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Motivated by the successes of covariant baryon chiral perturbation theory in one-baryon systems and
in heavy-light systems, we study relevance of relativistic effects in hyperon-nucleon interactions with
strangeness S ¼ −1. In this exploratory work, we follow the covariant framework developed by Epelbaum
and Gegelia to calculate the YN scattering amplitude at leading order. By fitting the five low-energy
constants to the experimental data, we find that the cutoff dependence is mitigated, compared with the
heavy-baryon approach. Nevertheless, the description of the experimental data remains quantitatively
similar at leading order.
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I. INTRODUCTION

Hyperon-nucleon (YN) interactions play an important
role in our understanding of hypernuclear physics and
neutron stars [1,2]. Because of the nonperturbative nature
of strong interactions, previous theoretical investigations
were based on either meson-exchange models or quark
models, such as the Nijmegen meson-exchange model
[3–7], the Jülich meson-exchange model [8,9], the
Tübingen quark cluster model [10–12], the chiral SU(3)
quark model [13], the quark delocalization and color
screening model [14], and the Kyoto-Niigata SU(6) quark
cluster model [15,16]. We will study here YN scattering
using a covariant-baryon framework of chiral effective field
theory (ChEFT).
Weinberg first proposed in the 1990s using techniques

of ChEFT to develop nucleon-nucleon (NN) interactions
[17,18], and impressive progress has been made along
this line of research [19–21]. Generalization of the method
included antinucleon-nucleon [22], hyperon-hyperon
[23–26], and hyperon-nucleon interactions [27–30]—
our focus in the present paper. The main advantage of
this approach is that the description of experimental data
can be systematically improved by calculating higher
orders following a power counting scheme. In addition,
three- and higher-body forces can be treated in the same
framework as two-body forces. Furthermore, theoretical
uncertainties can be systematically estimated if the power
counting is consistent.

In Weinberg’s original proposal, and in accordance with
the conventional practice in low-energy nuclear physics,
baryons are treated as nonrelativistic objects at leading
order (LO), with relativistic corrections accounted for in
higher orders. The machinery to implement this idea is the
heavy-baryon (HB) formalism [31].
Another important ingredient is the assumption of

four-baryon coupling constants conforming to naive
dimensional analysis (NDA) so that derivatives and
quark-mass dependence in vertexes are always suppressed
by Λχ ∼ 1 GeV, the breakdown scale of ChEFT. We will
refer to this scheme, HB plus NDA, as the HB approach
throughout the paper. The premise of NDAwas challenged
by some authors, for NDA does not assign sufficient
baryon-baryon contact potentials to remove ultraviolet
cutoff dependence from the NN scattering amplitudes,
even at LO. Stated differently, one does not seem to
be able to reconcile NDA with renormalization-group
invariance.
Partly as an attempt to redeem NDA, Epelbaum and

Gegelia proposed in their recent papers [32,33] a covariant
ChEFT framework for NN scattering, referred to as the EG
approach in the present paper. While retaining NDA, this
approach uses a particular three-dimensional reduction of
the relativistic Bethe-Salpeter equation to account for the
propagation of two-nucleon intermediate states. One must
pay necessary attention to subleading orders so as not to
double-count or to miss relativistic effects. The cutoff
sensitivity in all partial waves was removed except 3P0,
where a nominally higher-order contact term was intro-
duced to achieve renormalization-group invariance [32].*lisheng.geng@buaa.edu.cn
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For other works on renormalization of chiral nuclear forces,
see Refs. [34–44].
Besides the possibility to ameliorate cutoff sensitivities,

covariant treatment of baryons is intriguing for it
describes data more efficiently, in the sense that it entails
fewer terms at higher orders than its HB counterparts, e.g.,
in the one-baryon sector [45–49], and its generalization to
describe heavy hadrons in heavy-light systems with three
light flavors [50–52] (see Ref. [53] for a short review).
Indeed, the EG approach was shown to improve the
description of the NN scattering phase shifts, up to the
orders considered [32,33], in comparison with the HB
approach (including the Kaplan-Savage-Wise scheme
[54]). These phenomenological successes are particularly
encouraging in studying YN scattering, because one
cannot afford to employ as many undetermined low-
energy constants as in NN, due to the fact that the data
on YN scattering are scarce and in most cases of relatively
low quality. (On a side note, the analysis in Ref. [55]
showed that there are indeed theoretical rationales for
covariant baryons in the one-baryon sector, at least in
certain kinematic regions.)
In the present paper, we apply the EG approach to YN

scattering, that is, NDA for YN contact terms and covariant
formulation for baryon propagations, with the focus on
ΛN − ΣN. The purpose of this exploratory work is twofold:
to investigate (a) whether the EG approach reduces cutoff
dependence as it did for NN and (b) how much it improves
the fit to the YN scattering data.
A second important approach to study baryon-baryon

interactions must be mentioned before we move on to
further discussion on ChEFT-based YN interactions.
Lattice QCD simulations [56–68] provide an ab initio
numerical solution to QCD with quark and gluon degrees
of freedom. Thanks to increasingly available computing
resources and ever-evolving numerical algorithms, lattice
QCD simulations have begun to play an indispensable role
in determining baryon-baryon forces [69,70].
The paper is organized as follows. In Sec. II, we briefly

explain the formalism, including the derivation of the
kernel potentials and the Kadyshevsky equation, which
will be used to iterate the potentials. In Sec. III, the fitting
procedure is explained in detail. Results and discussions are
presented in Sec. IV, followed by a short summary and
outlook in Sec. V.

II. FORMALISM

The LO potentials include nonderivative four-baryon
contact terms and one-pseudoscalar-meson exchanges
(OPME), as shown in Fig. 1. In both EG and HB
approaches, LO potentials are obtained by applying on-
shell conditions to external baryon lines in these diagrams;
the difference between two approaches is the integral
equation to iterate the potentials, as we will see soon.

As far as the notations are concerned, we follow closely
Ref. [27].

A. LO potentials

The four-baryon contact terms have the form

L1
CT ¼ C1

i trðB̄aB̄bðΓiBÞbðΓiBÞaÞ;
L2
CT ¼ C2

i trðB̄aðΓiBÞaB̄bðΓiBÞbÞ;
L3
CT ¼ C3

i trðB̄aðΓiBÞaÞtrðB̄bðΓiBÞbÞ; ð1Þ

where tr indicates trace in flavor space (u, d, and s); Γi are
the elements of the Clifford algebra,

Γ1 ¼ 1; Γ2 ¼ γμ; Γ3 ¼ σμν; Γ4 ¼ γμγ5; Γ5 ¼ γ5;

ð2Þ

and Cm
i (m ¼ 1, 2, 3) are the low-energy constants (LECs)

corresponding to independent four-baryon operators. The
ground-state octet baryons are collected in the 3 × 3
traceless matrix:

B ¼

0
BBB@

Σ0ffiffi
2

p þ Λffiffi
6

p Σþ p

Σ− − Σ0ffiffi
2

p þ Λffiffi
6

p n

Ξ− Ξ0 − 2Λffiffi
6

p

1
CCCA: ð3Þ

The OPME potentials are derived from a covariant SU(3)
meson-baryon Lagrangian,

Lð1Þ
MB ¼ tr

�
B̄ðiγμDμ −MBÞB −

D
2
B̄γμγ5fuμ; Bg

−
F
2
B̄γμγ5½uμ; B�

�
; ð4Þ

where DμB ¼ ∂μBþ ½Γμ; B�, MB stands for the chiral
limit mass of the octet baryons, and D and F are the axial
vector couplings. In the numerical analysis, we will use
Dþ F ¼ gA ¼ 1.26 and F=ðF þDÞ ¼ 0.4, where gA is the

FIG. 1. Nonderivative four-baryon contact terms and one-
pseudoscalar-meson exchanges at LO. The solid lines denote
incoming and outgoing baryons (B1;2;3;4), and the dashed line
denotes the exchanged pseudoscalar meson ϕ.
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nucleon axial vector coupling constant. Γμ (uμ) are the
vector and (axial vector) combinations of the pseudoscalar-
meson fields and their derivatives,

Γμ ¼
1

2
½u†∂μuþ u∂μu†�; uμ ¼ iðu†∂μu − u∂μu†Þ;

where u2 ¼ U ¼ exp ði
ffiffi
2

p
ϕ

f0
Þ, with the pseudoscalar-meson

decay constant f0 ¼ 93 MeV [29], and the traceless matrix
ϕ collecting the pseudoscalar-meson fields:

ϕ ¼

0
BB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ηffiffi
6

p

1
CCA: ð5Þ

The LO potentials can be written schematically as

VLO ¼ CS
B1B2→B3B4

þ CT
B1B2→B3B4

σ1 · σ2

− NB1B3ϕNB2B4ϕ
ðσ1 · qÞðσ2 · qÞ
q2 þm2 − iϵ

IB1B2→B3B4
; ð6Þ

where CS and CT are linear combinations of Cm
i ’s and

NBB0ϕ is determined by the initial-/final-state baryons and
the exchanged pseudoscalar meson [71],

NNNπ ¼ f; NNNη ¼
1ffiffiffi
3

p ð4α− 1Þf;

NΛNK ¼ −
1ffiffiffi
3

p ð1þ 2αÞf;

NΛΣπ ¼
2ffiffiffi
3

p ð1− αÞf; NΛΛη ¼ −
2ffiffiffi
3

p ð1− αÞf;

NΣNK ¼ ð1− 2αÞf; NΣΣπ ¼ 2αf; NΣΣη ¼
2ffiffiffi
3

p ð1− αÞf;

ð7Þ

where α ¼ F=ðF þDÞ, f ¼ gA=ð2f0Þ. The isospin factors
IB1B2→B3B4

are listed in Table I. m is the mass of the
exchanged pseudoscalar meson, and q is the momentum
transfer in the center-of-mass frame.
We focus here on the strangeness S ¼ −1ΛN − ΣN

sector. The relevant Feynman diagrams for LO potentials
are depicted in Figs. 2 and 3, in which the intermediate
baryons and exchanged pseudoscalar mesons are identified.
After partial-wave projection, the contributions of contact
terms can be expressed by five independent LECs, CΛΛ

1S0,
CΣΣ
1S0, C

ΛΛ
3S1, C

ΣΣ
3S1, and C

ΛΣ
3S1, which need to be determined by

fitting to the experimental data.

B. Scattering equation

The infrared enhancement in multibaryon propagations
gives the theoretical argument for low-energy baryon-
baryon interactions being nonperturbative [18], in addi-
tion to the obvious phenomenological evidence that there
exists a large number of multinucleon bound states—
atomic nuclei. (The existence of exotic dibaryons, such
as the H dibaryon [72] and the NΩ dibaryon [73],
has received much attention but has not been firmly

TABLE I. Isospin factors IB1B2→B3B4
for the one-pseudoscalar-

meson-exchange diagrams.

Channel Isospin π K η

ΛN → ΛN 1
2

0 1 1

ΛN → ΣN 1
2 −

ffiffiffi
3

p
−

ffiffiffi
3

p
0

ΣN → ΣN 1
2

−2 −1 1

ΣN → ΣN 3
2

1 2 1

FIG. 2. Nonderivative four-baryon contact diagrams for the
ΛN − ΣN system.

FIG. 3. One-pseudoscalar-meson-exchange diagrams for the ΛN − ΣN system.
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confirmed.) As a result, one needs to iterate at least the LO
ChEFT potentials. In the HB approach, the Lippmann-
Schwinger equation with a nonrelativistic propagator is
used,

Tνν0;J
ρρ0 ðp; p0;

ffiffiffi
s

p Þ

¼ Vνν0;J
ρρ0 ðp; p0Þ þ

X
ρ00;ν00

Z
∞

0

dp00p002

ð2πÞ3 Vνν00;J
ρρ00 ðp; p00Þ

×
2μν00

q2ν00 − p002 þ iϵ
Tν00ν0;J
ρ00ρ0 ðp00; p0;

ffiffiffi
s

p Þ; ð8Þ

where
ffiffiffi
s

p
is the total energy of the baryon-baryon

system in the center-of-mass frame; qν00 is the relativistic

on-shell momentum defined by
ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

B1;ν00
þ q2ν00

q
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
B2;ν00

þ q2ν00
q

, where B1;ν00 and B2;ν00 are intermediate

state baryons; and μν00 is the reduced mass of the
intermediate state. The labels ν, ν0, ν00 denote the particle
channels, e.g., Λp, Σþn, Σ0p, and ρ, ρ0, ρ00 denote the
partial waves, e.g., 1S0, 3S1, etc.
The key to the EG approach is to use the Kadyshevsky

equation to iterate the LO potentials so that as many

relativistic effects as possible are included in the two-
baryon propagation. The Kadyshevsky equation is one
way to reduce the Bethe-Salpeter equation to a three-
dimension form, first proposed in Ref. [74] (see Ref. [75]
for other choices of reduction). In the context of YN
scattering, the equation can be written with notation
similar to Eq. (8):

Tνν0;J
ρρ0 ðp; p0;

ffiffiffi
s

p Þ ¼ Vνν0;J
ρρ0 ðp; p0Þ þ

X
ρ00;ν00

Z
∞

0

dp00p002

ð2πÞ3
2μ2ν00V

νν00;J
ρρ00 ðp; p00ÞTν00ν0;J

ρ00ρ0 ðp00; p0;
ffiffiffi
s

p Þ
ðp002 þ 4μ2ν00 Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ν00 þ 4μ2ν00

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p002 þ 4μ2ν00

q
þ iϵÞ

: ð9Þ

It is a crucial difference that the propagator of the Kady-
shevsky equation has in its denominator a higher power of
intermediate momentum p00 than that of the Lippmann-
Schwinger equation (8). Therefore, it has promising po-
tential to mitigate the cutoff sensitivity.
To properly account for physical thresholds and the

Coulomb force in charged channels, e.g., Σ−p → Σ−p,
we solve the scattering equations in the particle basis
for both the Lippmann-Schwinger and Kadyshevsky equa-
tions, while the kernel is evaluated in an isospin basis.
Relativistic kinematics is used throughout to relate the
laboratory momenta to the center-of-mass momenta. The
Coulomb interaction for charged channels is treated with
the Vincent-Phatak method [8,76,77].

Since the Lippmann-Schwinger and Kadyshevsky equa-
tions do nothing but resum a certain class of diagrams,
they in principle need to be regularized in order for the
integration to be well defined, as in many field-theoretical
calculations. Nonperturbative calculations are not ame-
nable to dimensional regularization, so we turn to cutoff
regularization. In solving both integral equations, we
multiply the potentials by the following Gaussian form
factor in momentum space, as it was done in Refs. [27,29],

fΛF
ðp; p0Þ ¼ exp

�
−
�

p
ΛF

�
2n
−
�
p0

ΛF

�
2n
�
; ð10Þ

where n ¼ 2.

FIG. 4. χ2 as a function of the cutoff in the EG approach (red
solid line) and the HB approach (blue dotted line).

TABLE II. Best-fitted values of YN S-wave LECs (in units of 104 GeV−2) and χ2 for ΛF ¼ 600 MeV in the EG
and HB approaches.

χ2 CΛΛ
1S0 CΣΣ

1S0 CΛΛ
3S1 CΣΣ

3S1 CΛΣ
3S1

EG 28.23 −0.04795ð151Þ −0.07546ð81Þ −0.01727ð124Þ 0.36367(30310) 0.01271(471)
HB 28.52 −0.03894ð1Þ −0.07657ð1Þ −0.01629ð13Þ 0.20029(14050) −0.00176ð304Þ
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FIG. 5. Cross sections in the EG approach (red solid lines) and the HB approach (blue dotted lines) as functions of the laboratory
momentum, in comparison with the experimental data. For reference, the Jülich 04 results [9] are also shown (green dashed lines). The
experimental data are taken from Sechi-Zorn et al. [78], Alexander et al. [79], Eisele et al. [81], and Engelmann et al. [80].

FIG. 6. Predicted cross sections in the EG (red solid lines) and HB (blue dotted lines) approaches at ΛF ¼ 600 MeV, in comparison
with the experimental values and the Jülich 04 results [9] (green dashed lines). The experimental data are taken from Hauptman et al.
[87], Kadyk et al. [88], Eisele et al. [81], Ann et al. [89], Engelmann et al. [80], Stephen [90], and Kondo et al. [91].
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III. FITTING PROCEDURE

At LO, there are five LECs in the strangeness S ¼ −1
sector, which need to be determined by fitting to the
experimental data. We use the same set of low-energy
YN scattering data as used in Refs. [5,29]. It contains 36
data, of which 35 are total cross sections of ΛN and ΣN
reactions [78–81] with the laboratory momentum smaller
than approximately 300MeV=c, Plab < 300MeV=c. These
reactions include Λp → Λp, Σþp → Σþp, Σ−p → Σ−p,
Σ−p → Λn, and Σ−p → Σ0n. The last datum is the Σ−p
inelastic capture ratio at rest [82].
It is customary to take as a further constraint the empirical

value of the hypertriton 3
ΛH binding energy [83,84], which

has been known to be crucial in fixing the relative strength of
the 1S0 and the 3S1 − 3D1 contributions to Λp scattering.
Because of the exploratory nature of this work, however, we
are content with using the value of the S-wave Λp scattering
length from Ref. [27], which was shown to reproduce a
reasonable value for the hypertriton binding energy [85].
In the charged channels Σþp → Σþp and Σ−p → Σ−p,

the experimental values for total cross section [81] were
obtained by an incomplete angular coverage,

σ ¼ 2

cos θmax − cos θmin

Z
cos θmax

cos θmin

dσðθÞ
d cos θ

d cos θ; ð11Þ

where θ is the angle between incoming and outgoing Σ� in
the center-of-mass system. The Coulomb scattering ampli-
tude goes to infinity at the forward angle. Following
Refs. [5,29], we use cosθmin¼−0.5 and cosθmax¼þ0.5
in our calculations for these two channels, in order to
stay as close as possible to the experimental setup. Total
cross sections for other channels are evaluated without any
cutoff on θ [8], but only partial waves with J ≤ 2 are
accounted for.
The inelastic capture ratio at rest is defined as [86]

rR ¼ 1

4
rS¼0 þ

3

4
rS¼1; ð12Þ

with

rS¼0;1 ¼
σΣ

−p→Σ0n
S¼0;1

σΣ
−p→Σ0n

S¼0;1 þ σΣ
−p→Λn

S¼0;1

����
PΣ−¼0

; ð13Þ

FIG. 7. S, P, and D-wave phase shifts and 3S1 − 3D1 (3P2 − 3F2) mixing angles ϵ1 (ϵ2) for Λp scattering, as a function of the cutoff
ΛF. The solid (dotted) lines correspond to the EG (HB) approach. Red (blue) lines represent Plab ¼ 300ð900Þ MeV=c.
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where σ is the cross section of the corresponding channel
and S ¼ 0, 1 denotes the spin singlet 1S0 and the triplet
3S1 − 3D1, respectively. Following the common practice
[5,29], we calculate the cross sections at a small nonzero
momentum, i.e., PΣ− ¼ 10 MeV=c.
The fit is performed by minimizing the χ2, which is

defined as

χ2 ¼
X
i

ðDiðExpÞ −DiðTheoÞÞ2
Δ2

i
; ð14Þ

where i enumerates the input data; DiðExpÞ and DiðTheoÞ
denote, respectively, the experimental and theoretical val-
ues for certain observables; and Δi is the experimental
uncertainty.

IV. RESULTS AND DISCUSSIONS

Before presenting and discussing the results, we
would like to review the primary goal: to compare the
EG and HB approaches, in terms of their ability to describe
the hyperon-nucleon scattering data and their sensitivity to

a varying ultraviolet cutoff. By doing so, we hope to shed
more light on the impact of relativistic effects encoded in
the covariant formulation.
We first determine for a given value of ΛF the best-fit

values of LECs by minimizing the χ2, as defined in
Eq. (14), and then use this set of LECs to generate for
this ΛF the phase shifts of various channels of hyperon-
nucleon scattering.
In Fig. 4, the χ2 is plotted as a function of ΛF, in both

EG and HB approaches, for the cutoff range ΛF ¼ 500–
850 MeV. The optimum χ2 occur at similar cutoff values in
two approaches, ΛF ≃ 600 MeV, and their values appear to
be almost identical. The values of the χ2 and LECs at ΛF ¼
600 MeV are listed in Table II. We also observe that, as the
cutoff increases, the quality of fit deteriorates much faster in
the HB approach than in the EG approach. As we will see
later, this rapid increase of the HB χ2 beyondΛ≃ 700 MeV
is intimately related to the limit-cycle-like cutoff dependence
in attractive, triplet channels, such as 3P0.
In Fig. 5, we compare the cross sections as functions of

Plab, calculated with LECs shown in Table II, to low-energy
experimental values that are included in the fitting.

FIG. 8. S, P, and D-wave phase shifts and 3S1 − 3D1 (3P2 − 3F2) mixing angles ϵ1 (ϵ2) for Σþp scattering, as a function of the cutoff
ΛF. Symbols are the same as those of Fig. 7.
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Consistent with the χ2 plot in Fig. 4, the two approaches
yield basically the same results. We also make predictions
for higher Plab, as shown in Fig. 6, and once again the
curves for both approaches are identical, in comparison
with the experimental uncertainties.
A short summary is in order before we proceed.

Figures 4, 5, and 6 tell us that if we are given the freedom
to choose an optimum value for ΛF, we will find that the
EG and HB approaches describe the data with similar
quality, although the EG approach is less sensitive to the
cutoff when ΛF > 600 MeV.
At the LO of nucleon-nucleon scattering, it has been

shown that the cutoff sensitivity is mostly caused by the
singular attraction of one-pion exchange (OPE) [35–37].
Since whether OPE is attractive or repulsive depends on the
matrix element of the tensor projector between partial
waves, it is necessary to investigate the cutoff dependence
of individual partial-wave amplitudes. In hyperon-nucleon
scattering, we will also look into the cutoff dependence of
partial-wave phase shifts, for OPE has a similar structure to
OPME. For definitiveness, Λp and Σþp scatterings will be
considered.

With LECs determined by the aforementioned fitting
procedure, the S-, P-, and D-wave phase shifts and the
mixing angles for 3S1 − 3D1 (ϵ1) and 3P2 − 3F2 (ϵ2) are
calculated as functions of the cutoff, for two values of Plab:
Plab ¼ 300 and 900 MeV=c. At Plab ¼ 300 MeV=c,
only the Λp channel is physically open, while at
Plab ¼ 900MeV=c, all three coupled channels (Λp, Σþn,
Σ0p) are open. Note that ΛF constrains more directly the
values of the center-of-mass momentum, so Plab ¼
900 MeV=c is not necessarily a concern for the cutoff
values smaller than 900 MeV. For Λp scattering, Plab ¼
900 MeV=c corresponds to the center-of-mass momentum
of the proton being PCM ¼ 384.8 MeV=c.
We split the cutoff range into two parts to study the

cutoff sensitivity. One is ΛF ¼ 450–1000 MeV, which is
more conventionally used for practical calculations. The
other is ΛF ¼ 1.5–6 GeV, where the cutoff dependence is
more explicitly probed. Results with softer cutoffs are
shown in Figs. 7 and 8, and harder cutoffs are used in
Figs. 9 and 10.
Similar to NN scattering [32], the EG approach

removes limit-cycle-like cutoff dependence from some

FIG. 9. Phase shifts and mixing angles of Λp scattering as a function of the cutoff in the region ΛF ¼ 1.5–6 GeV. The solid (dotted)
lines correspond to the EG (HB) approach.
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of the partial waves. Let us first look at Λp scattering.
With the HB approach, significant cutoff variations are
present in phase shifts of 3P0, 3P1, 3P2, 3D2, 3D3, and the
mixing angle ϵ2. Switching to the EG approach suppresses
greatly phase-shift oscillations in 3P2, 3D2, 3D3, and ϵ2.
Although 3P0 and 3P1 remain sensitive to cutoff variation,
the cutoff period of cycles becomes generally wider,
consistent with the general expectation that the cutoff
dependence is mitigated when the EG approach is used.
(To be certain about 3P1, we show in Fig. 12 the cutoff
dependence of its phase shifts at various Plab up
to 20 GeV.)
The similar pattern applies to Σþp scattering, with,

however, an important difference. There are fewer prob-
lematic partial waves even in the HB approach. We see
limit-cycle-like cutoff dependence in only 3P0, 3P2, and the
mixing angle ϵ2, and the EG approach removes the cutoff
sensitivity in 3P2 and ϵ2.
The limit-cycle-like cutoff dependence at hard cutoff

values in certain partial waves prompts us to investigate
how the best-fitted χ2 behaves at those cutoff values. In
Fig. 11, the χ2 is plotted as a function of ΛF up to 6 GeV.

After several peaks between 1 and 2 GeV, the EG χ2

remains almost constant with a value close to that obtained
at ΛF ¼ 600 MeV. This is not the case, however, with the
HB approach, of which the χ2 has a few more spikes from
3 to 5 GeV.

FIG. 10. Phase shifts and mixing angles of Σþp scattering as a function of the cutoff in the region ΛF ¼ 1.5–6 GeV. Symbols are the
same as those of Fig. 9.

FIG. 11. The best-fitted χ2 as a function of the cutoff in the
region ΛF ¼ 0.5–6 GeV in the EG (red solid line) and HB (blue
dotted line) approaches.
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This distinctive difference in the χ2 between the two
approaches must originate from the limit-cycle-like
behavior in the phase shifts. We choose 3P0 and 3P1

of Λp scattering, shown in Fig. 12, to reflect the
correlation between the χ2 and the phase shifts. The
3P0 and the 3P1 partial-wave phase shifts are rather small
at relevant Plab for most cutoff values; therefore,
they contribute little to the cross section. However, their
contributions take a hike when the phase shifts cross the
transition point of limit cycles with respect to the cutoff.
Such a behavior exists in both EG and HB approaches,
except that the EG cycles are much wider. For particular
values of Plab ¼ 100, 200, 300 MeV=c (close to energies
of data points), only one cycle is observed with the
EG approach in the cutoff range of 0.5–6 GeV, but about
2.5 cycles are seen with the HB approach. This partially
explains the peculiar dependence of the χ2 on the cutoff
shown in Fig. 11.

V. SUMMARY AND OUTLOOK

We have studied hyperon-nucleon scattering with
strangeness S ¼ −1 in covariant chiral effective field theory
at LO, assuming NDA for the power counting of baryon-
baryon contact operators. The focus has been on the
comparison between the more conventional, heavy-baryon
approach and the covariant-baryon approach proposed by
Epelbaum and Gegelia, in terms of their cutoff sensitivity
and their ability to describe the hyperon-nucleon data.
For each cutoff we looked at, we first determined the

values of LECs—couplings of five contact operators—by
minimizing the χ2 of 36 data, and then generated the phase
shifts of Λp and Σþp scattering. The first finding is that if
we are allowed to choose an optimum value of ΛF in fitting,
there is not much difference between the two approaches,
as far as the fit quality goes; the χ2 converges to almost an
identical value at Λ≃ 600 MeV.

The phase shifts were then investigated to expose the
origin of cutoff dependence. In general, the EG approach
mitigates the cutoff dependence, in comparison with the
HB approach. More specifically, it removes from 3P2, 3D2,
3D3, the mixing angle ϵ2 of Λp scattering, and 3P2 and ϵ2
of Σþp scattering the limit-cycle cutoff dependence that
existed in the HB approach. However, a significant cutoff
sensitivity still persists in 3P0 and 3P1 of Λp and 3P0

of Σþp.
SU(3) flavor symmetry was enforced upon the LO contact

operators—all responsible for S waves—but the long range
potential OPME has SU(3) breaking effects incorporated,
e.g., the mass splitting of the Goldstone mesons. Since we
did not see from the numerical results any S-wave cutoff
dependence, it suggests at least in S waves that SU(3)-
violating counterterms are not needed for renormalization
purposes. That is, the 1S0 and 3S1 counterterms of Λp and
Σþp are correlated by SU(3) symmetry, and even though the
long-range potentials break SU(3) symmetry, the counter-
terms appear to renormalize the amplitudes up to the cutoff
values considered here. It is not clear to us that this
observation will hold true if in a future work we promote
3P0 and 3P1 counterterms to LO to remove the cutoff
dependence, along the line of thinking of Refs. [36,37].
The SU(3) aspect of short-range interactions will be inter-
esting to investigate, in light of renormalization.
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FIG. 12. 3P0 and 3P1 phase shifts of Λp scattering at Plab ¼ 100 (magenta and cyan), 200 (red and blue), 300 (wine and navy) MeV=c
as a function of the cutoff, calculated in the EG (solid lines) and HB (dotted lines) approaches.
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