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We consider a simplified model in which Majorana fermion dark matter annihilates to charged fermions
through the exchange of charged mediators. We consider the gamma-ray signals arising from the processes
XX → f̄fγ, γγ, and γZ in the most general case, including nontrivial fermion mass and nontrivial left-right
mixing and the CP-violating phase for the charged mediators. In particular, we find the most general
spectrum for internal bremsstrahlung, which interpolates between the regimes dominated by virtual internal
bremsstrahlung and by final state radiation. We also examine the variation in the ratio σðγγÞ=σðγZÞ and the
helicity asymmetry in the XX → γγ process, each as a function of the mixing angle and CP-violating phase.
As an application, we apply these results to searches for a class of minimal supersymmetric Standard
Model models.
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I. INTRODUCTION

The nature of dark matter has long been a puzzle in
modern physics. It is suspected to be a very long-lived
massive particle, while currently no evidence shows that it
carries electrical or color charge. Such a particle cannot be
described by the Standard Model (SM) of particle physics.
The most recent measurement of the dark matter abundance
from the Planck satellite is Ωh2 ¼ 0.1199� 0.0027 [1]. If
we assume that dark matter consists of weakly interacting
massive particles (WIMPs) with mass ranging from
∼10 GeV to ∼10 TeV, the standard thermal freeze-out
mechanism yields the qualitatively correct relic density
[2–7]. As a result, the WIMP hypothesis is very attractive,
but by no means required. Searches for the interaction of
dark matter with SM matter are ongoing, utilizing a variety
of strategies, including direct, indirect, and collider-based
searches.
The main purpose of this paper is to analyze the

associated gamma-ray signals that may be observable in
indirect dark matter searches if Majorana fermion dark
matter couples to light SM fermions via charged mediators.
Such couplings arise in a variety of dark matter scenarios,
including the minimal supersymmetric Standard Model
(MSSM), in which the lightest supersymmetric particle
(LSP) is a dark matter candidate, and its bino component
can couple to SM fermions through the t- or u-channel
exchange of sfermions. Moreover, the gamma-ray signals
from dark matter annihilation in this scenario are often

crucial to observational strategies, because gamma-ray
signals are relatively clean and because the direct annihi-
lation process XX → f̄f is often suppressed.
The processes which we will consider are XX → γγ,

XX → γZ, and XX → f̄fγ. All of these processes have
been considered in the past [8–11], but either for special
cases or different purposes. Our goal here will be to
consider the most general spectra that can arise for these
processes in a simplified model in which a Majorana
fermion dark matter particle couples to a Dirac fermion
(which may or may not be a SM fermion) through the
exchange of two charged scalars, with an arbitrary left-right
mixing angle and CP-violating phase. Examples of this
simplified model exist within the parameter space of the
MSSM, including the “Incredible Bulk” models described
in Ref. [12], but the applicability is much broader.
The main new features which we will find are:
(i) the complete spectrum for the process XX → f̄fγ

as a function of mixing angle, which interpolates
between the hard regime, dominated by virtual
internal bremsstrahlung, and the soft regime, domi-
nated by soft and collinear final state radiation;

(ii) the ratio of the cross sections for XX → γγ and
XX → γZ as a function of mixing angle and
CP-violating phase;

(iii) the difference in rates for the production of left-
circularly and right-circularly polarized photons via
the process XX → γγ.

This article is organized as follows. In Sec. II, we briefly
describe the effective model and the parameter space in
which we are interested. We then discuss the general
features of the relevant gamma-ray signals in Sec. III. In
Sec. IV, we describe the monochromatic line signals and
their observational impact. In Sec. V, we similarly describe
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the general internal bremsstrahlung gamma-ray signature.
Finally, our chief results are summarized in Sec. VI.

II. MODEL AND ITS GENERAL FEATURES

We consider a simplified model in which the dark matter
candidate is a SM gauge singlet Majorana fermion and the
only relevant interaction is

Lint ¼ λL ~f
�
LX̄PLf þ λR ~f

�
RPRX̄f þ c:c; ð1Þ

where PLðRÞ are the chiral projectors. Here, f is a fermion
charged1 under Uð1Þem, and ~fLðRÞ are the charged scalar
mediators. We also assume that the dark matter is abso-
lutely stable because it is the lightest particle charged under
an unbroken hidden symmetry and the ~fLðRÞ are also
charged under the same symmetry. But the fermion f is
uncharged under the symmetry that stabilizes the dark
matter.
The mass eigenstates and chiral eigenstates of the scalar

mediators are related by a mixing angle α,� ~f1
~f2

�
¼

�
cos α − sin α

sin α cos α

�� ~fL
~fR

�
: ð2Þ

We denote the two mass eigenvalues as m ~f1
and m ~f2

in the
following. To ensure that the dark matter is stable, we
assume m ~f1;2

> mX. However, mf can be either larger or

smaller than mX.
We also allow a nonzeroCP-violating phase, φ, such that

the coupling constants may be expressed as

λL ¼ jλLjeiφ=2; λR ¼ jλRje−iφ=2: ð3Þ

We are thus left with seven free parameters for this
simplified model:

ðmX;m ~f1
; m ~f2

; λL; λR; α;φÞ:

In the MSSM framework, if X is a purely binolike LSP and
there is a single generation of light sfermions, then we have
jλLj ¼

ffiffiffi
2

p
gjYLj and jλRj ¼

ffiffiffi
2

p
gjYRj, where g is the Uð1ÞY

gauge coupling and YLðRÞ are the scalar hypercharges. This

scenario has been considered recently in Refs. [12–14]. We
also briefly consider the possibility of a new heavy fermion,
in which case there is an additional parameter necessary to
specify its mass, mf.
Note that only the relative phase between λL and λR

is physically significant, since any overall phase can be
removed by a vectorlike phase rotation of ~fL;R. Similarly,
although the most general matrix relating the scalar mass
and chiral eigenstates contains three complex phases, they
can be absorbed by a phase rotation of the chiral eigen-
states, ~fL;R, and the mass eigenstates, ~f1;2. Having chosen
to make the mixing matrix real, one cannot then use a chiral
rotation of the ~fL;R to rotate away the phase φ. However,
if sin 2α ¼ 0, the requirement that the mixing matrix be real
only fixes two phases; in this case, the phase φ can then
be absorbed into a chiral rotation of the ~fL;R. Similarly,
if mf ¼ 0, then the phase φ can be removed by a chiral
rotation of f. As a result, CP-violating effects must scale
as ðmf=mXÞ sin 2α.

A. General features

If the cross section for the process XX → f̄f is
not suppressed, it will dominate over processes such as
XX → f̄fγ and XX → γγ, γZ, which will be suppressed by
factors of at least αem and α2em, respectively. In this case,
prompt gamma-ray signals are sometimes considered to be
less promising from an observational standpoint, because
models that would produce prompt gamma-ray signals
large enough to be observed with current or near future
experiments can already be probed by searches for cosmic
rays produced by the process XX → f̄f. However, current
exclusion limits based on searches for positrons or anti-
protons are subject to large systematic uncertainties related
to assumptions about the astrophysical background and
propagation of charged particles in our Galaxy; if these
assumptions are weakened, then the exclusion limits from
cosmic-ray searches can be similarly weakened, permitting
even the suppressed XX → f̄fγ, γγ, and γZ signals to be
relevant. The Feynman diagrams for the two-body annihi-
lation XX → f̄f and internal bremsstrahlung XX → f̄fγ
are shown in Fig. 1, while those for the one-loop process
XX → γγ are shown later in Fig. 11 of Appendix A, where
a detailed discussion on this process is presented.

FIG. 1. The Feynman diagrams for two-body annihilation and IB.

1For simplicity, we assume the charge to be Q ¼ −1.
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But there are two scenarios in which the XX → f̄f
annihilation cross section is suppressed:

(i) If mf > mX, then XX → f̄f is not kinematically
allowed.

(ii) If there is minimal flavor violation (MFV), then the
cross section for the process XX → f̄f is suppressed
by a factor ðmf=mXÞ2.

In the case where mf=mX > 1, the processes XX → f̄f;
f̄fγ are forbidden, allowing the processes XX → γγ and
XX → γZ to be the most important (other processes, such
as XX → ZZ, WþW− may have similar cross sections but
are likely to be less observationally important compared to
a clean gamma-ray signal). This scenario is relevant in the
case where dark matter couples to a new, heavy charged
fermion.
In the case where mf=mX → 0, the cross section for the

process XX → f̄f must scale with the remaining param-
eters, which breaks flavor symmetry. The reason is that,
because the dark matter is Majorana and the initial state
wave function must be antisymmetric, the s-wave initial
state must have J ¼ 0. The final state f̄ and f must then
have the same helicity, implying that the f and f̄ arise from
different Weyl spinors. The final state is thus not invariant
under chiral flavor symmetries and must vanish in the
mf=mX → 0 limit in the case of MFV.
In the simplified model that we consider here, the only

deviation from MFV arises from the presence of nontrivial
mixing of the scalar chiral eigenstates. This requires both a
nontrivial left-right mixing angle α and nondegeneracy of
the mass eigenstates (if the mass eigenstates are degenerate,
then a redefinition of the eigenstates is sufficient to absorb
the mixing angle). In the massless fermion limit, left-right
mixing gives XX → f̄f an s-wave two-body annihilation
amplitude of

A2-b ¼ imX
jλLλRj
2

sinð2αÞ
�
ūðk1Þγ5vðk2Þ

2mX

�
× ½cosφūðk3Þγ5vðk4Þ − i sinφūðk3Þvðk4Þ�

×

�
1

m2
X þm2

~f1

−
1

m2
X þm2

~f2

�
; ð4Þ

where we denote the initial state dark matter momenta as
k1 ¼ k2 ¼ k and the final state fermion momenta as k3 and
k4; uðkiÞ and vðkiÞ are spinor wave functions, following the
definition of Ref. [15]. This amplitude leads to the cross
section

ðσvÞff !mf¼0 m2
X

32π
jλLλRj2sin2ð2αÞ

�
1

m2
~f1
þm2

X
−

1

m2
~f2
þm2

X

�
2

:

ð5Þ

In the mf=mX → 0 scenario, the charged fermion f must
necessarily be a SM fermion.

B. Constraints from colliders
and lepton dipole moments

The discovery of the 125 GeV SM-like Higgs boson
[16] at the LHC is a triumph of the SM. Meanwhile,
null searches for supersymmetric particles imply a lower
limit of 780 GeV for light degenerate first and second
generation squarks [17]. Constraints on squark masses
in the simplest predictive supersymmetric model, the
constrained MSSM (CMSSM), are even more stringent
and exclude squarks below 1.7 TeV for certain benchmark
models [17]. If we relax some unification constraints
imposed in the CMSSM at the grand unified theory scale,
then it has been shown that the MSSM-9 model [18] can
contain a ∼1 TeV Higgsino LSP or a ∼3 TeV wino LSP,
which are viable thermal dark matter candidates satisfying
the relic density.
On the other hand, the current limit on the mass of any

slepton ismuchweaker.Westill have thepossibility that heavy
squarks provide the necessary loop corrections to the mass of
the SM-like Higgs while light sleptons provide the main dark
matter annihilation channel. Large Electron-Positron Collider
(LEP) experiments only put a lower limit at ∼100 GeV [19],
while the LHC 8 TeV run has excluded left-handed sleptons
below 310 GeV and right-handed sleptons below 235 GeV,
assuming a massless bino LSP [20]. For a massive bino LSP
with mass mX, a new allowed region opens up for sleptons
lighter than approximately mX þ 80 GeV [20]. The LHC
14 TeV run has the potential to push the upper exclusion limit
to as high as 900 GeV (for a Higgsino LSP) but cannot move
the lower exclusion limit [21].
Although these constraints are phrased as bounds on

scalar superpartners, the lesson is more general: LHC
constraints place tight bounds on colored scalars but
weaker bounds on QCD-neutral scalars. Since the ~fL;R
must necessarily be QCD charged if f is a quark, we will
assume that, if f is a SM fermion, it is a lepton.
A new correction to the electric and magnetic dipole

moments of the SM fermions arises from diagrams with X
and the new charged mediator running in the loop; if f is a
SM fermion, then the XX → f̄f can be constrained by
bounds on fermion dipole moments [12,22] (in the absence
of fine-tuned cancellations against other contributions to
the dipole moments from independent new physics). In the
case where f is a SM charged lepton, the constraints can be
summarized as follows:

(i) The XX → eþe− cross section is constrained to be
≪ 1 pb, absent fine-tuning.

(ii) The XX → μþμ− cross section is constrained to be
≪ 1 pb, absent fine-tuning, unless CP violation is
close to maximal (φ ∼ π=2). This constraint arises
because the muon magnetic dipole moment is much
more tightly constrained than its electric dipole
moment. For near-maximal CP violation, the anni-
hilation cross section must be less than Oð100Þ pb,
absent fine-tuning.
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(iii) The XX → τþτ− cross section can easily be
Oð1Þ pb, or larger. For our purposes, it is uncon-
strained by dipole moment bounds.

We close this section by noting that, although our
model fits within the MSSM, it can also serve as a
simplified model for other scenarios in which a gauge
singlet Majorana dark matter couples only to a fermion and
two scalar particles.

III. GAMMA-RAY SIGNALS

In the current era, it is believed that there are potentially
observable excesses of darkmatter particles near our Galactic
center and in nearby dwarf galaxies. The ongoing annihila-
tions of these dark matter particles may result in observable
cosmic-ray signals, such as in the cosmic gamma-ray spec-
trum and/or in the cosmic-ray positron and/or antiproton
fraction. Typically, various reactions involving the final state
lepton pairs result in an almost featureless secondary photon
spectrum. In the simplified model we consider, however, a
distinctive feature may be contained in the internal brems-
strahlung (IB) spectrum and the associated line signals.
The search for line signals of dark matter annihilation

has been one of the primary goals of various ground-based
and satellite-based experiments. In general, the ground-
based atmospheric Cherenkov telescopes [23] are most
effective for dark matter that is somewhat heavier than
100 GeV. For example, with 500 h of observing time,
Cherenkov Telescope Array (CTA) will be sensitive to
cross sections ∼10−27 cm3=s for dark matter with mass of
∼300 GeV annihilating to τþτ− in the Galactic center
region [24]. Due to its much lower energy threshold, the
Fermi Gamma-Ray Space Telescope is better suited to
study dark matter masses in the range 0.1 to a few hundred
GeV, which is the range we are interested in here. For
mX ≲ 100 GeV, the Fermi Large Area Telescope (LAT) has
set a limit on the thermally averaged annihilation cross
section to γγ of hσviγγ ≈ 10−28 ∼ 10−29 cm3=s with the
95% C.L. containment spanning approximately 1 order of
magnitude using the PASS 8 analysis of 5.8 yr of data [25].
However, this limit, as well as any projected sensitivities, is
sensitive to the dark matter profile of the Milky Way halo
and may move up or down by about 1 order of magnitude
for different profiles. We hope that the sensitivity to hσviγγ
will be improved with additional data and/or new technol-
ogy. Future satellite-based experiments GAMMA-400 [26]
and HERD [27] are expected to reach hσviγγ≲10−28 cm3=s
for mX ¼ 100 GeV. In addition, each of these experiments
is expected to have energy resolution of ∼1%, which is
much better than Fermi-LAT’s (∼10% at 100 GeV), making
it possible to distinguish between a sharply peaked IB
spectrum and a true line signal.
Here, we present our results for the bremsstrahlung and

other prompt photon emissions arising from dark matter
annihilation to fermions and monochromatic emissions

from annihilation to γγ and γZ. By prompt emission, we
mean the photons produced directly at the dark matter
annihilation, including, for example, the hadronic decay of
the final state τ�. On the other hand, the photon emission
due to inverse Compton scattering and bremsstrahlung in
the Galactic electromagnetic fields (so-called secondary
emission), which depends on modeling of the dark matter
distribution and cosmic-ray propagation, is not included.
The photon spectrum is defined as the photon number

per annihilation per energy bin and can be broken into a
continuum spectrum and a contribution from monochro-
matic photons:

dN
dx

¼
�
dN
dx

�
cont

þ
�
dN
dx

�
line

: ð6Þ

In our case, the continuum spectrum comes mainly from IB
and other prompt emission from the final state particles,�

dN
dx

�
cont

¼ 1

ðσvÞann

�
dðσvÞIB

dx
þ
X
i

Ni
dðσvÞi
dx

�
; ð7Þ

where Ni is the number of photons produced in a single
annihilation process and the sum over i includes all higher
order prompt emissions and ðσvÞIB is the IB cross section,
which will be described in Sec. V. Note that the spectrum is
normalized by ðσvÞann., the total annihilation cross section.
When there is no chiral mixing, its dominant component is
the total IB cross section. As discussed below, the line
spectrum consists of the γγ and γZ peaks,�
dN
dx

�
line

¼ 1

ðσvÞann
½2ðσvÞγγδðx − 1Þ þ ðσvÞγZδðx − xZÞ�;

ð8Þ

where xZ ¼ EγZ=mX as given in Eq. (9). These definitions
follow Ref. [28].

IV. MONOCHROMATIC GAMMA-RAY
LINE SIGNALS

Monochromatic lines in the gamma-ray spectrum arise
due to the one-loop annihilation process XX → γY, where
Y ¼ γ, Z, or h0. The photon(s) in the final state has (have)
energy

EγY ¼ mX −
m2

Y

4mX
; ð9Þ

where mY is the mass of the particle Y. 1% energy
resolution is sufficient to differentiate γγ and γZ lines
for mX ≲ 450 GeV. In the Galactic center, the relative
velocity between dark matter particles is v ∼ 10−3, so the
p-wave component of the dark matter annihilation cross
section is suppressed.

KUMAR, SANDICK, TENG, and YAMAMOTO PHYSICAL REVIEW D 94, 015022 (2016)

015022-4



The s-wave (L ¼ 0) component must arise from a spin-
singlet initial state (S ¼ 0), since the dark matter particles
are Majorana fermions and must be in a totally antisym-
metric initial state. This state thus necessarily has vanishing
total angular momentum (J ¼ 0), implying that the final
state particles must have the same helicity. As a result, only
the γγ and γZ cross sections can develop nonvanishing s-
wave components, while the leading γh0 cross section must
be p-wave suppressed and is thus too small to be observed.
To ensure the accuracy of the results presented here,

we perform a scan over the parameter space, conducted
as follows. We first generate the analytic amplitudes for
both XX → γγ and XX → γZ using FeynArts [29],
including left-right scalar mixing and a CP-violating
phase (the γγ amplitude is presented in Appendix A).
The numerical calculation is performed using FormCalc
[30]. The package LoopTools is internally invoked by
FormCalc to calculate the loop integrals involved in the
amplitudes. However, since our initial state particles are at
rest, we have k1 ¼ k2. It is well known that if two external
momenta are collinear, the Gram matrix becomes singular,
and the tensor loop integrals fail to be linearly independent.
For analytic calculation, this is a virtue and essentially the
reason why all the four-point loop integrals that appear in
the γγ amplitude can be reduced to three-point scalar loop
integrals (see Appendix A)2. Numerically, FormCalc
breaks down for collinear external momenta, since
LoopTools uses precisely the Gram matrix to derive
higher-point and higher-rank integrals.
To circumvent this issue and arrive at a reliable result, we

introduce a small relative velocity, so that the results of
LoopTools remain stable. For example, we use a center-
of-mass energy of

ffiffiffi
s

p ¼ 200.01 GeV for mX ¼ 100 GeV
in our numerical calculations. We have checked that the
numerical error in the cross section is ≲1% for annihila-
tions to both γγ and f̄f (with scalar mixing), independent of
the model parameters. For p-wave dominant cross sections,
we perform a linear fit with respect to v2 to find the
coefficients a and b in the expansion σv ¼ aþ bv2. We
have also checked that the error is ≲1% in this scenario.
Analytic MSSM calculations of the annihilation cross

section to γγ and γZ have been presented in Refs. [8–10] in
the limit of no CP violation, and those expressions are
consistent with the ones presented here. However, if φ ≠ 0,
then the amplitude of the ðþþÞ photon helicity state will be
different from that of the ð−−Þ state, unlike the φ ¼ 0 case.
As we argued previously, the difference in the scattering
amplitude is chirally suppressed by the fermion mass mf,

δA ∼ αemjλLλRj sinð2αÞ sinφ
�
mf

mX

�
; ð10Þ

a term which does not appear previously in the literature.
We defer the full analytic expressions for the γγ cross
section, including chiral mixing and CP violation, to
Appendix A.
In order for CP violation to yield differing cross sections

for the ðþþÞ and ð−−Þ final photon states, it is necessary
formf < mX. Ifmf > mX, then the CP-violating part of the
amplitude is purely imaginary (as a result of the optical
theorem), and CP conjugation of the matrix element is
equivalent to complex conjugation. But if mf < mX, then
the intermediate states of the one-loop diagram can go
on shell, providing an imaginary component to the
CP-conserving matrix element, which is necessary for a
nontrivial asymmetry. On the other hand, if mf > mX, then
the only final states that are kinematically allowed are γγ
and γZ. In this kinematic regime, if the couplings λL;R are
large, these final states will be most easily observable.
We would like to make a few general comments

regarding the sensitivity of the dark matter annihilation
cross sections into γγ and γZ to scalar chiral mixing and CP
violation. First, both cross sections decrease as the scalar
masses increase. Thus, to make a sizable line signal, we
need to have at least one scalar mass not too much heavier
than the dark matter. If they are very degenerate, of course,
coannihilations, not considered here, would also play a
role in determining the relic density. Second, the ratio
2ðσvÞγγ=ðσvÞγZ increases as the difference between the two
scalar masses increases. As a very crude estimate, this ratio
is approximately 2 tan−2 θW ∼ 7, which works well at
no mixing. However, by varying the mixing angle and
CP-violating phase, we can make it as large as 40 within
the MSSM.
In the following discussion, we will focus on several

benchmark models, displayed in Table I. Models A, B, and
C are consistent with a supersymmetric implementation
of the Lagrangian in Eq. (1), while models D and E are
explicitly nonsupersymmetric due to the couplings λL;R
and, in the case of model E, an additional heavy fermion.
Note that, for all of these benchmark points, the new

TABLE I. We take mX ¼ 100 GeV, m ~f1
¼ 120 GeV, and

m ~f2
¼ 450 GeV for the SUSY (A, B, and C) and non-SUSY

(D and E) benchmarks, but m ~f1
¼ 102.5 GeV for the non-SUSY

benchmark D0. We take jYLj ¼ 1=2, jYRj ¼ 1 for the case of a
bino coupling to leptons.

Channel λL λR α φ Marker

A μþμ− ffiffiffi
2

p
YLg

ffiffiffi
2

p
YRg

π
4

π=2 Star
B

τþτ− 0 Circle
C π=2 Cross

D
μþμ− 0.8 0.8 π

6
π
2

Square
D0 0.75 0.75 Diamond

E f̄f, mf ¼ 105 GeV 2 2 π=4 3π=4 Triangle
2For a comprehensive review on the calculation techniques of

general tensor loop integrals, see Ref. [31].
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charged particles are fully consistent with constraints from
the LHC and LEP.
Benchmark E presents an interesting case, as it contains

a new charged fermion with mf ¼ 105 GeV. Such a
particle is within the energy reach of the LHC, and one
must worry if such a particle would already be excluded by
current data. But LHC sensitivity to new charged particles
depends greatly on the particle decay chains; it is easy to
choose a decay scenario for which f would escape current
LHC limits. For example, if the new 105 GeV fermion
decayed to a SM charged lepton and a new ∼100 GeV
invisible scalar, then this charged fermion would escape
detection for the same reason that light sfermions do in the
compressed spectrum scenario. The new invisible scalar
need not contribute to dark matter, or even be long lived,
provided its lifetime was long enough to decay outside
the detector. We will not focus further on this particular
decay scenario, which we describe only to demonstrate that
benchmark E can be completely consistent with LHC
constraints. For models where mf is even larger, LHC
constraints may be more easily satisfied, without qualita-
tively changing the analytic results we obtain.
In the following subsections, we examine the line signal

strengths in the context of different SUSY and non-SUSY
models.

A. SUSY case

We first consider the SUSY case, as in Ref. [12], where
f and ~f are SM leptons and MSSM sleptons, therefore
denoted as l and ~l in this subsection. In Fig. 2, we display
the cross sections ðσvÞγγ (left) and ðσvÞγZ (right) as
functions of α for φ ¼ 0, π=2, and π. Since ðσvÞγZ is only
mildly sensitive to the CP-violating phase, φ, we show the
cross section as a function of φ for α ¼ π=4 in the inset of
the right panel. Turning first to the left panel, we see an
increase of ðσvÞγγ by a factor of 6 as α ranges from zero to
π=4 at φ ¼ π=2 (and as much as a factor of ≳10 over the
full range of α shown). For the τ channel, displayed in
Fig. 2, the dependence on φ is significant (in contrast to the
μ channel): At α ≈ π=4, ðσvÞγγ varies by a factor of 2 as φ

ranges from zero to π=2. Turning to the right panel,
we see that there is an increase in ðσvÞγZ by about a factor
of 16 for α ¼ π=2 relative to α ¼ 0. This arises from
the fact that YR ¼ 2YL: for α ¼ π=2 (α ¼ 0), the lighter
scalar mass eigenstate consists entirely of the right-handed
(left-handed) component, the contribution to the cross
section of which is proportional to Y4

R (Y4
L). This enhance-

ment is possible only when the two-body annihilation cross
section is suppressed (α ¼ nπ=2 for n odd), and thus the
relic abundance of binos is too large. If another mechanism,
such as coannihilation, helped to lower the relic abundance,
or if dark matter were nonthermal, it may be possible for
the line signal to be much larger than that suggested by the
benchmark points. As we see in the right panel of Fig. 2,
the dependence of ðσvÞγZ on the CP-violating phase is
not as significant as it is for annihilation to γγ, even for
the τ channel.
In Fig. 3, we display a contour plot of ðσvÞγγ with respect

to the chiral mixing, α, and CP-violating phase, φ. The
regions of parameter space in which the dark matter is a
thermal relic are shaded blue, and, for the μ channel, the
regions compatible with the measurement of the muon
anomalous magnetic moment are shaded red/magenta (for
the τ channel, the dipole moment measurements do not
constrain the parameter space). Benchmarks A, B, and C
are also marked.
Unfortunately for the SUSY case, these monochromatic

photon signals lie well below the current experimental
sensitivity. Nonetheless, it is worth considering the pos-
sibility of an eventual detection. As discussed in Sec. IV,
once a statistical excess of these line signals is observed,
and if the dark matter mass lies in the range mZ < mX ≲
140 GeV (for Fermi-LAT) or ≲450 GeV (for GAMMA-
400 or HERD), the ratio of the dark matter annihilation
cross section into γγ and γZ will be of significant interest
for determining the nature of the dark matter particle and
the theory of physics beyond the SM in which it resides.
Indeed, this ratio does not suffer from astrophysical
uncertainties in the dark matter distribution in our
Galaxy [8]. In Ref. [32], a wide range of MSSM parameter
space is examined, and an attempt is made to use the ratio

FIG. 2. ðσvÞχχ→γγ (left) and ðσvÞχχ→γZ (right) dependence on α and φ for SUSY bino dark matter with coupling only to τ and ~τ.
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of 2ðσvÞγγ=ðσvÞγZ to distinguish among coannihilation,
funnel, and focus point scenarios in minimal supergravity
(mSUGRA), aswell aswithinmoregeneralMSSMscenarios.
Following the same line of analysis, we plot the

annihilation cross section to γγ (left) and the ratio
2ðσvÞγγ=ðσvÞγZ (right) as functions of the slepton masses
in Fig. 4 for the μ (top) and τ (middle and bottom) channels
for mX ¼ 100 GeV and α ¼ π=4. In the top panels, we
display the μ channel with φ ¼ π=2, and in the middle and
lower panels, we display the tau channel with φ ¼ 0
and π=2, respectively. In the left panels, we display the
XX → γγ cross sections in units of 10−30 cm3 s−1, while
in the right panels, we show the ratio 2ðσvÞγγ=ðσvÞγZ.
The parameter space that accommodates thermal relic dark
matter lies between the thick dashed contours that cut
diagonally across each plane. As expected, ðσvÞγγ
decreases as the slepton masses increase. Similarly, the
ratio 2ðσvÞγγ=ðσvÞγZ increases as the difference between
m ~l1

and m ~l2
increases. 2ðσvÞγγ=ðσvÞγZ is larger than 17.0

for φ ¼ 0 in the τ channel. Although not presented in
Fig. 4, this approximately holds true for the μ channel as
well. In the case of φ ¼ π=2, 2ðσvÞγγ=ðσvÞγZ is greater than
26 for the μ channel and greater than 28 for the τ channel.
By contrast, in the coannihilation region in mSUGRA,
2ðσvÞγγ=ðσvÞγZ ranges from 7–12 (see Fig. 5 in Ref. [32]).
It is therefore possible that if both the γγ and γZ lines are
observable, the ratio of the signal strengths could be used to
distinguish between, for example, the coannihilation region
and a model similar to the Incredible Bulk. Though these

scenarios could, in principle, also be distinguished by the
cosmic-ray signal arising from XX → lþl−, such a signal
would be subject to astrophysical uncertainties and would
therefore leave much room for doubt.
In summary, the XX → γγ cross sections increase by a

factor of ∼2 as φ varies from 0 to π=2, as does the ratio
2ðσvÞγγ=ðσvÞγZ (since the XX → γZ cross section is insen-
sitive to the value of φ). As the slepton masses increase,
ðσvÞγγ becomes smaller, while 2ðσvÞγγ=ðσvÞγZ increases as
the difference between m ~l1

and m ~l2
increases.

B. Beyond the MSSM

There are two other scenarios we consider, beyond the
Incredible Bulk scenario of binolike dark matter in the
MSSM, in which the monoenergetic gamma-ray line
signals are particularly interesting: f ¼ μ (benchmark D)
and mf > mX (benchmark E), each with arbitrary but
perturbative couplings. If mf > mX, as in benchmark E,
the processes XX → f̄fðγÞ are kinematically forbidden,
and the processes XX → γγ, γZ will be the most important
for indirect detection.
If f ¼ μ, as in benchmark D, then the process

XX → μþμ− produces few photons or antiprotons through
final state decay. As a result, the 2 → 2 cross section is
constrained only by positron searches and dipole moment
constraints. Tight constraints on the XX → μþμ− cross
section have been presented in the literature based on
AMS-02 positron searches [33], which would require
ðσvÞμþμ− ≲ 1 pb. But these analyses have relatively large

(a) μ channel (b) τ channel

FIG. 3. The dependence of ðσvÞγγ on the slepton mixing angle, α, and the CP-violating phase, φ, for the μ channel (left panel) and τ
channel (right panel) for the SUSY case λL ¼ 2λR. In each plot, the blue stripe indicates the region that satisfies 0.11 < Ωh2 < 0.13.
In the μ channel plot (left), the light magenta region of our parameter space leads to 128 × 10−11 < aμ < 448 × 10−11, which resolves
the issue of the muon anomalous dipole moment. In the light red region, we have instead −448 × 10−11 < aμ < 128 × 10−11, which
neither solves nor exacerbates the discrepancy between the observed muon anomalous magnetic moment and the SM expectation. For
the τ channel, the dipole moment measurements do not constrain the parameter space. The red markers (star, circle, and cross) indicate
the positions of our benchmark models (A, B, and C, respectively).
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systematic uncertainties arising from assumptions about
the sources of astrophysical backgrounds and propagation
effects [34]. A full discussion of these issues is beyond the
scope of this work, but it suffices to note that gamma-ray
signal arising from the process XX → γγ, γZ is much
cleaner than the positron signal arising from the process
XX → μþμ−, particularly since the gamma-ray signal can
point back to sources which are well understood, such as
dwarf spheroidals. As a result, these gamma-ray signals
are of interest even for large α and λL;R, where the
XX → μþμ− cross section would be in tension with
analyses of AMS-02 electron flux data. Note, however,

that this rationale would be less compelling in the case
where f ¼ τ, as in this case, the process XX → τþτ−
can produce gamma-ray signals from dwarf spheroidals,
arising from hadronic τ� decay.
In Fig. 5, we show the cross section for the process

XX → γγ as a function of α and φ for benchmark E. We see
that Fermi line searches [25] tend to constrain models with
large left-right mixing and small CP violation. Note that
this is in contrast to the case of mf < mX, where larger CP
violation tends to lead to a larger σðγγÞ cross section.
Future experiments with a larger effective area and/or
energy resolution could improve on these sensitivities.

FIG. 4. The dependence of the XX → γγ cross section (left) and the ratio 2ðσvÞγγ=ðσvÞγZ (right) on the slepton masses for the SUSY
case, λL ¼ 2λR. The black markers in each plane indicate the positions of our benchmark points. Note that in three of the plots we have
used a log-scaled color function.
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In Fig. 6 we plot, for the μ channel, the asymmetry ratio

R ¼ σðþþÞ − σð−−Þ
σðþþÞ þ σð−−Þ ; ð11Þ

where σð��Þ is the annihilation cross section with two
positive or negative helicity final state photons. Note that
this ratio is independent of the common scaling of λL
and λR. As expected, this asymmetry is maximized at large
left-right mixing and the maximal CP-violating phase. At
its maximum, the asymmetry is ∼2%, which is larger than
one might naively expect from the mf=mX suppression of
the CP-violating term in the matrix element. This arises
because the loop integral relevant for the CP-violating term
happens to be about an order of magnitude larger than the
integral which is relevant for the CP-conserving term in
the mf ≪ mX limit. If we have m ~fi

> mf > mX, as in

Benchmark E, then R is identically zero, as expected from
the optical theorem. The detailed reason is that, beyond the
branching point mf ¼ mX, all the loop integrals are real,
and the amplitudes of the ðþþÞ and ð−−Þ final states are
conjugate with each other and lead to the same cross
section. See the Appendix for details.
In Fig. 7, we plot the asymmetry ratio R for Benchmark

D, except that we instead take f ¼ τ. In this case, as
expected, the asymmetry is about an order of magnitude
larger, because the mf=mX suppression factor is about a
factor of 10 larger. Note that the cross section asymmetry is
linear in this suppression factor, since it arises from the
interference of the CP-conserving and CP-violating pieces.
Although the asymmetry is more pronounced in this case
than in the case where the fermion is a muon, the couplings
λL;R are also more tightly constrained in this case due to
tight bounds on the process XX → τþτ− arising from Fermi
searches for the continuum photons from τ-decay via a
neutral pion [35].

V. INTERNAL BREMSSTRAHLUNG

The IB process XX → f̄fγ can in general produce a
steplike feature in the photon spectrum at Eγ ≈mX. Further
study shows that IB can even lead to a significant peak at
the end of the spectrum when the dark matter and ~f1 are
nearly degenerate [28]. We can separate the IB amplitude
into two (not gauge invariant) parts as in Ref. [11]: virtual
internal bremsstrahlung (VIB) for the photon attached to
the internal scalar propagator and final state radiation (FSR)
for the photon attached to the external fermion lines. The
full IB amplitude can then be written

AIB ¼ AVIB þAFSR: ð12Þ

From AIB, the total differential cross section can be
calculated by

FIG. 5. The cross section for the process XX → γγ with
mf > mX. Benchmark E is labeled by the triangle. Here and
in the following figures, the Fermi line constraint is taken as
4 × 10−28 cm3=s for mX ¼ 100 GeV [25].

FIG. 6. The asymmetry ratio R for the μ channel XX → γγ process. The left panel shows λR ¼ 2λL, while the right panel shows
λL ¼ λR. Benchmarks A and D are labeled by the star and square, respectively.
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dðσvÞIB
dx

¼ x
512π4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
f

m2
Xð1 − xÞ

s Z
dΩ34jAIBj2; ð13Þ

where dΩ34 is the integration over the fermions’ direction

in the fermion pair center-of-mass frame and jAIBj2 is the
squared amplitude with initial spin averaged and final spin
summed.
If there is no mixing between the scalars associated with

the left- and right-handed fermions, there may be a hard
feature at the end of the IB spectrum that comes from the
VIB. However, in the presence of scalar mixing, FSR will
introduce another s-wave amplitude that dominates over
VIB at high energies. In particular, it comes mainly from
the collinear limit of the FSR photon, and the total IB
spectrum is fairly flat relative to the case with no mixing.
To illustrate this point, we rewrite the total IB amplitude
AIB in terms of three gauge invariant subamplitudes,

AIB ¼ ie
2

�
ūðk1Þγ5vðk2Þ

2mX

�
ðAvb þAmix þAmf

Þ; ð14Þ

where again k1;2 are the momenta of the two dark matter
particles. The first term, Avb, is the intrinsic s-wave
amplitude, which survives in both the massless fermion
limit (mf → 0) and the no-mixing limit (α ¼ 0). This term
is the amplitude for the production of a fermion and
antifermion with opposite helicities, arising from the same
Weyl spinor, with the remaining angular momentum carried
by the vector boson. If we denote the photon momentum
and polarization as k5 and ϵ5 and the outgoing fermion
(antifermion) momentum by k3 (k4), this amplitude can be
written as

Avb ¼ ūðk3ÞO1ðjλLj2 cos2 αPL − jλRj2 sin2 αPRÞvðk4Þ
þ ūðk3ÞO2ðjλLj2 sin2 αPL − jλRj2 cos2 αPRÞvðk4Þ:

ð15Þ

The matrices Oi are given by

Oi ≡ γμ

�
kμ5ðk3 − k4Þ · ϵ5 − ϵμ5ðk3 − k4Þ · k5

ðs3 −m2
~fi
Þðs4 −m2

~fi
Þ

�
; ð16Þ

with s3 ≡ ðk − k3Þ2 and s4 ≡ ðk − k4Þ2. When mf ¼ 0, the
cross section due solely to Avb is

dðσvÞvb
dx

¼
X
i¼1;2

αemλ
4
i ð1 − xÞ

64π2m2
X

×

�
4x

ð1þ μiÞð1þ μi − 2xÞ −
2x

ð1þ μi − xÞ2

−
ð1þ μiÞð1þ μi − 2xÞ

ð1þ μi − xÞ3 log
1þ μi

1þ μi − 2x

�
; ð17Þ

where

λ21 ≡ jλLj2 cos2 α − jλRj2 sin2 α;
λ22 ≡ jλLj2 sin2 α − jλRj2 cos2 α;

μi ≡m2
~fi
=m2

X, and x≡ Eγ=mX is the photon energy frac-

tion. In the limit α ¼ 0, we have AIB ∼Avb, and we
recover the well-known result given, for example, in
Refs. [11,36]. Note that, if μi ∼ 1, the photon spectrum
becomes very hard, due the enhancement as x → 1. This
enhancement arises in the limit where an outgoing
fermion becomes soft; if the dark matter and the scalar
are nearly degenerate, then one intermediate scalar propa-
gator goes on shell. The total cross section in the α,
mf=mX → 0 limit is finite:

ðσvÞvb ¼
X
i¼1;2

αemλ
4
i

64π2m2
X

×

�
ðμi þ 1Þ

�
π2

6
− log2

�
μi þ 1

2μi

�
− 2Li2

�
μi þ 1

2μi

��

þ4μi þ 3

μi þ 1
þ 4μ2i − 3μi − 1

2μi
log

�
μi − 1

μi þ 1

��
: ð18Þ

If μi − 1 ≪ 1, the combination in the curly brackets
approaches a constant, ð7=2Þ − ðπ2=3Þ; if μi ≫ 1, it
behaves as 4=ð15μ4i Þ.
When α ≠ 0, there is another contribution to the s-wave

amplitude arising from mixing,

Amix ¼ mXjλLλRj sinð2αÞ
× ½cosφūðk3Þγ5ðV1 þ S1 − V2 − S2Þvðk4Þ
−i sinφūðk3ÞðV1 þ S1 − V2 − S2Þvðk4Þ�; ð19Þ

where the matrices Vi and Si are given by

FIG. 7. The asymmetry ratio R as in Fig. 6, but for the τ
channel, with λR ¼ 2λL. Benchmarks B and C are labeled by the
circle and cross, respectively.
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Vi ≡ −
i
2
σμνk

μ
5ϵ

ν

�
1

ðk3 · k5Þðs4 −m2
~fi
Þ þ

1

ðk4 · k5Þðs3 −m2
~fi
Þ
�

Si ≡ ðk3 − k4Þ · ϵ5
ðs3 −m2

~fi
Þðs4 −m2

~fi
Þ

þ
�

k3 · ϵ5
ðk3 · k5Þðs4 −m2

~fi
Þ −

k4 · ϵ5
ðk4 · k5Þðs3 −m2

~fi
Þ
�
: ð20Þ

The last piece, Amf
, is proportional to the fermion mass,

mf,

Amf
¼−mfðjλLj2cos2αþjλRj2sin2αÞūðk3Þγ5ðV1þS1Þvðk4Þ
−mfðjλLj2sin2αþjλRj2cos2αÞūðk3Þγ5ðV2þS2Þvðk4Þ:

ð21Þ
Both Amix and Amf

are contributions to the amplitude for
producing a fermion and antifermion with the same
helicity, where the mixing between Weyl spinors arises
from either the nonvanishing mixing angle or the fermion
mass term. Comparing with the separation (12), we find
that Avb contains the entire AVIB and part of AFSR, while
Amix and Amf

receive contributions only from AFSR.
Each term in the matrix element can be written as the

contraction of a spinor product, with some Lorentz struc-
ture, and some function of the momenta. Avb contains
spinor products with vector and axial vector Lorentz
structure. The CP-conserving parts of Amix contain spinor
products with scalar and tensor Lorentz structures, while
the CP-violating parts contain spinor products with pseu-
doscalar and tensor Lorentz structures. We do not present
the complete differential scattering cross section because
it is quite lengthy. However, the spinor products can be
found, for example, in Ref. [37], allowing one to evaluate
the entire expression.
We note also that each of these terms (Avb, Amix,

and Amf
) is suppressed at most by sin 2α or mf=mX, but

not by both. Thus, we expect CP-violating contributions
to bremsstrahlung processes to be subleading, as they are
doubly suppressed. Indeed, our explicit calculation verifies
that this effect is small.
There is a well-known enhancement in the cross section

for emitting soft or collinear photons via final state radiation,
arising from a nearly on-shell fermion propagator. In both
the soft and collinear limits, we have s3 ≈ s4 ≈ −m2

X, and
the only divergent quantity is

Si þ Vi → −
�
ϵ5k5 þ 2k3 · ϵ5

2k3 · k5
−
k5ϵ5 þ 2k4 · ϵ5

2k4 · k5

�
1

m2
X þm2

~fi

:

ð22Þ

In particular, for the soft limit,we can further neglect the k5 in
the numerator and get the correct factorization behavior,

AIB!soft − e

�
k3 · ϵ5
k3 · k5

−
k4 · ϵ5
k4 · k5

�
A2-b: ð23Þ

This leads to the Sudakov log enhancement of the probability
for photon emission from final state radiation,

ðσvÞIB ∼
αem
π

log

�
s
E2
th

�
log

�
s
m2

f

�
× ðσvÞff̄; ð24Þ

where s ¼ 4m2
X and we have kept only the leading loga-

rithmic enhancement. The first logarithm is the soft photon
enhancement, which is cut off byEth, the energy threshold of
the photon detector. The second logarithm is the collinear
photon enhancement and is cut off by the mass of the
fermion. More generally, if the photon is collinear but not
necessarily soft, we obtain

dðσvÞIB
dx

∼
αem
π

ð1 − xÞ2 þ 1

x
log

sð1 − xÞ
m2

f

× ðσvÞff ð25Þ

from Eq. (23), which agrees with the Weizsäcker-Williams
formula for FSR. The soft and collinear enhancements thus
have little effect on the spectrum asmf=mX → 0 and α → 0,
since ðσvÞff̄ → 0 in this limit. But if α ≠ 0, then the collinear
enhancement will have a large effect; one cannot strictly take
mf=mX → 0 limit, as the nonzero fermion mass cuts off the
collinear divergence.
There has been a variety of past work on the spectrum of

the XX → f̄fγ process, and this spectrum is well known in
two limits:

(i) α ¼ 0, mf=mX → 0: This corresponds to the case
where the process XX → f̄f is suppressed, and the
dominant process is XX → f̄fγ, yielding a hard
spectrum which is dominated by Avb. The soft and
collinear emission of photons via FSR has little
effect on the spectrum.

(ii) α ¼ Oð1Þ, mf=mX → 0: In this case, the XX → f̄f
cross section is unsuppressed, and the dominant
contribution to XX → f̄fγ arises from FSR in the
soft and collinear regimes. Here, the details of
the interaction are not very important; provided
the XX → f̄f cross section is unsuppressed, the
dominant contribution to XX → f̄fγ arises from a
simple rescaling of the 2 → 2 cross section by the
Sudakov log factor.

We will now discuss the regime of intermediate α, which
interpolates between these two limits.
In Fig. 8, we plot the continuum photon spectrum for

both μ and τ final states with three different lightest scalar
masses. As expected, the α ¼ 0 case produces a hard
spectrum which falls rapidly at low energies. The peak
feature is more prominent for degenerate X and ~f1.
Moreover, the normalization of the spectrum remains stable
as mf=mX → 0. Once α is large enough, the spectrum
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flattens due to the enhancement in emission of soft photons.
If the lightest scalar mediator ( ~f1, without loss of general-
ity) is much lighter than the heavier scalar, one expects the
crossover between these behaviors to occur roughly when

tan2 α × jλR=λLj2ðm ~f1
=mXÞ4 logðm2

X=m
2
fÞ ∼Oð1Þ; ð26Þ

which corresponds to the point where the suppression of
soft FSR due to the small mixing angle is roughly canceled
by the enhancement for collinear emission. Note that
one expects the hard IB signal to dominate over 2 → 2
scattering provided

tan2 α × jλR=λLj2ðm ~f1
=mXÞ4 < αem: ð27Þ

We thus see, for example, that ifmX ∼ 100 GeV and f ¼ μ,
then for a choice of parameters such that the photon
spectrum will interpolate between the hard and FSR
regimes, the cross section for XX → f̄fγ with a hard
photon will be Oð10%Þ of the XX → f̄f cross section.
For f ¼ τ, the high energy spectrum behaves in a similar

way, but there is an α-independent bump at the low energy
end due to the photons from the hadronic decay of τ�.
To get a better idea of when the peak feature disappears,

we plot in Fig. 9 the ratio of the photon number in the peak
to the total photon number (integrated from x ¼ 0.01 to the
cutoff). To find out the peak for each α, we integrate the
photon number in a bin of which the width is 10% of its

FIG. 8. Dependence of the continuum photon spectrum on α for the process XX → f̄fγ. The left panels show the μ channel, and the
right show the τ channel. The three ~f1 masses correspond to μ1 ¼ 1.01, 1.05, and 1.44. We take λL ¼ ð ffiffiffi

2
p

=2Þg, λR ¼ ffiffiffi
2

p
g.

FIG. 9. The photon number fraction in the peak of μþμ−γ final
state for three different lightest scalar masses. The model
parameters are the same as in the left panel of Fig. 8.
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central value and slide it from x ¼ 0.6 to the cutoff. The
peak corresponds to the maximum photon number found in
this process. For f ¼ μ, we may see that the transition
happens around α ∼ π=100.
Finally we would like to clarify the procedure used to

obtain the components of the spectra. As mentioned above,
prompt photon emission can also come from the decay of
the charged SM particles produced by dark matter anni-
hilation. The prompt photon spectrum is usually simulated
by event generators such as PYTHIA, which first create
the final state phase space for the decay of a hypothetical
boson with various branching ratios into SM particles, then
simulate the prompt evolution of the final state, and finally
return the resultant photon spectrum. In particular, the FSR
of the decay, as the leading order contribution, is thus
captured by the simulation. But in our calculation of
bremsstrahlung, FSR is necessarily included in order for
the calculation to be gauge invariant. Thus, as in Ref. [11],
we must subtract the FSR from the PYTHIA decay
spectrum before adding the bremsstrahlung spectrum.
Finally, in Table II, we present, for reference, a summary

of the dark matter abundance and relevant annihilation
cross sections for the benchmarks discussed here.

A. Constraints from Fermi-LAT

In Fig. 10, we plot the Fermi-LAT exclusion contours
for f ¼ μ in the ðα;φÞ plane for Benchmark D with
λL ¼ λR ¼ 0.8 and μ1 ¼ 1.44 and Benchmark D0 with
λL ¼ λR ¼ 0.75 and μ1 ¼ 1.05. Since the Fermi-LAT
analysis searches for photons, and muon decay produces
few photons, this is essentially a search for the XX → f̄fγ
(for these parameters, the monoenergetic photon final states
are subdominant). For the parameter range displayed, the
maximum cross section for XX → μþμ−γ in the ðα;φÞ-
plane is ∼1.4 × 10−25 cm3=s. For μ1 ¼ 1.44, the cross
section for process XX → μþμ− is ð20.9 pbÞ × sin2 2α.
The continuum limit arises from a stacked search of dwarf
spheroidals for photons with E > 1 GeV and follows the
analysis of Ref. [38]. Although this is not the most recent
analysis and does not provide the most stringent limit from
dwarf spheroidals, it is applicable here because it makes
no assumption about the photon spectrum. Constraints are
phrased in terms of a particle physics factor, ΦPP,

ΦPP ¼ ðσvÞann
8πm2

X

Z
1

xth

dx

�
dN
dx

�
cont

: ð28Þ

TABLE II. Physical quantities derived from our benchmark models A, B, and C. ðσvÞIB is integrated from x ¼ 0.2. Note that all
models satisfy the constraints on the dipole moments of the SM leptons, with the exception of Benchmark A, which does not exacerbate
the problem of the muon anomalous magnetic moment but also does not produce the measured value. If φ is shifted sightly to 0.49π, aμ
will fall into the 2σ range of current experimental measurement, while all the other quantities in the table above remain nearly
unchanged. See Ref. [12] for more details on the magnetic and electric dipole moments.

Model ðσvÞff̄ ×10−26 cm3=s ðσvÞIB ×10−27 cm3=s Ωh2 (thermal) ðσvÞγγ ×10−28 cm3=s ðσvÞγZ ×10−32 cm3=s

A 2.127 4.917 0.1156 4.256 × 10−3 2.89
B 2.010 2.872 0.1212 2.662 × 10−3 3.03
C 2.128 3.046 0.1155 4.513 × 10−3 2.88
D 46.95 108.5 Underabundant 8.019 × 10−2 � � �
D0 53.53 124.7 Underabundant 0.1355 � � �
E Forbidden Forbidden Overabundant 2.9370 � � �

FIG. 10. The total IB cross section for (a) μ1 ¼ 1.44 and λL ¼ λR ¼ 0.8 and (b) μ1 ¼ 1.05 and λL ¼ λR ¼ 0.75. At large mixing, both
models are constrained by the Fermi continuum limit; at α ∼ 0, π=2, and π, the spectrum of (b) is linelike so it is also constrained by the
Fermi line limit. The Benchmarks D and D0 are labeled by the square and diamond. The Fermi continuum limit is taken from Ref. [38].
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We take the constraint on ΦPP from Ref. [38],

ΦPP ¼ 5.0þ4.3
−4.5 × 10−30 cm3 s−1GeV−2:

For the μ final state, with small mixing angle, ΦPP can be
approximated by

ΦPP ≈
ðσvÞIB
8πm2

X
; ð29Þ

such that it can be directly translated into an upper limit for
ðσvÞIB. For small α, the IB spectrum for μ1 ¼ 1.44 (left
panel of Fig. 10) might just marginally display a linelike
feature, while for μ1 ¼ 1.05 (right panel of Fig. 10), the
spectrum is hard enough that it can be constrained by the
Fermi-LAT line search [25]. The spectral features of both
cases can be understood in light of Fig. 8.

VI. CONCLUSION

In this paper, we have investigated possible gamma-ray
signatures from dark matter annihilation in a class of
simplified models in which the dark matter couples to
light fermions via a pair of new charged scalars. In
particular, we have studied the effect of chiral mixing
and a CP-violating phase on the gamma-ray signals from
dark matter annihilation into γγ and γZ as well as the
internal bremsstrahlung spectrum associated with dark
matter annihilation into a fermion pair.
We have found that varying the mixing angle results

in a prompt photon spectrum for the process XX → f̄fγ
which interpolates between the standard regimes which
are dominated by either virtual internal bremsstrahlung or
soft/collinear final state radiation. In some regions of
parameter space, this deviation from the standard spectra
will be observable and can provide a clue as to the relative
strength of deviations from minimal flavor violation in the
underlying theory. For the 2 → 3 annihilation process,
although the mixing angle is very important in determining
the spectrum, the CP-violating phase is less so.
On the other hand, the mixing angle and CP-violating

phase are both important for monoenergetic annihilation
signals. In particular, varying the mixing angle will change
the relative branching fractions to the final states γγ and γZ.
For sufficiently large couplings in the simplified model,
this effect could be observed in future experiments with
excellent energy resolution.
Interestingly, a nonvanishing CP-violating phase can

result in an asymmetry in the left- vs right-circularly
polarized photons arising from dark matter annihilation.
Current gamma-ray instruments are not capable of detec-
ting such polarization for the energy range of interest.
Experimental study of this scenario would require a new
strategy. Monoenergetic photon signals from dark matter
annihilation are sometimes considered the ultimate
“smoking gun” for indirect detection; it would be interesting

to further study the feasibility of observing the polarization
asymmetry in this channel, which is a hallmark of CP
violation.
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APPENDIX: ANALYTIC TWO-PHOTON
CROSS SECTION

The interaction between the fermion, scalar, and photon
is given by

Lqed ¼ ieð ~f�1Aμ∂μ
~f1 þ ~f�2Aμ∂μ

~f2 − c:cÞ
þ e2AμAμð ~f�1 ~f1 þ ~f�2 ~f2Þ þ ef̄γμAμf: ðA1Þ

We denote the momenta of the two initial state dark matter
particles as k1 and k2 and the momenta of the two final state
photons as k3 and k4. Since the annihilation takes place
between two dark matter particles at rest, the momentum
configuration is

k1 ¼ k2 ¼ k ¼ ðmX; 0; 0; 0Þ;
k3 ¼ ðmX;mXn̂Þ;
k4 ¼ ðmX;−mXn̂Þ; ðA2Þ

where the unit vector n̂ gives the direction of the photon
momentum. Using the spinor helicity formalism, we
choose the polarization vectors as

ϵμ3ðþÞ≡ ϵμþðk3; k4Þ ¼
1ffiffiffi
2

p ½k3jγμjk4i
hk4k3i

;

ϵμ3ð−Þ≡ ϵμ−ðk3; k4Þ ¼
1ffiffiffi
2

p hk3jγμjk4�
½k4k3�

;

ϵμ4ðþÞ≡ ϵμþðk4; k3Þ ¼
1ffiffiffi
2

p ½k4jγμjk3i
hk3k4i

;

ϵμ4ð−Þ≡ ϵμ−ðk4; k3Þ ¼
1ffiffiffi
2

p hk4jγμjk3�
½k3k4�

; ðA3Þ

where the notation follows Ref. [39]. The benefit of this
choice is that the inner products between opposite helicity
vectors are always zero. Feynman diagrams that contribute
to the amplitude are displayed in Fig. 11.
We write the total amplitude A as

A ¼ iαem
2π

ðϵ3 · ϵ4Þ
�
ūðk1Þγ5vðk2Þ

2mX

�
AðhÞ; ðA4Þ
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where αem is the fine structure constant and h≡ ðh3 þ
h4Þ=2 such that h ¼ 1 for the ðþþÞ final and h ¼ −1 for
the ð−−Þ final state. The structure ðϵ3 · ϵ4Þðū1γ5v2Þ reflects
the s-wave nature of this amplitude, since this factor is
nonzero only for the L ¼ 0 initial state configuration. Then,
all the contributions from the loop integrals in Fig. 11 are
collected in AðhÞ, which we write as

AðhÞ ¼ I1ðjλ2Ljcos2αþ jλ2Rjsin2αÞ
þ I2ðjλ2Ljsin2αþ jλ2Rjcos2αÞ

þ 2jλLλRj sin α cos α
�
mf

mX

�
× ½ðJ 1 − J 2Þ cosφþ ihðK1 −K2Þ sinφ�: ðA5Þ

Because of the term ihðK1 −K2Þ sinφ, the probabilities of
having ðþþÞ and ð−−Þ photon final states are unequal
(note that I i, J i, and Ki are, in general, complex
functions), which is a potentially measurable effect of
CP violation. The coefficients I i, J i, and Ki are given by

I i ¼
m2

i I2ðmi;mfÞ
m2

i −m2
l

−
2m2

fI1ðmfÞ
m2

i þm2
X −m2

f

þm2
fðm2

i −m2
X −m2

fÞI3ðmi;mfÞ
ðm2

i −m2
fÞðm2

i þm2
X −m2

fÞ
; ðA6Þ

J i ¼
2m2

X½I1ðmfÞ − I3ðmi;mfÞ�
m2

i þm2
X −m2

f

; ðA7Þ

Ki ¼
2ðm2

X −m2
fÞI1ðmfÞ

m2
i þm2

X −m2
f

þ 2m2
i I2ðmi;mfÞ
m2

i −m2
f

−
2m2

i m
2
XI3ðmi;mfÞ

ðm2
i −m2

fÞðm2
i þm2

X −m2
fÞ
;

−
2m2

i

m2
i −m2

X −m2
f

½I2ðmi;mfÞ − I1ðmiÞ�; ðA8Þ

where mi is the mass for the internal scalars (here, we have
adopted a simplified notation, mi ≡m ~fi

in the main text).
We observe that, if m1 ¼ m2, we have ðI1;J 1;K1Þ ¼
ðI2;J 2;K2Þ such that the amplitude will not vanish, but it
will depend neither on the mixing angle α nor on the

CP-violation phase φ. However, as seen from (5), the
s-wave 2 → 2 annihilation cross section is identically zero
in this case. If the integral K1 −K2 is complex (which
is the case for both the μ and τ channels), the amplitudes
of the ðþþÞ and ð−−Þ final states do not have the same
magnitude, which leads to an asymmetry ratio R as
discussed in the main text. Here, I1 and I2 are the same

as 2m2
XI

½1�
3 and 2m2

XI
½2�
3 in Ref. [9]. They are related to the

standard three-point scalar loop integrals through

I1ðmaÞ
2m2

X
¼ C0½0; 0; 4m2

X;m
2
a; m2

a; m2
a� ðA9Þ

I2ðma;mbÞ
2m2

X
¼ C0½0; m2

X;−m2
X;m

2
a; m2

a;m2
b�; ðA10Þ

in which we follow the convention of LoopTools [30].
The analytic expressions for I1;2;3 are

I1ðmaÞ ¼

8>>>>><
>>>>>:

1
4

�
log

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2

a=m2
X

p
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2

a=m2
X

p
�
þ iπ

�
2

ma ≤ mX

−
�
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m2
a=m2

X−1

q �
2

ma > mX

;

ðA11Þ

I2ðma;mbÞ ¼
�
−Li2

�
m2

a −m2
b þm2

X −
ffiffiffiffiffiffi
Δ1

p
2m2

a

�

− Li2

�
m2

a −m2
b þm2

X þ ffiffiffiffiffiffi
Δ1

p
2m2

a

�

þ Li2

�
m2

a −m2
b −m2

X −
ffiffiffiffiffiffi
Δ2

p
2m2

a

�

þ Li2

�
m2

a −m2
b −m2

X þ ffiffiffiffiffiffi
Δ2

p
2m2

a

��
; ðA12Þ

I3ðma;mbÞ≡ I2ðmb;maÞ; ðA13Þ

where

Δ1 ¼ ðm2
a −m2

b −m2
XÞ2 − 4m2

Xm
2
b;

Δ2 ¼ ðm2
a −m2

b þm2
XÞ2 þ 4m2

Xm
2
b: ðA14Þ

FIG. 11. Feynman diagrams that contribute to the one-loop process XX → γγ. Diagrams with initial and final state particles exchanged
are not listed.
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We note that both the I i and J i terms are contained in the
analytic expression in Refs. [8,9], but the Ki term is
missing. Finally, we define the square of the total unpo-
larized amplitude as

jMj2 ¼ 1

4

X
s1;s2

X
h3;h4

jAj2 ¼ α2em
8π2

X
h¼�1

jAðhÞj2; ðA15Þ

and the total cross section is

ðσvÞγγ ¼
1

2
×

jMj2
32πm2

X
¼ α2em

512π3m2
X

X
h¼�1

jAðhÞj2; ðA16Þ

where the factor 1=2 accounts for the fact that the final state
consists of identical particles.
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