sources. These
are (i) the GIM cancellation between one-loop diagrams
with different d-type quarks in the loop, (ii) the MFV
paradigm, i.e. the choice of the hierarchical CKMmatrix as
the only source of flavor violation, and (iii) the choice of
gauge couplings or their equivalent for the new particles.

These result in suppression factors of the order 10−5, 10−4

and 10−1 respectively, driving the loop-induced branching
ratios from their naive values around 10−4 to tiny values in
the neighborhood of 10−14. It follows, therefore, that a new
physics model will be able to predict enhanced rates of
these FCNC decays only to the extent that one or more
of these conditions is violated. We then illustrate this set of
conditions by considering (a) the cMSSM—a model where
GIM cancellation is frustrated, but MFV holds and the
couplings can be modestly enhanced, and (b) the R-parity-
violating extension of the cMSSM, where all three con-
ditions can be broken. In vindication of the general
principles enunciated above, the branching ratios in the
cMSSM do not exceed 10−10 for t → cþ h0 and 10−8 for
t → cþ Z0, whereas, for the case when R-parity is vio-
lated, we can predict them to be as large as 10−5 and 10−3

respectively. The last-mentioned values are well within
the range of accessibility at the LHC, as illustrated in
Fig. 8 above.
The utility of identifying the three suppression principles

is well illustrated in Table VIII, where some of the different
models considered in the literature are classified according
to the conditions which hold (✓) or are violated (×). It is,
then, easy to utilize the suppression levels quoted above to
understand/criticize the branching ratios predicted by these
authors. Moreover, we now have a quick rule of thumb to
predict the branching ratios for FCNC decays of the top
quark for any new physics model, for all that we need is to
ask ourselves is which of these three conditions are
applicable.
The appendices of this article present a collection of the

formulas needed to perform the computations given in
the text, in an explicit and user-friendly form, using the
’tHooft-Veltman and Passarino-Veltman formalism for one-
loop integrals. The formulas are given in terms of certain
generic couplings, so as to be easily usable to carry out
similar computations in almost any new model of physics
beyond the SM.
Finally, a word about the phenomenological implications

of this work. It turns out that the use of the FCNC decays of

TABLE VIII. A few of the earlier calculations of FCNC decays of the top quark. Some of the results are in
agreement with our predictions, given in parentheses. Those which are not are generally due to choice of vastly
different parameters, which were allowed when these calculations were performed.

Reference Model GIM MFV g t → ch0 t → cZ0

T.-J. Gao et al. [69] B, L × × × 10−4ð5Þ –
J.-J. Cao et al. [70] MSSM × ✓ × 10−5ð9Þ 10−6ð7Þ
B. Mele [71] MSSM × ✓ × 10−5ð9Þ 10−8ð7Þ
S. Bejar et al. [72] 2HDM Type-II × ✓ × 10−4ð9Þ –
G. Eilam et al. [58] R SUSY × × ✓ 10−5ð5Þ –
C. Yue et al. [73] Nonuniversal Z0 × × × – 10−6ð4Þ
I. Baum et al. [74] t-quark 2HDM × ✓ × 10−6ð6Þ –
A. Dedes et al. [44] SUSY × × × 10−7ð7Þ –
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the top quark is not such a ready handle to new physics at
the LHC (and other high energy machines) as one might
naively think, since the corresponding branching ratios are
generally rather small. Even when we deviate almost
completely from the SM, as exemplified in the R-parity-
violating couplings, we require to be lucky to have just the
right masses and pairing(s) of couplings in order to predict
an observable effect. This is something which only the
future can tell, and it is certain that the eyes of the entire
high energy community will be turned to the results of the
LHC, as they slowly unfold over the years to come.
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APPENDIX A: TOY MODEL AMPLITUDES

1. The decay t → cþH

We consider the decay tðkÞ → cðpÞ þHðqÞ. In the rest

frame of the t quark, we have k ¼ ðmt; ~0Þ and

uðk; htÞ ¼
ffiffiffiffiffiffi
mt

2

r �
1þ ht 1 − ht 0 0

�
T

ðA1Þ

where ht ¼ �1 is the helicity of the t quark. Now, the three-
momenta ~p and ~q will be back-to-back, and we can choose
this as the z-axis. In this case, we can write

p ¼ ðEc 0 0 j~pj Þ q ¼ ðEH 0 0 −j~pj Þ ðA2Þ

where

j~pj≃ Ec ≃m2
t −M2

H

2mt
EH ≃m2

t þM2
H

2mt
ðA3Þ

taking mc ≪ mt, MH. In the approximation, the c-quark
wave function is

uðp;hcÞ

≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t −M2
H

8mt

s �
1þ hc 1− hc 1þ hc −1þ hc

�
T
:

ðA4Þ

The helicity amplitudes Mðhc; htÞ now have the explicit
form

Mðhc; htÞ ¼
X3
i¼1

λiAiðhc; htÞ ðA5Þ

where i runs over the three d-type quarks in the loop,
λi ¼ V2iV�

3i, and we parametrize

Aiðhc; htÞ ¼ ūðp; hcÞiðF1iPL þ F2iPRÞuðk; htÞ ðA6Þ

where PL, PR are the chiral projection operators

PL ¼ 1

2
ð1 − γ5Þ PR ¼ 1

2
ð1þ γ5Þ ðA7Þ

and F1i and F2i are form factors given below. Four helicity
amplitudes are possible, but the only nonvanishing ones are

Aiðþ1;þ1Þ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t −M2
H

q
F1i

Aið−1;−1Þ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t −M2
H

q
F2i ðA8Þ

Each of the form factors F1i and F2i can be written

Fni ¼ FðaÞ
ni þ FðbÞ

ni þ FðcÞ
ni þ FðdÞ

ni ðA9Þ

where n ¼ 1, 2 and the superscripts refer to the graphs
(a)–(d) shown in Fig. 1. These can be written in terms of
the Passarino-’tHooft-Veltman functions, defined as
Euclidean space integrals

B0ðm1; m2;MÞ ¼
Z

d4k
π2

1

ðk2 þm2
1Þfðkþ pÞ2 þm2

2g

pμB1ðm1; m2;MÞ ¼
Z

d4k
π2

kμ
ðk2 þm2

1Þfðkþ pÞ2 þm2
2g
ðA10Þ

where p2 ¼ −M2. In the MS scheme, we can write

B0ðm1; m2;MÞ ¼ Δþ bB0ðm1; m2;MÞ

B1ðm1; m2;MÞ ¼ −
1

2
Δþ bB1ðm1; m2;MÞ ðA11Þ

where the bB0;1 are finite. The divergent quantity is Δ ¼
2=ε − γ þ ln 4π where ε → 0 and γ is the Euler-Mascheroni
constant. We also have
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C0ðm1; m2; m3;M1;M2;M3Þ ¼
Z

d4k
π2

1

ðk2 þm2
1Þfðkþ p2Þ2 þm2

2gfðkþ p2 þ p3Þ2 þm2
3g

C11p2μ þ C12p3μ ¼
Z

d4k
π2

kμ
ðk2 þm2

1Þfðkþ p2Þ2 þm2
2gfðkþ p2 þ p3Þ2 þm2

3g
ðA12Þ

where p1 ¼ p2 þ p3 and p2
i ¼ −M2

i for i ¼ 1, 2, 3 and the
C0, C11 and C12 are naturally finite. In fact, the GIM
cancellation ensures that all the form factors are finite and
hence, we keep only the finite parts of the B and C
functions. In terms of these, we can now compute the F1

form factors

FðaÞ
1i ¼ −

ξη2

16π2
mcC

ðaÞ
12

FðbÞ
1i ¼ yimiη

2

16π2
mtf2ðCðbÞ

11 − CðbÞ
12 Þ þ CðbÞ

0 g

FðcÞ
1i ¼ ycη2mt

16π2ðm2
t −m2

cÞ
mt

~B1ðmi;Mω;mtÞ

FðdÞ
1i ¼ −

ytη2mc

16π2ðm2
t −m2

cÞ
mc

~B1ðmi;Mω;mcÞ ðA13Þ

and the F2 form factors

FðaÞ
2i ¼ −

ξη2

16π2
mtðCðaÞ

11 − CðaÞ
12 Þ

FðbÞ
2i ¼ yimiη

2

16π2
mcðCðbÞ

0 þ 2CðbÞ
12 Þ

FðcÞ
2i ¼ ycη2mt

16π2ðm2
t −m2

cÞ
mc

~B1ðmi;Mω;mtÞ

FðdÞ
2i ¼ −

ytη2mc

16π2ðm2
t −m2

cÞ
mt

~B1ðmi;Mω;mcÞ ðA14Þ

where

CðaÞ
X ¼ CXðmi;Mω;Mω;mc;mt;MHÞ

CðbÞ
X ¼ CXðMω; mi; mi;mc;mt;MHÞ ðA15Þ

for X ¼ 0, 11, 12, 22. These are evaluated using the public
domain software FF [27].
The Yukawa couplings y are the SM ones, i.e.

yi ¼
gmi

2Mω
yt ¼

gmt

2Mω
yc ¼

gmc

2Mω
: ðA16Þ

The above form factors can be used to evaluate the total
form factors appearing in Eq. (A9), which then enables us
to compute the helicity amplitudes in Eq. (A8). These are
then convoluted with the λ factors in Eq. (2.3) and used to
generate the squared and spin-summed/ averaged matrix

element in Eq. (2.4). Plugging this into Eq. (2.5) then
produces the desired result.

2. The decay t → cþ Z

We now consider the decay tðkÞ → cðpÞ þ ZðqÞ. The
kinematics is similar to the previous case, withMZ in place
of MH. Accordingly, the helicity spinor for the c-quark, in
the approximation mc ≪ mt, MZ, is

uðp; hcÞ

≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t −M2
Z

8mt

s �
1þ hc 1 − hc 1þ hc −1þ hc

�
T

ðA17Þ

while the helicity spinor for the t-quark is identical with
that in Eq. (A1). In this case, we also have to consider the
polarization vector of the Z boson, which, for the three
helicity choices hZ ¼ 0, �1, has the form

εðq; hZÞ ¼
�
− ð1−jhZ jÞj~pj

MZ
∓ hZffiffi

2
p − ijhZjffiffi

2
p ð1−jhZjÞEZ

MZ

�
ðA18Þ

where, as in Eq. (A3),

j~pj≃ Ec ≃m2
t −M2

Z

2mt
EZ ≃m2

t þM2
Z

2mt
: ðA19Þ

The helicity amplitudes MðhZ; hc; htÞ now have the
explicit form

MðhZ; hc; htÞ ¼
X3
i¼1

λiAiðhZ;hc; htÞ ðA20Þ

where i runs over the three d-type quarks in the loop,
λi ¼ V2iV�

3i, and we parametrize

AiðhZ; hc; htÞ ¼ ūðp; hcÞiΓμuðk; htÞε�μðqÞ
Γμ ¼ F1iγ

μPL þ F2iγ
μPR

þ iF3iσ
μνqνPL þ iF4iσ

μνqνPR: ðA21Þ

Of the 12 possible helicity amplitudes, the only non-
vanishing ones are
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Aiðþ1;−1;þ1Þ¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

t −M2
ZÞ

q
½F1i−F4iðEZþj~pjÞ�

Aið−1;þ1;−1Þ¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

t −M2
ZÞ

q
½F2i−F3iðEZþj~pjÞ�

Aið0;þ1;þ1Þ¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t −M2
Z

q "
F2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EZþj~pj
EZ− j~pj

s
−F3iMZ

#

Aið0;−1;−1Þ¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t −M2
Z

q "
F1i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EZþj~pj
EZ− j~pj

s
−F4iMZ

#
:

ðA22Þ

Each of the form factors can be written

Fni ¼ FðaÞ
ni þ FðbÞ

ni þ FðcÞ
ni þ FðdÞ

ni ðA23Þ

where n ¼ 1, 2, 3, 4 and the superscripts refer to the graphs
(a)–(d) shown in Fig. 1 (with H replaced by Z). These can
be written, as before, in terms of the Passarino-’tHooft-
Veltman functions. We thus obtain the F1 form factors

FðaÞ
1i ¼ ξη2

16π2
½m2

t ðCðaÞ
11 − CðaÞ

12 þ CðaÞ
21 − CðaÞ

23 Þ þmcmtðCðaÞ
12 þ CðaÞ

23 Þ − CðaÞ
24 �

FðbÞ
1i ¼ η2

16π2

�
αim2

i C
ðbÞ
0 þ βiðB0 −M2

ωC
ðbÞ
0 þm2

t ðCðbÞ
21 − CðbÞ

23 Þ −m2
cC

ðbÞ
12 − 2CðbÞ

24 Þ

þ βimcmt

�
3

2
ðCðbÞ

0 þ CðbÞ
11 Þ þ CðbÞ

12 þ CðbÞ
23

��
FðcÞ
1i ¼ −

η2

16π2ðm2
t −m2

cÞ
½αm2

cB1ðmi;Mω;mcÞ þ βmcmtB1ðmi;Mω;mcÞ�

FðdÞ
1i ¼ η2

16π2ðm2
t −m2

cÞ
½αm2

t B1ðmi;Mω;mtÞ þ βmcmtB1ðmi;Mω;mtÞ� ðA24Þ

the F2 form factors

FðaÞ
2i ¼ −

ξη2

16π2
½m2

t ðCðaÞ
11 − CðaÞ

12 þ CðaÞ
21 − CðaÞ

23 Þ −mcmtðCðaÞ
12 þ CðaÞ

23 Þ − CðaÞ
24 �

FðbÞ
2i ¼ −

η2

16π2

�
αim2

i C
ðbÞ
0 þ βiðB0 −M2

ωC
ðbÞ
0 þm2

t ðCðbÞ
21 − CðbÞ

23 Þ −m2
cC

ðbÞ
12 − 2CðbÞ

24 Þ

− βimcmt

�
3

2
ðCðbÞ

0 þ CðbÞ
11 Þ þ CðbÞ

12 þ CðbÞ
23

��
FðcÞ
2i ¼ η2

16π2ðm2
t −m2

cÞ
½αm2

cB1ðmi;Mω;mcÞ − βmcmtB1ðmi;Mω;mcÞ�

FðdÞ
2i ¼ −

η2

16π2ðm2
t −m2

cÞ
½αm2

t B1ðmi;Mω;mtÞ − βmcmtB1ðmi;Mω;mtÞ� ðA25Þ

the nonvanishing F3 form factors

FðaÞ
3i ¼ −

ξη2

16π2
½mtðCðaÞ

11 − CðaÞ
12 þ CðaÞ

21 − CðaÞ
23 Þ þmcðCðaÞ

12 þ CðaÞ
23 Þ�

FðbÞ
3i ¼ −

η2

16π2
βi

�
mtðCðbÞ

11 − CðbÞ
12 þ CðbÞ

21 − CðbÞ
23 Þ þmc

�
1

2
ðCðbÞ

0 þ CðbÞ
11 Þ þ CðbÞ

12 þ CðbÞ
23

��
ðA26Þ

and the nonvanishing F4 form factors
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FðaÞ
4i ¼ −

ξη2

16π2
½mtðCðaÞ

11 − CðaÞ
12 þ CðaÞ

21 − CðaÞ
23 Þ −mcðCðaÞ

12 þ CðaÞ
23 Þ�

FðbÞ
4i ¼ −

η2

16π2
βi

�
mtðCðbÞ

11 − CðbÞ
12 þ CðbÞ

21 − CðbÞ
23 Þ −mc

�
1

2
ðCðbÞ

0 þ CðbÞ
11 Þ þ CðbÞ

12 þ CðbÞ
23

��
: ðA27Þ

In the above,

B0 ¼ B0ðmi;mi;MZÞ
CðaÞ
X ¼ CXðmi;Mω;Mω;mc;mt;MZÞ

CðbÞ
X ¼ CXðMω; mi; mi;mc;mt;MZÞ

where X ¼ 0; 11; 12; 21; 23; 24. The Zdidi couplings are
α ¼ − 1

2
− 2Qsin2θW and β ¼ 1

2
where Q ¼ −1=3 is the

charge of the down-type quark.
Once we have these form factors, we sum them up using

Eq. (A23) and use them to calculate the helicity amplitudes
in Eq. (A23). These are then convoluted with the λi
factors in Eq. (2.13) and used to calculate the squared
spin-summed/averaged matrix element in Eq. (2.14).
Finally this is used in Eq. (2.15) to produce the par-
tial width.

APPENDIX B: SM AND CMSSM AMPLITUDES

1. The decay t → cþH

In the standard model, as in the toy model, the decay
t → cþH can be parametrized in terms of the two non-
vanishing helicity amplitudes of Eq. (A8). The calculation
follows the lines of the toy model, except that the
diagrams are those of Fig. 4 instead of Fig. 1. Thus, in

this Appendix, we only require to list the form factors,
diagram-wise.
It is convenient, in evaluating these diagrams, to define a

set of general vertices:

ūiuih∶ igðAh
uiPL þ Bh

uiPRÞ
d̄idih∶ igðAh

diPL þ Bh
diPRÞ

hð−qÞϕþðpÞW−
μ ∶ igαhϕðpþ qÞμ

hϕþϕ0−∶ igMWβ
h
ϕϕ0

hWþ
μ W−

ν ∶ igMWωhgμν

ūidjϕþ∶ igðXϕ
ijPL þ Yϕ

ijPRÞ

in terms of a set of coupling constants Ah
ui, B

h
ui, A

h
di, B

h
di, α

h
ϕ,

βhϕϕ0 , ωh, X
ϕ
ij and Y

ϕ
ij. In order to obtain numerical values in

the SM, we need to substitute the coupling constants
according to the table given below.

coupling: Ah
ui Bh

ui Ah
di Bh

di αhϕ βhϕϕ0 ωh Xϕ
ij Yϕ

ij

SM value : mi
2MW

mi
2MW

mi
2MW

mi
2MW

− 1
2

− m2
h

M2
W

1 miffiffi
2

p
MW

− mjffiffi
2

p
MW

In terms of these, the form factors of type F1 are

FðaÞ
1i ¼ ig3MWωh

16π2
mcC

ðaÞ
12

FðbÞ
1i ¼ ig3αhGþ

16
ffiffiffi
2

p
π2

½XG
ciððm2

t − 2M2
hÞðCðbÞ

11 − CðbÞ
12 Þ − B0ð2; 3Þ þm2

i C
ðbÞ
0 þ 2m2

cC
ðbÞ
11 Þ −mimcYG

ciðCðbÞ
12 þ 2CðbÞ

0 Þ�

FðcÞ
1i ¼ ig3αhGþ

16
ffiffiffi
2

p
π2

½XG
tið2m2

t C
ðcÞ
11 − 2m2

SC
ðcÞ
12 þm2

cC
ðcÞ
12 − B0ð2; 3Þ þm2

i C
ðcÞ
0 Þ −mimtYG

ti ðCðcÞ
11 − CðcÞ

12 þ 2CðcÞ
0 Þ�

FðdÞ
1i ¼ −

ig3MWβ
h
GG

16π2
½mtXG

ciX
G
ti ðCðdÞ

11 − CðdÞ
12 Þ −miXG

ciY
G
tiC

ðdÞ
0 þmcYG

ciY
G
tiC

ðdÞ
12 �

FðeÞ
1i ¼ ig3mi

16π2
mc½ðAh

di þ Bh
diÞCðeÞ

12 þ Bh
diC

ðeÞ
0 �

FðfÞ
1i ¼ −

ig3

16π2

�
z1ðB0ð2; 3Þ −M2

WC
ðfÞ
0 Þ − z3C

ðfÞ
0 −mtz5

XG
ti

YG
ti
ðCðfÞ

11 − CðfÞ
12 Þ −mcz2C

ðfÞ
12

�
YG
ti

FðgÞ
1i ¼ ig3

16π2ðm2
t −m2

cÞ
m2

t Ah
ucB

ðgÞ
1
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FðhÞ
1i ¼ ig3

16π2ðm2
t −m2

cÞ
�
mt

�
mtAh

ucYG
ci þmcAh

uc
XG
ti

YG
ti
XG
ci

�
BðhÞ
1 −mi

�
mtAh

ucYG
ci
XG
ti

YG
ti
þmcAh

ucXG
ci

�
BðhÞ
0

�
YG
ti

FðiÞ
1i ¼ −

ig3

16π2ðm2
t −m2

cÞ
mcmtAh

utB
ðiÞ
1

FðjÞ
1i ¼ −

ig3

16π2ðm2
t −m2

cÞ
½mcXG

ti ðmcXG
ciB

ðjÞ
1 −miYG

ciB
ðjÞ
0 Þ þmtYG

tiðmcYG
ciB

ðjÞ
1 −miXG

ciB
ðjÞ
0 Þ�Ah

ut ðB1Þ

and the form factors of type F2 are

FðaÞ
2i ¼ ig3MWωh

16π2
mtðCðaÞ

11 − CðaÞ
12 Þ

FðbÞ
2i ¼ ig3αhGþ

16
ffiffiffi
2

p
π2

½XG
cimcmtðCðbÞ

12 − 2CðbÞ
11 Þ þ YG

cimimtðCðbÞ
0 − CðbÞ

11 þ CðbÞ
12 Þ�

FðcÞ
2i ¼ −ig3αhGþ

16
ffiffiffi
2

p
π2

½XG
timcmtðCðcÞ

12 − 2CðcÞ
11 Þ þ YG

timimtðCðcÞ
0 − CðcÞ

11 þ CðcÞ
12 Þ�

FðdÞ
2i ¼ −

ig3MWβ
h
GG

16π2
½mtYG

ciY
G
ti ðCðdÞ

11 − CðdÞ
12 Þ −miXG

tiY
G
ciC

ðdÞ
0 þmcXG

ciX
G
tiC

ðdÞ
12 �

FðeÞ
2i ¼ ig3mi

16π2
mt½ðAh

di þ Bh
diÞðCðeÞ

11 − CðeÞ
12 Þ þ Ah

diC
ðeÞ
0 �

FðfÞ
2i ¼ −

ig3

16π2

�
z4ðB0ð2; 3Þ −M2

WC
ðfÞ
0 Þ − z6C

ðfÞ
0 −mtz2

YG
ti

XG
ti
ðCðfÞ

11 − CðfÞ
12 Þ −mcz5C

ðfÞ
12

�
XG
ti

FðgÞ
2i ¼ ig3

16π2ðm2
t −m2

cÞ
mcmtBh

ucB
ðgÞ
1

FðhÞ
2i ¼ ig3

16π2ðm2
t −m2

cÞ
�
mt

�
mtBh

ucXG
ci þmcBh

uc
YG
ti

XG
ti
YG
ci

�
BðhÞ
1 −mi

�
mtBh

ucXG
ci
YG
ti

XG
ti
þmcBh

ucYG
ci

�
BðhÞ
0

�
XG
ti

FðiÞ
2i ¼ −

ig3

16π2ðm2
t −m2

cÞ
m2

cBh
utB

ðiÞ
1

FðjÞ
2i ¼ −

ig3

16π2ðm2
t −m2

cÞ
½mcYG

tiðmcYG
ciB

ðjÞ
1 −miXG

ciB
ðjÞ
0 Þ þmtXG

ti ðmcXG
ciB

ðjÞ
1 −miYG

ciB
ðjÞ
0 Þ�Bh

ut ðB2Þ

As in the previous section, the superscripts refer to the diagrams marked (a)–(j) in Fig. 4.
In the above, we have used the functions

CðaÞ
X ¼ CXðmi;MW;MW ;mc;mt;MhÞ BðgÞ

1 ¼ B1ðmi;MW ;mtÞ
CðbÞ
X ¼ CXðmi;MW;MW ;mc;mt;MhÞ BðhÞ

1 ¼ B1ðmi;MW ;mtÞ
CðcÞ
X ¼ CXðmi;MW;MW ;mc;mt;MhÞ BðhÞ

0 ¼ B0ðmi;MW ;mtÞ
CðdÞ
X ¼ CXðmi;MW;MW ;mc;mt;MhÞ BðiÞ

1 ¼ B1ðmi;MW ;mcÞ
CðeÞ
X ¼ CXðMW;mi;mi;mc;mt;MhÞ BðjÞ

1 ¼ B1ðmi;MW ;mcÞ
CðfÞ
X ¼ CXðMW;mi;mi;mc;mt;MhÞ BðjÞ

0 ¼ B0ðmi;MW ;mcÞ ðB3Þ

where X ¼ 0; 11; 12; 21; 23; 24, as before, and defined a set of effective couplings
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z1¼XG
ciB

h
di

z2¼mtYG
ci
XG
ti

YG
ti
Ah
diþmcXG

ciB
h
diþmiYG

ciB
h
diþmiYG

ciA
h
di

z3¼mt
XG
ti

YG
ti
Ah
diðmiXG

ciþmcYG
ciÞþm2

i A
h
diX

G
ciþmimcAh

diY
G
ci

z4¼YG
ciA

h
di

z5¼mtXG
ci
YG
ti

XG
ti
Bh
diþmcYG

ciA
h
diþmiXG

ciA
h
diþmiXG

ciB
h
di

z6¼mt
YG
ti

XG
ti
Bh
diðmiYG

ciþmcXG
ciÞþm2

i B
h
diY

G
ciþmimcBh

diX
G
ci

ðB4Þ

These form factors can now be combined, using Fni ¼Pj
A¼a F

A
ni for n ¼ 1, 2 and the results substituted into

Eq. (A8) as before.

When we come to consider the cMSSM, the SM contribu-
tions will not only involve modifications of the SM couplings
given above, but will also be enhanced by contributions
from the additional eight diagrams in Fig. 5, which involve
superparticles in the loops. These involve some additional
couplings which are parametrized in a general way as

χþi χ
−
j h∶ igðAh

ijPL þ Bh
ijPRÞ

χþi χ
−
j Z

μ∶ igγμðAZ
ijPL þ BZ

ijPRÞ
~d� ~dh∶ igMWβ

h
~d ~d

~dðpÞ ~d�ðqÞZμ∶ igα ~d
~d
ðpþ qÞμ

~d�i ūkχþj ∶ igðXi
kjPL þ Yi

kjPRÞ

in terms of an additional set of coupling constants Ah
ij, B

h
ij,

AZ
ij, B

Z
ij, β

h
~d ~d
, α ~d

~d
, Xi

kj, Y
i
kj. For a numerical analysis, we

require to take the full set of coupling constants as given in
the table below.

Coupling: Ah
ui Bh

ui Ah
di Bh

di

cMSSM: − mi cosα
2MW sin β − mi cosα

2MW sin β
mi sin α

2MW cos β
mi sin α

2MW cos β

Coupling: αhGþ αhhþ βhGþG− βhGþhþ

cMSSM: − 1
2
sinðβ − αÞ − 1

2
cosðβ − αÞ cos 2β sinðαþβÞ

2 cos2 θW

cosðβ−αÞðm2

hþ−m
2

h0
Þ

2M2
W

Coupling: βhhþh− ωh XGþ
ij YGþ

ij

cMSSM value: − sinðβ − αÞ sinðβ − αÞ miffiffi
2

p
MW

− mjffiffi
2

p
MW

− cos 2β sinðαþβÞ
2 cos2 θW

Coupling: Xhþ
ij Yhþ

ij

cMSSM value: mi cot βffiffi
2

p
MW

mjtanβffiffi
2

p
MW

Coupling: Ah
ij Bh

ij AZ
ij BZ

ij

cMSSM value: Q�
ij sin α − S�ij cos α Qji sin α − Sji cos α QV

ij QU
ij

Coupling: βh~d ~d
α ~d
~d

Xi
kj Yi

kj

cMSSM value: −ð1
2
− sin2 θW

3
Þ 1−2

3
sin2 θW

2 cos θW
0 Uj1

þ sinðαþβÞ
cos2 θW

where, in terms of the chargino mixing matrices U and V,

Qij ¼
1ffiffiffi
2

p Ui2Vj1; Sij ¼
1ffiffiffi
2

p Ui1Vj2

QU
ij ¼ −Ui1U�

j1 −
1

2
Ui2U�

j2 þ δijsin2θW ;

QV
ij ¼ −Vi1V�

j1 −
1

2
Vi2V�

j2 þ δijsin2θW
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Evaluating the Feynman diagrams of Figs. 4 and 5 now leads to the F1 form factors

FðkÞ
1i ¼ ig3αhhþ

16
ffiffiffi
2

p
π2

½Xhþ
ci ððm2

t − 2M2
hþÞðC

ðkÞ
11 − CðkÞ

12 Þ − B0ð2; 3Þ þm2
i C

ðkÞ
0 þ 2m2

cC
ðkÞ
11 Þ −mimcYhþ

ci ðCðkÞ
12 þ 2CðkÞ

0 Þ�

FðlÞ
1i ¼ ig3αhhþ

16
ffiffiffi
2

p
π2

½Xhþ
ti ð2m2

t C
ðlÞ
11 − 2M2

hþC
ðlÞ
12 þm2

cC
ðlÞ
12 − B0ð2; 3Þ þm2

i C
ðlÞ
0 Þ −mimtYhþ

ti ðCðlÞ
11 − CðlÞ

12 þ 2CðlÞ
0 Þ�

FðmÞ
1i ¼ −

ig3MWβ
h
hþh−

16π2
½mtXhþ

ci X
hþ
ti ðCðmÞ

11 − CðmÞ
12 Þ −miXhþ

ci Y
hþ
ti C

ðmÞ
0 þmcYhþ

ci Y
hþ
ti C

ðmÞ
12 �

FðnÞ
1i ¼ −

ig3MWβ
h
Gþh−

16π2
½mtXG

ciX
hþ
ti ðCðnÞ

11 − CðnÞ
12 Þ −miXG

ciY
hþ
ti C

ðnÞ
0 þmcYG

ciY
hþ
ti C

ðnÞ
12 �

FðoÞ
1i ¼ −

ig3MWβ
S
Gþh−

16π2
½mtXhþ

ci X
G
tiðCðoÞ

11 − CðoÞ
12 Þ −miXhþ

ci Y
G
tiC

ðoÞ
0 þmcYhþ

ci Y
G
tiC

ðoÞ
12 �

FðpÞ
1i ¼ −

ig3

16π2

�
z1ðBðpÞ

0 −M2
hþC

ðpÞ
0 Þ − z3C

ðpÞ
0 −mtz5

Xhþ
ti

Yhþ
ti

ðCðpÞ
11 − CðpÞ

12 Þ −mcz2C
ðpÞ
12

�
Yhþ
ti

FðqÞ
1i ¼ −

ig3MWβ
h
~d ~d

16π2
½mtXi

cjX
i
tjðCðqÞ

11 − CðqÞ
12 Þ −miXi

cjY
i
tjC

ðqÞ
0 þmcYi

cjY
i
tjC

ðqÞ
12 �

FðrÞ
1i ¼ −

ig3

16π2

�
z1ðBðrÞ

0 −M2
~di
CðrÞ
0 Þ − z3C

ðrÞ
0 −mtz5

Xi
tj

Yi
tj
ðCðrÞ

11 − CðrÞ
12 Þ −mcz2C

ðrÞ
12

�
Yi
tj

FðsÞ
1i ¼ ig3

16π2ðm2
t −m2

cÞ
�
mt

�
mtAh

ucYhþ
ci þmcAh

uc
Xhþ
ti

Yhþ
ti

Xhþ
ci

�
BðsÞ
1 −mi

�
mtAh

ucYhþ
ci

Xhþ
ti

Yhþ
ti

þmcAh
ucXhþ

ci

�
BðsÞ
0

�
Yhþ
ti

FðtÞ
1i ¼ ig3

16π2ðm2
t −m2

cÞ
�
mt

�
mtAh

ucYi
cj þmcAh

uc
Xhþ
ti

Yhþ
ti

Xi
cj

�
BðtÞ
1 −mi

�
mtAh

ucYi
cj
Xhþ
ti

Yhþ
ti

þmcAh
ucXi

cj

�
BðtÞ
0

�
Yhþ
ti

FðuÞ
1i ¼ −

ig3

16π2ðm2
t −m2

cÞ
½mcXhþ

ti ðmcXhþ
ci B

ðuÞ
1 −miYhþ

ci B
ðuÞ
0 Þ þmtYhþ

ti ðmcYhþ
ci B

ðuÞ
1 −miXhþ

ci B
ðuÞ
0 Þ�Ah

ut

FðvÞ
1i ¼ −

ig3

16π2ðm2
t −m2

cÞ
½mcXi

tjðmcXi
cjB

ðvÞ
1 −miYi

cjB
ðvÞ
0 Þ þmtYi

tjðmcYi
cjB

ðvÞ
1 −miXi

cjB
ðvÞ
0 Þ�Ah

ut ðB5Þ

and the F2 form factors

FðkÞ
2i ¼ ig3αhhþ

16
ffiffiffi
2

p
π2

½Xhþ
ci mcmtðCðkÞ

12 − 2CðkÞ
11 Þ þ Yhþ

ci mimtðCðkÞ
0 − CðkÞ

11 þ CðkÞ
12 Þ�

FðlÞ
2i ¼ −ig3αhhþ

16
ffiffiffi
2

p
π2

½Xhþ
ti mcmtðCðlÞ

12 − 2CðlÞ
11Þ þ Yhþ

ti mimtðCðlÞ
0 − CðlÞ

11 þ CðlÞ
12Þ�

FðmÞ
2i ¼ −

ig3MWβ
h
hþh−

16π2
½mtYhþ

ci Y
hþ
ti ðCðmÞ

11 − CðmÞ
12 Þ −miXhþ

ti Y
hþ
ci C

ðmÞ
0 þmcXhþ

ci X
hþ
ti C

ðmÞ
12 �

FðnÞ
2i ¼ −

ig3MWβ
h
Gþh−

16π2
½mtYG

ciY
hþ
ti ðCðnÞ

11 − CðnÞ
12 Þ −miXhþ

ti Y
G
ciC

ðnÞ
0 þmcXG

ciX
hþ
ti C

ðnÞ
12 �

FðoÞ
2i ¼ −

ig3MWβ
S
Gþh−

16π2
½mtYhþ

ci Y
G
ti ðCðoÞ

11 − CðoÞ
12 Þ −miXG

tiY
hþ
ci C

ðoÞ
0 þmcXhþ

ci X
G
tiC

ðoÞ
12 �

FðpÞ
2i ¼ −

ig3

16π2

�
z4ðBðpÞ

0 −M2
hþC

ðpÞ
0 Þ − z6C

ðpÞ
0 −mtz2

Yhþ
ti

Xhþ
ti

ðCðpÞ
11 − CðpÞ

12 Þ −mcz5C
ðpÞ
12

�
Xhþ
ti

FðqÞ
2i ¼ −

ig3MWβ
h
~d ~d

16π2
½mtYi

cjY
i
tjðCðqÞ

11 − CðqÞ
12 Þ −miXi

tjY
i
cjC

ðqÞ
0 þmcXi

cjX
i
tjC

ðqÞ
12 �

FðrÞ
2i ¼ −

ig3

16π2

�
z4ðBðrÞ

0 −M2
~di
CðrÞ
0 Þ − z6C

ðrÞ
0 −mtz2

Yi
tj

Xi
tj
ðCðrÞ

11 − CðrÞ
12 Þ −mcz5C

ðrÞ
12

�
Xi
tj ðB6Þ
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FðsÞ
2i ¼ ig3

16π2ðm2
t −m2

cÞ

×

�
mt

�
mtBh

ucXhþ
ci þmcBh

uc
Yhþ
ti

Xhþ
ti

Yhþ
ci

�
BðsÞ
1

−mi

�
mtBh

ucXhþ
ci

Yhþ
ti

Xhþ
ti

þmcBh
ucYhþ

ci

�
BðsÞ
0

�
Xhþ
ti

FðtÞ
2i ¼ ig3

16π2ðm2
t −m2

cÞ

×

�
mt

�
mtBh

ucXi
cj þmcBh

uc
Yhþ
ti

Xhþ
ti

Yi
cj

�
BðtÞ
1

−mi

�
mtBh

ucXi
cj
Yhþ
ti

Xhþ
ti

þmcBh
ucYi

cj

�
BðtÞ
0

�
Xhþ
ti

FðuÞ
2i ¼ −

ig3

16π2ðm2
t −m2

cÞ
½mcYhþ

ti ðmcYhþ
ci B

ðuÞ
1 −miXhþ

ci B
ðuÞ
0 Þ

þmtXhþ
ti ðmcXhþ

ci B
ðuÞ
1 −miYhþ

ci B
ðuÞ
0 Þ�Bh

ut

FðvÞ
2i ¼ −

ig3

16π2ðm2
t −m2

cÞ
½mcYi

tjðmcYi
cjB

ðvÞ
1 −miXi

cjB
ðvÞ
0 Þ

þmtXi
tjðmcXi

cjB
ðvÞ
1 −miYi

cjB
ðvÞ
0 Þ�Bh

ut ðB7Þ

where

CðkÞ
X ¼ CXðmi;MW;Mhþ ;mc;mt;MhÞ

BðsÞ
X ¼ BXðm~χþi

; M ~dj
;mtÞ

CðlÞ
X ¼ CXðmi;Mhþ ;MW ;mc;mt;MhÞ

BðtÞ
X ¼ BXðmi;Mhþ ;mtÞ

CðmÞ
X ¼ CXðmi;Mhþ ;Mhþ ;mc;mt;MhÞ
BðuÞ
X ¼ BXðm~χþi

; M ~dj
;mcÞ

CðnÞ
X ¼ CXðmi;Mhþ ;MW ;mc;mt;MhÞ

BðvÞ
X ¼ BXðmi;Mhþ ;mcÞ

CðoÞ
X ¼ CXðmi;MW;Mhþ ;mc;mt;MhÞ

CðpÞ
X ¼ CXðMhþ ; mi; mi;mc;mt;MhÞ

CðqÞ
X ¼ CXðm~χþi

; M ~dj
;M ~dj

;mc;mt;MhÞ
CðrÞ
X ¼ CXðM ~dj

; m~χþi
; m~χþi

;mc;mt;MhÞ ðB8Þ

where X ¼ 0; 11; 12; 21; 23; 24, as before, and defined two
sets of effective couplings

zðpÞ1 ¼Xh
ciB

h
di

zðpÞ2 ¼mtYh
ci
Xh
ti

Yh
ti
Ah
diþmcXh

ciB
h
diþmiYh

ciB
h
diþmiYh

ciA
h
di

zðpÞ3 ¼mt
Xh
ti

Yh
ti
Ah
diðmiXh

ciþmcYh
ciÞþm2

i A
h
diX

h
ciþmimcAh

diY
h
ci

zðpÞ4 ¼Yh
ciA

h
di

zðpÞ5 ¼mtXh
ci
Yh
ti

Xh
ti
Bh
diþmcYh

ciA
h
diþmiXh

ciA
h
diþmiXh

ciB
h
di

zðpÞ6 ¼mt
Yh
ti

Xh
ti
Bh
diðmiYh

ciþmcXh
ciÞþm2

i B
h
diY

h
ciþmimcBh

diX
h
ci

ðB9Þ
and

zðrÞ1 ¼Xi
cjB

h
ij

zðrÞ2 ¼mtYi
cj

Xi
tj

Yi
tj
Ah
ijþmcXi

cjB
h
ijþmiYi

cjB
h
ijþmiYi

cjA
h
ij

zðrÞ3 ¼mt

Xi
tj

Yi
tj
Ah
ijðmiXi

cjþmcYi
cjÞþm2

i A
h
ijX

i
cjþmimcAh

ijY
i
cj

zðrÞ4 ¼Yi
cjA

h
ij

zðrÞ5 ¼mtXi
cj

Yi
tj

Xi
tj
Bh
ijþmcYi

cjA
h
ijþmiXi

cjA
h
ijþmiXi

cjB
h
ij

zðrÞ6 ¼mt

Yi
tj

Xi
tj
Bh
ijðmiYi

cjþmcXi
cjÞþm2

i B
h
ijY

i
cjþmimcBh

ijX
i
cj:

ðB10Þ

As before, these form factors can now be combined, using
Fni ¼

Pj
A¼a F

A
ni for n ¼ 1, 2 and the results substituted

into Eq. (A8) to get the final amplitude.

2. The decay t → cþ Z

When we turn to the decay process t → cþ Z, then, as in
the toy model, we have to calculate four helicity amplitudes
in terms of four form factors F1, F2, F3 and F4. For the
standard model, we then evaluate the diagrams of Fig. 4,
replacing the H everywhere by a Z. In order to do this, we
set up the following general vertices

ūiuiZμ∶ igγμðAZ
uiPL þ BZ

uiPRÞ
d̄idiZμ∶ igγμðAZ

diPL þ BZ
diPRÞ

WμþZνϕ−∶ igωϕ
WZg

μν

ZμϕðpÞþϕ0−ðqÞ∶ igαϕϕ0 ðpþ qÞμ

ūidjϕþ∶ igðXϕ
ijPL þ Yϕ

ijPRÞ
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in terms of a set of coupling constants AZ
ui, B

Z
ui, A

Z
di, B

Z
di,

ωϕ
WZ, α

ϕ
ϕ0 , X

ϕ
ij and Y

ϕ
ij. In the SM, these have values given in

the table below

coupling: AZ
ui BZ

ui AZ
di BZ

di

SM: − guL
cos θW

− guR
cos θW

− guL
cos θW

− guR
cos θW

coupling: ωϕ
WZ αϕϕ0 Xϕ

ij Yϕ
ij

SM: −MZ sin2 θW − cos 2θW
2 cos θW

miffiffi
2

p
MW

− mjffiffi
2

p
MW

where

guL ¼ 1

2
−
2

3
sin2θW guR ¼ −

2

3
sin2θW

gdL ¼ −
1

2
þ 1

3
sin2θW gdR ¼ 1

3
sin2θW ðB11Þ

As in the previous cases, we can now compute, using the
diagrams of Fig. 4 (with h0 → Z) a set of forms factors. The
set of F1 form factors are

FðaÞ
1i ¼ g3 cos θW

16π2
½2m2

t ðCðaÞ
21 − CðaÞ

23 Þ − 2CðaÞ
24 þ ðm2

t þm2
c −M2

ZÞCðaÞ
11 −m2

cC
ðaÞ
12 − ðBðaÞ

0 −m2
i C

ðaÞ
0 Þ�

FðbÞ
1i ¼ −

g3ωGþ
WZ

16
ffiffiffi
2

p
π2

½mtXG
ti ðCðbÞ

11 − CðbÞ
12 Þ −miYG

tiC
ðbÞ
0 �

FðcÞ
1i ¼ −

g3ωGþ
WZ

16
ffiffiffi
2

p
π2

½mcXG
ciC

ðcÞ
12 − 2miYG

ciC
ðcÞ
0 þ 2mtXG

ciðCðcÞ
11 − CðcÞ

12 Þ�

FðdÞ
1i ¼ −

g3αG
þ

G−

16
ffiffiffi
2

p
π2

½m2
t YG

ciY
G
tiðCðdÞ

21 − CðdÞ
23 Þ þmcmtXG

ciX
G
tiC

ðdÞ
23 − 2YG

ciY
G
tiC

ðdÞ
24 −mimtYG

tiX
G
ciðCðdÞ

0 þ CðdÞ
11 Þ�

FðeÞ
1i ¼ g3

32π2
½AZ

dif2ðm2
c þm2

t −M2
Z þmcmtÞðCðeÞ

0 þ CðeÞ
11 Þ þ 2m2

t ðCðeÞ
11 − CðeÞ

12 Þ þm2
cC

ðeÞ
12 þ 2CðeÞ

24

þ2mimtðCðeÞ
0 þ CðeÞ

11 Þ − BðeÞ
0 þM2

WC
ðeÞ
0 g þ 2miBZ

difmtðCðeÞ
0 þ CðeÞ

11 Þ −miC
ðeÞ
0 g�

FðfÞ
1i ¼ −

g3

16π2

�
XG
ci

��
mi þmt

YG
ci

XG
ci

�
AZ
diðmcXG

ciðCðfÞ
0 þ CðfÞ

12 Þ þmiYG
ciC

ðfÞ
0 Þ

− BZ
diðmcðmiXG

ci þmcYG
ciÞCðfÞ

12 − YG
ciðBðfÞ

0 −M2
WC

ðfÞ
0 Þ −mtYG

ciðmtC
ðfÞ
21 þmcC

ðfÞ
23 Þ − 2CðfÞ

24 Þ
�

−mtYG
ciA

Z
diðmcXG

ci þmiYG
ciÞCðfÞ

11

�
FðgÞ
1i ¼ −

g3

16π2ðm2
t −m2

cÞ
m2

cAZ
ciB

ðgÞ
1

FðhÞ
1i ¼ −

g3

16π2ðm2
t −m2

cÞ
AZ
ti½mtXG

ti ðmcXG
ciB

ðhÞ
1 −miYG

ciB
ðhÞ
0 Þ þmcYG

tiðYG
cimcB

ðhÞ
1 −miXG

ciB
ðhÞ
0 Þ�

FðiÞ
1i ¼ g3

32π2ðm2
t −m2

cÞ
mtðmtAZ

ti þmcBtiZÞBðiÞ
1

FðjÞ
1i ¼ g3

16π2ðm2
t −m2

cÞ
AZ
tiY

G
ti

�
mtYG

ci

�
mt þmc

XG
tiX

G
ci

YG
tiY

G
ci

�
BðjÞ
1 −miXG

ci

�
mt

YG
ciX

G
ti

XG
ciY

G
ti
þmc

�
BðjÞ
0

�
ðB12Þ

The nonvanishing F2 form factors are
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FðaÞ
2i ¼ g3 cos θW

16π2
mcmtðCðaÞ

11 − CðaÞ
12 Þ FðbÞ

2i ¼ −
g3ωGþ

WZ

16
ffiffiffi
2

p
π2

ðmt −mcÞXG
tiC

ðbÞ
12

FðcÞ
2i ¼ g3ωGþ

WZ

16
ffiffiffi
2

p
π2

mtXG
ciðCðcÞ

11 − CðcÞ
12 Þ

FðdÞ
2i ¼ −

g3αG
þ

G−

16
ffiffiffi
2

p
π2

½m2
t XG

ciX
G
tiðCðdÞ

21 − CðdÞ
23 Þ þmcmtYG

ciY
G
tiC

ðdÞ
23 − 2XG

ciX
G
tiC

ðdÞ
24 −mimtXG

tiY
G
ciðCðdÞ

0 þ CðdÞ
11 Þ�

FðeÞ
2i ¼ −

g3

32π2
AZ
di½mtðmt þmcÞðCðeÞ

0 þ CðeÞ
11 Þ þm2

t ðCðeÞ
11 − CðeÞ

12 Þ þmcmtC
ðeÞ
12 −m2

t C
ðeÞ
21 −mtðmt −mcÞCðeÞ

23 �

FðfÞ
2i ¼ −

g3

16π2

�
YG
ci

��
mi þmt

XG
ci

YG
ci

�
BZ
diðmcYG

ciðCðfÞ
0 þ CðfÞ

12 Þ þmiXG
ciC

ðfÞ
0 Þ

− AZ
diðmcðmiYG

ci þmcXG
ciÞCðfÞ

12 − XG
ciðBðfÞ

0 −M2
WC

ðfÞ
0 Þ −mtYG

ciðmtC
ðfÞ
21 þmcC

ðfÞ
23 Þ − 2CðfÞ

24 Þ
�

−mtXG
ciB

Z
diðmcYG

ci þmiXG
ciÞCðfÞ

11

�
FðgÞ
2i ¼ −

g3

16π2ðm2
t −m2

cÞ
mcmtBZ

ciB
ðgÞ
1

FðhÞ
2i ¼ −

g3

16π2ðm2
t −m2

cÞ
BZ
ti½mtYG

tiðmcYG
ciB

ðhÞ
1 −miXG

ciB
ðhÞ
0 Þ þmcXG

ti ðmcXG
ciB

ðhÞ
1 −miYG

ciB
ðhÞ
0 Þ�

FðjÞ
2i ¼ g3

16π2ðm2
t −m2

cÞ
BZ
tiX

G
ti

�
mtXG

ci

�
mt þmc

YG
tiY

G
ci

XG
tiX

G
ci

�
BðjÞ
1 −miYG

ci

�
mt

XG
ciY

G
ti

YG
ciX

G
ti
þmc

�
BðjÞ
0

�
: ðB13Þ

The nonvanishing F3 form factors are

FðaÞ
3i ¼ −

g3 cos θW
32π2

mc½CðaÞ
11 þ 2CðaÞ

12 � FðcÞ
3i ¼ g3ωGþ

WZ

16
ffiffiffi
2

p
π2

XG
ciðCðcÞ

11 − CðcÞ
12 Þ

FðdÞ
3i ¼ g3αG

þ
G−

16
ffiffiffi
2

p
π2

½mtXG
ciX

G
ti ðCðdÞ

21 − CðdÞ
23 Þ −mcYG

ciY
G
tiC

ðdÞ
23 þmiYG

tiX
G
ciðCðdÞ

0 þ CðdÞ
11 Þ�

FðeÞ
3i ¼ g3

32π2
AZ
di½ðmt þmcÞðCðeÞ

0 þ CðeÞ
11 Þ þmtðCðeÞ

11 − CðeÞ
12 Þ þmcC

ðeÞ
12 −mtC

ðeÞ
21 − ðmt −mcÞCðeÞ

23 �

FðfÞ
3i ¼ g3

16π2
XG
ci

�
AV
di

�
mi þmt

YG
ci

XG
ci

�
XG
ciðCðfÞ

11 − CðfÞ
12 Þ

− BZ
difðmiXG

ci þmcYG
ciÞðCðfÞ

11 − CðfÞ
12 Þ þ ðmiXG

ci þmcYG
ciÞCðfÞ

11 þ YG
ciðmtC

ðfÞ
21 þmcC

ðfÞ
23 Þg

�
: ðB14Þ

The nonvanishing F4 form factors are

FðaÞ
4i ¼g3cosθW

16π2
mtf2ðCðaÞ

11 −CðaÞ
12 Þ−ðCðaÞ

21 −CðaÞ
23 Þg FðbÞ

4i ¼−
g3ωGþ

WZ

16
ffiffiffi
2

p
π2

XG
tiC

ðbÞ
12

FðdÞ
4i ¼ g3αG

þ
G−

16
ffiffiffi
2

p
π2

½mtYG
ciY

G
tiðCðdÞ

21 −CðdÞ
23 Þ−mcXG

ciX
G
tiC

ðdÞ
23 þmiXG

tiY
G
ciðCðdÞ

0 þCðdÞ
11 Þ� FðeÞ

4i ¼−
g3

16π2
miðAZ

diþBZ
diÞðCðeÞ

0 þCðeÞ
11 Þ

FðfÞ
4i ¼ g3

16π2
YG
ci

�
BZ
di

�
miþmt

XG
ci

YG
ci

�
YG
ciðCðfÞ

11 −CðfÞ
12 Þ

−AZ
difðmiYG

ciþmcXG
ciÞðCðfÞ

11 −CðfÞ
12 ÞþðmiYG

ciþmcXG
ciÞCðfÞ

11 þXG
ciðmtC

ðfÞ
21 þmcC

ðfÞ
23 Þg

�
ðB15Þ

where
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CðaÞ
X ¼ CXðmi;MW;MW ;mc;mt;MZÞ

BðeÞ
0 ¼ B0ðMW;mi;MZÞ

CðbÞ
X ¼ CXðmi;MW;MW ;mc;mt;MZÞ

BðgÞ
1 ¼ B1ðmi;MW ;mtÞ

CðcÞ
X ¼ CXðmi;MW;MW ;mc;mt;MZÞ

BðhÞ
1 ¼ B1ðmi;MW ;mtÞ

CðdÞ
X ¼ CXðmi;MW;MW ;mc;mt;MZÞ

BðhÞ
0 ¼ B0ðmi;MW ;mtÞ

CðeÞ
X ¼ CXðMW;mi;mi;mc;mt;MZÞ

BðiÞ
1 ¼ B1ðmi;MW ;mcÞ

CðfÞ
X ¼ CXðMW;mi;mi;mc;mt;MZÞ

BðjÞ
1 ¼ B1ðmi;MW ;mcÞ

BðaÞ
0 ¼ B0ðMW;MW ;MZÞ

BðjÞ
0 ¼ B0ðmi;MW ;mcÞ ðB16Þ

where X ¼ 0; 11; 12; 21; 23; 24, as usual. We then calculate
the total form factors using Fni ¼

Pj
A¼a F

A
ni for n ¼ 1, 2, 3,

4 and substitute the results into Eq. (A23) to get the final
SM amplitude.
In the cMSSM, we require to evaluate all the diagrams

which contribute in the SM, i.e. those which are listed in
Fig. 4. This will involve all the vertices we have defined for
the SM, but the coupling constants will be somewhat
different. These are listed in the table below

Coupling: AZ
ui BZ

ui AZ
di BZ

di

SM: − guL
cos θW

− guR
cos θW

− guL
cos θW

− guR
cos θW

Coupling: ωGþ
WZ αG

þ
G− XHþ

ij YHþ
ij

SM: −MZ sin2 θW − cos 2θW
2 cos θW

mi cot βffiffi
2

p
MW

mj tan βffiffi
2

p
MW

Due to the absence of aW�H∓Z vertex (whereas there is
a W�H∓h0 vertex, the list of additional diagrams in the
cMSSM can be obtained by changing the H lines in Fig. 5
to Z lines, provided we discard the diagrams marked (k),
(l), (n) and (o). Evaluating the remaining ones we get the
F1 form factors

FðmÞ
1i ¼ −

g3αh
−

hþ

16
ffiffiffi
2

p
π2

½m2
t ðCðmÞ

21 − CðmÞ
23 ÞYh

ciY
h
ti þmcmtC

ðmÞ
23 Xh

ciX
h
ti − 2CðmÞ

24 Yh
ciY

h
ti −mimtðCðmÞ

0 þ CðmÞ
11 ÞYh

tiX
h
ci�

FðpÞ
1i ¼ −

g3

16π2

�
Xh
ci

��
mi þmt

Yh
ci

Xh
ci

�
AZ
diðXh

cimcðCðpÞ
0 þ CðpÞ

12 Þ þmiYh
ciC

ðpÞ
0 Þ

− BZ
diððmiXh

ci þmcYh
ciÞmcC

ðpÞ
12 − Yh

ciðBðpÞ
0 −M2

hþC
ðpÞ
0 Þ −mtYh

ciðmtC
ðpÞ
21 þmcC

ðpÞ
23 Þ − 2CðpÞ

24 Þ
�

−mtAZ
diY

h
ciðmiYh

ci þmcXh
ciÞCðpÞ

11

�

FðqÞ
1i ¼ −

g3α ~d
~d

16
ffiffiffi
2

p
π2

½m2
t Y

j
ciY

j
tiðCðqÞ

21 − CðqÞ
23 Þ þmcmtX

j
ciX

j
tiC

ðqÞ
23 − 2Yj

ciY
j
tiC

ðqÞ
24 −mimtY

j
tiX

j
ciðCðmÞ

0 þ CðqÞ
11 Þ�

FðrÞ
1i ¼ −

g3

16π2

�
Xj
ci

��
mi þmt

Yj
ci

Xj
ci

�
AZ
diðXj

cimcðCðrÞ
0 þ CðrÞ

12 Þ þmiY
j
ciC

ðrÞ
0 Þ

− BZ
diððmiX

j
ci þmcY

j
ciÞmcC

ðrÞ
12 − Yj

ciðBðrÞ
0 −M2

~dj
CðrÞ
0 Þ − Yj

ciðmtC
ðrÞ
21 þmcC

ðrÞ
23 Þmt − 2CðrÞ

24 Þ
�

−mtAZ
diY

j
ciðmiY

j
ci þmcX

j
ciÞCðrÞ

11

�
FðsÞ
1i ¼ g3

16π2ðm2
t −m2

cÞ
AZ
ciY

h
ti

�
mtYh

ci

�
mt þmc

Xh
tiX

h
ci

Yh
tiY

h
ci

�
BðsÞ
1 −miXh

ci

�
mt

Yh
ciX

h
ti

Xh
ciY

h
ti
þmc

�
BðsÞ
0

�
FðtÞ
1i ¼ g3

16π2ðm2
t −m2

cÞ
AZ
ciY

j
ti

�
mtY

j
ci

�
mt þmc

Xj
tiX

j
ci

Yj
tiY

j
ci

�
BðtÞ
1 −miX

j
ci

�
mt

Yj
ciX

j
ti

Xj
ciY

j
ti

þmc

�
BðtÞ
0

�
FðuÞ
1i ¼ −

g3

16π2ðm2
t −m2

cÞ
AZ
ti½mcYh

tiðmcYh
ciB

ðuÞ
1 −miXh

ciB
ðuÞ
0 Þ þmtXh

tiðmcXh
ciB

ðuÞ
1 −miYh

ciB
ðuÞ
0 Þ�

FðvÞ
1i ¼ −

g3

16π2ðm2
t −m2

cÞ
AZ
ti½mcY

j
tiðmcY

j
ciB

ðrÞ
1 −miX

j
ciB

ðrÞ
0 Þ þmtX

j
tiðmcX

j
ciB

ðrÞ
1 −miY

j
ciB

ðrÞ
0 Þ�: ðB17Þ
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The F2 form factors are

FðmÞ
2i ¼ −

g3αh
−

hþ

16
ffiffiffi
2

p
π2

½m2
t Xh

ciX
h
tiðCðmÞ

21 − CðmÞ
23 Þ þmcmtYh

ciY
h
tiC

ðmÞ
23 − 2Xh

ciX
h
tiC

ðmÞ
24 −mimtXh

tiY
h
ciðCðmÞ

0 þ CðmÞ
11 Þ�

FðpÞ
2i ¼ −

g3

16π2

�
Yh
ci

��
mi þmt

Xh
ci

Yh
ci

�
BZ
diðYh

cimcðCðpÞ
0 þ CðpÞ

12 Þ þmiXh
ciC

ðpÞ
0 Þ

− AZ
diððmiYh

ci þmcXh
ciÞmcC

ðpÞ
12 − Xh

ciðBðpÞ
0 −M2

hþC
ðpÞ
0 Þ −mtXh

ciðmtC
ðpÞ
21 þmcC

ðpÞ
23 Þ − 2CðpÞ

24 Þ
�

−mtBZ
diX

h
ciðmiXh

ci þmcYh
ciÞCðpÞ

11

�

FðqÞ
2i ¼ −

g3α ~d
~d

16
ffiffiffi
2

p
π2

½m2
t X

j
ciX

j
tiðCðqÞ

21 − CðqÞ
23 Þ þmcmtY

j
ciY

j
tiC

ðqÞ
23 − 2Xj

ciX
j
tiC

ðqÞ
24 −mimtX

j
tiY

j
ciðCðmÞ

0 þ CðqÞ
11 Þ�

FðrÞ
2i ¼ −

g3

16π2

�
Yj
ci

��
mi þmt

Xj
ci

Yj
ci

�
BZ
diðYj

cimcðCðrÞ
0 þ CðrÞ

12 Þ þmiX
j
ciC

ðrÞ
0 Þ

− BZ
diððmiY

j
ci þmcX

j
ciÞmcC

ðrÞ
12 − Xj

ciðBðrÞ
0 −M2

~dj
CðrÞ
0 Þ − Xj

ciðmtC
ðrÞ
21 þmcC

ðrÞ
23 Þmt − 2CðrÞ

24 Þ
�

−mtBZ
diX

j
ciðmiX

j
ci þmcY

j
ciÞCðrÞ

11

�
FðsÞ
2i ¼ g3

16π2ðm2
t −m2

cÞ
BZ
ciX

h
ti

�
mtXh

ci

�
mt þmc

Yh
tiY

h
ci

Xh
tiX

h
ci

�
BðsÞ
1 −miYh

ci

�
mt

Xh
ciY

h
ti

Yh
ciX

h
ti
þmc

�
BðsÞ
0

�
FðtÞ
2i ¼ g3

16π2ðm2
t −m2

cÞ
BZ
ciX

j
ti

�
mtX

j
ci

�
mt þmc

Yj
tiY

j
ci

Xj
tiX

j
ci

�
BðtÞ
1 −miY

j
ci

�
mt

Xj
ciY

j
ti

Yj
ciX

j
ti

þmc

�
BðtÞ
0

�
FðuÞ
2i ¼ −

g3

16π2ðm2
t −m2

cÞ
BZ
ti½mcXh

tiðmcXh
ciB

ðuÞ
1 −miYh

ciB
ðuÞ
0 Þ þmtYh

tiðmcYh
ciB

ðuÞ
1 −miXh

ciB
ðuÞ
0 Þ�

FðvÞ
2i ¼ −

g3

16π2ðm2
t −m2

cÞ
BZ
ti½mcX

j
tiðmcX

j
ciB

ðrÞ
1 −miY

j
ciB

ðrÞ
0 Þ þmtY

j
tiðmcY

j
ciB

ðrÞ
1 −miX

j
ciB

ðrÞ
0 Þ�: ðB18Þ

The nonvanishing F3 form factors are

FðmÞ
3i ¼ g3αh

−

hþ

16
ffiffiffi
2

p
π2

½mtXh
ciX

h
tiðCðmÞ

21 − CðmÞ
23 Þ −mcYh

ciY
h
tiC

ðmÞ
23 þmiYh

tiX
h
ciðCðmÞ

0 þ CðmÞ
11 Þ�

FðpÞ
3i ¼ g3

16π2
Xh
ci

�
AZ
di

�
mi þmt

Yh
ci

Xh
ci

�
Xh
ciðCðpÞ

11 − CðpÞ
12 Þ

− BZ
difðmiXh

ci þmcYh
ciÞðCðpÞ

11 − CðpÞ
12 Þ þ ðmiXh

ci þmcYh
ciÞCðpÞ

11 þ Yh
ciðmtC

ðpÞ
21 þmcC

ðpÞ
23 Þg

�

FðqÞ
3i ¼

g3α ~d
~d

16
ffiffiffi
2

p
π2

½mtX
j
ciX

j
tiðCðqÞ

21 − CðqÞ
23 Þ −mcY

j
ciY

j
tiC

ðqÞ
23 þmiY

j
tiX

j
ciðCðmÞ

0 þ CðqÞ
11 Þ�

FðrÞ
3i ¼ g3

16π2
Xj
ci

�
AZ
di

�
mi þmt

Yj
ci

Xj
ci

�
Xj
ciðCðrÞ

11 − CðrÞ
12 Þ

− BZ
difðmiX

j
ci þmcY

j
ciÞðCðrÞ

11 − CðrÞ
12 Þ þ ðmiX

j
ci þmcY

j
ciÞCðrÞ

11 þ Yj
ciðmtC

ðrÞ
21 þmcC

ðrÞ
23 Þg

�
: ðB19Þ

Finally, the nonvanishing F4 form factors are
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FðmÞ
4i ¼ g3αh

−

hþ

16
ffiffiffi
2

p
π2

½mtYh
ciY

h
tiðCðmÞ

21 − CðmÞ
23 Þ −mcXh

ciX
h
tiC

ðmÞ
23 þmiXh

tiY
h
ciðC0 þ CðmÞ

11 Þ�

FðpÞ
4i ¼ g3

16π2
Xh
ci

�
BZ
di

�
mi þmt

Xh
ci

Yh
ci

�
Yh
ciðCðpÞ

11 − CðpÞ
12 Þ

− AZ
difðmiYh

ci þmcXh
ciÞðCðpÞ

11 − CðpÞ
12 Þ þ ðmiYh

ci þmcXh
ciÞCðpÞ

11 þ Xh
ciðmtC

ðpÞ
21 þmcC

ðpÞ
23 Þg

�

FðqÞ
4i ¼

g3α ~d
~d

16
ffiffiffi
2

p
π2

½mtY
j
ciY

j
tiðCðqÞ

21 − CðqÞ
23 Þ −mcX

j
ciX

j
tiC

ðqÞ
23 þmiX

j
tiY

j
ciðC0 þ CðqÞ

11 Þ�

FðrÞ
4i ¼ g3

16π2
Xj
ci

�
BZ
di

�
mi þmt

Xj
ci

Yj
ci

�
Yj
ciðCðrÞ

11 − CðrÞ
12 Þ

− AZ
difðmiY

j
ci þmcX

j
ciÞðCðrÞ

11 − CðrÞ
12 Þ þ ðmiY

j
ci þmcX

j
ciÞCðrÞ

11 þ Xj
ciðmtC

ðrÞ
21 þmcC

ðrÞ
23 Þg

�
ðB20Þ

where we have used

CðmÞ
X ¼ CXðmi;Mhþ ;Mhþ ;mc;mt;MZÞ

BðmÞ
0 ¼ B0ðMhþ ;Mhþ ;MZÞ

CðpÞ
X ¼ CXðMhþ ; mi; mi;mc;mt;MZÞ

BðqÞ
0 ¼ BXðM ~dj

;M ~dj
;MZÞ

CðqÞ
X ¼ CXðm~χþi

; M ~dj
;M ~dj

;mc;mt;MZÞ
BðsÞ
X ¼ BXðmi;Mhþ ;mtÞ

CðrÞ
X ¼ CXðM ~dj

; m~χþi
; m~χþi

;mc;mt;MZÞ
BðtÞ
X ¼ BXðm~χþi

;M ~dj
;mtÞ

BðuÞ
X ¼ BXðmi;Mhþ ;mtÞ

BðvÞ
X ¼ BXðm~χþi

;M ~dj
;mcÞ ðB21Þ

for X ¼ 0; 11; 12; 21; 23; 24, as usual. It is now a simple
matter to calculate the total form factors using Fni ¼Pj

A¼a F
A
ni for n ¼ 1, 2, 3, 4 and substitute the results into

Eq. (A23) to get the final cMSSM amplitude.

APPENDIX C: RPV-MSSM AMPLITUDES

1. The decay t → cþH

Since the RPV-MSSM is merely an extension of the
MSSM, it will contain all the diagrams of Figs. 4 and 5.
However, as we have seen in the text, these contributions
are small, and the R-parity violating contributions can be
much larger. It is sensible, therefore, to calculate these
alone. To have a unified picture, we include both λ0ijk and

λ00ijk couplings when listing the diagrams in Fig. 7, though
only one set at a time can contribute. In terms of these, the
F1 form factors are

F1a
1ik ¼ gMWβ

h
~ei ~ei

λ0i2kλ
0
i3k

16π2
mcC

ðaÞ
12

F1b
1ik ¼

ydkλ
0
i2kλ

0
i3k

16π2
mcM ~dk

½CðbÞ
0 þ 2CðbÞ

12 �

F1c
1ik ¼ gMWβ

h
~dk ~dk

λ0i2kλ
0
i3k

16π2
mcC

ðcÞ
12

F1d
1ik ¼

yliλ
0
i2kλ

0
i3k

16π2
mcmli ½CðdÞ

0 þ 2CðdÞ
12 �

F1e
1ik ¼ −

ytλ0i2kλ
0
i3k

16π2ðm2
t −m2

cÞ
mcmtB

ðeÞ
1

F1f
1ik ¼

ycλ0i2kλ
0
i3k

16π2ðm2
t −m2

cÞ
mtðmt þmcÞBðfÞ

1

F1g
1jk ¼ gMWβ

h
~dk ~dk

λ002jkλ
00
3jk

16π2
mt½CðgÞ

11 − CðgÞ
12 �

F1h
1jk ¼

ydkλ
00
2jkλ

00
3jk

16π2
mtmdi ½CðhÞ

0 þ 2ðCðhÞ
11 − CðhÞ

12 Þ�

F1i
1jk ¼

ytλ002jkλ
00
3jk

16π2ðm2
t −m2

cÞ
mcmtB

ðiÞ
1

F1j
1jk ¼ −

ycλ002jkλ
00
3jk

16π2ðm2
t −m2

cÞ
mtðmt þmcÞBðjÞ

1 ðC1Þ

and the F2 form factors are
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F2a
1ik ¼ gMWβ

h
~ei ~ei

λ0i2kλ
0
i3k

16π2
mt½CðaÞ

11 − CðaÞ
12 � F2b

1ik ¼
ydkλ

0
i2kλ

0
i3k

16π2
mtmdk ½CðbÞ

0 þ 2ðCðbÞ
11 − CðbÞ

12 Þ�

F2c
1ik ¼ gMWβ

h
~dk ~dk

λ0i2kλ
0
i3k

16π2
mt½CðcÞ

11 − CðcÞ
12 � F2d

1ik ¼
yliλ

0
i2kλ

0
i3k

16π2
mtmli ½CðdÞ

0 þ 2ðCðdÞ
11 − CðdÞ

12 Þ�

F2e
1ik ¼ −

ytλ0i2kλ
0
i3k

16π2ðm2
t −m2

cÞ
m2

cB
ðeÞ
1 F2g

1jk ¼ gMWβ
h
~dk ~dk

λ002jkλ
00
3jk

16π2
mcC

ðgÞ
12 F2h

1jk ¼
ydkλ

00
2jkλ

00
3jk

16π2
mcM ~dk

½CðhÞ
0 þ 2CðhÞ

12 �

F2i
1jk ¼

ytλ002jkλ
00
3jk

16π2ðm2
t −m2

cÞ
m2

cB
ðiÞ
1 ðC2Þ

in terms of

CðaÞ
X ¼ CXðmk;M ~ei ;M ~ei ;mc;mt;MhÞ BðeÞ

1 ¼ B1ðmk;M ~ei ;mcÞ
CðbÞ
X ¼ CXðM ~ei ; mk;mk;mc;mt;MhÞ BðfÞ

1 ¼ B1ðmk;M ~ei ;mcÞ
CðcÞ
X ¼ CXðmi;M ~dk

;M ~dk
;mc;mt;MhÞ BðiÞ

1 ¼ B1ðmj;M ~dk
;mtÞ

CðdÞ
X ¼ CXðM ~dk

; mei ; mei ;mc;mt;MhÞ BðjÞ
1 ¼ B1ðmj;M ~dk

;mtÞ
CðgÞ
X ¼ CXðmj;M ~dk

;M ~dk
;mc;mt;MhÞ CðhÞ

X ¼ CXðM ~dk
; mj; mj;mc;mt;MhÞ ðC3Þ

where, as usual, X ¼ 0; 11; 12; 21; 23; 24. As before, we go on to compute total form factors using Fni ¼
Pj

A¼a F
A
ni for

n ¼ 1, 2 and substitute the results into Eq. (A8) to get the amplitude in the RPV-MSSM.

2. The decay t → cþ Z

The Feynman diagrams for the decay t → cþ Z are the same as those in Fig. 7, with h0 → Z, as we have seen before. As
before, we present the amplitudes for the λ0 and λ00 couplings together, though either one or the other must be zero.
The F1 form factors are

F1a
1ik ¼

gZeλ0i2kλ
0
i3k

16π2
½m2

t ðCðaÞ
11 − CðaÞ

12 þ CðaÞ
21 − CðaÞ

23 Þ − 2CðaÞ
24 �

F1b
1ik ¼

λ0i2kλ
0
i3k

16π2
½gdRðm2

t ðCðbÞ
21 − CðbÞ

23 Þ − 2CðbÞ
24 þ BðbÞ

0 −M2
~ei
CðbÞ
0 Þ þ gdLm2

kC
ðbÞ
0 �

F1c
1ik ¼

gZdλ0i2kλ
0
i3k

16π2
½m2

t ðCðcÞ
11 − CðcÞ

12 þ CðcÞ
21 − CðcÞ

23 Þ − 2CðcÞ
24 �

F1d
1ik ¼

λ0i2kλ
0
i3k

16π2
½geRðm2

t ðCðdÞ
21 − CðdÞ

23 Þ − 2CðdÞ
24 þ BðdÞ

0 −M2
~dk
CðdÞ
0 Þ þ geLm2

i C
ðdÞ
0 �

F1e
1ik ¼ −

λ0i2kλ
0
i3k

16π2ðm2
t −m2

cÞ
guLm2

t B
ðeÞ
1

F1f
1ik ¼

λ0i2kλ
0
i3k

16π2ðm2
t −m2

cÞ
guLm2

cB
ðfÞ
1

F1g
1jk ¼

gZdλ002jkλ
00
3jk

16π2
mtmcðCðgÞ

12 þ CðgÞ
23 Þ

F1h
1jk ¼

λ002jkλ
00
3jk

16π2
gdL½mcmtC

ðhÞ
23 þmtðmtðCðhÞ

11 − CðhÞ
12 Þ þmcC

ðhÞ
12 Þ þmcmtC

ðhÞ
11 �

F1i
1jk ¼ −

λ002jkλ
00
3jk

16π2ðm2
t −m2

cÞ
guLmcmtB

ðiÞ
1

F1j
1jk ¼

λ002jkλ
00
3jk

16π2ðm2
t −m2

cÞ
guLmcmtB

ðjÞ
1 ðC4Þ
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The F2 form factors are

F2a
1ik ¼

gZeλ0i2kλ
0
i3k

16π2
mtmcðCðaÞ

12 þ CðaÞ
23 Þ

F2b
1ik ¼

λ0i2kλ
0
i3k

16π2
gdRðm2

t ðCðbÞ
11 − CðbÞ

12 Þ

þmcmtðCðbÞ
11 þ CðbÞ

12 þ CðbÞ
23 ÞÞ

F2c
1ik ¼

gZdλ0i2kλ
0
i3k

16π2
mtmcðCðcÞ

12 þ CðcÞ
23 Þ

F2d
1ik ¼

λ0i2kλ
0
i3k

16π2
geR½mcmtC

ðdÞ
23 þmtðmtðCðdÞ

11 − CðdÞ
12 Þ

þmcC
ðdÞ
12 Þ þmcmtC

ðdÞ
11 �

F2e
1ik ¼ −

λ0i2kλ
0
i3k

16π2ðm2
t −m2

cÞ
guRmcmtB

ðeÞ
1

F2f
1ik ¼

λ0i2kλ
0
i3k

16π2ðm2
t −m2

cÞ
guRmcmtB

ðfÞ
1

F2g
1jk ¼

gZdλ002jkλ
00
3jk

16π2
½m2

t ðCðgÞ
11 − CðgÞ

12 þ CðgÞ
21 − CðgÞ

23 Þ − 2CðgÞ
24 �

F2h
1jk ¼

λ002jkλ
00
3jk

16π2
½gdLðm2

t ðCðhÞ
21 − CðhÞ

23 Þ − 2CðhÞ
24 þ BðhÞ

0

−M2
~dk
CðhÞ
0 Þ þ gdRm2

jC
ðhÞ
0 �

F2i
1jk ¼ −

λ002jkλ
00
3jk

16π2ðm2
t −m2

cÞ
guRm2

t B
ðiÞ
1

F2j
1jk ¼

λ002jkλ
00
3jk

16π2ðm2
t −m2

cÞ
guRm2

cB
ðjÞ
1 : ðC5Þ

The F3 form factors are

F3a
1ik ¼ −

gZeλ0i2kλ
0
i3k

16π2
mcðCðaÞ

12 þ CðaÞ
23 Þ

F3b
1ik ¼ −

λ0i2kλ
0
i3k

16π2
gdLmcðCðbÞ

11 þ CðbÞ
23 Þ

F3c
1ik ¼ −

gZdλ0i2kλ
0
i3k

16π2
mcðCðcÞ

12 þ CðcÞ
23 Þ

F3d
1ik ¼ −

λ0i2kλ
0
i3k

16π2
geLmcðCðdÞ

11 þ CðdÞ
23 Þ

F3g
1jk ¼ −

gZdλ002jkλ
00
3jk

16π2
mtðCðgÞ

11 − CðgÞ
12 þ CðgÞ

21 − CðgÞ
23 Þ

F3h
1jk ¼ −

λ002jkλ
00
3jk

16π2
gdLmtðCðhÞ

21 − CðhÞ
23 Þ ðC6Þ

and, finally the F4 form factors are

F4a
1ik ¼ −

gZeλ0i2kλ
0
i3k

16π2
mtðCðaÞ

11 − CðaÞ
12 þ CðaÞ

21 − CðaÞ
23 Þ

F4b
1ik ¼

λ0i2kλ
0
i3k

16π2
gdRmcðCðbÞ

21 − CðbÞ
23 Þ

F4c
1ik ¼ −

gZdλ0i2kλ
0
i3k

16π2
mtðCðcÞ

11 − CðcÞ
12 þ CðcÞ

21 − CðcÞ
23 Þ

F4d
1ik ¼ −

λ0i2kλ
0
i3k

16π2
geRmtðCðdÞ

21 − CðdÞ
23 Þ

F4g
1jk ¼ −

gZdλ002jkλ
00
3jk

16π2
mcðCðgÞ

12 þ CðgÞ
23 Þ

F4h
1jk ¼ −

λ002jkλ
00
3jk

16π2
gdRmcðCðhÞ

11 þ CðhÞ
23 Þ ðC7Þ

where

CðaÞ
X ¼ CXðmk;M ~ei ;M ~ei ;mc;mt;MZÞ

BðbÞ
0 ¼ B0ðmk;mk;MZÞ

CðbÞ
X ¼ CXðM ~ei ; mk;mk;mc;mt;MZÞ

BðdÞ
0 ¼ B0ðmi;mi;MZÞ

CðcÞ
X ¼ CXðmi;M ~dk

;M ~dk
;mc;mt;MZÞ

BðeÞ
1 ¼ B1ðmk;M ~ei ;mcÞ

CðdÞ
X ¼ CXðM ~dk

; mi; mi;mc;mt;MZÞ
BðfÞ
1 ¼ B1ðmk;M ~ei ;mtÞ

CðgÞ
X ¼ CXðmi;M ~dk

;M ~dk
;mc;mt;MZÞ

BðhÞ
0 ¼ B0ðmj;mj;MZÞ

CðhÞ
X ¼ CXðM ~dk

; mj; mj;mc;mt;MZÞ
BðiÞ
1 ¼ B1ðmj;M ~dk

;mcÞ
BðjÞ
1 ¼ B1ðmj;M ~dk

;mtÞ ðC8Þ

and we have defined effective couplings

gZd ¼ −
sin2θW
6 cos θW

gZe ¼
1 − 2sin2θW
2 cos θW

guL ¼ −
1 − 2qusin2θW

2 cos θW
guR ¼ qusin2θW

cos θW

gdL ¼ 1þ 2qdsin2θW
2 cos θW

gdR ¼ qdsin2θW
cos θW

geL ¼ 1 − 2sin2θW
2 cos θW

geR ¼ −
sin2θW
cos θW

: ðC9Þ

It is now a straightforward matter to calculate the total form
factors using Fni ¼

Pj
A¼a F

A
ni for n ¼ 1, 2, 3, 4 and

substitute the results into Eq. (A23) to get the final
RPV-MSSM amplitude.
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