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We extend the standard model to a scalar-assisted vectorlike fermion model to realize electroweak
baryogenesis. The extended Cabibbo-Kobayashi-Maskawa matrix, due to the mixing among the vectorlike
quark and the standard model quarks, provides additional sources of the CP violation. Together with the
enhancement from a large vectorlike quark mass, a large enough baryon-to-photon ratio could be obtained.
The strongly first-order phase transition could be realized via the potential barrier which separates the
broken minimum and the symmetric minimum in the scalar potential. We investigate in detail the one loop
temperature-dependent effective potential and perform a random parameter scan to study the allowed
parameter region that satisfies the strongly first order phase transition criteria vc ≥ Tc. Several distinct
patterns of phase transition are classified and discussed. Among these patterns, a large trilinear mass term
between the Higgs boson and the scalar is preferred, for it controls the width of the potential barrier. Our
results indicate large quartic scalar couplings and a moderate mixing angle between the Higgs boson and
the new scalar. This parameter region could be further explored at the Run 2 LHC.
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I. INTRODUCTION

The baryonic matter that remains after the baryon-
antibaryon annihilation makes up around 5% of the total
energy density of the universe. It is puzzling that the
universe does not have equal amounts of matter and
antimatter. We can characterize the asymmetry between
matter and antimatter in terms of the baryon-to-photon ratio

η≡ nB
nγ

; ð1:1Þ

where nB ¼ nb − nb is the difference between the number
density of baryons and antibaryons, and nγ is the number
density of the photon. The nγ is introduced to prevent the
parameters η from diluting during the expansion of the
universe after nucleosynthesis. The baryonic matter density
nB at the present time has been consistently measured by
the big bang nucleosynthesis and the fluctuations of the
cosmic microwave background. The Planck result for the
cosmological density parameter [1]

ΩBh2 ¼ 0.02226� 0.00016 ð1:2Þ
translates to the baryon-to-photon ratio

η ¼ ð6.05� 0.07Þ × 10−10: ð1:3Þ
Explaining the observed baryon asymmetry has

been one of the greatest challenges of particle physics

and cosmology. As the entropy production during inflation
could greatly dilute and thus wash out any existing baryon
asymmetry, it is reasonable to assume a zero baryon
number density after the inflation. Later, the asymmetry
is generated dynamically through the so-called “baryo-
genesis.” It has been suggested by Sakharov [2] long ago
that the general baryogenesis has three necessary condi-
tions: baryon number violation, sufficient C and CP
violation, and departure from thermal equilibrium.
Hence, we look forward to a mechanism in which these
three conditions are satisfied and could provide the
observed baryon asymmetry.
Electroweak baryogenesis (EWBG) [3–5] offers a

theoretically attractive and experimentally testable mecha-
nism to realize baryogenesis. The great attraction of this
mechanism is that the baryogenesis took place at or near
the electroweak scale, suggesting that it might be probed
in the near future by experiments at the accelerators. The
EWBG proceeds as follows (see [6–11] for reviews). At
temperatures far above the electroweak scale, the electro-
weak symmetry is manifest, which implied a high spha-
leron rate that preserves baryon symmetry in thermal
equilibrium. As the universe cools down to near the
electroweak phase transition scale, bubbles of the sym-
metry-broken vacuum begin to emerge and grow. CP
violating processes involving the electroweak sector were
triggered at the expanding wall of the bubbles, leaving
baryons inside the bubbles and antibaryons outside.
Through the rapid sphaleron transitions in the unbroken
phase, the excess of antibaryons are washed out.
Meanwhile, if the sphaleron rate in the broken phase
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could be suppressed enough, the excess of baryons inside
the bubbles could survive. We can easily realize a
Boltzmann suppression of the sphaleron rate, because
the sphaleron has an excitation energy Esph that is related
to the Higgs vacuum expectation value (vev) v. It has been
shown [12] that the suppression is strong enough when

Esph=Tc ≥ 45; ð1:4Þ

which serves as the condition for a strong first-order
phase transition (SFOPT) in the context of electroweak
baryogenesis.
The standard model (SM) contains all the necessary

ingredients to realize electroweak baryogenesis: the baryon
number is violated by sphaleron processes; CP violation
comes from the Cabibbo-Kobayashi-Maskawa (CKM)
matrix; the departure from equilibrium is realized by the
bubble nucleation and expansion during the first-order
electroweak phase transition (EWPT). However, given
the observed Higgs boson mass MH ¼ 125 GeV, the
EWPT is not strong enough to suppress the sphaleron rate
inside the bubbles [13]. Also, the CP violation in the CKM
matrix is not large enough to generate the expected
asymmetry. Therefore a successful electroweak baryogen-
esis needs new physics (NP) beyond the standard model.
The new physics should provide new sources of CP
violation that can be manifested by the advancing bubble
walls, and also provide strong enough first order EWPT.
Both conditions require the existence of new physics at
around the electroweak scale that directly couples to the
SMHiggs sector. A simple and economic way to realize the
strong first order EWPT is to add a new scalar that couples
to the Higgs boson, such as the singlet extended standard
model [14–22]. Moreover, if the scalar is a real singlet
[18,22], the cubic terms could exist in the potential at tree
level, and therefore the phase transition gets stronger
without the need of the thermally induced barrier.
We consider the electroweak baryogenesis in a scalar-

assisted vectorlike fermion model [23], in which a singlet
scalar and vectorlike fermions are added to the SM particle
content. Originally, the model is motivated by the possible
instability of the vacuum structure in the vectorlike fermion
model. The singlet scalar is added to the scalar sector and
couples to the vectorlike fermion. This model solves the
vacuum stability problem in the vectorlike fermion model
and the possible perturbativity issues in the singlet scalar
extended standard model. Recently this model has attracted
lots of attention because it could naturally explain the
diphoton excess observed at both ATLAS and CMS
[24,25]. The diphoton signature of this model and its
extensions have been considered in Ref. [26]. Because
of constraints from otherWW and ZZ channels, a 750 GeV
scalar singlet could accommodate the observed diphoton
excess more readily than the SUð2ÞL × Uð1ÞY scalar
multiplets. The diphoton signature is produced via the

gluon fusion and subsequent diphoton decay with vector-
like fermion running in the loop.
In this work, we consider that this model realizes the

electroweak baryogenesis. The vectorlike fermion mixes
with the SM quarks, extending the 3 × 3 CKM matrix to a
3 × 4 matrix, which provides additional sources of CP
violation. Because of the coupling between Higgs and
the new scalar, the phase transition happens in an extended
scalar space, which leads to more possibilities on phase
transition. We will discuss the scalar potential in detail,
perform numerical calculations, and investigate how
the extended scalar sector provides us the SFOPT.
Furthermore, we classify the phase transition patterns
and explore the parameter preferences in each pattern
using the shape of the derivatives of the scalar potential.
Finally, we explore the discovery potential of the parameter
space favored by SFOPT at the LHC.
The organization of presentation is as follows. We begin

with the description of the new physics model. In Sec. III,
we discuss the CP violation in this model. In Sec. IV, we
present the effective potential and the shape of the scalar
potential. In Sec. V, we discuss the phase transition pattern
and explain our numerical results. In Sec. VI, the LHC
discovery potential of the favored parameter region is
discussed. We then make our conclusion.

II. SCALAR-ASSISTED VECTORLIKE
FERMION MODEL

In our setup, we consider an extension of the SM in
which a vectorlike fermion U and a real singlet scalar s are
added to the particle content [23]. The vectorlike fermionU
transforms as ð3; 1Þ2

3
under the SM gauge symmetry

SUð3ÞC × SUð2ÞL ×Uð1ÞY . Because of the same quantum
number, its right-handed component mixes with the SM
right-handed up-type quarks. As is known [23], the vector-
like fermion model encounters the vacuum instability
problem. To have a stabilized scalar potential, a singlet
scalar s is introduced. The scalar mixes with the SM Higgs
boson and couples to the vectorlike fermion. Here, we
assume no Z2 symmetry for the new scalar, so that it has a
nonzero vev in general. We refer to this model as the scalar-
assisted vectorlike fermion model. Let us discuss the quark
sector and the scalar sector in detail.
In the quark sector, a SM family contains a doubletQL ¼

ðuL; dLÞT ∼ ð3; 2Þ1=6 and two singlets uR ∼ ð3; 1Þ2=3 and
dR ∼ ð3; 1Þ−1=3 that couple to each other via the Higgs
doublet Φ ∼ ð1; 2Þ1=2. Because of the flavor experiment
constraints, we only allow the new vectorlike fermion to
have significant mixing with the third generation quarks, so
it is also called a top partner. Avectorlike top partner is well
motivated in the little Higgs [27], composite Higgs [28],
extra dimension models [29], etc. Let us first write down
the Lagrangian for one flavor mixing between the new
fermion and the third generation quarks, and then extend to
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the three flavor mixing. We could write down the following
new Yukawa couplings:

LYuk ¼ ytQL3
~ΦuR3 − y0QL3

~ΦUR − yssULUR

−MULUR þ H:c:; ð2:1Þ

where QL3 and uR3 are the left-handed quark doublet and
the right-handed up-type quark in the third generation. The
vacuum expectation values of the two scalars are denoted as

v≡ hϕi; u≡ hsi: ð2:2Þ

The mass term becomes

Lmass ¼ −ð uL3 UL Þ
�
vyt vy0

0 M þ ysu

��
uR
UR

�
þ H:c:

ð2:3Þ

To get the mass eigenstates ðt; TÞ, we diagonalize the
fermion mass matrix

�
vyt vy0

0 M þ ysu

�
¼

�
cos θL sin θL
− sin θL cos θL

��
mt 0

0 mT

�

×

�
cos θR − sin θR
sin θR cos θR

�
: ð2:4Þ

Note that the two mixing angles are not independent
parameters,

tan θR ¼ mt

mT
tan θL: ð2:5Þ

Despite the tight constraints on the flavor mixing
between the new vectorlike fermion and the first two
generations, these mixings are still essential for the new
CP violation. If we consider the three families of the quarks
in the SM, the Yukawa couplings yt and y0 in Eq. (2.1)
become matrix Yu

ij and vector Y 0
i in the flavor space. With

explicit flavor indices, the Yukawa Lagrangian becomes

LYuk ¼ −Yd
ijQLiΦdRj − Yu

ijQLi
~ΦuRj − Y 0

iQLi
~ΦUR

− yssULUR −MULUR þ H:c: ð2:6Þ

The mass term of the fermion sector is

Lmass ¼ −ð uLi UL Þ
�
vYu

ij vY 0
i

0 M þ ysu

��
ujR
UR

�

− vYd
ijdLid

j
R þ H:c: ð2:7Þ

Hereafter we identify

Mu
IJ ¼

�
vYu

ij vY 0
i

0 M þ ysu

�
; Md

ij ¼ vYd
ij; ð2:8Þ

where I and J run over 1 to 4. Using bidiagonalization, the
mass matrix transforms as

U†
LM

uUR ¼ Diagðmu;mc;mt; mTÞ; ð2:9Þ

D†
LM

dDR ¼ Diagðmd;ms;mbÞ; ð2:10Þ

through rotations of the quark flavor basis

uIL ¼ UI
JuJL; diL ¼ Di

jd
j
L; ð2:11Þ

where UI
J andD

i
j are 4 × 4 unitary matrix and 3 × 3 unitary

matrix, respectively.
The new CKM matrix V 0

CKM is obtained from the
charged current. In weak eigenstates

LCC ¼ g2ffiffiffi
2

p uLiγμdiLWμ þ H:c: ð2:12Þ

Rotating into the mass eigenstates, we get

LCC ¼ g2ffiffiffi
2

p uLIγμðU†
LÞI iðDLÞijdjLWμ þ H:c: ð2:13Þ

V 0
CKM is defined as a 4 × 3 matrix

V 0
CKM ¼ ðU†

LÞIiðDLÞij ≡ U†ED; ð2:14Þ

where the explicit forms of the new CKM matrix are
expressed as

E ¼

0
BBB@

1 0 0

0 1 0

0 0 1

0 0 0

1
CCCA; V0

CKM ¼

0
BBB@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

VTd VTs VTb

1
CCCA:

ð2:15Þ

The unitarity of the transformation matrices U and D
implies

V 0†
CKMV

0
CKM ¼ D†E†UU†ED ¼ 13×3; ð2:16Þ

which means that the 3 columns of V 0
CKM are orthonormal

to each other. For future use, we can complement one
column to make up a unitary 4 × 4 matrix expressed as
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VCKM ¼

0
BBB@

Vud Vus Vub Vu4

Vcd Vcs Vcb Vc4

Vtd Vts Vtb Vt4

VTd VTs VTb VT4

1
CCCA: ð2:17Þ

In the scalar sector, the new scalar couples to the SM
Higgs boson. The general scalar potential is

V tree ¼ −
1

2
μ2ϕϕ

2 þ 1

4
λϕϕ

4 −
1

2
μ2ss2 þ μ31sþ

1

3
μ3s3

þ 1

4
λss4 þ

1

2
μsϕϕ

2sþ 1

4
λsϕϕ

2s2: ð2:18Þ

The parameter μ1 can be eliminated by a redefinition of the
scalar field s → sþ σ.
The minimization conditions at the vacuum ðv; uÞ are

used to eliminate the quadratic coefficients

μ2ϕ ¼ λϕv2 þ μsϕuþ 1

2
λsϕu2; ð2:19Þ

μ2s ¼ λsu2 þ μ3uþ 1

2
λsϕv2 þ

μsϕv2

2u
: ð2:20Þ

The second derivatives of the tree-level potential describe
the mass squared matrix of ϕ and s,

M2
scalar ≡

�m2
ϕϕ m2

ϕs

m2
sϕ m2

ss

�

¼
� 2λϕv2 μsϕvþ λsϕuv

μsϕvþ λsϕuv 2λsu2 þ μ3u − μsϕv2

2u

�
:

ð2:21Þ

Diagonalizing the above matrix, we obtain the mass
squared eigenvalues

m2
h;S ¼

1

2
ðm2

ϕϕ þm2
ssÞ∓ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

ϕϕ −m2
ssÞ2 þ 4m4

sϕ

q
;

ð2:22Þ

and the eigenvectors

�
h

S

�
¼

�
cosφ − sinφ

sinφ cosφ

��
ϕ

s

�
; ð2:23Þ

where the mixing angle φ is given by

tan 2φ ¼ 2m2
sϕ

m2
ss −m2

ϕϕ

: ð2:24Þ

III. SOURCES OF CP VIOLATION

In the SM, theCP violation is characterized by the quark-
rephasing invariant quantity, the Jarlskog invariant [30]

JCP ¼ ðm2
t −m2

cÞðm2
t −m2

uÞðm2
c −m2

uÞðm2
b −m2

sÞ
× ðm2

b −m2
dÞðm2

s −m2
dÞA; ð3:1Þ

where

A ¼ ImVudVcbV�
ubV

�
cd ð3:2Þ

is twice the area of the unitarity triangle of the CKM
matrix. As the SM CKM matrix has only one independent
CP phase, the three unitarity conditions give the same area,
which is the onlyCP violating source. This quantity can also
be written as [31]

JCP ¼ −
i
2
det½Hu;Hd�; ð3:3Þ

whereHu ¼ MuM
†
u andHd ¼ MdM

†
d are the buildingblocks

of rephasing invariants. In the picture of electroweak baryo-
genesis, this quantity provides a dimensionless CP violation
strengthJCP=T12

c ∼ 10−20,which is too small compared to the
typical strength of baryogenesis η ∼ 10−10. We observe that
both the fermion masses and the unitarity triangle A suppress
the CP violation. Thus we expect that adding heavy quarks
could enhance the CP violating effect via the large fermion
mass. In general, this heavy quark can be chiral or vectorlike.
A lot of effort was performed for both the model of fourth
generation quarks [32] and the vectorlike bottom quark
[33,34], among which was the study of the enhancement
of CP violation. However, the simplest fourth generation
model was ruled out by the experiment data [35,36]. On the
other hand, the vectorlike quark is still alive and provides
enhancement of CP violation in a similar way.
Let us discuss the CP violation strength in our model.

First, let us count howmany independentCP phases there are
in the model. The unitary condition Eq. (2.16) sets nine
constraints to the CKM elements. There are also six rephas-
ing redundencies, coming from the seven involved quark
fields modular the total baryon phase. Finally, the number
of independent matrix elements in the CKM matrix is

12 × 2 − 9 − 6 ¼ 9; ð3:4Þ
amongwhich 6 degrees of freedom attribute to real rotations,
and the other 3 are independent CP phases.
The three phases can be parametrized as the following

three rephrasing invariants:

B1 ¼ ImVcbV�
TbVT4V�

c4; ð3:5Þ
B2 ¼ ImVtbV�

TbVT4V�
t4; ð3:6Þ

B3 ¼ ImVcbV�
tbVt4V�

c4; ð3:7Þ
all of which represent the area of a subtriangle of the
unitarity quadrangle formed by the complex numbers
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V�
TbVT4, V�

tbVt4, V�
cbVc4, V�

ubVu4. In the chiral limit where
u and c are supposed to be massless,mu ¼ mc ¼ 0, the B’s
that involve c and u are not observable; hence we only care
about the quantity B2.
Similar to the SM case, those unitarity areas are not the

only quantities which appear in the CP violation processes.
In the case that we are interested in, where CP violation
occurs simply via the evolution described by the Dirac
equation [9], the mass matrices also play the game.
Therefore, dimensionful quantities like Eq. (3.3) should
be used to characterize the CP violation strength. In the
gauge basis, the mass terms are

−Lmass ¼ uLIMu
IJuRJ þ dLiMd

ijdRj: ð3:8Þ

We decompose the up-type mass matrix as

Mu ¼
�
Mu

mu

�
; ð3:9Þ

where Mu and mu are submatrices with dimensions 3 × 4

and 1 × 4, respectively. Then we can define Hu ¼ MuM
†
u

and Hd ¼ MdM
†
d as before. We can also define another

building block of rephasing invariants hu ¼ Mumu†.
It was investigated that in the vectorlike bottom partner

model [33], the CP violation is characterized by seven
Jarlskog-like invariants (J-invariants). The top partner model
should be similar. In the simple case of chiral limit
mu ¼ md ¼ ms ¼ mc ¼ 0, only one of them is independent,

J ¼ Im trHdHuhuh
†
u

¼ m2
bm

2
Tm

2
t ðm2

T −m2
t ÞB2: ð3:10Þ

In this work, we only estimate the CP asymmetry using
the Jarlskog-like invariants, and we leave more detailed
study via transport equation for future work. To estimate
the strength of CP violation in our model, we need to look
at the experimental constraints on the heavy fermion mass
and the extended CKM matrix elements. Current experi-
ments on flavor physics, such as K and B decay and B − B
mixing were analyzed in the literature [37,38] by perform-
ing a global fitting on the 4 × 3 CKM matrix elements
using 68 flavor physics observables [38]. The analysis
includes the direct measurements of the CKM elements,
CP violation in KL → ππ, branching fraction of the decay
Kþ → πþνν, branching fraction of the decay KL → μþμ−,
Z → bb decay, B0

q − B0
q mixing (q ¼ d, s), indirect CP

violation in B0
d → J=ψKS and B0

s → J=ψϕ, CKM angle γ,
branching ratio of B → Xslþl− (l ¼ e, μ), branching ratio
of B → Xsγ, branching ratio of B → Kμþμ−, constraints
from B → K�μþμ−, branching ratio of Bþ → πþμþμ−,
branching ratio of Bq → μþμ− (q ¼ s, d), branching ratio
of B → τν, like-sign dimuon charge asymmetry Ab

SL, and
finally the oblique parameters S and T. The results of the
global fitting are shown in Tables 5 and 6 of Ref. [38] for

mT ¼ 800 GeV and 1200 GeV. The results suggest that B2

could be as large as 10−6 for a TeV top partner.1 More
importantly, the enhancement from the heavy top quarkmass
implies a J-invariant of order J ≲ 1011 GeV8. Assuming that
the typical energy scale during the baryogenesis is the critical
temperature of EW phase transition Tc, the dimensionless
CP violation strength formulated as J=T8

c needs to be greater
than the observed baryon number asymmetry,

J
T8
c
≥ η ∼ 10−10; ð3:11Þ

which sets an upper bound for the critical tempera-
ture Tc ≲ 420 TeV.
Given the possible largeCPviolation effects, we also need

to check the current constraints from the nonobservation of
the electric dipole moment (EDM) of the electron and
neutron. The electroweak sector of the standard model gives
an EDM for the neutron of size jdnj ∼ 10−32 − 10−31e cm.
The model with an extended quark sector typically gives rise
to a quark EDM at the two loop level and thus contributes to
the neutron EDM. The current experimental limit on the
EDM of the neutron is jdnj < 2.9 × 10−26 e cm (90% C.L.)
[39]. It is shown in the literature [40] that the EDM is the
model with an extra down-type singlet quark, and it is found
that the induced neutron EDM is of order 10−29 e cm.
Reference [40] also comments that in the model with an
extra up-type singlet quark, the down-type quark EDMs
vanish identically at two loop order. Since all down-type
quarks are light in this case, the leading terms for theue EDM
is proportional tomuem

2
di
. The contributions from the vector-

like up-type quark to the neutron EDM are thus even smaller
compared to the extra down-type quark.

IV. THE SCALAR POTENTIAL

A. A brief review of effective scalar potential

To study the phase transition, we consider the potential of
the two scalar fields at finite temperature (see Ref. [8] for
review). At the one loop order, the zero-temperature effective
potential in the Landau gauge2 has the form

VCWðϕ; sÞ ¼ V treeðϕ; sÞ þ
X
i

ni
64π2

m4
i ðϕ; sÞ

×

�
log

m2
i ðϕ; sÞ
Q2

− ci

�
; ð4:1Þ

1Using the results in Table 6 of Ref. [38] where the moduli of
the V†V elements are estimated by mixing and decay of B and K
mesons, the Bi quantities can be estimated by Bi ≲ jV†Vj×
jV†Vj. Taking imaginary parts might introduce 1 or 2 orders
of magnitude smaller, but would not ruin the estimation.

2While the effective potential in the Landau gauge is not gauge
invariant, the potential at its minimum is well defined. For
concerns about the gauge invariance and a treatment of the
gauge invariant effective potential, see Ref. [41].
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where ni is the number of degrees of freedom of the particle i
running in the loop, with a negative sign for fermions, and
m2

i ðϕ; sÞ is the corresponding field-dependent squaredmass,
defined inAppendixA3.Here ci are constants that dependon
the renormalization scheme, and Q is the renormalization
scale. For convenience, counterterms VCT are chosen to
preserve the input parameters, like the vev and the masses,
from loop; corrections are

∂ðVCW þ VCTÞ
∂ϕi

����
ϕi¼hϕii

¼ 0; ð4:2Þ

∂2ðVCW þ VCTÞ
∂ϕi∂ϕj

����
ϕi¼hϕii

¼ m2
ij; ð4:3Þ

where hϕii ¼ v, u, and m2
ij are tree level vev and the mass

squared matrix defined in Sec. II. This naive treatment fails
whenwe consider theGoldstone contribution. TheGoldstone
boson contribution to the scalar masses in Eq. (4.3) is infrared
log-divergent due to its zero pole mass. This indicates that
renormalizing the scalar potential at zero external momenta,
as is done in the effective potential calculation, is not a well-
defined procedure when Goldstone bosons are involved.
An alternative on-shell (OS) renormalization procedure
was proposed [15,42,43] to cure the problem, as described
in Appendixes A1 and A2 in detail. We extend the results of
Ref. [43] to the effective potential with amixture of theHiggs
boson and new scalar. Here we list the final expression of the
zero temperature one loop effective potential,

Von-shell
CW ðϕ; sÞ ¼ V treeðϕ; sÞþ

X
i≠G

ni
64π2

�
m4

i ðϕ; sÞ

×

�
log

m2
i ðϕ; sÞ

m2
i ðv;uÞ

−
2

3

�
þ 2m2

i ðv;uÞm2
i ðϕ; sÞ

�

þ 3

64π2
m4

Gðϕ; sÞ ln
m2

Gðv;uÞ
m2

H
: ð4:4Þ

The one loop thermal corrections to the effective
potential at finite temperature T is

V thermalðϕ; s; TÞ ¼
X
i

niT4

2π2
JB;F

�
m2

i ðϕ; sÞ
T2

�
; ð4:5Þ

where

JB;FðyÞ ¼
Z

∞

0

dxx2 log

�
1∓e−

ffiffiffiffiffiffiffiffi
x2þy

p �
; ð4:6Þ

with the sign − for bosons and þ for fermions.

The finite-temperature potential needs to be corrected,
due to the infrared divergences, generated by bosonic long-
range fluctuations called Matsubara zero modes. This can
be solved schematically by resumming over all diagrams
with bubbles attached to the big loop [44–46], which are
called the “ring diagrams.” This leads to a shift of the
bosonic field-dependent masses m2

i ðϕ; sÞ to the thermal
field-dependent masses

m2
i ðϕ; s; TÞ≡m2

i ðϕ; sÞ þ ΠiðTÞ; ð4:7Þ
where the thermal shifts Πi are defined in Appendix A3.
After resummation, the ring-diagram contribution to the
effective potential reads

Vring¼−
T
12π

X
i¼B

nið½m2
i ðϕ;s;TÞ�3=2− ½m2

i ðϕ;sÞ�3=2Þ: ð4:8Þ

In the SM, this cubic term from theMatsubara zeromode is
the only source to induce a thermal barrier between a
symmetric minimum and a symmetry-broken minimum in
the effective potential. It was because all the other terms in the
SMHiggs sector are quadratic or quartic, which cannot create
such a degenerate minima in one-dimensional scalar space.
However, in our model, as shown later, the new dimension in
the scalar space greatly enriches the possibility, and hence the
ring diagram contribution is much less important.
The total effective potential at finite temperature is the

sum of the above terms

Veffðϕ; s; TÞ ¼ Von-shell
CW ðϕ; sÞ þ V thermalðϕ; s; TÞ

þ Vringðϕ; s; TÞ: ð4:9Þ
For part of the field space, the field-dependent masses of the
scalars and the Goldstone bosons can be negative, and the
nonconvexity of the potential would induce an imaginary
part that indicates a vacuum decay rate per unit volume.
However, the real part can still be interpreted as the
expectation value of the energy density. Therefore we only
take the real part of the potential to do the numerical analysis.

B. Approximate analysis of the scalar potential

In the next section, we perform a numerical study on the
full effective potential based on Eq. (4.9) and scan the
parameter space for strong first order phase transition. But
to understand the numerical results, we need some approxi-
mate methods to analyze the complicated potential func-
tion. In the high temperature limit, the effective potential
can be simplified as

Veffðϕ; s; TÞ≃ V tree þ
T
12π

X
i¼B

ni½m2
i ðϕ; s; TÞ�3=2 þ

X
i¼B;F

jnij
24ð1þ δiFÞ

m2
i ðϕ; sÞT2

−
X
i¼B;F

ni
64π2

�
m4

i ðϕ; sÞ ln
m2

i ðv; uÞ
a0iT

2
− 2m2

i ðv; uÞm2
i ðϕ; sÞ

�
þ ρðTÞ; ð4:10Þ

MING-LEI XIAO and JIANG-HAO YU PHYSICAL REVIEW D 94, 015011 (2016)

015011-6



where a0B ¼ 16π2expð−2γEÞ for bosons and a0F ¼
π2expð−2γEÞ for fermions. ρðTÞ ¼ π2

90
nρT4 is the Stefan-

Boltzmann contributions with nρ ¼ nB þ 7
8
nF, which is

field independent and can be dropped out for our purpose.
If we series expand the second term in m2

i ðϕ; sÞ=T2, the
remaining relevant term is another m2T2, which, combined
with the third term here, gives the main temperature
dependence of the full potential. The log terms can be
absorbed into the running parameters that vary little within
the energy scope of our discussion. Now the effective
potential is simplified as

Veffðϕ; s; TÞ≃ ~V treeðTÞ þ
X
i¼B

nic
1=2
i

8π
m2

i ðϕ; sÞT2

þ
X
i¼B;F

jnij
24ð1þ δiFÞ

m2
i ðϕ; sÞT2

þ Vct þ ρðTÞ; ð4:11Þ

where ~V treeðTÞ is the tree-level potential with all its
couplings running with T, and Vct ¼

P
i

ni
32π2

m2
i ðv; uÞ ×

m2
i ðϕ; sÞ are the counterterms in the on-shell scheme.

Taking the approximation c1=2i =8π ∼ 1=24 for all bosons,
we obtain the temperature-dependent terms

Veffðϕ; s; TÞ≃ ~V treeðTÞ þ T2½Λssþ ηϕϕ
2 þ ηss2� þ Vct;

ð4:12Þ

where the coefficients are

Λs ¼
1

12
½4μsϕ þ 2μ3 þ 6ysM�; ð4:13Þ

ηϕ ¼ 1

12

�
ð6λϕ þ λsϕ=2Þ þ

1

4
ð3g2 þ g02Þ þ 2

3
ðy2t þ y02Þ

�
;

ð4:14Þ

ηs ¼
1

12
½ð3λs þ 2λsϕÞ − 3y2s �: ð4:15Þ

Note that the fermion Yukawa couplings are also contrib-
uted to the configuration of the scalar potential. This
simplification results in a polynomial form of the potential,
which is convenient for our analysis. There are sometimes
significant errors for this simplification, but we will show
that the qualitative analyses based on this polynomial
potential explain many key features of the numerical results
we obtained.
We will analyze the scalar potential at the moment of the

phase transition. More specifically, we are only interested
in the stable vacuum, i.e., the global minima of the
potential, which is degenerate at the critical temperature
of the phase transition. They are defined as ð0; usÞ and

ðvc; ubÞ, representing the symmetric vacuum and symmetry
breaking vacuum, respectively. In the following, we intro-
duce two kinds of methods to estimate the properties of
these vacuum configurations.

1. Barrier width estimation

We used to express the potential in the Cartesian
coordinates of the field space ðϕ; sÞ. For the analysis of
the phase transition, it is also convenient to utilize the polar
coordinates ðρ; αÞ [18,22,47]

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 þ ðs − uÞ2

q
; cos α ¼ ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϕ2 þ ðs − uÞ2
p ;

ð4:16Þ

from some shifted center ð0; uÞ. When u ¼ us and

cos α0 ¼
vcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2c þ ðub − usÞ2
p ; ð4:17Þ

the potential has degenerate minima along the ρ axis, ρ ¼ 0
being the symmetric one and ρ ¼ ρ being the symmetry
breaking one. Hereafter we will use the notation cα ≡
cos α0 and sα ≡ sin α0 for short. Similar to the SM, we can
employ the following form of parametrization of potential:

Veffðρ; TÞ≃ 1

2
DðT2 − T2

0Þρ2 þ Eρ3 þ λ

4
ρ4; ð4:18Þ

where the coefficients are constant for a simplified poly-
nomial potential. The coefficients D, E, and λ are functions
of the model parameters and us, sα, cα. We impose the
following condition:

Veffðρ; TcÞ ¼
λ

4
ρ2ðρ − ρÞ2; ð4:19Þ

and obtain the nonzero vacuum value

ρ ¼ −
2E

λ
: ð4:20Þ

If we neglect the zero-temperature loop corrections, they
can be expressed as

E ¼ sα½ðμsϕ þ λsϕusÞc2α=2þ ðμ3=3þ λsusÞs2α�; ð4:21Þ

λ ¼ λϕc4α þ λss4α þ λsϕc2αs2α: ð4:22Þ

The ρ determines the width of the barrier in the scalar
potential, which is our final concern. But this analysis does
not give estimations of us, sα, cα, which brings us to the
next tool.
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2. Stationary point search

Although the shape of the scalar potential has been
studied in Ref. [19], we provide a detailed and systematical
recipe to describe the shape of the two-dimensional
potential. We summarize our results in Table I, which
could be used to understand the numerical studies of the
phase transition in the next section.

First, let us write the potential (4.12) as the following:

Veffðϕ; s; TÞ ¼
~λϕϕ

4

4
þ 1

2

�~λsϕ
2

s2 þ ~μsϕs − ~μ2ϕ

�
ϕ2 ð4:23Þ

þ
~λs
4
s4 þ ~μ3

3
s3 −

~μ2s
2
s2 þ ~χ3s; ð4:24Þ

TABLE I. The s curve shows the first derivative of the scalar potential along the s direction ∂V
∂s ¼ 0. Δ0 is defined to be the discriminant

of ΔðϕÞ as a cubic polynomial of ϕ2. It is positive unless specified.

Type
ða; b; c; dÞ

Discriminant
ΔðϕÞ

s curve
∂V
∂s ¼ 0

Type
ða; b; c; dÞ

Discriminant
ΔðϕÞ

s curve
∂V
∂s ¼ 0

A ðþ;þ;þ;þÞ B ðþ;þ;þ;−Þ
ðþ;þ;−;−Þ
ðþ;−;−;−Þ

C ðþ;þ;−;þÞ
ðþ;−;þ;þÞ
ðþ;−;−;þÞ

D ðþ;−;þ;−Þ

E ð−;þ;þ;þÞ
ð−;−;þ;þÞ
ð−;−;−;þÞ

F ð−;þ;þ;−Þ
ð−;þ;−;−Þ
ð−;−;þ;−Þ

G ð−;þ;−;þÞ H ð−;−;−;−Þ

Type ða; dÞ Discriminant ΔðϕÞ s curve ∂V
∂s ¼ 0 Type ða; dÞ Discriminant ΔðϕÞ s curve ∂V

∂s ¼ 0

A ðþ;þÞ Δ0 < 0 B ðþ;−Þ Δ0 < 0

E ð−;þÞ Δ0 < 0 H ð−;−Þ Δ0 < 0
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where all the tilded couplings are supposed to depend on
temperature, logarithmically or quadratically. Since the
former are negligible within the energy scope that we
are interested in, we only need to focus on the quadratic
temperature dependencies

~χ3 ¼ ΛsT2; ð4:25Þ

~μ2ϕ ¼ μ2ϕ − ηϕT2; ð4:26Þ

~μ2s ¼ μ2s − ηsT2; ð4:27Þ

while the other couplings are mainly their zero temperature
values. We learn that a temperature around 100–150 GeV is
usually smaller than the other massive parameters; there-
fore even the quadratic temperature dependencies are still
insignificant at this range of temperature. As a result, the
coefficients roughly satisfy

j~χj ≪ j ~μsj ∼ jμsj: ð4:28Þ

Neglecting the linear term further implies a useful corollary,
that there is always a stationary point sitting around the
original (0, 0), even until the temperature reaches 100–
150 GeV, the typical values of the critical temperature in
our model. Only at higher temperature when ~χ becomes
important will this stationary point gradually move away.
This corollary is verified by the parameter scan, and it is
essential for the explanation of some of the transition
patterns.
Now let us do a thorough search of the possible

stationary points in the potential. First we notice that the
condition for extrema consist of the following two curves:

∂Veffðϕ; s; TÞ
∂ϕ ¼ 0;

∂Veffðϕ; s; TÞ
∂s ¼ 0; ð4:29Þ

and the vacuum must be at one of the intersections between
the two curves. Let us call them the ϕ curve and the s curve,
respectively. We will describe the shape of these two curves
and try to find some rules that the possible degenerate
vacuum points should follow.
The ϕ curve consists of a trivial line ϕ ¼ 0 and a

quadratic curve

~λϕϕ
2 þ 1

2
~λsϕ

�
sþ ~μsϕ

~λsϕ

�
2

¼ ~μ2ϕ þ
~μ2sϕ

2~λsϕ
: ð4:30Þ

Obviously, the symmetry-broken minimum, if there is any,
must be on the quadratic curve.
For the case of ~λsϕ > 0, the quadratic curve is an ellipse,

centered at point ð0; s� ≡ −~μsϕ=~λsϕÞ, with size decreasing
as −T2 due to the ~μ2ϕ term. At some high temperature, the
ellipse shrinks to zero, and no nonzero vacuum is allowed;

hence the symmetry must be restored. If ~λsϕ < 0, the
quadratic curve is a hyperbola also centered at ð0; s�Þ.
At high temperature, the curve will move away to infinity.
As long as the potential is still bounded from below, the
minimum cannot be on the hyperbola, so the symmetry
must be restored.
The equation for the s curve is a cubic polynomial of s

~λss3 þ ~μ3s2 −
�
~μ2s −

1

2
~λsϕϕ

2

�
sþ

�
~χ3 þ ~μsϕ

2
ϕ2

�
¼ 0:

ð4:31Þ

The discriminant of this polynomial turns out to be a
polynomial of the ϕ field,

ΔðϕÞ ¼ aϕ6 þ bϕ4 þ cϕ2 þ d; ð4:32Þ

where the coefficients are

a ¼ −
1

2
~λs ~λ

3
sϕ;

b ¼ 1

4
~λ2sϕ ~μ

2
3 þ 3~λs ~λ

2
sϕ ~μ

2
s þ

9

2
~λs ~λsϕ ~μ3 ~μsϕ −

27

4
~λ2s ~μ

2
sϕ;

c ¼ −~λsϕ ~μ23 ~μ2s − 6~λs ~λsϕ ~μ
4
s − 2~μ33 ~μsϕ − 9~λs ~μ3 ~μ

2
s ~μsϕ;

d ¼ ð ~μ23 þ 4~λs ~μ
2
sÞ ~μ4s : ð4:33Þ

The insignificant ~χ has been taken to be zero as an
approximation. This polynomial shows the number of
points on the s curve at a specific ϕ value: if the polynomial
is positive, then there are three points at this ϕ; if the
polynomial vanishes, two of the points are degenerate; if
the polynomial is negative, there is only one point at this ϕ.
Therefore, the variation of the sign of this discriminant with
respect to ϕ could give the key features of the shape of the s
curve. A systematic classification is provided in Table I.
In Table I, the middle column shows how the sign of

ΔðϕÞ varies with ϕ (red indicates a positive discriminant
while blue indicates a negative one). The typical shape of
the corresponding s curve is given in the last column. The
first column shows the condition for these types—when
the Δ0 ¼ b2c2 − 4ac3 − 27a2d2 þ 18abcd is positive, all
the signs of a, b, c, d should be specified; when Δ0 < 0,
only a, d need to be specified.
The upper halves of the types (A, B, C, D) have positive

coefficient a and three asymptotic values at large ϕ. For the
lower halves (E, F, G, H), where a < 0, there is only one
asymptotic value at large ϕ. Also note that the left halves of
the types (A, C, E, G) have positive coefficient d, which
leads to multiple branches (a branch is defined by a
topologically connected part of the curve) in the small ϕ
region. The right halves, however, have negative d and only
one such branch. We name the branches present at small ϕ
as “relevant branches.” Usually, the “irrelevant branches,”
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which only appear in a large ϕ region as in types (B, C, D),
are not important in our analysis. This reduces the set of
types by identification B ∼H, C ∼ E, and D ∼ F.
From the point of view of Lagrangian parameters, we

find that the most important coefficients a and d are
controlled by ~λsϕ and ~μ23 þ 4~λs ~μ

2
s . The latter changes with

temperature mainly through Eq. (4.25). Moreover, the
asymptotic value of the s curve at large ϕ (the middle
one when a > 0) coincides with the center of ϕ curve s�.
In the next section, we will show how the analysis of the

ϕ curve and s curve could help classify the phase transition
patterns.

V. STRONG FIRST ORDER PHASE TRANSITION

Once we obtain the full effective potential, we could
investigate how the vacuum state evolves with temperature.
At each temperature, we find the true vacuum by looking
for the global minimum of the potential in the ðϕ; sÞ field
space. It is known that at zero temperature, the global
minimum of the scalar potential is at ðv0; u0Þ, with v0 ¼
246 GeV and u0 as an input parameter. After we turn on
and increase the temperature, we track the position of the
global minimum, seeking the sign of a phase transition. In
the context of effective potential, the fields are defined to be
the first derivative of the free energy with respect to the
corresponding particle source, and thus acts like an order
parameter of the phase transition. If the transition of the
field values between the two phases is continuous, it is a
second order phase transition. Otherwise, if there is a
discontinuous variation of the fields, it is a first order phase
transition. The first order phase transition proceeds by
bubble nucleation of the broken phase at around the critical
temperature. The bubbles grow and coalesce, and finally
turn the whole universe into the broken phase.
As discussed in the Introduction, to have successful

baryogenesis, it is essential to have a strong enough first
order phase transition, so that EsphðTcÞ=Tc ≥ 45 inside the
bubbles. It has been shown in literature [17] that for a
singlet extended model the sphaleron energy is approx-
imately proportional to the ϕ vev:EsphðTcÞ ∼ vc. Moreover,
the bubble expansion and wall velocity in the singlet
extended model have been discussed in Ref. [48]. In our
model there is a similar scalar sector. Thus the discussions
about the bubble expansion and sphaleron process in
literature are also applied to our model. Therefore, similar
to the singlet extended model, we add the following
criterion to our scan to pick out the events of successful
baryogenesis:

ξ ¼ vc
Tc

≥ 1: ð5:1Þ

We also perform a consistent check by calculating the
sphaleron profiles and the sphaleron energy at the critical
temperature numerically.

To determine the parameter region in which the strong
first order phase transition could happen, we perform a
random scan over the parameter space. The procedure is the
following. We have quite a few independent parameters

λs; λsϕ; μ3; μsϕ; M; y0; ys; ð5:2Þ

in addition to the singlet vev u0 in the zero temperature. The
parameters λϕ and yt are determined by the Higgs mass and
the top quark mass that are already known. We choose the
input parameters from the ranges3

jλsϕj≤ 1.5; 0< λs ≤ 2; jy0j≤ 1.5; jysj≤ 1.5; ð5:3Þ

ju0j≤ 600; jμ3j≤ 800; jμsϕj≤ 1000; 0≤M≤ 1200

ð5:4Þ
Given the input parameters, the full effective potential in
the field space is calculated. Then for each temperature, we
utilize the MINUIT subroutine [49] to find the global
minimum of the effective potential. As the temperature
increases, we track the change of the global minimum at
each step in our numerical scan. Additional care should be
taken: if the minimum moves to very large field values, it
may indicate the vacuum instability. If the global minimum
becomes the symmetric one ð0; hsiÞ at certain temperature,
we perform a fine scan near the temperature until we find
the critical temperature Tc and the corresponding vevs
ðvc; ubÞ in the broken phase. After obtaining the Tc and vc,
we use the washout condition to pick out the strong first
order phase transition, eliminating the data points that have
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FIG. 1. The allowed value of the critical temperature Tc versus
the ϕ vev vc at the critical temperature from a random scan over
the parameter space. The scatter points are selected to satisfy the
SFOPT in our random numerical scan. The color palette on the
right shows the density of the scatter points in one GeV interval.

3When the singlet vev u0 was chosen to be larger than
600 GeV, the data with a critical temperature larger than
200 GeV, and a vc even larger, accumulate. They are mostly
the case IIIB as introduced later and are not our focus in this
paper. That is why we chose a smaller range for u0.

MING-LEI XIAO and JIANG-HAO YU PHYSICAL REVIEW D 94, 015011 (2016)

015011-10



ξ < 1. We randomly scan 106 parameter points, among
which 25818 parameter points pass all the requirements.
Figure 1 shows the distribution of the successive data points
in the Tc − vc plane. From Fig. 1 we notice that for the
parameter region we scanned, the critical temperature is
typically less than 200 GeV, while vc is smaller than its
zero-temperature value v0 ¼ 246 GeV. As expected, the
higher the critical temperature is, the smaller the ϕ vev gets
to before the transition, and this correlation is clearly shown
in Fig. 1. Furthermore, this range of critical temperature is
quite safe from the bound of the CP violation strength that
we discussed in Sec. III.

A. Phase transition patterns

The patterns of phase transition are described by the
critical values of the scalar fields during the transition,
defined as ð0; usÞ and ðvc; ubÞ in the previous section. In the
left panel of Fig. 2, we show the correlation between ub and
us, indicating the s value jump during the phase transition.
We notice that there are several distinct allowed regions:
Region I: the vev us is very close to zero while ub is
nonzero; Region II: the vev us is nonzero linearly correlated
with the ub; Region III: both the vev us and ub are scattered
over the second and fourth quadrants. The Region III can be
further classified by the correlation between us and u0,
which characterizes the evolution of the s value before the
transition. This is shown in the right panel of Fig. 2.
Typically, the vev u0 and ub are strongly correlated,
because there is not much time for s to move very far
without jumping. However, there are also cases where u0
and ub are quite uncorrelated. This indicates that between
the zero temperature and the critical temperature, there
should be another phase transition, during which the Z2

symmetry is not restored. Further analysis shows that the
region that the u0 and ub are not linearly correlated only
appear in Region III. So we classify Region III into two
subregions: one-step phase transition (IIIa) and multistep
phase transition (IIIb). Hopefully, these four regions of

parameters correspond to four different phase transition
patterns.
In order to estimate the parameter preferences, we also

utilize the polar coordinates of the scalar fields as in
Eq. (4.18). In terms of the nonzero vacuum value ρ, we
obtain the ϕ value for the approximate potential,

vc ¼ ρcα ¼ −
2E

λ
cα: ð5:5Þ

A necessary condition of having a strong first order phase
transition is that vc is positive and large. However, the
expressions of E and λ cannot be expressed as functions of
only the model input parameters. They also involve the
information of the features of the phase transition, such as the
angle α and the symmetric minimum us. Therefore, we
would like to further utilize the classification of the transition
patterns to get more information on these features.
Several approximations can be made here, according to

the correlations between the parameters that we found.
First, in Region II and Region I, where us and ub differ only
a little, we assume that α ≪ 1. For Region I, us is very
small in comparison with all the other massive parameters.
After these approximations, the relations between vc and
the couplings will be more manifest. In Fig. 3 we plot the
comparison between the vc and the true vc that we obtain
from the scan (left), and the correlation between E and
μsϕ þ λsϕus (middle). The left panel tells us that in most
cases vc is a good approximation to the true value. The
middle panel shows the correlation between E and its main
contributions under the assumption of α ≪ 1. We think that
the rough linearity here suggests that the assumption works
well for a large portion of the data. Finally, the right panel
shows the correlation between E and λ, whose ratio gives
the ρ.
In order to analyze the four regions in detail, we also

have to rely on the shape of the scalar potential. The ϕ
curve and s curve at the critical temperature help us
understand the origins of the different patterns, as they
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FIG. 2. The allowed value of the contour ðus; ubÞ (left) and ðub; u0Þ (right) from a random scan over the parameter space. The color
palette on the right shows the density of the scatter points in one GeV interval.
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determine the distribution of the potential minima. The s
curve could have one, two, or three relevant branches,
depending on the types as shown in Table I. Therefore, it
could have one or three intersections with the line ϕ ¼ 0.
We call the minima along the line ϕ ¼ 0 “symmetric
minima,” while others are called “broken minima.” Next,
we notice that the broken minimummust be the intersection
between the quadratic branch of the ϕ curve and one of the
s curve branches. This s branch must have an intersection
with the s axis, which may be a symmetric minimum. We
would like to define the barrier between the broken
minimum and this symmetric minimum as a “single-branch
barrier,” while those between minima on different branches
are called “interbranch barriers.” We discovered that the
single-branch barrier usually has a much smaller width
along the s direction than the interbranch barriers, due to
the limited stretch of the s curve along the s direction. It
implies that a transition through the single-branch barrier
should have closely related us and ub. Finally, in terms of
the above features of the shape of the potential, let us
discuss the four phase transition patterns in detail.

1. Pattern I: Single-branch barrier transition, with us ∼ 0

According to the discussion in Sec. IV, there are three
cases for the small ϕ behavior of the s curve, one of which is
usually negligible. In the other two significant cases, the one
with three rootswill be discussed in thenext part. Let us focus
on the other case, which has only one relevant branch that
intersects ϕ ¼ 0 at around (0, 0). It indicates that this case
mainly corresponds to Region I of the parameter scan.
In Fig. 4, we show the allowed values of the broken

minimum ðvc; ubÞ in this case, while the symmetric
minimum is always at ð0; us ∼ 0Þ. The value of vc is upper
bounded by its zero-temperature value v0 ¼ 246 GeV,
implying a decrease of ϕ before the transition, and is also
lower bounded at about 100 GeV by the condition ξ > 1.
The distribution of the broken minimum clearly sketches
the shape of the s curve.
Let us see what can be inferred for the model parameters.

Without loss of generality, we choose the benchmark points

with only positive u0 to investigate the sign preferences of
other parameters. Here are the observations:

(i) As shown above, the s curve is a single branch curve
across the point (0, 0), which indicates that the zero-
temperature vev u0, which is on the same branch,
should also be small, but not zero due to the bend of
the curve.

(ii) In the light of the previous discussions, there are
several approximations we can employ for E: us ≈ 0
and α ≪ 1. As a result, the only important term in E
is the μsϕ term,

E ≈
1

2
μsϕsαc2α: ð5:6Þ

In order to get a large and negative E, a large and
negative μsϕ should be favored.

(iii) We would like to argue that positive ~λsϕ leads to
shapes of the curves that are much more favored by
the strong first order phase transition. One may
notice that for negative ~λsϕ, both the ϕ curve and s
curve are hyperbolalike. Two hyperbolas could not
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make the twisting intersection needed for the exist-
ence of degenerate minima. Although the parameter
~μsϕ causes a deviation from perfect hyperbola of the
s curve, it is still harder for such a case to have a first
order phase transition. Therefore, positive λsϕ should
be strongly preferred.

(iv) The one-branch condition for the s curve requires that
the coefficient d in the polynomial ΔðϕÞ is negative,
and thus ~μ2s < − ~μ2

3

4~λs
. Large ~μ23 would compress the

parameter region that satisfies this condition. Thus in
this pattern, we expect that small ~μ23 is favored.

Fortunately, our numerical results from the scan do exhibit
the above features, as shown in Fig. 5.
Figures 6 and 7 show the variations of the ϕ curve and

the s curve with temperature. In both figures, the first
diagram represents the configuration at zero temperature.
The second, third, and fourth diagrams represent the
configuration below, at, and above the critical temperature.
In the diagram at critical temperature, an arrow was drawn
to show how the phase transition happened, in the point of
view of increasing temperature. Similar figures will be
given for other patterns of phase transition later.

The difference between the two figures is whether the
barrier exists or not at zero temperature. In Fig. 6, only
the broken minimum exists at zero temperature; then the
symmetric one is developed during the heating. In Fig. 7, the
symmetric minimum already exists at zero temperature, but
with a higher potential than the broken one. The existence of
the barrier at the zero temperature is a new feature for the
singlet-assisted electroweak phase transition, which does not
happen in the traditional electroweak phase transition where
the barriermust be thermally induced.This could be attributed
to the existence of the term μsϕ, as shown in the expression of
Ewhere only theμsϕ is important in pattern I. In other patterns,
other terms in E could also contribute to the barrier. Unlike the
SM, these contributions to E do not require a nonzero
temperature; hence the zero-temperature barrier can exist.

2. Pattern II: Single-branch barrier transition,
with us separated from 0

Suppose the s curve has at least two relevant branches.
Assuming μ3 is small, we only consider the case when
μ2s > 0. As mentioned earlier, there are two symmetric
minima, one positive and the other negative, while the
stationary point around (0, 0) must be a saddle point. Let us
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FIG. 5. In pattern I with u0 > 0, the allowed values of the model parameters u0, μsϕ, λsϕ, and μ3 are shown.

ELECTROWEAK BARYOGENESIS IN A SCALAR-ASSISTED … PHYSICAL REVIEW D 94, 015011 (2016)

015011-13



FIG. 6. In the phase transition pattern I, the s curve (dashed blue) and ϕ curve (solid green) in the different temperatures: zero
temperature, below critical temperature, at the critical temperature, and above critical temperature. A thermal barrier is developed during
phase transition. The color palette on the right shows the density of the scatter points in one GeV interval.

FIG. 7. In the phase transition pattern I, the same as in Fig. 6, except a tree-level barrier is developed.
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focus on the single-branch transition for now, which means
that the symmetric minimum ð0; uinters Þ on a different
branch from the broken minimum has a higher potential
than ð0; usingles Þ on the same branch as the broken minimum.
The other case will be discussed later.

Now that the symmetric minimum chosen by the phase
transition is other than (0, 0), we are convinced that us ¼
usingles cannot be close to 0. That being said, the gap in Fig. 8
is well understood. Meanwhile, us is still strongly corre-
lated with ub because they are on the same branch. It is
precisely the characteristic of the transition pattern II.
Let us investigate the parameter preferences in this

pattern as shown in Fig. 9. As the whole branch of the s
curve under consideration is apart from s ¼ 0, it is natural
to have u0 also apart from 0. Actually, all of the u0, ub, and
us are similar, which means that the s field is seemingly
irrelevant with the phase transition, although it contributes
a crucial coupling μsϕ that plays an important role. The
preference of the μsϕ is similar as pattern I. A big difference
from pattern I is that positive λsϕ is strongly suppressed.
One can understand it by looking at E, which in this case
has two significant terms, μsϕ and λsϕus, the latter becom-
ing significant due to the nonzero us. As we need a large
negative E, negative λsϕ is preferred. Therefore, the
advantage of positive λsϕ is much weakened in pattern
II. Another interesting feature is that μ3 is mostly negative.
This is essential to guarantee that among the two symmetric
minima, the one with the positive s value has a lower
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FIG. 8. The allowed values of the broken minimum ðvc; ubÞ in
pattern II. The color palette on the right shows the density of the
scatter points in one GeV interval.
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potential and tends to be the one chosen as the vacuum state
at high temperature. Otherwise, interbranch transition
should happen.
The procedure of the phase transition is outlined in

Fig. 10. The only difference from pattern I is the existence
of the symmetric minimum on the other branch. This
minimum must already exist at zero temperature in this
pattern, which induces a barrier that is impossible in
traditional electroweak phase transition. As for the sin-
gle-branch barrier, similar to pattern I, it can be thermally
induced, or already present at zero temperature.

3. Pattern IIIa: Interbranch barrier transition

The setup in this case is similar to pattern II, except that
the phase transition occurs across the interbranch barrier.
As discussed in pattern II, μ3 determines the relative

height between the potential at the two symmetric sta-
tionary points ð0; usingles Þ and ð0; uinters Þ, where usingles and
uinters are the scalar s vev in single branch and interbranch. It
tends to be negative when we want a single-branch
transition toward ð0; usingles Þ, and for the same reason, it
prefers positive values when we require an interbranch
transition toward ð0; uinters Þ. However, if μ3 is too large, it
would be harder for us to get a large and negative E, as in
this case sα is not small, and hence the μ3s3α term in E
is not suppressed any more. In sum, we should have
a small and positive μ3 in pattern IIIa, which is justified
by Fig. 11.

The phase transition is shown in Fig. 12 by exhibiting the
variations of the ϕ curve and the s curve with temperature.
The only difference from pattern II is that the phase
transition happens across the interbranch barrier.
Nevertheless, as the ð0; usingles Þ need not be a minimum,
no twisting intersection is required for the two curves, and
hence there is no strong preference for λsϕ.

4. Pattern IIIb: Multistep transitions

In our investigation of the phase transition, we focused
on looking for the critical temperature when the ϕ vev
jumps from a nonzero value to 0. We did not investigate
whether there was a jump below this temperature.
Nevertheless, we learn from the correlation between the
zero temperature vev u0 and the critical temperature vev ub:
if there was any big difference between them, we would
expect another phase transition. In our scan, we find a
rough linear relation between u0 and us (shown in Fig. 13),
implying that the zero temperature vacuum and the above-
critical temperature vacuum are on the same branch.
There are many possible ways of realizing this. One of

them would be that a elliptical ϕ curve is placed across
multiple branches of the s curve, forming several broken
minima, as shown in Fig. 14. The global minimum may
transit from one branch to another, and jump back later,
causing the u0, ub, us correlation previously described.
Unlike other cases, one could find more events with

small values of μsϕ in this pattern, indicating a small s� and
thus a ϕ curve centered near (0, 0), which may be more

FIG. 10. In the phase transition pattern II, the curves are the same as in Fig. 6.
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FIG. 11. In case IIIa with u0 > 0, the allowed values of the model parameters u0, μsϕ, λsϕ, and μ3 are shown.

FIG. 12. In the phase transition pattern IIIa, the curves are the same as in Fig. 6.
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FIG. 14. In the phase transition pattern IIIb, the curves are the same as in Fig. 6.
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likely to intersect with multiple branches of the s curve. The
signs of the parameters can be inferred from the comparison
of potentials among the three points: negative μ3 is
preferred for a final minimum at ð0; us > 0Þ, and positive
μsϕ is preferred for a minimum at ðvc; ub < 0Þ. Figure 13
precisely shows these features.
As Fig. 1 shows, events concentrate at the region

Tc < vc < 246, with Tc typically around 100 GeV. In this
pattern IIIb, however, we found that the critical temperature
tends to be large, and vc is even larger, which is very
different from the other patterns. Large critical temperature

leaves sufficient space for a second phase transition below
it, but may be harmful for a strong enough CP violation
strength because it appears in the denominator of the
strength with eight powers. Our estimation of the upper
bound for Tc pretty much rules out this pattern as a
candidate of EW baryogenesis. Another interesting feature
is that this pattern becomes more and more likely as u0
becomes larger. Test scans showed that a larger range of u0
would lead to dramatically more events with pattern IIIb. In
order to evade the interference from these “complex”
situations, we chose a smaller range of u0 for the scan.
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FIG. 15. The allowed values of the broken minimum ðvc; ubÞ, and all eight input parameters allowed by the strongly first order phase
transition.
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In summary, the above four cases are the typical patterns
in our results of the parameter scan. The first two cases are
the most concerned when u0 is within the typical range of
energy scale for new physics, in that they account for 90%
of the data from our scan. Pattern IIIa is overall very rare,
but pattern IIIb would become favored at large u0.

B. Numerical results

Given the analysis about the transition patterns, we
would like to present our numerical results on physical
parameters. Since we performed a random scan on the
parameter space with a flat prior, the distributions of the
parameters should reflect the preference in the model to
have the strong first order phase transition.
Figure 15 shows the allowed values of the broken

minimum ðvc; ubÞ and all eight input parameters. This is
basically a summary of the detailed discussion in the
previous subsection. To complete our discussion, Fig. 15
also shows the parameters in the fermion sector. We learned
that the fermion sector is almost irrelevent to the strong first
order phase transition.
We also show the allowed region for the derived

parameters in Fig. 16. We found that the value of the λϕ

is bounded from a minimum value of about 0.1 and peaks at
around 0.5. This indicates that a Higgs self-coupling
stronger than that in the SM is expected in the singlet
scalar extended model. The μ2s , as a controller of the
intersection between the s curve and the s axis, has been
discussed in the last section. Obviously, for patterns I and
II, it tends to be negative and positive, respectively.
Interestingly, Fig. 16 shows that it has no specific sign
preference overall. The μ2ϕ parameter characterizes the
intersection between the ϕ curve and the ϕ axis. There
are nonzero intersections only when μ2ϕ > 0. The high peak
in Fig. 16 represents pattern I in which the ϕ curve roughly
goes across the origin (0, 0). The large tail on the negative
side represents pattern II, in which the ϕ curve is usually far
away from the ϕ axis.
Besides the input parameters in the model, we also

obtain the favored region of the physical observables, like
the masses and mixing angles of the new particles, in light
of the strong first order phase transition. In Fig. 17, we
present the two-dimensional contours of the physical
parameters ðmS; sin αÞ in the scalar sector and those of
ðmT; sin θÞ and ðM;mTÞ in the fermion sector. It is shown
that the scalar with its mass around 500–1000 GeV and a
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mediummixing angle is favored. We recognized the feature
that small mixing angles are disfavored, as expected from
the fact that the scalar needs to couple with the Higgs boson
to render a strong first order phase transition. This favored
region is compatible with that allowed by vacuum stability
criteria [23]. Unlike the scalar mixing angle, the fermionic
mixing angle can be very small, which indicates the
decoupling between the new fermion and the phase
transition criteria. We expect that the precision data and
the Higgs data will put stronger constraints on the fermion
sector. Finally, the strong correlation in the last panel
implies that the mass of the new fermion is mainly
controlled by the Dirac mass term, and thus
M þ ysu0 ≈M, which may result from a relatively small
region of u0 that we chose.

VI. IMPLICATIONS AT THE LHC

From the numerical results, we found that different
transition patterns exist, among which parameter prefer-
ences are different. Regarding the physical parameters, we
note that a new scalar boson with 500–800 GeV mass and
medium mixing angle are favored.

In this section, we check whether the strongly FOPT
parameter region is still allowed by the current experi-
mental constraints, such as the oblique corrections S, T,
Higgs coupling measurements, and direct collider searches.
The oblique corrections S, T put the tightest constraints

on the fermion mass and mixing angle. For a singlet
vectorlike fermion, the Zbb measurement is less stringent
than the oblique correction T. Here we collect the results
[23] on the oblique parameters into boson-loop contribu-
tions TS, SS and fermion-loop contributions TF, SF. For the
fermion-loop contributions, the NP effect is only involved
in the vacuum polarization amplitudes where the top quark
and heavy top quark are in the loop. Subtracting the SM
contributions due to the third generation quarks

TSM
F ¼ 3m2

t

4πe2v2
; ð6:1Þ
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we arrive at the expressions from the fermion contributions
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Similarly the contributions from the Higgs and scalar loop are

ΔTS ¼ s2φ½Tsðm2
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where the functions are defined as
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We note that the scalar contributions are much
smaller than the fermion contributions. Thus the constraints
from S, T on the scalar mass and mixing angle are quite
weak.
On the other hand, the Higgs coupling measurements at

the LHC put the tightest constraints on the scalar mixing
angle. In our model, because of mixing between the Higgs

boson and the heavy scalar, all the tree-level Higgs
couplings are modified as

gNPhff ¼ cosφgSMhff; gNPhVV ¼ cosφgSMhVV: ð6:9Þ

At the same time, the loop-induced Higgs couplings to the
photon and the gluon are also modified by the new
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contribution from the vectorlike fermion loop. So the Higgs
couplings to the photon and the gluon are

gNPhgg¼
g2s

16π2

�X
f

ghff
mf

A1=2ðτfÞþ
ghTT
mT

A1=2ðτTÞ
�
; ð6:10Þ

gNPhγγ ¼
e2

16π2
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2Nf
cQ2
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þ 8

3
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A1=2ðτTÞ
�
; ð6:11Þ

where τT ¼ 4m2
T

m2
h
, and ghtt; ghTT are the Higgs couplings to

the fermions, given in Ref. [23]. In the Higgs to photon and
gluon process, there is almost no fermion mass dependence
if the heavy vectorlike fermion is much heavier than the top
quark. Therefore, the Higgs coupling measurements put
constraints on the scalar and fermion mixing angles.
The direct searches on the new fermion and new scalar

boson at the LHC also put tight constraints on their masses
and couplings. At the LHC, the vectorlike quark can be
produced in pairs through QCD production pp → TT, or
be singly produced via electroweak process pp → Tb. In
our paper, the up-type vectorlike quarks predominantly
couple to the third-generation quarks through
T → tZ; th;Wb. From an updated CMS analysis [50]
which uses the 8 TeV data collected up to the integrated
luminosity of 19.5 fb−1, the lower limits on the mass mT
are set to be around 687–782 GeV.
The heavy scalar S is CP even and has the same quantum

number as the SM Higgs boson. The search limits on the
high mass Higgs boson at the LHC could be recast to put
constraints on the mass and the coupling of the heavy
scalar. The production mechanism is quite similar to the
SM Higgs boson. The dominant channel is the gluon

fusion channel gg → S. The decay channels of the S boson
include

S→WW; S→ZZ; S→ hh; S→ tt; ð6:12Þ

and S → tT only if the heavy top is much lighter than the
scalar S. Other decay channels, such as S → γγ=gg,
S → ff, where f is the fermion other than the top quark,
are negligible. There are existing LHC searches for heavy
resonances decaying to the WW, ZZ final states [51–54],
the Higgs pair final state [55], and the top-pair final state
[56]. Based on the formulas in Appendix D of Ref. [23], the
total production and decay rates in these channels are
related by the ratios

σpp→S→ZZ∶σpp→S→WW∶σpp→S→hh∶σpp→S→tt≃1∶2∶1∶
6m2

t

m2
S
:

ð6:13Þ
On the other hand, the current upper limits in the WW, ZZ
final states [51–54], the Higgs pair final state [55], and the
top-pair final state [56] tell us

σpp→S→ZZ∶σpp→S→WW∶σpp→S→hh∶σpp→S→tt

≃ ð8–50 fbÞ∶ð20–200 fbÞ∶ð10–150 fbÞ∶ð300–2000 fbÞ;
ð6:14Þ

for the mass region MS ∼ ð500; 1000Þ GeV. We can see
that the constraint from the tt is much weaker than the one
from the WW=ZZ channel, and the constraint from the hh
channel is slightly weaker than the one from the ZZ
channel. Thus we use the exclusion limit from the searches
in the WW=ZZ final states. Both ATLAS and CMS
investigate the scalar resonance searches in the S → WW
and S → ZZ decay final states [51–54] and obtain the upper
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FIG. 18. The allowed parameter contour ðmS; sinφÞ (left) and ðmT; sin θLÞ (right) in light of the strong first order phase transition. The
constraints from the S, T parameters, Higgs coupling measurements, and direct LHC searches are shown as the exclusion lines.
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exclusion limits for the scalar resonance with the mass
range between 200 and 1000 GeV. In our model, assuming
the same cut efficiency, we recast the upper limits of the
total cross section to the constraints on the scalar mass MS
and mixing angle sinφ. Our result is shown in Fig. 18 as the
direct LHC search limit.
The numerical results on the constraints from the S, T

parameters, Higgs coupling measurements, and direct
LHC searches are shown in Fig. 18. From Fig. 18 (left),
the parameter region with the mixing angle sin α greater
than 0.43 has been ruled out by the current Higgs
coupling measurements. The direct LHC searches also
exclude the scalar boson with mass less than 500 GeV.
We expect that the future Higgs coupling data put more
stringent constraints on the mixing angle sinφ, and thus
put a stronger limit on the favored region by the strong
first order phase transition. On the right panel of Fig. 18,
we note that the S, T parameters can only exclude a very
small region which is favored by the strong first order
phase transition. The direct LHC searches could exclude
the top partner with a mass less than 700 GeV. There are
large available parameter regions in the fermion sector.
Therefore, the CP violation rate from the fermion sector
is adequate to generate the needed baryon number
asymmetry. Let us comment on the possible explanation
of the diphoton excess in this model. From the left panel
of Fig. 18, we learned that the singlet scalar could be
750 GeV diphoton resonance and still realize the first
order phase transition. On the other hand, the vectorlike
fermions need to be heavier than 800 GeV to avoid the
LHC constraints as shown in the right panel of Fig. 18. To
obtain the diphoton rate (which is around 2–8 fb at
13 TeV LHC), such a heavy vectorlike top requires the
value of the Yukawa coupling to be around 4.
Furthermore, just as in all other vectorlike fermion
explanations [26], the width of the 750 GeV scalar is
very narrow, which is favored by the CMS diphoton
searches, while the ATLAS diphoton excess prefers a
broad width. These two concerns tell us that this minimal
model setup needs to be extended to accommodate both
the electroweak baryogenesis and the 750 GeV diphoton
excess.
Finally, we expect that the future Higgs data could

explore the parameter region on the ðmS; sinφÞ contour.
Furthermore, from Figs. 15 and 16, we note that the large
scalar coupling λsϕ and moderate λϕ is strongly favored.
We should be able to explore the scalar trilinear coupling
λsϕ and λϕ at the high luminosity LHC. If the trilinear
couplings are enhanced compared to the SM Higgs self-
coupling, the Higgs pair production cross section should
be larger than the SM value. Through the Higgs pair
production process pp → h=S → hh, we could extract out
the trilinear couplings from the production cross section
measurements.

VII. CONCLUSIONS

We investigated the necessary conditions to realize
the electroweak baryogenesis in a scalar-assisted vector-
like fermion model. In the fermion sector, the extended
CKM matrix provides additional sources of the CP
violation effects, parametrized by the Jarlskog-like
invariant. We found that the CP violation rate is greatly
enhanced by the heavy mass of the new fermion. With the
flavor constraints on the extended 4 × 3 CKM matrix
considered, we estimated the CP violation strength,
which turns out to be adequate for the baryon number
asymmetry.
We focused on the one loop, finite-temperature effective

potential in our model and its implications on the electro-
weak phase transition. Unlike the case of the SM, the new
scalar extends the field space in which the phase transition
occurs. In the two-dimensional field space, we have more
possible ways of constructing barriers between minima. We
utilized the shape of the derivative of the potential, the s
curve and the ϕ curve, as a tool to analyze the two-
dimensional effective potential.
The first order phase transition occurs in the form of

bubble nucleation of the symmetry broken phase. The
sphaleron decoupling criteria ξ ¼ vc

Tc
≥ 1 is used in this

model, to prevent the baryon asymmetry generated in the
symmetry broken phase from being washed out by spha-
lerons. We performed a parameter scan over the eight
independent model parameters and obtained the allowed
parameter region which could have strong first order phase
transition.
According to the different regions in the ðub; usÞ

contour at the critical temperature, transition patterns
are classified into four patterns: single-branch barrier
transition (pattern I or II, with or without the existence
of multiple relevant branches in the s curve), interbranch
barrier transition (pattern IIIa), and multistep transition
(pattern IIIb). For the single-branch barrier transition,
the large trilinear mass term μsϕ is favored because the
width of the barrier is strongly related to it. However,
small μsϕ is preferred in the patterns IIIa and IIIb. The
preferences of parameters we have gotten from the scan
results can be justified by analyzing the shapes of the s
curve and the ϕ curve and the intersections between
the two curves in different patterns. We also note that all
the patterns prefer large quartic scalar couplings and
moderate mixing angle between the Higgs and the
scalar.
Finally we combine the constraints from the strong first

order phase transition and the experimental limits on the
S, T parameters, Higgs coupling measurements, and
direct LHC searches. We found that there is still a
significant amount of parameter region for the fermion
mass and couplings to satisfy all the constraints and have
adequate CP violation strength to realize the baryon
asymmetry at the same time. The new scalar with mass
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around 500–1100 GeV and mixing angle sinφ around
0.25–0.42 are still allowed and favored by the strong first
order phase transition. The future Higgs coupling mea-
surements and the Higgs boson pair production cross
section will be able to further explore the allowed
parameter space.
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APPENDIX: DETAILS OF THE EFFECTIVE
POTENTIAL

1. The effective potential in the on-shell scheme

In this appendix, we first review how the effective
potential is written in the on-shell scheme. Then we extend
the discussion on the SM Higgs boson in Refs. [42,43] to
the Higgs new scalar mixing case.
We start from the one loop effective potential in the

Landau gauge, with the dimensional-regularization applied,

VeffðT ¼ 0Þ ¼ V tree þ VCW ¼ V tree þ
1

64π2
STrM4

φðϕ; sÞ
�
log

M2
φðϕ; sÞ
μ2

−
3

2
− CUV

φ

�
; ðA1Þ

where the supertrace is taken among all the dynamical fields φ that have ðϕ; sÞ dependent masses Mφ. The UV divergent
pieces CUV

φ are defined as

CUV
φ ¼

8<
:

1
2−n

2
− γE þ log 4π φ ¼ scalar and fermion

ðn − 1Þ
�

1
2−n

2
− γE þ log 4π

	
φ ¼ gauge boson

: ðA2Þ

The UV divergence has to be absorbed by the counterterms. We introduce the following counterterms:

ΔV ¼ Aðϕ2 − v2Þ þ Bðϕ2 − v2Þ2 þ Cðs − uÞ þDðs − uÞ2 þ Eðϕ2 − v2Þðs − uÞ
þ Fðs − uÞ3 þ Gðs − uÞ4 þHðϕ2 − v2Þðs − uÞ2: ðA3Þ

The renormalization conditions are needed to fix the above
counterterms. In the MS renormalization scheme, the
renormalization conditions consist in subtracting the term
proportional to 1

2−n
2
− γE þ log 4π in the regularized poten-

tial. We will choose the on-shell renormalization scheme.
The effective potential can be expanded using the one-
particle irreducible (IPI) Green function ΓðnÞ at zero
external momentum,

VeffðΦÞ ¼ −
X∞
n¼0

ðΦ − ΦVACÞnΓðnÞðp ¼ 0Þ; ðA4Þ

where Φ denotes the scalar fields ðϕ; sÞ and ΦVAC denotes
the vacuum ðv; uÞ. Therefore, we define the renormalized
mass of the scalar field as the negative inverse propagator at
zero momentum

M2
ij ¼ −Γð2Þðp ¼ 0Þ ¼ ∂2Veff

∂Φi∂Φj

����
ϕ¼v;s¼u

: ðA5Þ

Of course, we could also define the renormalized couplings
as the four-point IPI Green function Γð4Þ. However, the
renormalization conditions on the couplings are not unique.
Since we want to keep our discussion as general as
possible, we only impose the tadpole conditions and mass
conditions, as follows:

∂
∂Φi

ðVCW þ ΔVÞ
����
ϕ¼v;s¼u

¼ 0;

∂2

∂Φi∂Φj
ðVCW þ ΔVÞ

����
ϕ¼v;s¼u

¼ 0;

Φi ¼ ϕ; s: ðA6Þ

The five conditions fix the tree level VEVs and scalar
masses to be the physical ones, regardless of the couplings.
As all the renormalization conditions are evaluated at points
ϕ ¼ v and s ¼ u, the only relevant variables here are only
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A, B, C,D, E, which can be uniquely determined, while the
other three are totally arbitrary.4

Although we can solve for these five coefficients using
the five equations, we found an easy way to do it
systematically. The trick is to make use of the following
function [42]:

~VOS
CW ¼ 1

64π2
STr

�
M4

φ;m

�
ln

M2
φ;m

M2
φ;phy

−
3

2

�
þ 2M2

φ;phyM
2
φ;m

�
;

ðA8Þ
where the mass matricesM2

φ;m are supposed to be diagonal,
in the basis of mass eigenstates, and M2

φ;phy are M2
φ;m

evaluated at the vacuum point ϕ ¼ v, s ¼ u. It is easy to
verify that the function satisfies all the five renormalization
conditions that we apply, regardless of the details of the
mass matrices.5

The problem is whether it can be achieved from the
original Coleman-Weinberg potential through adding coun-
terterms like Eq. (A3). The answer is, luckily, yes for
theories without mixing particles, but is no for the model
we are dealing with, where both the scalar sector and the
top quark sector may have large mixing.
To see this, let us take the difference

Δ ~V¼ ~VOS
CW−VCW¼ 1

64π2
STr

�
M4

φ ln
μ2

M2
φ;phy

þ2M2
φ;phyM

2
φ

�
:

ðA10Þ

For mixed fields, though the mass matrix elements in gauge
eigenbasis are usually polynomials of the scalar fields,

which are allowed in the counterterms, in the mass
eigenbasis they are typically irrational expressions.
Specifically, TrM2

φ;m and TrM4
φ;m can still be expressed

in terms of the coefficients of the characteristic polynomial
of the mass matrix, and hence are polynomial of the scalar
fields, but TrDM4

φ;m and TrDM2
φ;m are not, where D is a

diagonal matrix with nondegenerate eigenvalues. The two
terms in the above expressions are exactly in this form.
What we do is to expand Δ ~V at the vacuum point as in

Eq. (A3) and truncate the expression at the order as we like.
For instance, we can retain the terms of A0, B0, E0, F0, H0
and throw away all the other terms, so that the five
renormalization conditions are still satisfied. The coeffi-
cients we get this way are unambiguous, which must be the
same as what people get by any other methods. In our
calculation, we retained all the eight terms that are allowed
in the counterterms, thus recover the full form of ΔV, and
throw away the higher order terms. The coefficients C0, D0,
G0, however, are ambiguous, which depend on the addi-
tional renormalization conditions that people may add to
the scheme.
Suppose that after truncation, we get ΔV out of Δ ~V,

therefore the final on-shell potential is

VOS
eff ¼ Veff þ ΔV ðA11Þ

in which the coefficients are

A ¼ ∂
∂sΔ ~V

���
ϕ¼v;s¼u

;

B ¼ 1

2

∂2

∂s2Δ ~V
���
ϕ¼v;s¼u

;

E ¼ 1

2v
∂
∂ϕΔ ~V

���
ϕ¼v;s¼u

;

F ¼ 1

2v
∂2

∂s∂ϕΔ ~V
���
ϕ¼v;s¼u

;

H ¼ 1

8v2
∂2

∂ϕ2
Δ ~V

���
ϕ¼v;s¼u

: ðA12Þ

2. Goldstone infrared divergence

There are two problems for the above potential even
before the truncation. First, by definition, the potential is
defined at scale p2 ¼ 0, and the second derivatives do not
give pole masses but renormalized masses at scale μ ¼ 0.
Second, in the Goldstone contribution to the Coleman-
Weinberg potential, there is IR divergence from
lnm2

Gðv; uÞ, since the field-dependent mass of the
Goldstone boson,

m2
Gðϕ; sÞ ¼ λϕðϕ2 − v2Þ þ λsϕ

2
ðs2 − u2Þ þ μsϕðs − uÞ;

ðA13Þ

4One may use the following counterterms:

ΔV ¼ Asþ Bs2 þ Cs3 þDs4 þ Eϕ2 þ Fϕ2sþGϕ2s2 þHϕ4:

ðA7Þ

However, in this parametrization, if we only apply the five
conditions, it is not enough to determine certain counterterms.
One has to use three renormalization conditions on the couplings
to determine them uniquely. Because of the arbitrariness on the
renormalization conditions on the couplings, the counterterms
could be quite different.

5By adding higher powers of M2
φ;m −M2

φ;phy with appropriate
coefficients, one can construct functions that satisfy higher-order
on-shell conditions. For instance, if we want to have all the
Lagrangian couplings to be the on-shell values, we simply add
terms up to the fourth power of M2

φ;m −M2
φ;phy to it,

~VOS
CW ¼ 1

64π2
STr

�
M4

φ;m

�
ln

M2
φ;m

M2
φ;phy

−
3

2

�
þ2M2

φ;phyM
2
φ;m

−
1

2M2
φ;m

ðM2
φ;m−M2

φ;phyÞ3þ
1

2M4
φ;m

ðM2
φ;m−M2

φ;phyÞ4
�
:

ðA9Þ
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is zero at the vacuum point. In this section, we will show
that these two effects cancel each other, according to the
discussion in [19].
Let us find out the relation between the zero momentum

parameters appearing in the effective potential and the
physical observables that we need in an OS scheme. In
general, we have the vertex functions

Γðϕ1;ϕ2;…;ϕn;piÞ ¼ ΓX
r þ ΓLðpiÞ þ ΓX

ct; ðA14Þ

where Γr is the tree-level renormalized coupling, or the
inverse propagator in the case of n ¼ 2. ΓL is the loop
contributions, which depend on the external momenta. ΓX

ct
comes from the counterterms defined in scheme X.
As we are working in the OS scheme, we have

Γðϕ1;ϕ2;…;ϕn;piÞ ¼ Γphy þ ΓLðpiÞ þ ΓOS
ct ðA15Þ

while

ΓLðOSÞ þ ΓOS
ct ¼ 0; ðA16Þ

where the OS inside the parentheses indicates the on-shell
momenta, instead of the on-shell scheme, as ΓL is scheme
independent. Thus we have the p2 ¼ 0 values for the vertex
functions,

Γðϕ1;ϕ2;…;ϕn;p2
i ¼ 0Þ ¼ Γphy þ ΓLðp2

i ¼ 0Þ − ΓLðOSÞ
≡ Γphy − ΔΓL; ðA17Þ

where ΔΓL is defined as the difference between the
on-shell loop contribution and the zero-momenta loop
contributions.
In this spirit, the renormalization conditions Eq. (A6)

should be modified as

∂
∂Φi

ðVDR
CW þ ΔVÞ

���
ϕ¼v;s¼u

¼ 0;

∂2

∂Φi∂Φj
ðVDR

CW þ ΔVÞ
���
ϕ¼v;s¼u

¼ −ΔΣ; ðA18Þ

where Σ is the loop contribution to the mass matrix. The
tadpole term is not changed because the tadpole loop does
not depend on external momentum. For couplings, we have
conditions like

∂4Veff

∂s2∂ϕ2

����
ϕ¼v;s¼u

¼λsϕþ
∂4VCW

∂s2∂ϕ2

����
ϕ¼v;s¼u

¼λm;phyþ
∂4VCW

∂s2∂ϕ2

����
ϕ¼v;s¼u

−ΔΓm: ðA19Þ

Note that, unlike the case for masses, the Coleman-
Weinberg potential does have contributions to the cou-
plings [unless we use the more complete form Eq. (A9)].

One may notice that the off-diagonal element of Σ is not
well defined in OS scheme. In addition, some couplings
like s3 also do not have natural on-shell definition. Here we
assume that the ΔΓL’s are not sensitive to the tricky details
of how we define the OS renormalization conditions. Here
we only focus on the IR divergence from the Goldstone
loops, for which we use m2

χ ¼ m2
Gðv; uÞ as an IR regulator,

and choose a convenient but inexact form of the IR-
finite part.
Thus we only retain the IR divergent terms and replace

all the parameters for physical quantities we need in an OS
scheme. These terms are

VIR ¼ Σϕð0Þ
8v2

ðϕ2 − v2Þ2 þ Σsϕð0Þ
2v

ðϕ2 − v2Þðs − uÞ

þ Σsð0Þ
2

ðs − uÞ2 þ ΓðmÞ
L ð0Þ
4

ðϕ2 − v2Þðs − uÞ2

þ Γð3Þ
L ð0Þ
3!

ðs − uÞ3 þ Γð4Þ
L ð0Þ
4!

ðs − uÞ4; ðA20Þ

while the lnm2
χ order IR divergences are

Σϕð0Þ ∼
3

2
× ð2λϕvÞ2 ×

1

16π2
ln

m2
χ

m2
H
; ðA21Þ

Σsð0Þ ∼
3

2
× ðλsϕuþ μsϕÞ2 ×

1

16π2
ln

m2
χ

m2
H
; ðA22Þ

Σsϕð0Þ ∼
3

2
× 2λϕvðλsϕuþ μsϕÞ ×

1

16π2
ln

m2
χ

m2
H
; ðA23Þ

ΓðmÞ
L ð0Þ ∼ 3

2
× 2λsϕλϕ ×

1

16π2
ln

m2
χ

m2
H

þ power-law IR divergence; ðA24Þ

Γð3Þ
L ð0Þ ∼ 9

2
× λsϕðλsϕuþ μsϕÞ ×

1

16π2
ln

m2
χ

m2
H

þ power-law IR divergence; ðA25Þ

Γð4Þ
L ð0Þ ∼ 9

2
× λ2sϕ ×

1

16π2
ln

m2
χ

m2
H

þ power-law IR divergence; ðA26Þ

where lnm2
H is for the IR finite contributions which, as

already explained, are not exact, but errors are negligible.
The power-law IR divergences in the couplings will be
canceled by the Coleman-Weinberg contributions [such as
the last two term in Eq. (A9)], which we do not prove
explicitly here.
Plugging them into Eq. (A20), together with the knowl-

edge of Eq. (A13), we get
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VIR ¼ 3

64π2
m4

Gðϕ; sÞ ln
m2

χ

m2
H
; ðA27Þ

which neatly cancels the IR divergence of the Coleman-
Weinberg term. Thus we only need to replace the Goldstone
pole mass in the logarithm in Eq. (A8) with the Higgs mass
to fix the IR divergence problem. Again, there are correc-
tions and small subtleties from the momentum-shift effect,
such as the ΔΣ contribution to the counterterms B0, E0, H0,
which are computable but we neglected.

3. Field-dependent masses

In the effective potential, the particles running in the loop
are the particles in the model with the following degrees of
freedom in the Landau gauge:

nW ¼ 6; nZ ¼ 3; nπ ¼ 3;

nh ¼ nS ¼ 1; nt ¼ −12; nT ¼ −12: ðA28Þ

The field-dependent masses of the top quark, gauge bosons,
and Goldstone bosons at zero temperature are given by

m2
WðϕÞ ¼

g2

4
ϕ2; m2

ZðϕÞ ¼
g2 þ g02

4
ϕ2; ðA29Þ

m2
πðϕ; sÞ ¼ λϕϕ

2 − μ2ϕ þ
1

2
λsϕs2 þ μsϕs: ðA30Þ

The field-dependent masses of the scalars h and S are
obtained as

m2
h;Sðϕ; sÞ ¼

1

2
ðm2

ϕϕðϕ; sÞ þm2
ssðϕ; sÞÞ

∓ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

ϕϕðϕ; sÞ −m2
ssðϕ; sÞÞ2 þ 4m4

sϕðϕ; sÞ
q

;

ðA31Þ

where the field-dependent quantities are

m2
ϕϕðϕ; sÞ ¼ 3λϕϕ

2 − μ2ϕ þ
λsϕ
2

s2 þ μsϕs; ðA32Þ

m2
sϕðϕ; sÞ ¼ m2

ϕsðϕ; sÞ ¼ ðλsϕsþ μsϕÞϕ; ðA33Þ

m2
ssðϕ; sÞ ¼ 3λss2 þ 2μ3s − μ2s þ

λsϕ
2

ϕ2: ðA34Þ

The field-dependent masses of the top quark and heavy
vectorlike top quark T are obtained as

m2
t;Tðϕ; sÞ ¼

1

2
ðm2

ttðϕ; sÞ þm2
TTðϕ; sÞÞ

∓ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

ttðϕ; sÞ −m2
TTðϕ; sÞÞ2 þ 4m4

tTðϕ; sÞ
q

;

ðA35Þ

where the field-dependent quantities are

m2
ttðϕ; sÞ ¼

1

2
ðy2t þ y02Þϕ2; ðA36Þ

m2
tTðϕ; sÞ ¼ m2

Ttðϕ; sÞ ¼
1ffiffiffi
2

p y0ϕðyssþMÞ; ðA37Þ

m2
TTðϕ; sÞ ¼ ðyssþMÞ2: ðA38Þ

The finite-temperature potential needs to be corrected by
the thermal field-dependent masses. The thermal field-
dependent masses are calculated by adding the Debye
masses, calculated from the quadratically divergent bubbles
and Daisy resummation. This leads to a shift of the bosonic
field-dependent masses m2

i ðϕ; sÞ to the thermal field-
dependent masses (Debye masses)

m2
i ðϕ; s; TÞ≡m2

i ðϕ; sÞ þ Πiðϕ; s; TÞ; ðA39Þ
where Πiðϕ; s; TÞ is the self-energy of the bosonic field i in
the IR limit. In particular, the longitudinal and transversal
polarizations of the gauge bosons have to be taken into
account separately: only the longitudinal components get a
thermal mass correction and the transversal ones will not.
Since the ring diagrams will only contribute significantly at
high temperature, only the zero mode of the Matsubara
frequency behaves as a massless degree of freedom and
generates IR divergences at high temperature, while other
modes lead to subdominant contributions. For the SM
bosonic contributions, the gauge boson thermal self-energy is

m2
Vðϕ; s; TÞ ¼ m2

Vðϕ; sÞ þ ΠV; ðA40Þ
where

m2
Vðϕ; sÞ ¼

0
BBBBB@

g2

4
0 0 0

0 g2

4
0 0

0 0 g2

4
− gg0

4

0 0 − gg0
4

g02
4

1
CCCCCA
ϕ2 ðA41Þ

and

ΠV ¼ diag

�
11

6
g2T2;

11

6
g2T2;

11

6
g2T2;

11

6
g02T2

�
: ðA42Þ

In the scalar sector, we have

m2
Sðϕ; s; TÞ ¼ m2

Sðϕ; sÞ þ
�
cϕ 0

0 cs

�
T2; ðA43Þ

where

cϕ ¼ λϕ
2
þ λsϕ

24
þ 3g2 þ g02

16
þ y2t

4
; ðA44Þ

cs ¼
λs
4
þ λsϕ

6
þ y2s

4
: ðA45Þ
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