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We aim at drawing the hadron-quark phase transition line in the QCD phase diagram by using the two-
phase model (TPM) in which the entanglement Polyakov-loop extended Nambu-Jona-Lasinio (EPNJL)
model with the vector-type four-quark interaction is used for the quark phase and the relativistic mean field
(RMF) model is used for the hadron phase. A reasonable TPM is constructed by using lattice QCD data and
neutron star observations as reliable constraints. For the EPNJL model, we determine the strength of vector-
type four-quark interaction at zero quark chemical potential from lattice QCD data on quark number
density normalized by its Stefan-Boltzmann limit. For the hadron phase, we consider three RMF models:
NL3; TM1; and the model proposed by Maruyama, Tatsumi, Endo, and Chiba (MTEC). We find that
MTEC is most consistent with the neutron star observations and TM1 is the second best. Assuming that the
hadron-quark phase transition occurs in the core of a neutron star, we explore the density dependence of
vector-type four-quark interaction. Particularly for the critical baryon chemical potential μcB at zero
temperature, we determine a range of μcB for the quark phase to occur in the core of a neutron star.
The values of μcB lie in the range 1560 MeV ≤ μcB ≤ 1910 MeV.
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I. INTRODUCTION

Temperature (T) and baryon chemical potential (μB)
dependence of quantum chromodynamics (QCD) is often
described as the QCD phase diagram [1], where μB is related
to quark chemical potential μq as μB ¼ 3μq. Investigation of
the truth about the QCDphase diagram is quite important not
only in hadron physics but also in astrophysics. Lattice QCD
(LQCD) simulation as the first principle calculation is a
powerful tool of studying the QCD phase diagram. In fact,
recent LQCD simulations provide reliable results in μq=T ≲
1 with sophisticated methods [2–11]. However, these meth-
ods are considered not to work well in μq=T ≳ 1 because of
the severe sign problem. To understand the QCD phase
diagram there, the effective model analyses are done exten-
sively; see, e.g., [12–17]. Among the effective models, the
entanglement Polyakov-loop extendedNambu-Jona-Lasinio
(EPNJL) model is one of the most useful effective models
[18]. The 2-flavor EPNJLmodel is successful in reproducing
LQCD data at zero and imaginary μq=T, isospin chemical
potential, and small real μq=T [18,19]. In addition, Ishii et al.
showed very recently that random-phase-approximation
calculations based on the EPNJL model well reproduce T
dependence of the meson screening masses calculated by
LQCD in both the 2- and 2þ 1-flavor cases [20,21].

In spite of this success, the EPNJL model cannot treat the
baryon degrees of freedom explicitly, which is a disadvant-
age in describing the baryon sector in the QCD phase
diagram. Another way of describing all the regions of the
QCD phase diagram is the two-phase model (TPM) in
which the hadron-quark phase transition is assumed to be
the first order and the phase boundary is determined by the
Gibbs criterion [22,23]. The TPM allows us to use different
models for hadron and quark phases. Various methods were
proposed and developed so far to describe the hadron
phase; for example, the Brueckner-Hartree-Fock method
[24], its relativistic version [25], the variational method
[26], and the relativistic mean field (RMF) model [27].
Among them, we use the RMF model in this paper since it
is easy to treat and successful in describing the saturation
properties of nuclear matter. However, the equation of state
(EoS) strongly depends on the choice of parameters and is
quite different above the normal nuclear density ρ0.
Observations of neutron stars (NSs) may be a key to solve
this problem. Recently, two-solar-mass (2Msun) NSs were
discovered with high accuracy [28,29], and Steiner et al.
yielded the best fitting against various observed mass-
radius (MR) relations [30]. Because the MR relation is
sensitive to the EoS taken, we can judge what version of the
RMF model is most reasonable above ρ0.
In the core of heavy NSs, it is possible that the hadron-

quark phase transition takes place. The occurrence of the
transition depends on the stiffness of the quark-phase EoS,
which is sensitive to the strength Gv4 of the vector-type
four-quark interaction. In our previous work [31], the value
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of Gv4 at μq=T ¼ 0 in the EPNJL model was determined
fromLQCDdata on the quark number densitynq normalized
by its Stefan-Boltzmann limit nSB; note that nq=nSB is μq-
even and has only weak finite-volume effect. The value of
Gv4 obtained in the μq=T ¼ 0 limit is called Gv4ð0Þ in the
present paper. As for nq=nSB, new LQCD data on nq were
provided by using the extrapolation from the imaginary
μq=T region to the real one [11]. Since the numerical errors of
the new data are very small compared with the previous one
based on the Taylor expansion method at real μq=T [4], one
can determine the value of Gv4ð0Þ more sharply.
If the strength Gv4 is decreasing with increasing μq=T,

the possibility that the quark phase exists in the core of a
NS becomes higher. However, at present, it is difficult to
determine the density dependence of Gv theoretically.
Hence, here, we consider an inverse problem. When we
assume the existence of the quark phase in the core of a NS,
how does the existence constrain the density dependence of
the strength of Gv4? How much should the critical baryon
chemical potential of the hadron-quark phase transition be?
In this paper, we first construct reasonable TPMs by

using LQCD data at μq=T ¼ 0 as a constraint on quark-
phase EoS and NS observations as a constraint on both
hadron- and quark-phase EoS. As a quark part of TPM, we
consider three types of EPNJL models: (1) the model with
no vector-type four-quark interaction; (2) the model with
vector-type four-quark interaction in which the strength
Gv4 is assumed to be constant, i.e., Gv4 ¼ Gv4ð0Þ; and
(3) the model with the vector-type four-quark interaction in
which the density-dependent strength Gv4ðnqÞ is intro-
duced. The value of Gv4ð0Þ is determined from LQCD data
on nq=nSB in the μq=T ¼ 0 limit. The density dependence
of Gv4ðnqÞ is discussed by assuming that the quark phase
takes place in the core of a NS. As hadron phase models, we
take three RMF models, i.e., TM1 [32]; NL3 [33]; and the
model proposed by Maruyama, Tatsumi, Endo, and Chiba
(MTEC) [34]. We determine which hadron-phase EoS is
consistent with 2Msun NS observations and the statistically
analyzed MR relation by Steiner et al. [28–30]. We focus
our attention on the 2Msun region, since our interest is
whether the hadron-quark phase transition takes place or
not in the core of NS and this possibility becomes higher
for heavy NSs. We will find that the MTEC EoS well
reproduces all the data on the MR relation, particularly in
the 2Msun region. The second best is the TM1 EoS.
We then pick up MTEC and TM1 as hadron-phase EoSs

and consider six types of TPMs, as shown in Table I. These
are classified with the hadron-phase EoS, that is, the MTEC
EoS as a TPMa and the TM1 EoS as a TPMb. For each class,
we take the EPNJL of types (1)–(3) for the quark-phase
EoS. By using TPMa1–TPMa3 and TPMb1–TPMb3, we
calculate the MR relation and draw the hadron-quark phase
transition line in the T − μB plane. For TPMa3 and TPMb3,
varying nq dependence of Gv4ðnqÞ, we determine the upper

bound of the transition line for the quark phase to appear in
the core of a NS.
The paper is organized as follows. In Sec. II, we

formulate the EPNJL model and the RMF model. The
prescription of the Gibbs criterion is also explained.
Section III is devoted to show the numerical results. We
first determine the value of Gv4ð0Þ by using new LQCD
data on nq=nSB in the μq=T ¼ 0 limit. Next, we select the
RMF model through the comparison with the data on the
MR relation. Finally, we construct the TPMa1–TPMa3 and
TPMb1–TPMb3. From these models, we draw the upper
and lower bounds of the hadron-quark phase transition line
from the condition that the quark phase takes place in the
core of a NS. The density dependence of the vector-type
four-quark interaction is also discussed.

II. MODEL SETTING

A. QUARK PHASE

The Lagrangian of the EPNJL of type (1) is given by

LEPNJL ¼ qðiγμDμ −m0Þq − UðΦ;Φ�Þ
þ ~Gs4½ðqqÞ2 þ ðqiγ5~τqÞ2� − ~Gv4ð0ÞðqγμqÞ2;

ð1Þ
where q ¼ ðu; dÞT is u- and d-quark fields, m0 ¼
diagðmu; mdÞ denotes a current quark mass matrix, and ~τ
is an isospin matrix. In this paper, we set mu ¼ md ≡m0.
The quark and gluon interact through the covariant
derivative Dμ ¼ ∂μ þ iAμ, where Aμ ¼ gδμ0A

0
aλa=2 ¼

−igδμ0ðA4Þaλa=2 with gauge field Aμ
a, Gell-Mann matrix

λa, and the gauge coupling g. ~Gs4 and ~Gv4ð0Þ are the
strengths of the scalar- and vector-type four-quark inter-
actions depending on the Polyakov loop Φ and its con-
jugate Φ�. We parametrize the Polyakov-loop dependence
of these interactions as

~Gs4 ¼ Gs4ð1 − α1ΦΦ� − α2ðΦ3 þ Φ�3ÞÞ
~Gv4ð0Þ ¼ Gv4ð0Þð1 − α1ΦΦ� − α2ðΦ3 þ Φ�3ÞÞ

according to the previous works [18,31].

TABLE I. TPMs taken in this paper. The TPMs are combina-
tions of the RMF model (MTEC or TM1) and three EPNJL
models of types (1)–(3). See the text for the definitions of RMF
and EPNJL models.

Class Hadron-phase EoS Quark-phase EoS Label

TPMa MTEC
EPNJL of type (1) TPMa1
EPNJL of type (2) TPMa2
EPNJL of type (3) TPMa3

TPMb TM1
EPNJL of type (1) TPMb1
EPNJL of type (2) TPMb2
EPNJL of type (3) TPMb3
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Eventually, the NJL sector of Eq. (1) has five parameters
(m0; Gs4; Gv4ð0Þ; α1; α2). We take Gs4 ¼ 5.498 GeV−2 and
α1 ¼ α2 ¼ 0.2 of Ref. [18]. The value of Gv4ð0Þ will be
determined from LQCD data on nq=nSB [4,11]. In the
LQCD data we use, the corresponding current quark mass
m0 was 130 MeVand it is much heavier than the empirical
value ∼5 MeV. We also keep m0 ¼ 130 MeV for our
EPNJL model analysis to determine the value of Gv4ð0Þ
from the LQCD data.
In the EPNJL model, only the time component of Aμ

a

is treated as a homogeneous and static background field.
We define Φ and Φ� in the Polyakov gauge as

Φ ¼ 1

3
TrcðLÞ; Φ� ¼ 1

3
TrcðL†Þ; ð2Þ

where L ¼ exp½iA4=T� ¼ exp½idiagðA11
4 ; A22

4 ; A33
4 Þ=T� for

the classical variables Aii
4 satisfying A11

4 þ A22
4 þ A33

4 ¼ 0.
Under the definition Eq. (2), we use the logarithm-type
Polyakov potential UðΦ;Φ�Þ proposed in Ref. [35],

UðΦ;Φ�Þ ¼ T4

�
−
aðTÞ
2

ΦΦ� þ bðTÞ logHðΦ;Φ�Þ
�
; ð3Þ

where

aðTÞ ¼ a0 þ
�
T0

T

�
þ a2

�
T0

T

�
2

;

bðTÞ ¼ b3

�
T0

T

�
3

HðΦ;Φ�Þ ¼ 1 − 6ΦΦ� þ 4ðΦ3 þ Φ�3Þ − 3ðΦΦ�Þ2:

Usually, the parameter T0 is 270 MeV so as to reproduce
LQCD data in the pure gauge limit [36]. For this value
of T0, however, the EPNJL model yields a larger value of
pseudocritical temperature Tpc for the deconfinement tran-
sition than the full-LQCD prediction 171 MeV at μq=T ¼ 0

[37–39]. We then rescale T0 to 190MeV. By this rescale, the
EPNJL model reproduces Tpc ¼ 171 MeV. Other parame-
ters ða0; a1; a2; b3Þ are summarized in Table II.
Here we comment on the μq dependence of the Polyakov

potential that is induced by the backreaction of the quark
sector to the gluon sector. In Ref. [13], μq dependence of the
parameter T0 in the Polyakov potential was estimated with
the renormalization group method. Near the T ¼ 0 axis of
the QCD phase diagram of our interest, however, the effect
is negligible because the Polyakov loop is small there [40].
We then assume that T0 is constant in our analyses on

LQCD and NS observational data. When the high μq=T and
large T region is investigated, the μq dependence of T0

cannot be negligible.
After the mean field approximation to Eq. (1), one can

obtain the thermodynamic potential ΩEPNJL (per unit
volume) as

ΩEPNJL ¼ UM þ U − 2
X
i¼u;d

×
Z

d3p
ð2πÞ3

�
3Ei þ

1

β
logð1þ 3ðΦþ Φ�e−βðE−~μiÞÞ

× e−βðE−~μiÞ þ e−3βðE− ~μiÞÞ

þ 1

β
logð1þ 3ðΦ� þ Φe−βðEþ ~μiÞÞ

× e−βðEþ~μiÞ þ e−3βðEþ~μiÞÞ
�
; ð4Þ

where β ¼ 1=T, UM ¼ ~Gs4σ
2− ~Gv4ð0Þn2q, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
with the constituent quark mass M ¼ m0 − 2 ~Gs4σ, and
~μi ¼ μi − 2 ~Gv4ð0Þnq for i ¼ u, d. The chiral condensate
and the quark number density are defined by σ ¼ hqqi,
nq ¼ hq†qi. We use the three-dimensional momentum
cutoff Λ ¼ 631.5 MeV to regularize the vacuum term.
The variables X ¼ σ; nq;Φ;Φ� are determined with sta-
tionary condition ∂ΩEPNJL=∂X ¼ 0. In this paper, we
employ the approximation Φ ¼ Φ� since it is known to
be a good approximation [18].
In the EPNJL of type (3), the density-dependent strength

Gv4ðnqÞ of the vector-type four-quark interaction is intro-
duced. The strength is assumed to be a Gaussian form of

Gv4ðnqÞ ¼ e−bð
nq
ρ0
Þ2Gv4ð0Þ; ð5Þ

where b is a parameter and ρ0 is a saturation density. Note
that the model with vanishing (constant) vector interaction
coupling is obtained when b → ∞ (b → 0). The thermo-
dynamic potential of EPNJL of type (3) can be obtained by
the replacement Gv4ð0Þ → Gv4ðnqÞ. For all types of the
EPNJLmodel, the quark number density nq is calculated by
the thermodynamic relation

nq ¼ −
∂ΩEPNJL

∂μq : ð6Þ

The determination of the parameter b will be discussed in
Sec. III.

B. RELATIVISTIC MEAN FIELD MODEL

We treat the hadron phase by the RMF model. In the
RMF model, the nucleon-nucleon interaction is mediated
by scalar (φ), vector (ω), and isovector (ρ) mesons. The
Lagrangian of the RMF model is written as

TABLE II. The parameter set in the Polyakov potential pro-
posed in Ref. [35]. All parameters are dimensionless.

a0 a1 a2 b3

3.51 −2.47 15.2 −1.75
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LRMF ¼ ψðiγμ∂μ −mN − gφφ − gωγμωμ − gργμρaμτaÞψ

þ 1

2
∂μφ∂μφ −

1

2
m2

φφ
2 −

1

3
g2φ3 −

1

4
g3φ4

−
1

4
ΩμνΩμν þ

1

2
m2

ωω
μωμ þ

1

4
c3ðωμωμÞ2

−
1

4
Rμν
a Ra

μν þ
1

2
m2

ρρ
μ
aρaμ; ð7Þ

where ψ is the nucleon (N) field and Ωμν (Rμν
a ) is the field

strength of the ω (ρ) meson. Masses of the particles are
denoted bymN; mφ; mω; mρ; Yukawa-coupling constants of
the nucleon with mesons are gφ; gω; gρ; and self-inter-
actions of φ and ω mesons are g2, g3, and c3. We take three
RMF models of TM1 [32], NL3 [33], and MTEC [34]. The
parameter sets of the three models are summarized in

Table III, together with the saturation properties calculated
by the models. The saturation densities ρ0 are slightly
different among the three RMF models, as shown in
Table III.
Under the mean field approximation, all the meson fields

φ, ω, ρ are replaced by the mean values hφi, hω0iδμ0,
hρ03iδμ0δa3, respectively. For simplicity, these mean values
are denoted by φ, ω, ρ. The mean values are determined by
the Euler-Lagrange equations,

m2
φφþ g2φ2 þ g3φ3 ¼ −gφρs; ð8Þ

m2
ωωþ c3ω3 ¼ gωρB; ð9Þ

ρ ¼ gρ
m2

ρ
ρI; ð10Þ

where ρs, ρB, ρI are scalar, baryon-number, and isospin
densities.
The thermodynamic potential of the RMF model ΩRMF

(per unit volume) is then obtained by

ΩRMF ¼ Umeson −
2

β

X
i¼p;n

Z
d3p
ð2πÞ3

× ½logð1þ e−βðE−~μiÞÞ þ logð1þ e−βðEþ~μiÞÞ�; ð11Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

N

p
for the nucleon effective mass

MN ¼ mN þ gφφ, and

Umeson ¼
1

2
m2

φφ
2 þ 1

3
g2φ3 þ 1

4
g3φ4

−
1

2
m2

ωω
2 −

1

4
c3ω4 −

1

2
m2

ρρ
2

is the mesonic potential. The effective chemical potentials
for the neutron (n) and proton (p) are defined by ~μn;p ¼
μn;p − gωω� gρρ.

TABLE III. Three parameter sets used in the RMF models. The
saturation properties derived from the three parameter sets are
also summarized. Shown are the saturation density ρ0, binding
energy E0, incompressibility K, symmetry energy S0, and ratio of
the effective nucleon mass MN to nucleon mass mN.

Parameter MTEC TM1 NL3

mN (MeV) 938 938 939
mφ (MeV) 400 511.198 508.194
mω (MeV) 783 783 782.501
mρ (MeV) 769 770 763
gφ 6.3935 10.0289 10.217
gω 8.7207 12.6139 12.868
gρ 4.2696 4.6322 4.474
g2ðfm−1Þ −10.757 −7.2325 −10.431
g3 −4.0452 0.6183 −28.885
c3 0 71.3075 0
Saturation property MTEC TM1 NL3
ρ0ðfm−3Þ 0.153 0.145 0.148
E0 (MeV) −16.3 −16.3 −16.3
K (MeV) 240 281 271
S0 (MeV) 32.5 36.9 37.4
MN=mN 0.78 0.63 0.60

FIG. 1. Equations of state of three parameter sets for symmetric matter (left panel) and neutron matter (right panel). In both panels, the
results of MTEC, TM1, and NL3 correspond to the solid, dotted, and dotted-dashed lines, respectively. In the left panel, the open square
indicates the empirical saturation point [24].
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Figure 1 shows the EoSs of symmetric matter (left panel)
and neutron matter (right panel) calculated by TM1, NL3,
and MTEC at T ¼ 0. As for densities smaller than the
saturation point (open square), all the EoSs yield a universal
line. On the other hand, there are remarkable differences
among the EoSs for densities higher than the saturation point.
The MTEC EoS is softest, whereas the NL3 EoS is stiffest.
The TM1 EoS lies halfway between them. The behavior
of the EoS in ρB ≳ ρ0 largely affects the MR relation of NSs.
Therefore, we can select which EoS model is preferable for
the MR relation, particularly in the 2Msun region.

C. TWO-PHASE MODEL

In μq=T ¼ 0, it is established by LQCD simulations that
the hadron-quark deconfinement transition is crossover
[41]. However, the pseudocritical temperature is well
estimated by the TPM [22]. We thus use the TPM and
the Gibbs criterion to determine the phase boundary of the
hadron-quark phase transition for each set of T and μB.
Pressures of the EPNJL and the RMF models are

obtained by

PEPNJLðμB; TÞ ¼ −ðΩEPNJLðμB; TÞ − ΩEPNJLð0; 0ÞÞ − B;

ð12Þ
PRMFðμB; TÞ ¼ −ΩRMFðμB; TÞ; ð13Þ

where the bag constant B is introduced in PEPNJL to
describe the difference of vacua between the hadron and
quark phases. The value of B is so determined that the TPM
can reproduce the deconfinement-transition temperature
Tpc ¼ 171 MeV at μq=T ¼ 0.
According to the Gibbs criterion, the quark phase

(hadron phase) takes place when PEPNJL > PRMFðPEPNJL <
PRMFÞ. Our TPM reproduces Tpc ¼ 171 MeV, when
B ¼ 100 MeV4. We then take B ¼ 100 MeV4 in our
analyses.

III. RESULTS

We show our numerical results in this section. We first
determine the value of Gv4ð0Þ from LQCD data on nq=nSB
in the μq=T ¼ 0 limit [4,11]. As for the RMF model, it is
shown that MTEC and TM1 are proper EoSs, through the
comparison with NS observations.
Next, from the combinations of the two hadron-phase

EoSs and EPNJL types (1)–(3), we construct TPMa1–
TPMa3, TPMb1–TPMb3. In the TPMa3 and TPMb3, the
density-dependent strengthGv4ðnqÞ of the vector-type four-
quark interaction is introduced. We parametrize the density
dependencewith a Gaussian form having a single parameter
b, shown in Eq. (5). We determine the lower bound of b
assuming that the hadron-quark phase transition takes place
in the core of aNS.By using sixmodels, theMR relation and
the bandof the hadron-quark phase transition line that allows
the quark phase to exist in the core of NS are calculated.

A. DETERMINATION OF THE VALUE OF Gv4ð0Þ
In the T > Tpc region, the chiral condensate σ is nearly

equal to zero, that is, the chiral symmetry is restored.
Hence, the scalar-type four-quark interaction becomes
negligible and only the vector-type four-quark interaction
contributes to the ratio nq=nSB that is μq-even and therefore
finite even in the μq=T ¼ 0 limit. Thus, we determine the
value Gv4ð0Þ from LQCD data on nq=nSB at T > Tpc.
Figure 2 shows T dependence of nq=nSB. Here, T is

normalized by Tpc ¼ 171 MeV. In EPNJL model calcu-
lations,m0 is taken to be 130 MeV, as already mentioned in
Sec. II. If the vector-type four-quark interaction is zero,
the EPNJL model largely overestimates the LQCD data.
Meanwhile, good agreement is seen for the case of
Gv4ð0Þ ¼ 0.36Gs4 at high T such as T ¼ 2Tpc. The
comparison between the solid and dashed lines suggests
that the entanglement coupling in Gv4ð0Þ is necessary to
reproduce the LQCD data. The result of m0 ¼ 5.5 MeV is
also plotted. Comparing the dotted line with the solid line,
we find that m0 dependence is small at high T. This means
that the value of Gv4ð0Þ can be determined at high T even if
m0 is heavier than the physical value. For this reason, we
use the Gv4ð0Þ ¼ 0.36Gs4 and set m0 ¼ 5.5 MeV when we
analyze the NS property.

B. SELECTION OF RMF MODEL

Now, we select preferable RMF EoSs from the MR
relation. TheMR relation has one-to-one correspondence to
the EoS through the Tolman-Oppenheimer-Volkov (TOV)
equation [42]

FIG. 2. Temperature dependence of nq=nSB in the μq=T ¼ 0
limit. The temperature is normalized by the Tpc ¼ 171 [MeV].
The data are the LQCD results [4,11]. The lines are the results of
calculations for the cases with ~Gv4ð0Þ (solid), Gv4ð0Þ (dashed),
and without the vector-type four-quark interaction (dotted-
dashed). The dotted line corresponds to the results with
m0 ¼ 5.5 MeV.

DETERMINATION OF HADRON-QUARK PHASE … PHYSICAL REVIEW D 94, 014024 (2016)

014024-5



dP
dr

¼ −G
Mϵ

r2

�
1þ P

ϵ

��
1þ 4πPr3

M

��
1 −

2GM
r

�
−1
;

dM
dr

¼ 4πr2ϵ;

where G is a gravitational constant and ϵ is an energy
density. The NS has a crust region at low densities. As an
EoS of the crust region, we use that of Miyatsu et al. [43].
In solving the TOV equation, the electron and the muon

should be taken into account to satisfy the charge neutral
condition. We treat the electron as a massless free fermion
and the muon as a massive free fermion. If the number
densities, ne and nμ− , of the electron and muon are known,
the charge neutral condition is given by

np ¼ ne þ nμ− ð14Þ

for the proton number density np. In the core of a NS, the β-
equilibrium condition is also satisfied:

μi ¼ biμB − qiμe ð15Þ

for i ¼ p, n, e, μ−, where bi (qi) is the baryon number (the
electric charge) of particle i and μe is the electron chemical
potential. Solving the TOV equation numerically with the
EoS that satisfies Eqs. (9) and (10), we can get the MR
relation.
Figure 3 illustrates the MR relation calculated by the

MTEC EoS, TM1 EoS, and NL3 EoS. The data on the MR
relation in Fig. 3 are taken from Refs. [28–30]. The
maximum mass Mmax and radius Rmax are tabulated in
Table IV. From Fig. 3, one can see that the MTEC EoS is
most consistent with all the data, particularly in the 2Msun
region. The TM1 EoS predicts a bit larger maximum radius,

but it reproduces the data of the MR relation considerably
well. In the NL3 EoS, the resulting Mmax and Rmax are
inconsistent with the data of the MR relation. We therefore
take the MTEC and TM1 EoSs as the hadron-phase EoS
and construct the TPMa1–TPMa3, TPMb1–TPMb3.

C. TRANSITION LINE OF TPMa1 AND TPMb1

We first consider the possibility of the hadron-quark
phase transition in the core of NS by using TPMa1 and
TPMb1. If the quark phase appears in the core of a NS, the
charge neutral and the β-equilibrium conditions should also
be imposed on the quark-phase EoS:

FIG. 3. MR relation for three RMF EoSs. The two horizontal
boxes are the 2Msun observational data [28,29]. The two areas
correspond to the 68% and 95% confidence counters estimated by
Steiner et al. [30].

TABLE IV. The maximum mass (Mmax) and radius (Rmax)
predicted from three RMF models. The mass is normalized by the
mass of sun Msun.

MTEC TM1 NL3

Mmax=Msun 2.02 2.18 2.77
Rmax (km) 10.8 12.3 13.2

FIG. 4. (a) MR relation calculated from the TPMa1 (solid),
TPMb1 (dashed). For comparison, the MR relation calculated
from the MTEC and TM1 EoSs are also plotted. (b) Hadron-
quark phase transition lines for TPMa1 and TPMb1.
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2

3
nu −

1

3
nd ¼ ne þ nμ− ;

μu ¼
1

3
μB −

2

3
μe;

μd ¼
1

3
μB þ 1

3
μe;

where nu (nd) is the u-quark (d-quark) number density.
Which phase is realized is determined from the Gibbs
criterion.
In Fig. 4, panel (a) shows the MR relations calculated

with TPMa1 and TPMb1. For comparison, the results
calculated from the MTEC and TM1 EoSs are plotted.
In TPMa1, the quark phase appears at M ¼ 1.97Msun
before reaching Mmax ¼ 2.02Msun and is consistent with
the data on the MR relation. Also in the TPMb1, the
quark phase emerges at M ¼ 2.04Msun before reaching
Mmax ¼ 2.17Msun.
Panel (b) of Fig. 4 shows the hadron-quark phase

transition line in the T − μB plane for TPMa1 and
TPMb1. The critical baryon chemical potential μcB of the
transition at T ¼ 0 is 1750 MeV for TPMa1 and 1560 MeV
for TPMb1. If the Gv4ð0Þ is positive, the quark-matter EoS
becomes stiffer and thereby the predicted values of the NS
mass and μcB are increasing. Therefore, TPMa1 and TPMb1
yield the lower bound of μcB for each class of TPM for the
quark phase to take place in the core of a NS.

D. TRANSITION LINE OF TPMa2 AND TPMb2

Next, we consider TPMa2 and TPMb2 with
Gv4ð0Þ ¼ 0.36Gs4. Figure 5 illustrates the hadron-quark
phase transition line for TPMa1 and TPMa2. One can see
that the existence of Gv4ð0Þ delays the transition toward
higher μB. The value of μcB for TPMa2 is 2600 MeVand the
corresponding density is 13ρ0. Such a density does not
realize in the core of NS and hence the quark phase does not
appear in the core of NS for TPMa2.

As for TPMb2, we find that the hadron-quark phase
transition line does not reach the μB axis. The reason is that
the self-interaction ðωμωμÞ2 of the ω meson further
stabilizes the hadron phase with respect to increasing μB,
while the vector-type four-quark interaction suppresses the
appearance of the quark phase. In fact, the quark phase is
confirmed to never appear in the core of a NS for TPMb2.

E. DENSITY DEPENDENCE OF Gv4 AND
TRANSITION LINE OF TPMa3

AND TPMb3

Finally, we consider TPMa3 and TPMb3. In TPMa3 and
TPMb3, the quark phase is described by the EPNJL of type
(3); that is, the strength of the vector-type four-quark
interaction depends on the quark number density nq [see
Eq. (5)]. For TPMa3 (TPMb3), ρ0 ¼ 0.153ð0.145Þ fm−3 is
applied, which is the value predicted by the hadron phase
model. The form of Eq. (5) ensures that the interaction is
invariant under the charge conjugation and Gv4ðnqÞ is
positive for any nq. When Gv4ðnqÞ is negative, there is the
possibility that the vector meson masses calculated with
the random-phase approximation become negative.
Consequently, the Gv4ðnqÞ varies in a range 0 ≤
Gv4ðnqÞ ≤ Gv4ð0Þ ¼ 0.36Gs4.
Now, we discuss the lower bound of b by assuming that

the quark phase takes place in the core of NS. The left panel
of Fig. 6 shows the MR relation calculated with TPMa3. In
TPMa3, the quark phase appears at Mmax ¼ 2.02Msun and
nq ¼ 7.2ρ0, when the value of Gv4ðnqÞ is equal to 0.12Gs4.
This means that 0.12Gs4 is the maximum value of Gv4ðnqÞ
for the quark phase to appear in the core of a NS. The
corresponding value of b is 0.001. The right panel of Fig. 6
illustrates the hadron-quark phase transition line. The lower
bound of the line is determined by the TPMa1 and the
upper bound is the TPMa3 with b ¼ 0.001. The values of
μcB lie in the range 1750 MeV ≤ μcB ≤ 1910 MeV. If the
value of μcB exists in this region, the hadron-quark phase
transition occurs in the core of a NS. Note that the
maximum value μcB ¼ 1910 MeV is much smaller than
μcB ¼ 2600 MeV in TPMa2 shown in Fig. 5.
The left panel of Fig. 7 shows the MR relation calculated

with TPMb3. As for TPMb3, the quark phase appears at
Mmax ¼ 2.17Msun and nq ¼ 6ρ0, when the value of
Gv4ðnqÞ is equal to 0.18Gs4, which is the maximum value
ofGv4ðnqÞ for the quark phase to appear in the core of a NS
in TPMb3. The corresponding value of b is 0.001 and this
is common to both TPMa3 and TPMb3. The right panel of
Fig. 7 illustrates the hadron-quark phase transition line. The
lower bound of the line is determined by the TPMb1 and
the upper bound is the TPMb3 with b ¼ 0.001. The values
of μcB lie in the range 1560 MeV ≤ μcB ≤ 1860 MeV. The
lower bounds of μcB are not the same for TPMa1 and
TPMb1, but the upper values for TPMa3 and TPMb3 are
nearly equal.

 0
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FIG. 5. Hadron-quark phase transition line for TPMa1 and
TPMa2.
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IV. SUMMARY

Understanding of the QCD phase diagram in the whole
region of the μq − T plane is a goal of hadron physics. In
addition, the diagram on the T ¼ 0 axis yields important
information on astrophysics. In particular, the location of
the hadron-quark phase-transition point on the T ¼ 0 axis
determines whether the phase transition really occurs in the
core of a NS. The sign problem prevents LQCD simulations
from approaching the high μq=T region. Therefore, the
effective model approach is quite essential to explore the
appearance of the quark phase in the core of a NS.
In this paper, we constructed the TPM in which the

EPNJL model is used in the quark phase and the RMF
model is used in the hadron phase. To make the TPM
reasonable, we took LQCD data and NS observations as
reliable constraints. For the quark-phase model, we

determined the density-independent strength Gv4ð0Þ of
the vector-type four-quark interaction from LQCD data
on nq=nSB in the μq=T ¼ 0 limit with small error bars. The
obtained value is Gv4ð0Þ ¼ 0.36Gs4, which is a bit larger
than that in our previous work. For the hadron phase, we
take three RMF models: NL3, TM1 and MTEC. We
compared calculated MR relations with observed ones.
We found that MTEC is most consistent with the data and
TM1 is the second best, while NL3 is inconsistent.
We then take MTEC and TM1 for the hadron part of

TPM and considered six types of TPMs (TPMa1–a3 and
TPMb1–b3) that are combinations of the two types of
hadron-phase EoSs and the EPNJL of types (1)–(3). For
TPMa3 and TPMb3, we introduced the density-dependent
strength Gv4ðnqÞ of the vector-type four-quark interaction
and assumed that the density dependence is described as a
Gaussian form having the single parameter b.

FIG. 6. Left panel: MR relation calculated from TPMa3. The results from the TPMa1 and MTEC EoSs are also plotted. Right panel:
Band of the hadron-quark phase transition line. The upper (lower) bound of the band is calculated from TPMa3 (TPMa1). This region
allows the quark phase to appear in the core of a NS.

FIG. 7. Left panel: MR relation calculated from TPMb3. The results from the TPMb1 and TM1 EoSs are also plotted. Right panel:
Band of the hadron-quark phase transition line. The upper (lower) bound of the band is calculated from TPMb3 (TPMb1). This region
allows the quark phase to appear in the core of a NS.
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The MR relation and hadron-quark phase transition
line are calculated for six TPMs. As a result, the
hadron-quark phase transition occurs in the core of
a NS when 1750 MeV ≤ μcB ≤ 1910 MeV for TPMa and
1560 MeV ≤ μcB ≤ 1850 MeV for TPMb. For both TPMa
and TPMb, the corresponding minimum value of b
is b ¼ 0.001.
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