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We follow up on a suggestion by Adams and construct explicit domain wall fermion operators with
staggered kernels. We compare different domain wall formulations, namely the standard construction as
well as Boriçi’s modified and Chiu’s optimal construction, utilizing both Wilson and staggered kernels. In
the process, we generalize the staggered kernels to arbitrary even dimensions and introduce both truncated
and optimal staggered domain wall fermions. Some numerical investigations are carried out in the (1þ 1)-
dimensional setting of the Schwinger model, where we explore spectral properties of the bulk, effective and
overlap Dirac operators in the free-field case, on quenched thermalized gauge configurations and on
smooth topological configurations. We compare different formulations using the effective mass, deviations
from normality and violations of the Ginsparg-Wilson relation as measures of chirality.
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I. INTRODUCTION

Chiral symmetry plays a crucial role in the understanding
of hadron phenomenology and the low-energy dynamics of
quantum chromodynamics (QCD). On the lattice, the
overlap construction [1–7] allows one to implement a
fermion operator with exact chiral symmetry [8–10], thus
evading the Nielsen-Ninomiya theorem [11–14]. In prac-
tice, the use of overlap fermions is limited by the fact that
they generically require a factor of Oð10–100Þ more
computational resources than Wilson fermions, and tun-
neling between topological sectors is severely suppressed
even at moderate lattice spacings [15–18].
Domain wall fermions [19–21] offer an alternative by

formulating fermions with approximate chiral symmetry in
d dimensions by means of massive interacting fermions in
dþ 1 dimensions (d ¼ 2, 4). The limit of an infinite
extension of the extra dimension can again be expressed
as an overlap operator with exact chiral symmetry. For a
finite extent, domain wall fermions can then be seen as a
truncation of overlap fermions. They offer the possibility of
reducing computational cost and are well suited for parallel
implementations. This comes at the price of replacing the
exact chiral symmetry by an approximate one. It is
expected that chiral symmetry violations are exponentially
suppressed [20,22–24], although in practice this suppres-
sion can still require large extents of the extra dimension
[25–29]. However, these violations also facilitate the
tunneling between topological sectors.
Domain wall fermions are typically formulated with a

Wilson kernel [30]. Only recently has it been clarified by

Adams [31,32] how to utilize the computationally more
efficient staggered fermions [33–36] in its place by giving
staggered fermions a flavor-dependent mass; see also
Refs. [37–39]. Subsequent numerical work [40–43] focused
on the properties of these staggered Wilson fermions and
their use as a kernel for an overlap construction [32]. The
possibility of staggered domain wall fermions, which was
also suggested in Ref. [32], has however not been inves-
tigated any further. The present work is meant as a first step
in closing this gap. We give explicit constructions of
staggered domain wall fermions and compare their spectral
and chiral symmetry breaking properties to those of tradi-
tional domain wall fermions with Wilson fermions in the
context of the Schwinger model [44].
While we are eventually interested in QCD, the

Schwinger model, i.e. (1þ 1)-dimensional quantum
electrodynamics (QED), retains enough properties of
QCD. In particular, we find confinement and topological
structure, making it useful for conceptual investigations.
On the other hand, it is numerically simple enough to allow
the computation of the complete eigenvalue spectrum of
fermion operators on nontrivial background configurations.
Moreover, the study of fermions in 1þ 1 dimensions
naturally arises e.g. in the low-energy description of
conducting electrons in metals, see Ref. [45].
This paper is organized as follows. In Sec. II, we discuss

the kernel operators, among them generalizations of stag-
gered Wilson fermions in an arbitrary even number of
dimensions. In Sec. III, the construction of (staggered)
domain wall fermions and their variations are given, in
Sec. IV we introduce the effective Dirac operators and
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discuss the limiting overlap operators, in Sec. V we explain
our approach of carrying out the numerical calculations
and in Sec. VI we discuss the numerical results. In Sec. VII,
we conclude our work and give an outlook.

II. KERNEL OPERATORS

We begin by giving a quick review of the kernel
operators we are considering, namelyWilson and staggered
Wilson fermions. Here and in the following, we are mostly
interested in the (1þ 1)-dimensional case (d ¼ 2), but
where convenient we write down the general d-dimensional
expressions.

A. Wilson kernel

For Wilson fermions [46], the Dirac operator reads

DwðmfÞ ¼ γμ∇μ þmf þWw: ð1Þ

Here the γμ matrices refer to a representation of the Dirac
algebra fγμ; γνg ¼ 2δμ;ν1 with μ ∈ f1;…; dg, δμ;ν to the
Kronecker delta, ∇μ to the covariant central finite differ-
ence operator and mf to the bare fermion mass. The Wilson
term reads

Ww ¼ −
ar
2
Δ ð2Þ

with lattice spacing a, Wilson parameter r ∈ ð0; 1� and
the covariant lattice Laplacian Δ. We note that D†

w ¼
γdþ1Dwγdþ1, where γdþ1 is the chirality matrix, and that the
Ww term breaks chiral symmetry explicitly. In terms of the
parallel transport

TμΨðxÞ ¼ UμðxÞΨðxþ aμ̂Þ; ð3Þ

we have the following definitions:

∇μ ¼
1

2a
ðTμ − T†

μÞ; ð4Þ

Cμ ¼
1

2
ðTμ þ T†

μÞ; ð5Þ

Δ ¼ 2

a2
X
μ

ðCμ − 1Þ: ð6Þ

Through the Wilson term Ww, the doublers acquire a mass
Oða−1Þ. In the continuum limit, the number of flavors is
then reduced from 2d to one physical flavor.

B. Staggered Wilson fermions

Following Refs. [31,32,37,38,41,42], in d ¼ 4 dimen-
sions a staggered Wilson operator can be written as

DswðmfÞ ¼ Dst þmf þWst ð7Þ

with staggered Dirac operator

Dst ¼ ημ∇μ; ð8Þ

ημχðxÞ ¼ ð−1Þ
P

ν<μ
xν=aχðxÞ ð9Þ

and bare fermion mass mf. The staggered Wilson term is
an operator that, up to discretization terms, is trivial in spin
but splits the different flavors. We also require the Dirac
operator to have a real determinant. The original suggestion
by Adams [31,32] reads

Wst ¼
r
a
ð1þ Γ1234C1234Þ ð10Þ

with a Wilson-like parameter r > 0 and operators

Γ1234χðxÞ ¼ ð−1Þ
P

μ
xμ=aχðxÞ; ð11Þ

C1234 ¼ η1η2η3η4ðC1C2C3C4Þsym: ð12Þ

In the spin-flavor basis, this term has the form

Wst ∼
r
a
1 ⊗ ð1 − ξ5Þ þOðaÞ; ð13Þ

which splits the four flavors into pairs of two according to
their “flavor chirality”, i.e. the eigenbasis of ξ5. The
notation A ∼ B means that B corresponds to the respective
spin⊗ flavor interpretation [37] of A up to proportionality,
while the ξμ are a representation of the Dirac algebra in
flavor space. The determinant of Dsw is real due to the
ϵ-Hermiticity

D†
sw ¼ ϵDswϵ ð14Þ

with

ϵðxÞ ¼ ð−1Þ
P

μ
xμ=a: ð15Þ

In four dimensions, one may also split the flavors with
respect to the eigenbasis of different elements of the flavor
Dirac algebra [37,38]. To retain ϵ Hermiticity and, thus, a
real determinant, the flavor structure of the mass term needs
to be restricted to a sum of products of an even number of
ξμ. A single flavor staggered fermion in four dimensions
can, thus, be obtained by e.g.

Wst ¼
r
a
ð2 · 1þW12

st þW34
st Þ; ð16Þ

Wμν
st ¼ iΓμνCμν; ð17Þ
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where the operators Γμν and Cμν are given by

ΓμνχðxÞ ¼ εμνð−1ÞðxμþxνÞ=aχðxÞ; ð18Þ

Cμν ¼ ημην ·
1

2
ðCμCν þ CνCμÞ ðno sumÞ: ð19Þ

Here and in the following, εμ1���μN refers to the Levi-Civita
symbol. To interpret the mass term in Eq. (17), note that

Γμν ∼ γμγν ⊗ ξμξν; ð20Þ

Cμν ∼ γμγν ⊗ 1; ð21Þ

ϵ ∼ γ5 ⊗ ξ5; ð22Þ

up to discretization terms. As a result, we find for the
staggered Wilson term

Wμν
st ∼ 1 ⊗ σμν þOðaÞ ð23Þ

with σμν ¼ iξμξν. This implies that the number of physical
fermion species ofWst is reduced to one by giving all but a
single flavor a mass Oða−1Þ.
These results can be formulated in an arbitrary even

number of dimensions d, where we can write a single flavor
mass term as

Wst ¼
r
a

Xd=2
k¼1

ð1þWð2k−1Þð2kÞ
st Þ ð24Þ

and Eq. (16) now follows as the special case d ¼ 4.
To construct a more general mass term, we define

Wμ1���μ2n
st ¼ inΓμ1���μ2nCμ1���μ2n ; ð25Þ

for an arbitrary n ≤ d=2, where

Γμ1���μ2nχðxÞ ¼ εμ1���μ2nð−1Þ
P

2n
i¼1

xμi =aχðxÞ; ð26Þ

Cμ1���μ2n ¼ ημ1 � � � ημ2nðCμ1 � � �Cμ2nÞsym: ð27Þ

In the spin ⊗ flavor interpretation, we find

Γμ1���μ2n ∼ ðγμ1…γμ2nÞ ⊗ ðξμ1…ξμ2nÞ; ð28Þ

Cμ1���μ2n ∼ ðγμ1…γμ2nÞ ⊗ 1; ð29Þ

Wμ1���μ2n
st ∼ 1 ⊗ ðinξμ1…ξμ2nÞ; ð30Þ

up to discretization terms. In addition, the new mass terms
fulfill the ϵ-Hermiticity relation

W† ¼ ϵWϵ; W ≡Wμ1���μ2n
st : ð31Þ

We can, thus, replace Eq. (24) by a generic

Wst ¼
Xd=2
n¼1

X
μn

rμn
a

ð1þWμn
st Þ; ð32Þ

where rμn ≥ 0 and the sum is over all multi-indices μn ¼
ðμ1;…; μ2nÞ with 1 ≤ μi ≤ d for all i with 1 ≤ i ≤ 2n [47].
Adams’ original mass term in d ¼ 4 dimensions in Eq. (10)
then follows from setting r1234 ¼ r > 0 and rμn ¼ 0

otherwise.
For the d ¼ 2 case that we will consider in the numerical

part of this paper, the definition is essentially unique and
reads

Wst ¼
r
a
ð1þW12

st Þ: ð33Þ

In this case, the reduction is from two staggered flavors to a
single physical one.
Like in the Wilson case, all possible Wst terms break

chiral symmetry explicitly. Furthermore, there may be
additional counterterms if too many of the staggered
symmetries are broken [39].

III. DOMAIN WALL FERMIONS

After having introduced the kernel operators, we now
move on to the domain wall fermion Dirac operators.
Originally proposed by Kaplan [19], then refined by
Shamir and Furman [20,21], the domain wall construction
implements approximately massless fermions in d dimen-
sions by means of a (dþ 1)-dimensional theory.
Equivalently, domain wall fermions can be understood
as a tower of Ns fermions in d dimensions with a particular
flavor structure.
We now give a quick summary of the well-known

(dþ 1)-dimensional formulations. For the remainder of
the paper we fix the d-dimensional lattice spacing to a ¼ 1
and the (staggered) Wilson parameter to r ¼ 1.

A. Standard construction

We begin with the standard construction. First, let us
define

D�
w ¼ adþ1Dwð−M0Þ � 1; ð34Þ

where we explicitly write out the lattice spacing adþ1 in the
extra dimension. The parameter M0 is the so-called domain
wall height andmust be suitably chosen for the description of
a single flavor. In the free-field case, we haveM0 ∈ ð0; 2rÞ.
The Dirac operator reads

ΨDdwΨ ¼
XNs

s¼1

Ψs½Dþ
wΨs − P−Ψsþ1 − PþΨs−1� ð35Þ
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with (dþ 1)-dimensional fermion fields Ψ, Ψ and chiral
projectorsP� ¼ 1

2
ð1� γdþ1Þ. Here and in the following, the

index s refers to the additional spatial (or equivalently flavor)
coordinate. Thegauge links are taken to be the identitymatrix
along the additional coordinate. Furthermore, we impose the
following boundary conditions,

PþðΨ0 þmΨNs
Þ ¼ 0; ð36Þ

P−ðΨNsþ1 þmΨ1Þ ¼ 0; ð37Þ

wherem is related to the bare fermionmass, see Eq. (76).We
note that in the special case of m ¼ 0 we find Dirichlet
boundary conditions in the extra dimension, while for
m ¼ �1 one recovers (anti-)periodic boundary conditions.
If we write down the Dirac operator in the extra dimension
explicitly, we find

Ddw ¼

0
BBBBBBBB@

Dþ
w −P− mPþ

−Pþ Dþ
w −P−

. .
. . .

. . .
.

−Pþ Dþ
w −P−

mP− −Pþ Dþ
w

1
CCCCCCCCA
: ð38Þ

One possibility of constructing the d-dimensional fermion
fields from the boundary is via

q ¼ PþΨNs
þ P−Ψ1; q ¼ Ψ1Pþ þΨNs

P−: ð39Þ

Let us also define the reflection operator along the extra
dimension

R ¼

0
B@

1

⋰
1

1
CA: ð40Þ

We find that Ddw is Rγdþ1-Hermitian

D†
dw ¼ Rγdþ1 ·Ddw · Rγdþ1; ð41Þ

which ensures that detDdw ∈ R and the applicability of
importance sampling techniques.
Besides this canonical formulation, several variations of

domain wall fermions have been proposed.

B. Boriçi’s construction

One of them is the construction by Boriçi [48], which
follows from the original proposal by the replacements

PþΨs−1 → −D−
wPþΨs−1; ð42Þ

P−Ψsþ1 → −D−
wP−Ψsþ1: ð43Þ

Note that this is an Oðadþ1Þ modification. The Dirac
operator in its full form reads

ΨDdwΨ ¼
XNs

s¼1

Ψs½Dþ
wΨs þD−

wP−Ψsþ1 þD−
wPþΨs−1�

ð44Þ

or explicitly

Ddw¼

0
BBBBBBBB@

Dþ
w D−

wP− −mD−
wPþ

D−
wPþ Dþ

w D−
wP−

. .
. . .

. . .
.

D−
wPþ Dþ

w D−
wP−

−mD−
wP− D−

wPþ Dþ
w

1
CCCCCCCCA
:

ð45Þ

Furthermore, Eq. (39) generalizes to

q ¼ PþΨNs
þ P−Ψ1; ð46Þ

q ¼ −Ψ1D−
wPþ −ΨNs

D−
wP−; ð47Þ

and Eq. (41) to

ðD−1DdwÞ† ¼ Rγdþ1 · ðD−1DdwÞ · Rγdþ1; ð48Þ

D ¼ 1Ns
⊗ D−

w ð49Þ

(see Ref. [49]). This formulation is also known as “truncated
overlap fermions” as the corresponding d-dimensional
effective operator equals the polar decomposition approxi-
mation [6,50] of orderNs=2 of Neuberger’s overlap operator
(for even Ns).

C. Optimal construction

The last modification we consider are the optimal
domain wall fermions proposed by Chiu [51,52].
The idea is to modify Ddw in such a way, that the
effective Dirac operator is expressed through Zolotarev’s
optimal rational approximation of the sign function
[53–55] (see also Refs. [56,57]). In the following, we
quote the central formulas of the construction given
in Ref. [51].
Starting from Boriçi’s construction, the Dirac operator is

modified by introducing weight factors
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ΨDdwΨ ¼
XNs

s¼1

ΨsD
þ
wðsÞΨs

þ
XNs

s¼1

Ψs½D−
wðsÞP−Ψsþ1 þD−

wðsÞPþΨs−1�;

ð50Þ

where

D�
wðsÞ ¼ adþ1ωsDwð−M0Þ � 1: ð51Þ

The weight factors ωs are given by

ωs ¼
1

λmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ02snðvs; κ0Þ

q
ð52Þ

with snðvs; κ0Þ being the corresponding Jacobi elliptic
function with argument vs and modulus κ0. The modulus
is defined by

κ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2min=λ

2
maxax

q
ð53Þ

and λ2min (λ2max) is the respective smallest (largest) eigen-
value of H2

w with

Hw ¼ γdþ1Dwð−M0Þ: ð54Þ

The argument vs reads

vs ¼ ð−1Þs−1Msn−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3λ

ð1þ λÞ3
s

;
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p !
þ
js
2

k 2K0

Ns
;

ð55Þ

where

λ ¼
YNs

l¼1

Θ2ð2lK0=Ns; κ0Þ
Θ2ðð2l − 1ÞK0=Ns; κ0Þ

; ð56Þ

M ¼
YbNs=2c

l¼1

sn2ðð2l − 1ÞK0=Ns; κ0Þ
sn2ð2lK0=Ns; κ0Þ

: ð57Þ

Here b·c refers to the floor function, K0 ¼ Kðκ0Þ to the
complete elliptic integral of the first kind with

KðkÞ ¼
Z

π=2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p : ð58Þ

Furthermore we introduced the elliptic Theta function via

Θðw; kÞ ¼ ϑ4

�
πw
2K

; k

�
ð59Þ

with K ¼ KðkÞ and elliptic theta functions ϑi [58]. Some
reference values for the weight factors fωsg can be found in
Appendix A.
Similarly to Boriçi’s construction, Eq. (39) now

generalizes to

q ¼ PþΨNs
þ P−Ψ1; ð60Þ

q ¼ −Ψ1D−
wð1ÞPþ −ΨNs

D−
wðNsÞP− ð61Þ

and Eq. (41) again to Eq. (48), but now with

D ¼ diag½D−
wð1Þ;…; D−

wðNsÞ�; ð62Þ

as pointed out in Ref. [49]. Optimal domain wall fermions
have been and are still extensively used. Some of the results
obtained can be found in Refs. [59–64].
We also note that there is a modified construction of

optimal domain wall fermions [65], which is reflection-
symmetric along the fifth dimension. For completeness
we point out that all the preceding domain wall fermion
formulations can be seen as special cases of Möbius
domain wall fermions [49,66,67].

D. Staggered formulations

As proposed in Ref. [32], we can use the staggered
Wilson kernel to formulate a staggered version of domain
wall fermions. We can write the Dirac operator in a general
d-dimensional form as

ϒDsdwϒ ¼
XNs

s¼1

ϒs½Dþ
swϒs − P−ϒsþ1 − Pþϒs−1�; ð63Þ

where ϒ refers to the staggered fermion field. Like in the
Wilson case we define

D�
sw ¼ adþ1Dswð−M0Þ � 1: ð64Þ

The chiral projectors are given by P� ¼ 1
2
ð1� ϵÞ, where

ϵ2 ¼ 1. Here we have ϵ ∼ γdþ1 ⊗ ξdþ1, which reduces to
ϵ ∼ γdþ1 ⊗ 1 on the physical species. One can easily verify
the Rϵ-Hermiticity of Dsdw. Note that we follow a sign
convention in where our Dsdw is in full analogy to Ddw,
while in Ref. [32] a slightly different convention is used.
The staggered domain wall Dirac operator Dsdw can be
constructed from Ddw by the replacement rule given in
Ref. [32], which we write down in a general d-dimensional
form as

γdþ1 → ϵ; Dw → Dsw: ð65Þ

Using the replacement rule in Eq. (65), we can also
generalize Boriçi’s and the optimal construction to the case
of a staggered Wilson kernel. This gives rise to previously
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not considered truncated staggered domain wall fermions
with the Dirac operator

ϒDsdwϒ ¼
XNs

s¼1

ϒsD
þ
swϒs

þ
XNs

s¼1

ϒs½D−
swP−ϒsþ1 þD−

swPþϒs−1� ð66Þ

as well as optimal staggered domain wall fermions

ϒDsdwϒ ¼
XNs

s¼1

ϒsD
þ
swðsÞϒs

þ
XNs

s¼1

ϒs½D−
swðsÞP−ϒsþ1 þD−

swðsÞPþϒs−1�;

ð67Þ
where D�

swðsÞ ¼ adþ1ωsDswð−M0Þ � 1 and the weight
factors ωs are given by Eq. (52) for the kernel Hsw ¼
ϵDswð−M0Þ.

IV. EFFECTIVE DIRAC OPERATOR

To understand the relation between the (dþ 1)-
dimensional fermions and the light d-dimensional fields q,
q at the boundary, we introduce the effective d-dimensional
Dirac operator as derived in Refs. [48,68–70] (see also
Refs. [71,72]). In the following, we give a short summary,
following Refs. [48,69,72].

A. Derivation

The low energy effective d-dimensional action

Seff ¼
X
x

qðxÞDeffqðxÞ ð68Þ

follows after integrating out the Ns − 1 heavy modes.
The effective Dirac operator is defined via the propagator

D−1
effðx; yÞ ¼ hqðxÞqðyÞi: ð69Þ

For a suitable choice of M0, there is exactly one light and
Ns − 1 heavy Dirac fermions.
In the chiral limit Ns → ∞ (at fixed bare coupling β), the

contribution from the heavy fermions diverges. This bulk
contribution from the (dþ 1)-dimensional fermions can be
canceled by the introduction of suitable pseudofermion
fields. One typically chooses the fermion action with the
replacement m → 1 as the action for the pseudofermions.
Let us begin by defining the Hermitian operators

Hw ¼ γdþ1Dwð−M0Þ; ð70Þ
Hm ¼ γdþ1Dmð−M0Þ; ð71Þ

where the kernel operator of standard domain wall fermions
is given by

Dmð−M0Þ ¼
Dwð−M0Þ

2 · 1þ adþ1Dwð−M0Þ
: ð72Þ

The transfer matrix along the extra dimension is given by

T ¼ T−

Tþ
; T� ¼ 1� adþ1H; ð73Þ

where we use the notation

H ¼
�
Hm for standard constr:;

Hw for Boriçi’s constr:
ð74Þ

Then the effective operator can be written as

Deff ¼
1þm
2

1þ 1 −m
2

γdþ1

TNsþ − TNs−

TNsþ þ TNs−
: ð75Þ

Note that we can rewrite Eq. (75) as

Deff ¼ ð1 −mÞ
�
Deffð0Þ þ

m
1 −m

�
; ð76Þ

where Deffð0Þ denotes the effective operator Deff at m ¼ 0.
We can see that the parameter m induces a bare fermion
mass of m=ð1 −mÞ, see Ref. [73].
Alternatively, one can also show [48,72] the relation

Deff ¼ ðP⊺D−1
1 DmPÞ1;1 ð77Þ

with the matrix P defined as

P ¼

0
BBBBBBBB@

P− Pþ
P− Pþ

. .
. . .

.

P− Pþ
Pþ P−

1
CCCCCCCCA

ð78Þ

and P−1 ¼ P⊺. Here we used the shorthand notation
Dm ¼ DdwðmÞ, while the index stands for the (1,1) s-block
of the matrix.
The derivation of the effective operator for optimal

domain wall fermions follows Boriçi’s construction after
including the weight factors fωsg appropriately [51]. By
construction the sign-function approximation equals the
optimal rational approximation. It can be either evaluated
directly or via the projection method of Eq. (77).
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B. The Ns → ∞ limit

In the following, let us specialize tom ¼ 0. Note that we
can rewrite Eq. (75) using

TNsþ − TNs−

TNsþ þ TNs−
¼ ϵNs=2ðadþ1HÞ; ð79Þ

where ϵNs=2 is Neuberger’s polar decomposition approxi-
mation [6,50] of the sign-function. Therefore, we obtain an
overlap operator in the Ns → ∞ limit as follows,

Dov ¼ lim
Ns→∞

Deff

¼ 1

2
1þ 1

2
γdþ1signH

¼ 1

2
½1þD−M0

ðD†
−M0

D−M0
Þ−1

2�; ð80Þ

with H given in Eq. (74), D−M0
¼ Dð−M0Þ and

D ¼
�
Dm for standard constr:;

Dw for Boriçi’s=Chiu’s constr:
ð81Þ

The overlap operator satisfies the Ginsparg-Wilson
equation

fγdþ1; Dovg ¼ 2Dovγdþ1Dov ð82Þ

and allows for an exact chiral symmetry. Eq. (82) also
implies the normality of the overlap operator as can be
easily verified.
Comparing Eq. (80) to the standard definition of the

overlap operator

Dov ¼ ρ½1þD−ρðD†
−ρD−ρÞ−

1
2� ð83Þ

and using the relation for the effective negative mass
parameter

ρ ¼
�
M0 −

adþ1

2
M2

0 for standard constr:;

M0 for Boriçi’s=Chiu’s constr:;
ð84Þ

we would obtain a restriction on the domain wall height
M0 from ρ ¼ 1=2. This can be avoided by simply rescaling
Deff by a factor ϱ ¼ 2ρ, so that—up to discretization
effects—the low-lying eigenvalues of the kernel remain
invariant under the effective operator projection in the free-
field case. This is also illustrated in Fig. 8, which we
elaborate on in Sec. VI A. Consequently, we will employ
this rescaling in all our numerical investigations.

C. Approximate sign functions

The effective Dirac operators in the various formu-
lations are given in terms of different sign function

approximations. Explicitly, these approximations of
sign ðzÞ read

rðzÞ ¼ ΠþðzÞ − Π−ðzÞ
ΠþðzÞ þ Π−ðzÞ

ð85Þ

with

Π�ðzÞ ¼
� ð1� zÞNs for standard=Boriçi’s constr:;Q

s ð1� ωszÞ for optimal constr:;

ð86Þ

so that rðzÞ → signðzÞ for Ns → ∞. We illustrate these
approximations in Fig. 1, comparing the polar decom-
position approximation in Boriçi’s construction with the
optimal rational function approximation in Chiu’s con-
struction. The coefficients fωsg are directly linked to
Zolotarev’s coefficients, cf. Refs. [53,56,57]. Note that
the sign function approximation for the standard con-
struction agrees with the one in Boriçi’s construction,
but is applied to Hm rather than Hw.
Staggered formulations.—As previously suggested in

Ref. [32], all central equations in this section generalize
to the case of staggered Wilson fermions after the
replacements given in Eq. (65). In particular, staggered
domain wall fermions can be seen as a truncation of
Neuberger’s overlap construction with staggered Wilson
kernel [32].

V. SETTING

In the following, we elaborate on the setting of our
numerical simulations. In particular, we discuss our
approach of comparing the chiral properties of the different
formulations.

FIG. 1. Approximation of sign ðzÞ by rðzÞ. The optimal
construction was done for λmin ¼ 1, λmax ¼ 3.
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A. Choice of M0

In the free-field case, suitable choices for the domain
wall heightM0 are in the range 0 < M0 < 2 for a one flavor
theory. In a gauge field background, in general this interval
contracts. Intuitively, the parameter M0 has to be chosen in
such a way, that the origin is shifted sufficiently close to the
center of the leftmost “belly” of the eigenvalue spectrum.
While there is no unique optimal choice even in the free-
field case [74], one can use the canonical choice M0 ¼ 1,
which shifts the origin exactly to the center. To be more
precise, the mobility edge [75–78] is the decisive quantity
determining valid choices of M0.
In the Schwinger model, the interval of valid choices for

M0 remains close to the free-field case for reasonable
values of the inverse coupling β. In particular, M0 ¼ 1
remains a sensible and simple choice, which we are
consequently using for all numerical work presented.
This is in contrast to QCD in 3þ 1 dimensions, where
one commonly sets M0 ¼ 1.8 (see e.g. Ref. [79]).

B. Effective mass

Two common approaches found in the literature to
quantify the induced effects of chiral symmetry breaking
in domain wall fermions are the determination of the
residual mass mres [21,27,79,80] and the effective mass
meff [81–83]. The former employs the explicit fermion
mass dependence in the chiral Ward-Takahashi identities,
while the latter is given by the lowest eigenvalue of the
Hermitian operator in a topologically nontrivial back-
ground field. Although the definitions are not equivalent,
their numerical values usually agree within a factor ofOð1Þ
and hence both are suitable to quantify the degree of chiral
symmetry breaking.
In this work, we use the effective mass meff due to its

conceptual simplicity. We hence define the effective mass
for a given Dirac operator D with periodic boundary
conditions in a topologically nontrivial background field
as the lowest eigenvalue of the corresponding Hermitian
versionH of the Dirac operator. Noting thatH2 ¼ D†D, we
define

meff ¼ min
λ∈specH

jλj ¼ min
Λ∈specD†D

ffiffiffiffi
Λ

p
: ð87Þ

If D is a normal operator, then meff ¼ minλ∈specDjλj. In the
general case, however, there is no direct link between the
eigenvalues of H and D.
On a topological nontrivial background configuration

with topological charge Q ≠ 0, the Atiyah-Singer index
theorem [84–87] ensures the existence of zero modes of H
in the continuum. The corresponding lattice version of this
theorem [8–10] ensures that the overlap operator in Eq. (80)
has exact zero modes as well. For domain wall fermions
and their respective effective operators these zero modes
are recovered in the Ns → ∞ limit. For finite Ns, however,

these zero modes become approximate and their deviation
from zero can serve as a measure for the degree of chiral
symmetry breaking.
If n∓ refers to the number of left-handed and right-

handed zero modes, then the Atiyah-Singer index theorem
states that

n− − nþ ¼ ð−1Þd=2Q; ð88Þ

see Ref. [31]. A precise definition of Q will be given in
Eq. (92). We note here that in 1þ 1 dimensions the
Vanishing Theorem holds [88–90]. That is, if Q ≠ 0, then
either n− or nþ vanishes.

C. Normality and Ginsparg-Wilson relation

In the continuum, the Dirac operator is normal. The same
holds for the naïve and staggered discretizations as well as
for the overlap operator. The (staggered) Wilson kernel and
the (staggered) domain wall fermion operators, on the other
hand, are not normal.
As it has been shown that normality is necessary for

chiral properties [91] (see also Refs. [92,93]), the degree of
violation of normality is an interesting quantity in the
context of chiral symmetry.
Let us recall that a normal operatorD satisfies ½D;D†� ¼ 0

by definition. We then consider the quantity

ΔN ¼ ∥½D;D†�∥∞; ð89Þ

where∥ · ∥∞ is theby theL∞-norm inducedmatrix norm.We
know that ΔN has to vanish for the effective operators
introduced in Sec. IV in the limit Ns → ∞.
Similarly, we consider violations of the Ginsparg-Wilson

relation given in Eq. (82). The quantity

ΔGW ¼ ∥fγ3; Dg − ρ−1Dγ3D∥∞; ð90Þ

has to vanish in the limit Ns → ∞ as well. As before, we
replace γ3 by ϵ in the case of a staggered Wilson kernel.
As previously already considered in Refs. [74,94], ΔN
and ΔGW will give us a measure for the degree of
chiral symmetry violation of the Dirac operators under
consideration.

D. Topological charge

We determine the topological charge of the gauge
configurations via both the standard overlap definition,

Q ¼ 1

2
Tr
�
Hw=

ffiffiffiffiffiffiffi
H2

w

q 	
; ð91Þ

and its staggered counterpart,

Q ¼ 1

2
Tr
�
Hsw=

ffiffiffiffiffiffiffiffiffi
H2

sw

q 	
; ð92Þ
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with Hsw ¼ ϵDswð−M0Þ as derived in Ref. [31]. On the
small sample of gauge configurations considered in this
paper, they were found to be in exact agreement. Although
a more careful investigation of the continuum limit would
be needed, this observation is consistent with analytical
results [95] and other numerical studies [41,96].

VI. NUMERICAL RESULTS

We are now moving to the numerical part of this work.
We calculate the complete eigenvalue spectra of all Dirac
operators introduced in the previous sections, both with a
Wilson and staggered Wilson kernel, for the (1þ 1)-
dimensional Schwinger model. We consider the free-field
case, thermalized gauge configurations and the smooth
topological configurations constructed in Ref. [97].
In the following, we set the lattice spacing to a¼ adþ1 ¼ 1

and Wilson parameter to r ¼ 1. The extent in the extra
dimension will be varied in the range 2 ≤ Ns ≤ 8. We use
periodic boundary conditions in both space and time direc-
tion, so that the determination of the effective mass meff as
defined in Sec. V B applies.
Extremal eigenvalues are determined with ARPACK [98],

while complete spectra are computed with LAPACK [99].
Calculations are carriedout in double precision. In all figures,
the abbreviation “std” refers to the standard construction,
“Bor” to Boriçi’s construction and “opt” to Chiu’s optimal
construction. With respect to the overlap constructions,
“DW” refers to the overlap operator with kernel Hm,
“Neub” to Neuberger’s overlap with kernel Hw and
“Adams” to Adams’ staggered overlap with kernel Hsw.

A. Free-field case

We begin with the free-field case. Here we can employ a
momentum space representation of the kernel. In particular,
the Wilson kernel can be represented as a 2 × 2 linear map

Dw ¼ ðmf þ 2rÞ1þ i
X
μ

γμ sinpμ − r
X
ν

cospν1; ð93Þ

where pμ ¼ 2πnμ=Nμ with nμ ¼ 0; 1;…; Nμ − 1 and Nμ is
the number of slices in μ-direction. The staggered Wilson
kernel takes the form of the 4 × 4 linear map

Dsw ¼ mfð1 ⊗ 1Þ þ i
X
μ

sinpμðγμ ⊗ 1Þ

þ r1 ⊗
�
1þ ξ3

Y
ν

cospν

�
ð94Þ

with nμ ¼ 0; 1;…; Nμ=2 − 1 (see also Refs. [41,95]).
In the three-dimensional operators, we keep the extra

dimension in the position space formulation, as in general it
is lacking periodicity. Besides reducing the dimensionality
of the eigenvalue problem by choosing a momentum
space representation for the kernel, this also avoids some

numerical instabilities of the free-field case encountered in
a purely position space based formulation.
In the following, all numerical results are for the case of a

Ns × Nt ¼ 20 × 20 lattice.
Kernel operators.—In Fig. 2, we can find the well known

free spectra of the kernel operators. In 1þ 1 dimensions,
the Wilson Dirac operator has only two doubler branches in
the eigenvalue spectrum due to the reduced number of
fermion species in this low-dimensional setting. Like in
3þ 1 dimensions, the staggered Wilson Dirac operator has
a single doubler branch due to the splitting of positive and
negative flavor-chirality species.
One can see that the free-field spectrum of the staggered

Wilson kernel is closer to the Ginsparg-Wilson circle
compared to the Wilson kernel. One can then hope for a
better performance of chiral formulations with this kernel,
at least on sufficiently smooth configurations.
The bulk and effective operators, which we are going to

discuss in the following, use either a Wilson or a staggered
Wilson kernel. Comparing both cases, we note that the
spectra of these operators differ mostly due to the different
ultraviolet parts of the respective kernel spectra. Although
the low-lying parts of the kernel spectrum in the physical
branch are alike, the ultraviolet modes will alter the
resulting spectrum of the bulk and effective operators
differently and have an impact on the efficiency and chiral
properties.
Bulk operators.—In Figs. 3 and 4, we show the spectrum

of the (2þ 1)-dimensional bulk operator in the standard,
Boriçi’s and the optimal construction. In Fig. 5, we show
periodic (m ¼ −1) and antiperiodic (m ¼ 1) boundary
conditions in the extra dimension to compare with the
Dirichlet (m ¼ 0) case.
We can observe that the bulk spectra for Boriçi’s and

the optimal construction have lost their resemblance to a
Wilson operator in three dimensions. Specifically, while
for the standard construction we find (two) three doubler

FIG. 2. Free-field spectrum of kernel operators.
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branches in the spectrum with the (staggered) Wilson
kernel, in Boriçi’s construction one less branch is visible.
In the standard and Boriçi’s construction, we find 2Ns exact
zero modes in the Dirichlet case [20,81], which disappear
for m ≠ 0. In the optimal construction, we notice how the
corresponding eigenvalues get spread out along the real
axis and we are left with only two approximate zero modes.
Effective operators.—We now move on to the effective

operators ϱDeff as defined in Eq. (75). In Figs. 6 and 7, we
show the respective eigenvalue spectra with a Wilson and
staggered Wilson kernel.

As we can see, the spectra approach the Ginsparg-Wilson
circle rapidly for increasing values of Ns. This fast
convergence is of course expected on smooth configura-
tions like the free field. Already for Ns ¼ 8 the spectrum is
close to the spectrum of the corresponding overlap operator
in the Ns → ∞ limit. In particular, we note the rapid
convergence of Boriçi’s and Chiu’s construction with a
staggered Wilson kernel.
The effective Dirac operator in the optimal construction

shows a significantly improved convergence. Let us recall
that for a given interval I ¼ ½λmin; λmax� the optimal rational

FIG. 3. Free-field spectrum of Ddw with Wilson kernel for m ¼ 0 at Ns ¼ 8.

FIG. 4. Free-field spectrum of Dsdw with staggered Wilson kernel for m ¼ 0 at Ns ¼ 8.

FIG. 5. Free-field spectrum of Ddw with Wilson kernel in the standard construction with different boundary conditions at Ns ¼ 8
(cf. Fig. 3).
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function approximation roptðzÞ of the sign function min-
imizes the maximal deviation

δmax ¼ max
z∈−I∪IjsignðzÞ − roptðzÞj

¼ 1 ∓ roptð�λminÞ ð95Þ
on the domain −I ∪ I. As expected, we observe that all
eigenvalues lie within a tube with diameter 2δmax around
the Ginsparg-Wilson circle. That is, for all eigenvalues λwe
find jjλj − 1j ≤ δmax. Noting that the sign function has a
point of maximal deviation at both λmin, we observe the
absence of an exact zero mode in contrast to the standard
and Boriçi’s construction. However, due to the rapid
convergence of the rational function approximation, the
approximate zero mode is of small magnitude for already
moderate values of Ns.
Overlap operators.—In the Ns → ∞ limit, the effective

operators can be formulated as overlap operators defined in

Eq. (80) with the kernel H given in Eq. (74). In Fig. 8, we
can find the spectra of ϱDov together with the stereographic
projection π of the eigenvalues onto the imaginary axis via

πðλÞ ¼ λ

1 − 1
ϱ λ

: ð96Þ

We also point out the high degree of symmetry of the
spectrum in the case of Adams’ overlap. As noted before,
the effective Dirac operators in Boriçi’s and the optimal
construction converge towards Neuberger’s and Adams’
overlap operator for Ns → ∞, while in the standard
construction, we find a modified overlap kernel.

B. Uð1Þ gauge field case

While the free field is an interesting case, our main
interest is the performance of the Dirac operators in non-
trivial background fields. Dealing with the Schwinger

0

FIG. 6. Spectrum of ϱDeff at Ns ¼ 2 for the standard (std), Boriçi (Bor) and optimal (opt) construction.

FIG. 7. Spectrum of ϱDeff at Ns ¼ 8 for the standard (std), Boriçi (Bor) and optimal (opt) construction.
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model, for the rest of the work we consider Uð1Þ gauge
fields. We use quenched thermalized gauge fields following
the setup of Refs. [100,101]. Note that while these gauge
fields originate from a quenched ensemble, there is no
problem in the Schwinger model to reweight them to an
arbitrary mass unquenched ensemble [100–103].
In this section, we start our investigation by focusing on

a few individual 202 configurations at an inverse coupling
of β ¼ 5 to illustrate the qualitative features of the spectra.
Kernel operators.—In Fig. 9, we can see the kernel

spectra in a gauge background with Q ¼ 1. As expected in
the Schwinger model, the branches stay much sharper and
well separated compared to the (3þ 1)-dimensional QCD
case [40–43].
Bulk operators.—In Figs. 10 and 11, we show the spectra

of the bulk operators on the same gauge configuration as

used in Fig. 9. Due to the use of a gauge configuration with
Q ≠ 0, the effective operator is guaranteed to have jQj
exact zero modes in the limit Ns → ∞. In this setting, we
find Ns · jQj eigenvalues in the vicinity of the origin in the
bulk spectrum, which are linked to these zero modes. We
can also see how the optimal construction distorts the
spectrum, effectively improving chiral properties and
resulting in a reduced meff.
Effective operators.—In Figs. 12 and 13, we plot the

spectra of the effective operators on the same gauge field
background as used in Fig. 9. We note that for Ns ≥ 4
Boriçi’s construction outperforms the standard construction
with respect to all measures meff, ΔN and ΔGW.
The optimal construction decreases most of these num-

bers even further. In Fig. 13(b), we see that meff is already
comparable to the round-off error and, hence, we only
quote an upper bound. Note that as in a Uð1Þ background
field the kernel operator is in general not normal, the
inequality jjλj − 1j ≤ δmax does not have to be saturated.
Moreover it is evident that a smaller maximum deviation
δmax from the sign function on a given interval does not
necessarily translate to a smaller ΔGW, although there is a
strong correlation. For larger Ns this problem is cured by
the fast convergence of optimal domain wall fermions.
Let us remark that optimal domain wall fermions are

optimal in a very particular sense, namely the minimization
of δmax as defined in Eq. (95). As Ref. [66] suggests, they
are not optimal with respect to e.g. the number of iterations
needed for solving a linear system. In principle, one could
also formulate domain wall fermions optimized with
respect to other measures, such as the minimization of
ΔGW (which, however, might require more knowledge
about the spectrum).
Comparing domain wall fermions with a Wilson and

staggered Wilson kernel, we can see that in the case of the
standard construction meff, ΔN and ΔGW are usually of the
same magnitude. However, for Boriçi’s and the optimal

FIG. 8. Spectrum of ϱDov with stereographic projection for domain wall (DW) and standard (Neub/Adams) kernels.

FIG. 9. Spectrum of kernel operators.

CHRISTIAN HOELBLING and CHRISTIAN ZIELINSKI PHYSICAL REVIEW D 94, 014501 (2016)

014501-12



FIG. 10. Spectrum of Ddw with Wilson kernel for m ¼ 0 at Ns ¼ 8.

FIG. 11. Spectrum of Dsdw with staggered Wilson kernel for m ¼ 0 at Ns ¼ 8.

FIG. 12. Spectrum of ϱDeff at Ns ¼ 2 for the standard (std), Boriçi (Bor) and optimal (opt) construction.
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construction a staggered Wilson kernel seems to outperform
theusualWilson kernel in termsof chiral symmetry violations
in the Uð1Þ background fields under consideration.
For the rather artificial case Ns ¼ 2 we can make some

interesting observations. While for a staggered Wilson
kernel the relative performances of all formulations under
consideration is comparable, for a Wilson kernel the
standard formulation performs better than Boriçi’s and
markedly better than optimal.
Overlap operators.—In Fig. 14, we show the corre-

sponding overlap operators together with the stereographic
projection of the spectrum. All of the quantities meff, ΔN
and ΔGW vanish in exact arithmetic and are, therefore,
omitted in the figure labels.

C. Smearing

In realistic simulations, smearing is a commonly
employed technique. As suggested in Ref. [42], it is
expected to be especially beneficial when employing a
staggered Wilson kernel (in 3þ 1 dimensions, this is more
pronounced). Hence, we consider three-step APE smeared
[104,105] gauge field backgrounds with a smearing param-
eter α ¼ 0.5, which is the maximal value within the
perturbatively reasonable range in two dimensions [106].
As a first test on the impact on the performance of

staggered domain wall fermions, we can find a direct
comparison at Ns ¼ 4 in Figs. 15 and 16 between an
unsmeared and a smeared version of a configuration both
for a Wilson and a staggered Wilson kernel. As we can see,

FIG. 13. Spectrum of ϱDeff at Ns ¼ 8 for the standard (std), Boriçi (Bor) and optimal (opt) construction.

FIG. 14. Spectrum of ϱDov with stereographic projection for domain wall (DW) and standard (Neub/Adams) kernels.
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with three smearing steps, meff, ΔN and ΔGW get reduced
significantly—in some cases up to 2 orders of magnitude—
with the exception of meff for standard domain wall
fermions with Wilson kernel.

D. Topology

As discussed earlier, for topological charges Q ≠ 0, the
Atiyah–Singer index theorem guarantees the existence of
zero modes of the continuum Dirac operator. On the lattice
one can show the same for the overlap operators defined in

Eq. (80). As a consequence we observe approximate zero
modes in the eigenvalue spectra of the effective operators
ϱDeff as illustrated in Fig. 17. As the Vanishing Theorem
holds in 1þ 1 dimensions, we find these modes with a
multiplicity of jQj.
In addition, we can study topological aspects by employ-

ing the method in Ref. [97] to construct gauge configura-
tions with given topological charge Q. These smooth
configurations are fixed points with respect to the APE

smearing prescription. We construct these configurations

FIG. 15. Spectrum of ϱDeff with Wilson kernel and smearing parameter α ¼ 0.5 at Ns ¼ 4 for the standard (std), Boriçi (Bor) and
optimal (opt) construction.

FIG. 16. Spectrum of ϱDeff with staggered Wilson kernel and smearing parameter α ¼ 0.5 at Ns ¼ 4 for the standard (std), Boriçi
(Bor) and optimal (opt) construction.
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for a wide range of topological charges Q and evaluate the
measures meff, ΔN and ΔGW for the effective operators. In
this setting, these measures are equal within numerical
rounding errors for topological charge �Q and, thus, only
depend on jQj.
We find that meff, ΔN and ΔGW are very small in

magnitude on these specific configurations compared to
thermalized configurations. Moreover, they increase with
larger values of jQj. In Fig. 18, we can see two examples of
bulk spectra on a 202 lattice, which reveal a very clear
structure on these smooth background fields.

E. Spectral flow

Another tool to investigate topological aspects on the
lattice, such as the index theorem, is the spectral flow [4,107].
In the case of a Wilson kernel, one considers the

eigenvalues fλðmfÞg of the Hermitian operator HwðmfÞ

as a function of mf. One can show that there is a one-
to-one correspondence between the eigenvalue cross-
ings of HwðmfÞ and the real eigenvalues of DwðmfÞ.
Furthermore the low-lying real eigenvalues of DwðmfÞ
correspond to the would-be zero modes [97] and
one can show that for these modes the slope of the
eigenvalue crossings in the vicinity of mf ¼ 0 equals
minus the chirality. By identifying the eigenvalues
crossings occurring at small values of mf as well as
their slopes, one can then infer the topological charge Q
of the gauge field.
While originally the spectral flow was used for a Wilson

kernel, eventually the applicability to the staggered case
could be shown as well [31,40,41,96,108]. Spectral flows
of both the Wilson and staggered Wilson kernel have been
investigated in the literature before. Here we want to
illustrate the effectiveness of smearing.

FIG. 17. Spectrum of ϱDeff with staggered Wilson kernel for various topological charges Q at Ns ¼ 4 for the standard (std), Boriçi
(Bor) and optimal (opt) construction.

FIG. 18. Spectrum of Ddw in Boriçi’s construction at Ns ¼ 4 for a topological configuration with Q ¼ 3.
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In Figs. 19 and 20, we show the eigenvalue flow λðmfÞ of
HwðmfÞ and HswðmfÞ for the lowest 50 eigenvalues. We
consider a 122 gauge configuration at β ¼ 1.8 with topo-
logical charge Q ¼ 2. We calculate the eigenvalue flow on
the unsmeared and three-step APE smeared configuration

with smearing parameter α ¼ 0.5. For comparison, we also
show the corresponding topological gauge configuration
described in Sec. VI D. As one can see, the use of smearing
allows the unambiguous determination of the topological
charge Q, which on the rough configuration without

FIG. 19. Spectrum of the Wilson kernel for gauge fields with Q ¼ 2.

FIG. 20. Spectrum of the staggered Wilson kernel for gauge fields with Q ¼ 2.

TABLE I. Median values for the chiral symmetry violations on unsmeared 322 configurations at β ¼ 12.8.

Kernel Construction Ns meff ΔN ΔGW

Wilson Standard 2 5.47 × 10−3 1.53 × 10−1 6.72 × 10−1

4 5.90 × 10−4 6.87 × 10−2 3.10 × 10−1

6 1.00 × 10−4 2.30 × 10−2 1.02 × 10−1

Boriçi 2 5.73 × 10−3 3.71 × 10−1 1.16 × 100

4 8.56 × 10−5 6.64 × 10−2 3.00 × 10−1

6 5.42 × 10−6 1.57 × 10−2 7.60 × 10−2

Optimal 2 8.30 × 10−3 7.51 × 10−1 1.16 × 100

4 2.11 × 10−3 3.59 × 10−2 4.78 × 10−2

6 8.71 × 10−6 1.21 × 10−3 1.74 × 10−3

Staggered Wilson Standard 2 6.22 × 10−3 1.48 × 10−1 6.49 × 10−1

4 7.18 × 10−4 5.88 × 10−2 2.88 × 10−1

6 1.34 × 10−4 2.01 × 10−2 9.72 × 10−2

Boriçi 2 6.38 × 10−3 2.02 × 10−1 2.92 × 10−1

4 5.13 × 10−5 5.45 × 10−3 8.68 × 10−3

6 5.91 × 10−7 1.53 × 10−4 2.69 × 10−4

Optimal 2 1.72 × 10−2 2.32 × 10−1 2.66 × 10−1

4 3.35 × 10−5 2.23 × 10−3 2.63 × 10−3

6 5.02 × 10−8 2.01 × 10−5 2.36 × 10−5
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smearing is otherwise difficult. Finally, the corresponding
topological charge for Q ¼ 2 is so smooth that the two
eigenvalue crossings close to the origin lie on top of each
other. This shows how beneficial the use of smearing is
when studying topological aspect using spectral flows.

F. Approaching the continuum

In order to judge the performance of the different
fermion formulations when approaching the continuum,
we evaluated them on seven different ensembles with 1000
configurations each. We kept the physical volume constant
and considered the following lattices: 82 at β ¼ 0.8, 122 at
β ¼ 1.8, 162 at β ¼ 3.2, 202 at β ¼ 5.0, 242 at β ¼ 7.2, 282

at β ¼ 9.8 and 322 at β ¼ 12.8. Together with the smeared
version of each configuration, we consider N ¼ 14000

configurations in total.
We do not attempt to carry out a strict continuum limit

analysis, but we are interested in the relative performance
of the different formulations when the lattices become finer.
An indication for the performance are the chiral symmetry
violations on our finest lattice at β ¼ 12.8. We quote the
median values in Table I. We restrict ourselves to Ns ∈
f2; 4; 6g as for Ns ≥ 8 some values have the same of order
of magnitude as the rounding errors and, thus, we are
unable to quote precise numbers. We observe that for
large β the chiral symmetry violations for the standard

construction are comparable in the case of a Wilson and a
staggered Wilson kernel. For Boriçi’s and the optimal
construction, on the other hand, the violations are much
lower for a staggered Wilson kernel, often by 1 to 2 orders
of magnitude. Note that for simplicity we set the parameters
λmin and λmax for optimal domain wall fermions on a
configuration basis. This is intended to give an indication of
the performance, while in realistic simulations one would
fix suitable values on an ensemble basis after having
projected out a number of low-lying eigenmodes. One
then has to find a compromise between mapping small
eigenvalues accurately and keeping the overall approxima-
tion error small.
In general, we also observe that the optimal construction

shows a better performance than Boriçi’s, while Boriçi’s
construction performs better than the standard construction.
A interesting exception is meff, where the optimal con-
struction with a Wilson kernel is not clearly outperforming
the other constructions. This is not unexpected as the
optimal sign-function approximation has a point of maxi-
mal deviation at λmin and as a result low-lying eigenvalues
are not mapped accurately on smooth configurations.
However, for larger Ns this phenomenon disappears and
the optimal construction shows a superior performance.
A related question is how the lowest eigenvalue

λmin ¼ minλ∈specHjλj of the kernel operators H ¼ Hw and
H ¼ Hsw is distributed. Especially close to the origin

FIG. 21. Cumulative distribution function CDF for λmin of Hw and Hsw.

FIG. 22. ΔGW of ϱDeff in Boriçi’s construction at Ns ¼ 4 as a function of 1=β.
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smooth approximations to the sign-function tend to be
inaccurate, so the mappings of small eigenvalues suffer
from large errors. In Fig. 21, we can find the numerically
determined cumulative distribution functions (CDFs) for
both kernel at three different β. As expected, for larger β the
tail of small values thins out and near-zero λmin become
infrequent. The CDFs for the Wilson and staggered Wilson
kernel look very much alike and the probability to
encounter configurations where λmin ≈ 0 is comparable.
Finally, an example of how chiral symmetry violations

vary with β can be found in Fig. 22. We show here the
violation of the Ginsparg-Wilson relation ΔGW of ϱDeff
in Boriçi’s construction at Ns ¼ 4 as a function of 1=β.
We plot the median value together with the width of the
distribution, characterized by the q-quantile and the
(1 − q)-quantile, where q ¼ ½1 − erfð1= ffiffiffi

2
p Þ�=2 and erf

denotes the error function. With this choice 68.3% of
the values are within the error bars. One can clearly see
how the effective operator with a staggered Wilson kernel
shows superior chiral properties when β is sufficiently
large. As expected, we observe that smearing improves
chiral properties in particular on the coarsest lattices.

VII. CONCLUSIONS

In this work, we gave an explicit construction of
staggered domain wall fermions and investigated some
of their basic properties in the free-field case, on quenched
thermalized gauge configurations in the Schwinger model
and on smooth topological configurations. It appears that
staggered domain wall fermions indeed work as advertised.
Moreover we could generalize existing modifications of

domain wall fermions, such as Boriçi’s and the optimal
construction to the staggered case. This gives rise to
previously not considered truncated staggered domain wall
fermions and optimal staggered domain wall fermions.
These modified staggered domain wall fermions in par-
ticular show significantly smaller chiral symmetry viola-
tions than the traditional Wilson based formulations, at
least in our setting and with respect to the criteria used in
this work. These properties make formulations with a

staggeredWilson kernel potentially interesting when study-
ing phenomena, where chiral symmetry is of importance.
It is not yet clear how our results in Uð1Þ background

gauge fields will translate to QCD in 3þ 1 dimensions with
a SUð3Þ gauge group, but they are encouraging and warrant
further investigations.
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APPENDIX: OPTIMAL WEIGHTS

In the following, we give some example values for the
weight factors as defined in Sec. III C. To this end, let us
consider the free-field case in 1þ 1 dimensions with the
particular choices M0 ¼ 1 and Ns ¼ 8. For the Wilson
kernel we then have λmin ¼ 1 and λmax ¼ 3, for the
staggered Wilson kernel λmin ¼ 1 and λmax ¼

ffiffiffi
2

p
. The

corresponding example weights fωsg for optimal domain
wall fermions can be found in Table II.
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