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We present numerical details of the evaluation of the so-called Bose-ghost propagator in lattice minimal
Landau gauge, for the SU(2) case in four Euclidean dimensions. This quantity has been proposed as a carrier
of the confining force in the Gribov-Zwanziger approach and, as such, its infrared behavior could be relevant
for the understanding of color confinement in Yang-Mills theories. Also, its nonzero value can be interpreted
as direct evidence of Becchi-Rouet-Stora-Tyutin-symmetry breaking, which is induced when restricting the
functional measure to the first Gribov region Ω. Our simulations are done for lattice volumes up to 1204 and
for physical lattice extents up to 13.5 fm. We investigate the infinite-volume and continuum limits.
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I. INTRODUCTION

Restriction of the functional integral to the first Gribov
region Ω—given as the set of transverse gauge configura-
tions for which the Faddeev-Popov (FP) matrix M is non-
negative—defines the so-called minimal Landau gauge in
Yang-Mills theories [1]. On the lattice, this gauge fixing is
implemented by a minimization procedure (see, e.g., [2]),
without the need to consider the addition of a nonlocal
horizon-function term γ4Sh to the (Landau-gauge) action, as
done in the Gribov-Zwanziger (GZ) approach in the con-
tinuum [3]. Let us recall that, in the GZ approach, the
resulting (nonlocal) action may be localized by introducing
auxiliary fields. Also, one can define for these fields a
nilpotent Becchi-Rouet-Stora-Tyutin (BRST) transforma-
tion (see, e.g., [4]), which is a simple extension of the usual
perturbativeBRST transformation that leaves theYang-Mills
action invariant in linear covariant gauge. However, it can
easily be verified that, in the GZ case, this local BRST
symmetry is broken by terms proportional to a power of the
Gribov parameter γ. More precisely, since a nonzero value of
γ is related to the restriction of the functional integration toΩ,
it is somewhat natural to expect a breaking of the perturbative
BRST symmetry, as a direct consequence of the nonpertur-
bative gauge fixing. This issue has been investigated in
several works (see, e.g., [5–34] and references therein). The
above interpretation is supported by the recent introduction
of a nilpotent nonperturbative BRST transformation [33,34],
which leaves the local GZ action invariant.1 The new

symmetry is a simple modification of the usual BRST
transformation s, by adding (for some of the fields) a
nonlocal term proportional to a power of the Gribov
parameter γ, thus recovering the usual perturbative trans-
formation s when γ is set to zero.
As indicated above, the Gribov parameter γ is not

introduced explicitly on the lattice, since in this case the
restriction of gauge-configuration space to the region Ω is
achieved directly by numerical minimization. Nevertheless,
the breaking of the perturbative BRST symmetry induced
by the GZ action may be investigated by the lattice
computation of suitable observables, such as the so-called
Bose-ghost propagator, which has been proposed as a
carrier of the long-range confining force in minimal
Landau gauge [5,6,35]. The first numerical evaluation
of the Bose-ghost propagator in minimal Landau gauge
was presented—for the SU(2) case in four space-time
dimensions—in Refs. [36,37]. The data for this propagator
show a strong infrared (IR) enhancement, with a double-
pole singularity at small momenta, in agreement with the
one-loop analysis carried out in Ref. [38]. The data are also
well described by a simple fitting function, which can be
related to a massive gluon propagator in combination with
an IR-free FP ghost propagator. Those results constitute the
first numerical manifestation of BRST-symmetry breaking
in the GZ approach.
Here we extend our previous calculations and present the

details of the numerical evaluation of the Bose-ghost
propagator. In particular, we consider three different lattice
definitions of this propagator in order to check that the
results obtained are in agreement with each other. We also
present our final data for the propagator—complementing
the results already reported in [36,37]—and we analyze
the infinite-volume and continuum limits. The paper is
organized as follows. In the next section, following
Refs. [4,36,37], we set up the notation and introduce the
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1To be more precise, before introducing the nonperturbative

BRST transformation, one also needs to rewrite the horizon
function in terms of a nonlocal gauge-invariant transverse field
Ah
μðxÞ and redefine the Nakanishi-Lautrup field ba by a shift. See

Refs. [33,34] for details.
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continuum definitions necessary for the evaluation of the
Bose-ghost propagator. Then, in Sec. III, we address the
corresponding definitions on the lattice and describe
the algorithms used in our Monte Carlo simulations.
Finally, in the last two sections, we present the output of
these simulations and our concluding remarks.

II. THE BOSE-GHOST PROPAGATOR
IN THE CONTINUUM

The localized GZ action2 may be written for the general
case of linear covariant gauge as

SGZ ¼ SYM þ Sgf þ Saux þ Sγ; ð1Þ

where the various terms correspond to
(i) the usual four-dimensional Yang-Mills action

SYM ¼ 1

4

Z
d4xFa

μνFa
μν; ð2Þ

(ii) the covariant-gauge-fixing term

Sgf ¼
Z

d4x

�
ba∂μAa

μþ
α

2
babaþ η̄a∂μDab

μ ηb
�
; ð3Þ

which is parametrized by α;
(iii) the auxiliary term

Saux ¼
Z

d4x½ϕ̄ac
μ ∂νðDab

ν ϕbc
μ Þ − ω̄ac

μ ∂νðDab
ν ωbc

μ Þ

− g0ð∂νω̄
ac
μ ÞfabdDbe

ν ηeϕdc
μ �; ð4Þ

which is necessary to localize the horizon function;
(iv) the γ term

Sγ ¼
Z

d4x½γ2Dab
μ ðϕab

μ þ ϕ̄ab
μ Þ−4ðN2

c−1Þγ4�; ð5Þ

which allows one to write the horizon condition as a
stationary point of the quantum action, yielding the
gap equation.

In the above equations, a, b, c, d, and e are color indices in
the adjoint representation of the SUðNcÞ gauge group,
while μ and ν are Lorentz indices. Repeated indices are
always implicitly summed over. Also,

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ g0fabcAb

μAc
ν ð6Þ

is the usual Yang-Mills field strength, we indicate with

Dab
ν ¼ δab∂ν þ g0facbAc

ν; ð7Þ

the covariant derivative in the adjoint representation, Ab
μ is

the gauge field, g0 is the bare coupling constant, and fabc

are the structure constants of the gauge group. At the same
time, ba is the Nakanishi-Lautrup field, (η̄b, ηb) are the FP
ghost fields, (ϕ̄ac

μ , ϕac
μ ) are complex-conjugate bosonic

fields, and (ω̄ac
μ , ωac

μ ) are complex-conjugate Grassmann
fields.
In the limit α → 0, the above SGZ action yields the usual

Landau gauge-fixing condition ∂μAa
μ ¼ 0, while restricting

the functional integration to the region Ω. For a more
detailed discussion of the GZ approach, see, e.g., [4] and
references therein.
One defines the Bose-ghost propagator as [36,37]

Qabcd
μν ðx; yÞ ¼ hωab

μ ðxÞω̄cd
ν ðyÞ þ ϕab

μ ðxÞϕ̄cd
ν ðyÞi: ð8Þ

Let us note that this correlation function can also be written
using the relation

Qabcd
μν ðx; yÞ ¼ hsðϕab

μ ðxÞω̄cd
ν ðyÞÞi: ð9Þ

Here s is the usual perturbative nilpotent BRST variation
[39], which acts on the fields entering the GZ action as

sAa
μ ¼ −ðDμηÞa; sηa ¼ 1

2
g0fabcηbηc; ð10Þ

sη̄a ¼ ba; sba ¼ 0; ð11Þ

sϕac
μ ¼ ωac

μ ; sωac
μ ¼ 0; ð12Þ

sω̄ac
μ ¼ ϕ̄ac

μ ; sϕ̄ac
μ ¼ 0: ð13Þ

Under the above BRST transformations, one has [4]

sðSYM þ Sgf þ SauxÞ ¼ 0; ð14Þ

while

sSγ ∝ γ2 ≠ 0: ð15Þ

Thus, as mentioned in the Introduction, the breaking of
the perturbative BRST symmetry in the GZ approach is
directly related to a nonzero value of γ; i.e., it is induced by
the restriction of gauge-configuration space to Ω.
We see that the Bose-ghost propagator is written in

terms of a BRST-exact quantity, which should have a null
expectation value for a BRST-invariant theory. Note,
however, that it does not necessarily vanish if BRST
symmetry is broken (see, for example, the discussion in
Ref. [13]). Let us recall that at tree level (and in momentum
space) one finds [4,40]2Here we follow the notation of the review [4].
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Qabcd
μν ðp; p0Þ ¼ γ4

ð2πÞ4δð4Þðpþ p0Þg20fabefcdePμνðpÞ
p2ðp4 þ 2g20Ncγ

4Þ ;

ð16Þ

where

PμνðpÞ ¼ δμν −
pμpν

p2
ð17Þ

is the usual transverse projector. Thus, this propagator is
proportional to a power of γ; i.e., its nonzero value is clearly
related to the breaking of the BRST symmetry in the GZ
theory. As already said in the Introduction, the above tree-
level result has been extended to one loop in Ref. [38].
Let us stress that our Qabcd

μν ðx; yÞ propagator corresponds
to the F-term of the V-propagator of Ref. [6] [see their
Eqs. (72)–(75)]. One should also remark that the notations
used in Refs. [4] and [6] are slightly different. In particular,
the factor γ4 in the former work is replaced by γ in the
latter one.
On the lattice, one does not have direct access to the

auxiliary fields (ϕ̄ac
μ , ϕac

μ ) and (ω̄ac
μ , ωac

μ ). Nevertheless,
since these fields enter the continuum action at most
quadratically, we can integrate them out exactly, obtaining
for the Bose-ghost propagator an expression that is suitable
for lattice simulations. More precisely, in order to arrive at
such an expression for each of the two terms in Eq. (8), one
can carry out the following steps [6]:
(1) add sources to the GZ action,
(2) integrate out the auxiliary fields,
(3) take the usual functional derivatives with respect to

the sources, in order to obtain the chosen propagator.
This procedure is, essentially, the inverse of the steps that
allow one to localize the horizon term. Indeed, in the
localization process one uses properties of Gaussian inte-
grals (see, for example, Appendix A in Ref. [4]) for trading
the nonlocal term in the action3

Snl ¼ γ4Sh

¼ γ4
Z

d4xd4yDac
μ ðxÞðM−1Þabðx; yÞDbc

μ ðyÞ ð18Þ

for the local one

Sl ¼ −
Z

d4xd4yϕ̄ac
μ ðxÞMabðx; yÞϕbc

μ ðyÞ

þ γ2
Z

d4xDac
μ ðxÞ½ϕac

μ ðxÞ þ ϕ̄ac
μ ðxÞ�; ð19Þ

as can easily be checked by completing the quadratic form
in the above equation and by shifting the fields in the path

integral. [Here, Dac
μ ðxÞ is the covariant derivative, defined

in Eq. (7), and Mabðx; yÞ ¼ −δðx − yÞ∂μDac
μ ðxÞ is the

FP matrix.] On the contrary, in the three-step procedure
described above, one starts from the local action Sl plus the
source terms

Z
d4xJabμ ðxÞϕab

μ ðxÞ þ J̄abμ ðxÞϕ̄ab
μ ðxÞ ð20Þ

and ends up—after integrating over ϕ̄ab
μ and ϕab

μ —with the
nonlocal expression

Z
d4xd4yf½γ2Dac

μ ðxÞ þ Jacμ ðxÞ�ðM−1Þabðx; yÞ

× ½γ2Dbc
μ ðyÞ þ J̄bcμ ðyÞ�g: ð21Þ

Then, by taking the functional derivative with respect to the
sources Jabμ ðxÞ and J̄cdν ðyÞ, and by setting them to zero,
one obtains two terms for the propagator hϕab

μ ðxÞϕ̄cd
ν ðyÞi.

The first term is simply hðM−1Þacðx; yÞδbdδμνi, and it does
not contribute to the Bose-ghost propagator Qabcd

μν ðx; yÞ,
since hωab

μ ðxÞω̄cd
ν ðyÞi provides an equal but opposite

contribution.4 The second term yields [6,36,37]

Qabcd
μν ðx − yÞ ¼ γ4hRab

μ ðxÞRcd
ν ðyÞi; ð22Þ

where

Rac
μ ðxÞ ¼

Z
d4zðM−1Þaeðx; zÞBec

μ ðzÞ ð23Þ

and Bec
μ ðzÞ is given by the covariant derivativeDec

μ ðzÞ. One
can also note that, at the classical level, the total derivatives
∂μðϕaa

μ þ ϕ̄aa
μ Þ in the action Sγ—or, equivalently, in the

second term of Eq. (19)—can be neglected [4,6]. In this
case the expression for Bec

μ ðzÞ simplifies to

Bec
μ ðzÞ ¼ g0febcAb

μðzÞ; ð24Þ

as in Ref. [6]. Let us stress that, in both cases, the
expression for Qabcd

μν ðx − yÞ in Eq. (22) depends only on
the gauge field Ab

μðzÞ and can be evaluated on the lattice.
In fact, all auxiliary fields have been integrated out.
Finally, let us note that the above procedure is analogous

to the lattice evaluation of the ghost propagator

Gabðx − yÞ ¼ hηaðxÞη̄bðyÞi: ð25Þ

Indeed, also in this case, the Grassmann fields (η̄b, ηb) are
not explicitly introduced on the lattice. Nevertheless, by

3We refer to [4] and references therein for more details and
subtleties in the definition of the horizon function.

4This implies that the behavior of the Bose-ghost propagator
depends only on the bosonic fields (ϕ̄ac

μ , ϕac
μ ).
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using the three-step procedure described above, one obtains
the expression

Gabðx − yÞ ¼ hðM−1Þabðx; yÞi; ð26Þ

which can be considered in lattice numerical simulations
(see, for example, Refs. [41,42]).

III. LATTICE SETUP

We evaluate the Bose-ghost propagator defined in
Eqs. (22) and (23) above—modulo the global factor
γ4—using Monte Carlo simulations applied to Yang-
Mills theory in four-dimensional Euclidean space-time
for the SU(2) gauge group.5

In order to check for discretization effects, we considered
four different values of the lattice coupling β, namely
β0 ¼ 2.20, β1 ≈ 2.35, β2 ≈ 2.44, and β3 ≈ 2.51, respec-
tively corresponding (see [44,45]) to a lattice spacing a of
about 0.21, 0.14, 0.11, and 0.08 fm. These values are
summarized in Table I, while the lattice volumes V
considered for the various β’s are listed in Table II. Let
us note that the sets of lattice volumes V ¼ 164, 244, 324,
404, 484 at β0 and V ¼ 244, 364, 484, 604, 724 at β1 yield
(approximately) the same set of physical volumes, ranging
from about ð3.4 fmÞ4 to about ð10.1 fmÞ4. The lattice
volumes V ¼ 964 and V ¼ 1204, at β2 and β3, respectively,
also correspond to a physical volume of about ð10.1 fmÞ4.
Finally, the lattice volume V ¼ 644 at β0 amounts to a
physical volume of about ð13.5 fmÞ4, which, at least in the
study of the gluon propagator, corresponds essentially to
infinite volume [46]. One should stress, however, that
simulations up to V ¼ 1284 at β0 were necessary in order
to achieve a clear description of the IR behavior of the
gluon propagator (see, for example, Ref. [47]). The lattice
volumes V ¼ 644 at β0 and V ¼ 1204 at β3 are new with
respect to the data in Refs. [36,37].
Thermalized configurations have been generated using a

standard heat-bath algorithm accelerated by hybrid over-
relaxation (see, for example, [48,49]), with two overrelax-
ation sweeps for each heat-bath sweep of the lattice. For the
random number generator we use a double-precision
implementation of RANLUX (version 3.2) with luxury level
set to two [50]. The lattice minimal Landau gauge has been
fixed using the stochastic-overrelaxation algorithm [51–53]
with a stopping criterion ð∂μAa

μÞ2 ≤ 10−14 (after averaging
over the lattice volume and over the three color compo-
nents). As for the lattice gauge field AμðxÞ, corresponding
to ag0AμðxÞ in the continuum, we employ the usual

unimproved definition ½UμðxÞ − U†
μðxÞ�=ð2iÞ, where UμðxÞ

are the lattice link variables entering the Wilson action.
Here, we did not check for possible Gribov-copy effects.
All the relevant parameters used for the numerical simu-
lations can be found in Tables I and II.
In order to evaluate the Bose-ghost propagator, we invert

the FP matrix Mabðx; yÞ with the sources Bbc
μ ðxÞ, after

removing their zero modes. In our setup for the numerical
simulations we follow the notation described in Ref. [54].
In particular, for the action of the FP matrix on a color
vector vbðxÞ we consider Eq. (22) in [54], i.e.,

ðMvÞbðxÞ ¼
X
μ

Γbc
μ ðxÞ½vcðxÞ − vcðxþ eμÞ�

þ Γbc
μ ðx − eμÞ½vcðxÞ − vcðx − eμÞ�

þ fbdc½Ad
μðxÞvcðxþ eμÞ

− Ad
μðx − eμÞvcðx − eμÞ�; ð27Þ

TABLE I. For each of our labeled choices of the lattice
parameter β, we give the value used in the simulations and the
corresponding value of the lattice spacing a, in fm.

β value a (fm)

β0 2.2 0.21035
β1 2.34940204 0.14023
β2 2.43668228 0.10518
β3 2.50527693 0.08414

TABLE II. For each choice of the coupling β (see values in
Table I) and lattice volume V, we indicate the lattice extent in
physical units L, the number of configurations considered, the
number of thermalization sweeps used to generate the first
configuration (starting from a random initial configuration),
the number of decorrelation sweeps (between two thermalized
configurations), the value of the parameter p used in the
stochastic overrelaxation algorithm, and the number of BLUE

GENE/P CPUs used for the simulations.

β V L (fm) No. confs Therm. Decorr. p No. CPUs

β0 164 3.366 10000 550 50 0.88 128
β0 244 5.048 5000 770 70 0.91 256
β0 324 6.731 1000 880 80 0.935 256
β0 404 8.414 750 990 90 0.94 256
β0 484 10.097 500 1100 110 0.95 256
β0 644 13.462 300 1430 130 0.975 512
β1 244 3.366 5000 880 80 0.895 128
β1 364 5.048 850 1100 100 0.915 216
β1 484 6.731 500 1430 130 0.93 256
β1 604 8.414 400 1980 180 0.965 216
β1 724 10.097 250 2000 200 0.975 256
β2 964 10.097 100 2750 250 0.975 512
β3 1204 10.097 100 3000 300 0.975 500

5As remarked in the Introduction, the parameter γ is not
explicitly introduced on the lattice. For this reason, quantities
proportional to (powers of) γ, such as the Bose-ghost propagator
considered here or the horizon function (see, e.g., Ref. [43]), are
evaluated in lattice simulations modulo the global γ4 factor.
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where

Γbc
μ ðxÞ ¼ Tr

��
τb

2
;
τc

2

�
UμðxÞ þ U†

μðxÞ
2

�
: ð28Þ

Here, we indicate with τb the N2
c − 1 traceless Hermitian

generators of the gauge group (in the fundamental repre-
sentation) and with f; g the usual anticommutator oper-
ation. In the SU(2) case one has

Γbc
μ ðxÞ ¼ δbc

Tr
2
UμðxÞ ð29Þ

and fbcd ¼ ϵbcd. At the same time, for the sources,
we allow for both possible definitions (see discussion in
the previous section), i.e., Bbc

ν ðxÞ equal to the covariant
derivative Dbc

ν ðxÞ and Bbc
ν ðxÞ ¼ g0fbecAe

νðxÞ. In the first
case, by considering the close relation between the nonlocal
term contributing to the horizon function [see Eq. (18)] and
the expression for the Bose-ghost propagator [see Eqs. (22)
and (23)], it is natural to use as sources the same functions
Bbc
μ ðxÞ entering the lattice evaluation of the horizon

function. Then, following Eq. (23) of Ref. [43], we take6

Bbc
μ ðxÞ ¼ 1

2
f½Γbc

μ ðxÞ − Γbc
μ ðx − eμÞ�

þ fcdb½Ad
μðxÞ þ Ad

μðx − eμÞ�g: ð30Þ

In the second case, we consider two different discretiza-
tions of Eq. (24), i.e.,

(i) Eq. (30) without the diagonal part in color
space, i.e.,

Bbc
μ ðxÞ ¼ fcdb

2
½Ad

μðxÞ þ Ad
μðx − eμÞ�; ð31Þ

(ii) and the trivial discretization

Bbc
μ ðxÞ ¼ fbdcAd

μðxÞ: ð32Þ

Note that, in the naive continuum limit, these three
definitions give the same expression.
The inversion of the FP matrix Mabðx; yÞ is performed

using a conjugate-gradient method, accelerated by even/
odd preconditioning. After indicating with

~Rac
μ ðkÞ ¼ 1ffiffiffiffi

V
p

X
x

Rac
μ ðxÞe2πik·x=N ð33Þ

the Fourier transform of the outcome Rac
μ ðxÞ of the

numerical inversion [see Eq. (23)], it is clear that we can

evaluate the Bose-ghost propagator [see Eq. (22)] in
momentum space by considering

Qabcd
μν ðkÞ≡ℜf ~Rab

μ ðkÞ ~Rcd
ν ð−kÞg: ð34Þ

(In the above equations, N is the lattice side, k is the wave
vector with components kμ ¼ 0; 1;…; N − 1, and ℜ indi-
cates the real part of the expression within brackets.) Then,
by contracting the color indices b, d and the Lorentz indices
μ, ν, we can write [see Eq. (16)]

QacðkÞ≡Qabcb
μμ ðkÞ≡ δacPμμðkÞQðk2Þ; ð35Þ

due to global color invariance. The numerical evaluation of
the scalar function Qðk2Þ, through lattice Monte Carlo
simulations, is the goal of this work.
The function ~Rac

μ ðkÞ defined in Eq. (33) has been
evaluated—for the three different choices for the lattice
sources Bbc

μ ðxÞ considered here—for all possible values of
the color indices a, c and of the Lorentz index μ, and for
two types of momenta, namely, wave vectors whose
components7 are ð0; 0; 0; kÞ and ðk; k; k; kÞ, with
k ¼ 1; 2;…; N=2. This gives N different values for the
momentum p. Note that the null momentum trivially gives
~Rac
μ ð0Þ ¼ 0. Indeed, if we indicate with ψb

nðyÞ the eigen-
vectors of the FP matrix Mabðx; yÞ and with λn the
corresponding eigenvalues,8 then we can write

ðM−1Þabðx; yÞ ¼
X
n≠0

ψa
nðxÞ½ψb

nðyÞ��
λn

; ð36Þ

where � indicates complex conjugation and λ0 ¼ 0 is the
trivial null eigenvalue, corresponding to constant eigen-
vectors. This implies

~Rac
μ ðkÞ ¼ 1ffiffiffiffi

V
p

X
n≠0

1

λn

��X
z

Bec
μ ðzÞ½ψe

nðzÞ��
�

×

�X
x

ψa
nðxÞe2πik·x=N

��
: ð37Þ

By recalling that eigenvectors corresponding to distinct
eigenvalues of symmetric matrices are orthogonal, i.e.,
ψ0 ¼ constant is orthogonal to the eigenvectors ψa

nðxÞ with
n ≠ 0, we have

X
x

ψa
nðxÞ ¼ 0 ð38Þ

for every n ≠ 0 and therefore ~Rac
μ ðk ¼ 0Þ ¼ 0.

6Note the global factor 1=2 with respect to Ref. [43].

7For the wave vectors ð0; 0; 0; kÞ we did not consider other
possible permutations of the components.

8Here, the index n ¼ 0; 1; 2;…, denotes the different eigen-
values, possibly degenerate, of the FP matrix.
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We have also evaluated, for the sets of configurations
described in Table II, the gluon and the ghost propagators,
respectively indicated as Dðp2Þ and G2ðp2Þ (see
Refs. [47,55] for details about the numerical evaluation of
these propagators). In both cases, we considered momenta
with wave vectors of the type ðk; 0; 0; 0Þ, ðk; k; 0; 0Þ,
ðk; k; k; 0Þ, and ðk; k; k; kÞ, with9 k ¼ 1; 2;…; N=2. For
the gluon propagator, we did not consider other possible
permutations of the components. On the other hand, for the
ghost propagator, which has been evaluated using the so-
called point sources, we considered all possible permutations
of the wave-vector components (and averaged, over these
permutations, for each configuration separately).
Our numerical code is parallelized using MPI and

OPENMP. We always use four OPENMP threads for each
MPI task and the 4-WAY SYMMETRICAL MULTIPROCESSING

mode (SMP) for the runs on the BLUE GENE/P supercom-
puter at Rice University. The total computing time was
about 2.2 millions of CPU-hours. Further details on the
implementation of the numerical simulations can be found
in Ref. [56].

IV. NUMERICAL RESULTS

In this section we present the numerical results for the
scalar function Qðk2Þ, defined in Eq. (35) above. In all
cases the data points represent averages over gauge
configurations and error bars correspond to 1 standard
deviation (we consider the statistical error only). Also, in
the plots, all quantities are in physical units, and we use the
logarithmic scale on both axes. Let us stress that, compared
to the results reported in Refs. [36,37], the data shown here
have been divided by an additional factor 3.
We first investigate the effect of rotational-symmetry

breaking on our results, by plotting the data for Qðk2Þ as a
function of two different definitions of the lattice momenta,
i.e., the usual unimproved definition

p2ðkÞ ¼
X
μ

p2
μ ð39Þ

and the improved definition [57]

p2ðkÞ ¼
X
μ

�
p2
μðkÞ þ

p4
μðkÞ
12

�
; ð40Þ

where

pμðkÞ ¼ 2 sin

�
πkμ
N

�
: ð41Þ

In Figs. 1 and 2 we show our data for Qðk2Þ—respectively
using the lattice definition of the sources Bbc

μ ðxÞ given in
Eqs. (30) and (32)—as a function of the unimproved and of

the improved momentum squared p2ðkÞ. As one can see,
the improved definition (40) and (41) makes the behavior
of the propagator smoother at large momenta, allowing a
better fit to the data. We also check (see Fig. 3) that our
results do not depend on the choice of the lattice definition
for the source (see discussion in the previous section). More
precisely, only a very minor difference can be seen for the
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FIG. 1. The Bose-ghost propagator Qðk2Þ, defined in Eq. (35),
as a function of the unimproved (red plus) and of the improved
(green times) momentum squared p2ðkÞ [see Eqs. (39)–(41)].
We plot data for β0 and V ¼ 484 using the sources defined in
Eq. (30).
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FIG. 2. The Bose-ghost propagator Qðk2Þ, defined in Eq. (35),
as a function of the unimproved (red plus) and of the improved
(green times) momentum squared p2ðkÞ [see Eqs. (39)–(41)].
We plot data for β0 and V ¼ 484 using the sources defined in
Eq. (32).

9In the gluon case, we also evaluated the zero-momentum
propagator.
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points with the highest momenta, not relevant to the
infrared analysis carried out here.10 Finally, in Figs. 4
and 5, which refer, respectively, to the cases β0 and β1 at
about the same physical volume, we consider the extrapo-
lation to the infinite-volume limit. It is clear that the use
of larger lattice volumes does not modify the behavior of
the propagator, i.e., finite-size effects—at a given lattice
momentum p—are essentially negligible. Thus, large
volumes are relevant only to clarify the IR behavior of
the Bose-ghost propagator.
In order to extrapolate our data to the continuum limit,

we compare data obtained at different β values, using
the largest physical volumes available for comparison. In
particular, in Fig. 6 we show the data for the Bose-ghost
propagator Qðk2Þ, multiplied by p4ðkÞ, at β0 with V ¼ 484

and at β1 with V ¼ 724, which correspond to the same
physical volume, after rescaling the data at β0 using the
matching technique described in Refs. [58,59]. Similarly, in
Fig. 7 we compare the data for β1 with V ¼ 724 and β2 with
V ¼ 964, and in Fig. 8 we compare the data for β2 with
V ¼ 964 and β3 with V ¼ 1204, always applying a rescal-
ing to the coarser set of data.11 The data clearly scale quite
well, even though small deviations are observable in the IR
limit (see Figs. 6,7, and 8). We thus observe discretization

effects for the coarser lattices. Nevertheless, these effects
decrease as the lattice spacing a goes to zero. Indeed, the
ratios between the finer and the coarser data—at the
smallest momentum p2ðkÞ ≈ 0.015 GeV2—in the various
cases are, respectively, equal to 1.66(7), 1.25(9), and
1.14(9) in the plots shown in Figs. 6–8, with errors obtained
from the propagation of errors.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1  1  10

Q
(k

2 )
 (

G
eV

-2
)

p2(k) (GeV2)

FIG. 3. The Bose-ghost propagator Qðk2Þ, defined in Eq. (35),
as a function of the improved momentum squared p2ðkÞ [see
Eqs. (40) and (41)] for the lattice volume V ¼ 964 at β2. Here we
plot data for the first (red plus), second (green times), and third
(blue star) proposed discretizations of the sources Bbc

μ ðxÞ [see
Eqs. (30)–(32) in Sec. III].
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FIG. 4. The Bose-ghost propagator Qðk2Þ, defined in Eq. (35),
as a function of the improved momentum squared p2ðkÞ [see
Eqs. (40) and (41)]. We plot data for β0 and V ¼ 404 (red plus),
484 (green times), and 644 (blue star).
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FIG. 5. The Bose-ghost propagator Qðk2Þ, defined in Eq. (35),
as a function of the improved momentum squared p2ðkÞ [see
Eqs. (40) and (41)]. We plot data for β1 and V ¼ 484 (red plus),
604 (green times), and 724 (blue star).

10From now on we will only show data obtained using the
trivial discretization (32) for the sources Bbc

μ ðxÞ.
11Let us recall that all these lattice volumes correspond to a

physical volume of about ð10.1 fmÞ4.
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As done in Refs. [36,37], we also fit the data using the
fitting function12

fðp2Þ ¼ c
p4

p2 þ s
p4 þ u2p2 þ t2

; ð42Þ

which is based on the analysis carried on in Refs. [5,6], i.e.,
on the relation (obtained using a cluster decomposition)

Qðp2Þ ∼ g20G
2ðp2ÞDðp2Þ; ð43Þ

whereDðp2Þ is the gluon propagator andGðp2Þ is the ghost
propagator. Then, one can view the above fitting function as
generated by an IR-free FP ghost propagatorGðp2Þ ∼ 1=p2

and by a massive gluon propagator Dðp2Þ [60–62]. The fit
describes the data quite well (see the χ2=d:o:f: values in
Table III), even though in the IR limit there is a small
discrepancy between the data and the fitting function
considered (see Figs. 6–8).
Let us note that the fitted value for the parameter c is

somewhat arbitrary, since one can always fix a renormal-
ization condition at a given scale p2 ¼ μ2, which in turn
yields a rescaling of the Bose-ghost propagator by a global
factor. One should also note that, from Eqs. (22) and (23), it
is clear that the propagator Qðp2Þ evaluated in this work
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FIG. 6. The rescaled Bose-ghost propagator Qðk2Þp4ðkÞ [see
Eq. (35)], as a function of the improved momentum squared
p2ðkÞ [see Eqs. (40) and (41)]. We plot data for β0, V ¼ 484 (red
plus) and β1, V ¼ 724 (green times), after applying a matching
procedure [58,59] to the former set of data. We also plot, for
V ¼ 724, a fit using Eq. (42) and the parameters in Table III,
with c ¼ 37ð4Þ.
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FIG. 7. The rescaled Bose-ghost propagator Qðk2Þp4ðkÞ [see
Eq. (35)], as a function of the improved momentum squared
p2ðkÞ [see Eqs. (40) and (41)]. We plot data for β1, V ¼ 724 (red
times) and β2, V ¼ 964 (green star), after applying a matching
procedure [58,59] to the former set of data. We also plot, for
V ¼ 964, a fit using Eq. (42) and the parameters in Table III,
with c ¼ 82ð5Þ.
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FIG. 8. The rescaled Bose-ghost propagator Qðk2Þp4ðkÞ [see
Eq. (35)], as a function of the improved momentum squared
p2ðkÞ [see Eqs. (40) and (41)]. We plot data for β2, V ¼ 964 (red
times) and β3, V ¼ 1204 (green star), after applying a matching
procedure [58,59] to the former set of data. We also plot, for
V ¼ 1204, a fit using Eq. (42) and the parameters in Table III,
with c ¼ 132ð11Þ.

12We note that, in order to improve the stability of the fit, we
impose some parameters to be positive, by forcing them to be
squares.
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has a renormalization constant ZQ equal to one [6] in the
so-called Taylor scheme [63] and in the algebraic renorm-
alization scheme [4]. This implies that ZQ is also finite in
any renormalization scheme (see, e.g., Refs. [63,64] for a
discussion on this issue).
On the other hand, the parameters t, u, and s can be

related to the analytic structure of the Bose-ghost propa-
gator Qðp2Þ. For example, one could rewrite the fitting
function in Eq. (42) in terms of a pair of poles, i.e.,

fðp2Þ ¼ c
p4

�
αþ

p2 þ ω2þ
þ α−
p2 þ ω2

−

�
: ð44Þ

Then, if the poles are complex conjugate, i.e., if
α� ¼ ð1� ibÞ=2 andω2

� ¼ v� iw, one finds for the fitting
parameters in Eq. (42)

s ¼ vþ bw; u2 ¼ 2v; t2 ¼ v2 þ w2: ð45Þ

On the contrary, if the poles are real, i.e., if α� ¼ ð1� bÞ=2
and ω2

� ¼ v� w ∈ R, we have

s ¼ vþ ðα− − αþÞw; u2 ¼ 2v; ð46Þ

t2 ¼ v2 − w2; αþ þ α− ¼ 1: ð47Þ

Results for these parametrizations for the poles are reported
in Table IV for the same lattice volumes considered in
Table III. (Errors, shown in parentheses, correspond to 1
standard deviation and were obtained using a Monte Carlo
propagation of error with 10000 samples.) We find that,
for the coarsest lattices, i.e., at β0 ¼ 2.2, these poles are
complex conjugate, with an imaginary part that is about
twice the corresponding real part. This is in agreement with
the results obtained for the gluon propagator in Ref. [47] at
the same β value. On the contrary, for the other three values
of β considered, we find that these poles are actually real,
with v ≈ w. In both cases, this fit supports the so-called
massive solution of the coupled Yang-Mills Dyson-
Schwinger equations of gluon and ghost propagators
(see, e.g., Refs. [65–70]) and the so-called Refined GZ

approach [10,71,72]. For the cases V ¼ 484 and 644 at β0
we can compare our results in Table III with the analysis
reported in Table II of Ref. [47] for the gluon propagator.
One sees that the fitting parameters for the Bose-ghost
propagator do not seem to relate in a simple way to the
corresponding values obtained by fitting gluon-propagator
data. There is indeed a visible discrepancy between the Bose-
ghost propagatorQðp2Þ and the product g20G2ðp2ÞDðp2Þ, as
one can see in Fig. 9 for the lattice volume V ¼ 644 at β0.
This discrepancy seems, however, to decrease at larger β
values (see Fig. 10), suggesting that the result (43) could be
satisfied in the continuum limit.
Even though the simple Ansatz in Eq. (42) gives a good

description of the data, deviations can be seen in the IR
region for momenta below about 1 GeV, by plotting the

TABLE III. Parameters t, u, and s from a fit of fðp2Þ in Eq. (42)
to the data. Errors in parentheses correspond to 1 standard
deviation. The number of degrees of freedom (d.o.f.) is always
N − 4. We also show the reduced chi-squared χ2=d:o:f: Fits have
been done using GNUPLOT.

V ¼ N4 β tðGeV2Þ uðGeVÞ sðGeV2Þ χ2=d:o:f:

484 β0 2.3(0.2) 1.5(0.2) 10.9(3.4) 6.57
644 β0 2.2(0.2) 1.5(0.2) 8.7(2.4) 4.06
724 β1 3.2(0.3) 3.6(0.4) 49(14) 2.45
964 β2 3.0(0.1) 3.9(0.2) 57.8(9.5) 1.12
1204 β3 3.3(0.2) 4.8(0.3) 121(21) 1.98

TABLE IV. Pole parameters [see Eqs. (44)–(47)] for the fitting
function fðp2Þ, defined in Eq. (42). In the last column we report
the type of poles obtained: the value 1 indicates complex-
conjugate poles and the value −1 indicates real poles. Errors
in parentheses have been obtained using a Monte Carlo propa-
gation of error (with 10000 samples).

V ¼ N4 β vðGeV2Þ wðGeV2Þ b or α− Type

484 β0 1.1(0.3) 2.0(0.2) 4.8(0.1) 1
644 β0 1.1(0.3) 1.9(0.2) 4.0(0.1) 1
724 β1 6.5(1.4) 5.6(0.2) 4.27(0.03) −1
964 β2 7.6(0.8) 6.99(0.04) 4.091(0.007) −1
1204 β3 11.5(1.4) 11.04(0.06) 5.460(0.009) −1
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FIG. 9. The Bose-ghost propagator Qðk2Þ (red plus)—defined
in Eq. (35)—and the product g20G

2ðp2ÞDðp2Þ (green times) as a
function of the improved momentum squared p2ðkÞ [see Eqs. (40)
and (41)] for the lattice volume V ¼ 644 at β0. The data of the
Bose-ghost propagator have been rescaled in order to agree with
the data of the product g20G

2ðp2ÞDðp2Þ at the largest momentum.
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quantity Qðk2Þp4ðkÞ (see Figs. 6–8). We tried to improve
our fits, by using more general forms of the Bose-ghost
propagator. In particular, by considering the fitting forms
for the gluon propagator used in Refs. [59,73] we tried to
include noninteger exponents in the fitting function fðp2Þ.
Among the different possibilities considered, the best
results have been obtained with the expression

fðp2Þ ¼ c
p4−2η

�
p2 þ s

p4 þ u2p2 þ t2

�
1þη

; ð48Þ

which is a natural generalization of Eq. (42), while
preserving the ultraviolet behavior 1=p6. Also, the above
formula still allows a pole decomposition using Eqs. (45)
and (47), respectively, for the complex-conjugate poles and
for the real poles.13 Results for these fits can be seen in the
three plots of Fig. 11, which should be compared to the
corresponding fits in the plots of Figs. 6–8. The fitting
parameters are reported in Table V. As one can see, by com-
paring Table V to Table III, the value of χ2=d:o:f: decreased
visibly with the new fitting form, even though in some
cases the fitting parameters are determined with very large
errors (see, in particular, the results for the parameter s).
Finally, also in this case we evaluated the parametrizations
of the poles for the fitting curves (see Table VI). We find
that, in all cases, the poles are real, with v ≈ w.
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FIG. 10. The Bose-ghost propagator Qðk2Þ (red plus)—defined
in Eq. (35)—and the product g20G

2ðp2ÞDðp2Þ (green times) as a
function of the improved momentum squared p2ðkÞ [see Eqs. (40)
and (41)] for the lattice volume V ¼ 1204 at β3. The data of the
Bose-ghost propagator have been rescaled in order to agree with
the data of the product g20G

2ðp2ÞDðp2Þ at the largest momentum.

 1

 10

 100

 0.01  0.1  1  10

Q
(k

2 )
 p

4 (
k)

 (
G

eV
2 )

p2(k) (GeV2)

 1

 10

 100

 0.01  0.1  1  10

Q
(k

2 )
 p

4 (
k)

 (
G

eV
2 )

p2(k) (GeV2)

 1

 10

 100

 1000

 0.01  0.1  1  10  100

Q
(k

2 )
 p

4 (
k)

 (
G

eV
2 )

p2(k) (GeV2)

FIG. 11. The rescaled Bose-ghost propagator Qðk2Þp4ðkÞ [see
Eq. (35)], as a function of the improved momentum squared
p2ðkÞ [see Eqs. (40) and (41)] for the data at β1 and V ¼ 724 (top
plot), β2 and V ¼ 964 (middle plot), and β3 and V ¼ 1204

(bottom plot). We also plot a fit using Eq. (48) and the parameters
in Table V, with, respectively, c ¼ 15.5ð9.1Þ, c ¼ 68.4ð5.9Þ,
and c ¼ 116ð12Þ.

13On the other hand, the new fitting function makes the
identification of the gluon and ghost propagators in Eq. (43)
unclear.
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V. CONCLUSIONS

As explained in the Introduction, the breaking of theBRST
symmetry in the GZ approach is linked to a nonzero value of
the Gribov parameter γ, which is not assessed directly in
lattice simulations. Nevertheless, this breaking may also be
related to a nonzerovalue for the expectationvalueof aBRST-
exact quantity such as the Bose-ghost propagatorQabcd

μν ðx; yÞ
defined in Eq. (8). The fact that this quantity can be evaluated
on the lattice—in much the sameway as the ghost propagator
[41,42]—provides us with a suitable strategy to study the
BRST-symmetry breaking of the GZ action numerically.
These two manifestations of BRST-symmetry breaking are
not independent, of course, since a nonzero value of γ is
necessary in both cases. Indeed, the fact that the lattice gauge
fixing is implemented by aminimization procedure is already
equivalent to a nonzero value of γ, while the verification
that the Bose-ghost propagator is itself nonzero provides
nontrivial additional evidence for the breaking. Note that for
γ > 1 the breaking is more pronounced for the Bose-ghost
propagator than for the action, the two being, respectively, of
order γ4 [see, e.g., Eq. (16)] and γ2 [see Eq. (15)].

In this work, we consider for the description of the
Bose-ghost propagator the scalar function Qðk2Þ defined in
Eq. (35), obtained by contracting Lorentz and color indices
in the original propagator. We recall that this propagator has
been proposed as a carrier of the long-range confining force
in minimal Landau gauge [5,6,35]. We have performed
simulations for lattice volumes up to 1204 and for physical
lattice extents up to 13.5 fm, complementing previous
results reported in [36,37]. In particular, we present a more
detailed discussion of the simulations, and we investigate
the approach to the infinite-volume and continuum limits.
We find no significant finite-volume effects in the data. As
for discretization effects, on the contrary, we observe small
such effects for the coarser lattices, especially in the IR
region. We also test different discretizations for the sources
Bbc
μ ðxÞ used in the inversion of the FP matrix and find

that the data are fairly independent of the chosen lattice
discretization of these sources.
Our results concerning the symmetry breaking and

the form of the Bose-ghost propagator are similar to the
previous analysis; i.e., we find a 1=p4 behavior in the IR
regime and a 1=p6 behavior at large momenta. Also, when
describing the data by polynomial fits, with the same fitting
forms used in [36,37], we see that the description is
relatively good, improving considerably for the finer
lattices. In particular, plots of the rescaled propagator show
much better agreement with the fit for the finer lattices.
The same does not hold when using a modified fit with
noninteger exponents as in Eq. (48). Indeed, in this case,
although the values of χ2=d:o:f: are generally better (but the
fit has one extra parameter), the agreement does not get
better as one moves to finer lattices.
Finally, in order to corroborate the results presented here

and in Refs. [36,37], it would, of course, be important to
evaluate numerically other correlation functions related to
the breaking of the BRST symmetry in the GZ approach
and, ultimately, obtain a lattice estimate of the Gribov
parameter γ.
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TABLE V. Parameters t, u, s, and η from a fit of fðp2Þ in (48) to
the data. Errors in parentheses correspond to 1 standard deviation.
The number of degrees of freedom (d.o.f.) is always N − 5.
We also show the reduced chi-squared χ2=d:o:f: Fits have been
done using GNUPLOT.

V ¼ N4 β tðGeV2Þ uðGeVÞ sðGeV2Þ η χ2=d:o:f:

484 β0 3.7(0.6) 4.2(0.8) 172(299) 0.19(2) 2.33
644 β0 4.0(0.7) 4.3(0.9) 176(342) 0.16(2) 1.86
724 β1 4.0(0.4) 6.0(0.8) 199(143) 0.19(3) 1.46
964 β2 2.9(0.1) 5.2(0.3) 85(15) 0.24(4) 0.72
1204 β3 3.0(0.2) 6.0(0.4) 136(23) 0.30(7) 1.55

TABLE VI. Pole parameters [see Eqs. (44)–(47)] for the
fitting function fðp2Þ, defined in Eq. (48). In the last column
we report the type of poles obtained: the value 1 indicates
complex-conjugate poles and the value −1 indicates real poles.
Errors in parentheses have been obtained using a Monte Carlo
propagation of error (with 10000 samples).

V ¼ N4 β vðGeV2Þ wðGeV2Þ α− Type

484 β0 8.8(3.4) 8.0(0.3) 10.69(0.04) −1
644 β0 9.2(3.9) 8.3(0.3) 10.50(0.04) −1
724 β1 18.0(4.8) 17.55(0.09) 5.66(0.01) −1
964 β2 13.5(1.6) 13.21(0.02) 3.206(0.004) −1
1204 β3 18.0(2.4) 17.75(0.04) 3.824(0.006) −1
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