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Starting from a relativistic Lagrangian for pseudoscalar Goldstone bosons and vector mesons in the
antisymmetric tensor representation, a one-loop calculation is performed to pin down the divergent
structures that appear for the effective low-energy action at chiral orders Q% and Q*. The corresponding

renormalization-scale dependencies of all low-energy constants up to chiral order Q* are determined.
Calculations are carried out for both the pseudoscalar octet and the pseudoscalar nonet, the latter in the
framework of chiral perturbation theory in the limit of a large number of colors.
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I. INTRODUCTION AND SUMMARY

A. Scale separation

Chiral perturbation theory (yPT) [1-5], the low-energy
incarnation of the nonperturbative aspects of the standard
model of particle physics, is based on a separation of scales.
This separation allows for systematic power counting and
qualifies yPT as an effective field theory. The dynamical
(low-energy/soft) scale is provided by the masses of the
lowest pseudoscalar multiplet, the Goldstone bosons. Their
smallness is caused by the smallness of the current quark
masses of the lightest (two or three) quark flavors. To be
more specific, the spontaneous breaking of chiral symmetry
demands the appearance of massless pseudoscalar
Goldstone bosons. The explicit breaking of chiral sym-
metry by the current quark masses induces nonvanishing
masses for these pseudoscalars. But the masses are small as
compared to typical hadronic scales. The latter are related
to the scale Agcp where the strong interaction really
becomes strong, which in turn is caused by the scale
anomaly of the theory [6,7].

Coming back to the scale separation, the static (high-
energy/hard) scale is given by the typical hadronic
scales. Conceptually, it is useful to distinguish between
different high-energy scales [8]. The “external” high-
energy scale is the energy where neglected degrees of
freedom become important. For chiral perturbation
theory, this scale is at least given by the vector-meson
mass my ~0.77 GeV of the @ and p mesons [9,10] if
not by the mass of the somewhat lighter 6 meson [11].
The “intrinsic” high-energy scale is given by the energy
where loops become as important as tree-level diagrams.
For chiral perturbation theory, this scale is roughly
at 4zF, ~ 1.2 GeV.

Conceptually, the scale separation provides a clear-cut
power counting scheme if the momenta of the considered
processes are on the order of the Goldstone-boson masses.
Expansions are carried out around the formal limit where
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the considered momenta vanish along with the Goldstone-
boson masses. The latter takes place in the chiral limit.
It is clear that the smaller the dynamical scale relative to the
static scale is, the better the convergence of the expansions.
For the two lightest quark flavors, there is a large scale
separation between the pion mass and corresponding
momenta at close-to-threshold processes on the one
side and the typical hadronic scales mentioned above on
the other side. Including strangeness, however, with a
kaon mass (dynamical scale) of about 500 MeV and a
K* mass (degree of freedom that is integrated out) of
about 900 MeV, the scales already move significantly
together [11].

Another formally clear-cut power counting scheme,
where however the numerical values for the dynamical
and the static scale gets even more intertwined, is yPT for
a large number of colors, N, [12,13]. In the combined
N, — o and chiral limit, the mass of the n meson
vanishes [14,15]. The pseudoscalar octet is enlarged to
anonet. Systematic expansions in powers of 1/N ., masses
of the nonet states, and momenta become possible [16].
Schemes based on yPT and the large-N,. expansion
[17-19] lead to many phenomenologically appealing
results in spite of the fact that in the real world the mass
of the ' is not at all lower than the masses of mesonic
resonances like the vector mesons. In the large-N . limit,
one has the ordering

my, < my, < (4nF,)%. (1)

The first quantity scales like 1/N,. [14,15]. For the mass of
a typical mesonic resonance, here the vector-meson mass
my, scales like 1/N?. Finally, the scale where loops
become as important as tree-level processes, (47F,)?%,
scales like N.. In the real world, (1) is contrasted by

m} < mi/ < (4nF,)*. (2)
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Nonetheless, the large-N, approximation provides many
insights in the dynamics of hadrons [12-19].

B. Excursion to baryons

The previous discussions provide a motivation why one
might want to include additional degrees of freedom on top
of the Goldstone bosons. Before addressing the central
aspect of this work, the inclusion of vector mesons, it is
illuminating to discuss a better established case where
additional degrees of freedom have been included in the
framework of chiral perturbation theory, namely, the case of
baryons [20]. As always, one has to distinguish the two-
[5,21-25] and three-flavor [19,26-31] case, and it should
be clear that the scale separation and therefore the con-
vergence properties are better for the two-flavor case. But,
in addition, it matters whether the scheme treats the baryons
relativistically [5,19,23-25,28-34] or nonrelativistically
[21,22,26,27] and whether [19,21,23-27,29] or not
[5,22,28,30,31] the decuplet (for two flavors: the Delta
iso-quartet) is included on top of the ground-state baryon
octet (for two flavors: the nucleon iso-doublet).

Before addressing these issues, we should stress right
away that the inclusion of baryonic degrees of freedom in a
chiral effective-field-theory framework is conceptually
much more straightforward than the inclusion of (non-
Goldstone) mesonic degrees of freedom (meson resonan-
ces). Because of baryon number conservation, a heavy
(static) scale—the baryon mass—remains in the considered
process from beginning to end. The small (dynamical)
scales are then given by the masses of the Goldstone
bosons, the three-momenta of the involved particles, and
the mass differences between the baryon states. In contrast,
for a meson resonance, one has to deal with the fact that this
resonance can decay into Goldstone bosons. If one treats
the resonance mass as a heavy (static) scale, like the baryon
mass, then this implies that the momenta of the emerging
Goldstone bosons cannot (all) be soft [35-38]. One
suggestion to deal with this problem is the hadrogenesis
conjecture [39-45] where a significant mass gap is pro-
posed between the J” = 07, 17,1, and 3 ground states on
the one hand and all other large-N . stable hadrons on the
other hand. In this scheme the vector-meson mass con-
stitutes a dynamical/soft scale. Consequently, all Goldstone
bosons emerging from vector-meson decays have soft
momenta. The work presented here is fully compatible
with the hadrogenesis conjecture, but it is not restricted to
it. In the present work and in [46], we explore the
quantitative impact of one-loop contributions with dynami-
cal vector mesons on the low-energy effective action and on
the properties of pseudoscalar mesons. Vector-meson
masses and coupling constants are adopted from phenom-
enology. The formal power counting of the vector-meson
mass is of little concern as we fully integrate out the vector
mesons. We come back to this point below after discussing
the case of baryon yPT.
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In spite of the conceptual difference between the
inclusion of baryons or mesons, we want to use the better
established case of including baryonic degrees of freedom
to discuss two issues relevant for both cases (meson and
baryon): (i) connected to the previous discussion around (1)
and (2), the issue of how well or not well separated the
static and the dynamical scales actually are in practice and
(i1) the important technical issue how to deal with loops that
contain non-Goldstone bosons.

In the chiral limit, one can find a momentum regime
where only the ground-state baryons and the Goldstone
bosons are active degrees of freedom. In reality, however,
the mass difference between Delta and the nucleon is not
very large [11]. In fact, in the combined chiral and large-N,.
limit (and ignoring electromagnetic effects), the nucleon
and Delta become degenerate [17]. Thus, it might make
sense to include the Deltas (and their flavor partners) as
active degrees of freedom. Of course, this adds credit to the
central theme of this work, the inclusion of additional
degrees of freedom.

If baryons are included in chiral perturbation theory, it
turns out that the naive chiral power counting of loops is
spoiled by the appearance of the additional static scale, the
(average) baryon mass [20]. This problem will not show up
if one treats the baryons nonrelativistically (heavy-baryon
chiral perturbation theory). In principle, all contributions
from a nonrelativistic expansion (Foldy-Wouthuysen
expansion) of relativistic interactions and propagators show
up at appropriate orders in the chiral power counting. In
reality, however, it turns out that often better results are
obtained with a fully relativistic framework, see, e.g.,
[5,28,31]. If the convergence properties were excellent,
this would not matter. In reality, it does to some extent, even
for the case of two flavors.

In a relativistic setup, there are, in principle, two
possibilities how to deal with loop integrals: (a) One splits
up each integral in two parts, one that is in accordance with
the chiral power counting and one that is not. The latter is
then disregarded. We note in passing that there are several
ways how to perform this splitting of integrals [29,32-34].
The quality of convergence might depend on the way that
one chooses [31]. The alternative (b) is to keep the integrals
as they are. As a consequence, the integrals do not only
contribute at the chiral order that is formally assigned to
them. Instead (polynomial parts of) the integrals contribute
to lower, i.e., more important, orders of the chiral expan-
sion. Corresponding low-energy constants from these lower
orders serve to renormalize the loops [20]. This is the
approach that we follow in the present work.

We summarize the discussion of baryon chiral perturba-
tion theory as follows: The more separated the hard and soft
scales are the less it matters how one includes heavy
degrees of freedom. But the closer the scales move to each
other, the more problematic it might become to ignore the
loops with additional degrees of freedom or parts of these
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loops. Consequently, we use in the present work a fully
relativistic framework and identify explicitly the counter
terms for the loop divergences irrespective of the formal
chiral order of the loops and counter terms.

C. Inclusion of vector mesons

While there is a clear gap between the masses of the
lightest pseudoscalar mesons and the masses of other
hadrons built from the lightest two quark flavors, the mass
difference for the light vector mesons and the # meson is
not that big anymore. The 7' meson is even heavier than
most of the vector mesons from the lowest-lying multiplet.
All this concerns the physical masses. On the theory side,
there is one more situation where the dynamical and the
static scale move closer together: Still, until today, a
significant part of lattice QCD calculations deals with
too heavy “light” quark masses [47]. Therefore, it is valid
to discuss if and, if yes, which hadrons should be included
as additional degrees of freedom in an extended effective
theory. The lightest non-Goldstone boson, the ¢ meson, is a
notoriously complicated state; see, for instance, the dis-
cussion in [11] on low-lying scalars. In addition, it is a very
broad resonance. Thus, its general impact might be limited.
On the other hand, the low-lying vector mesons have both
masses close to the Goldstone-boson masses and small
widths. Thus, they are expected to be prominent in an
effective theory including Goldstone bosons and other light
mesons.

As already mentioned, the inclusion of additional
mesonic degrees of freedom in an effective theory is
not free of complications and/or input assumptions.
Concerning the scale separation, one complication is
caused by the fact that numerically the masses of the
vector mesons are similar to the scale 4zF, where loops
become as important as tree-level contributions, see (1) and
(2). Here, a possible solution could come from the
resummation of the numerically most important loop
diagrams [29,44,45,48].

Another important issue is the representation depend-
ence. In principle, it should not matter for an effective
theory whether vector degrees of freedom are represented,
e.g., by ordinary vector fields, massive Yang-Mills fields,
hidden gauge fields, or antisymmetric tensor fields; see,
for instance, the discussions in [49-51]. However, the
explicit power counting, i.e., the classification of interac-
tion terms and diagrams, might change when changing the
representation.

In the present work, we have a much more modest aim
than setting up and/or checking the validity of a power
counting scheme for vector mesons. Here and in the follow-
up work [46], we check the quantitative influence of one-
loop contributions with dynamical vector mesons. We have
chosen the antisymmetric tensor representation based on its
phenomenological success, see, e.g., [2,9,52,53]. The
present work should be understood as a feasibility study

PHYSICAL REVIEW D 94, 014021 (2016)

for one-loop calculations with vector mesons in the anti-
symmetric tensor representation. In addition, we intend to
scrutinize the effective-field-theory assumption that at low
—but practically relevant—energies the influence of vector
mesons can fully be accounted for by the low-energy
constants of the chiral Lagrangian. Starting out from a
Lagrangian with vector mesons, one will obtain a nonlocal
effective action if one integrates out the vector mesons and
the fluctuations in the pseudoscalar fields. The local part of
this effective action, i.e., the polynomial terms, can be
matched by an adjustment of the low-energy constants. The
nonlocal part, related to the logarithms emerging from the
loop integrals, can only be matched if it is further Taylor
expanded. However, if this part is numerically significant,
the Taylor expansion might not converge very well and
jeopardize in that way the convergence of the chiral
expansion. In the present work, we address the cancellation
of one-loop divergences by the counter terms provided in
the form of the low-energy constants of yPT. Equipped
with the knowledge about these local structures, we address
in the follow-up work [46] the possible importance of the
nonlocal logarithmic structures.

As already discussed, the inclusion of additional
(mesonic) degrees of freedom in yPT is representation
dependent. Vector mesons can be described as vectors or
antisymmetric tensors or can be included via a hidden local
gauge mechanism [54]. As a glance of this representation
dependence, we compare in this article our final results to
those obtained from a hidden local gauge mechanism [54].

Aiming at a systematic inclusion of vector mesons as
active degrees of freedom in an effective-field-theory
framework, we perform in the present work a feasibility
study concerning renormalization aspects at the one-loop
level. We focus on the full effective actions at chiral order
Q? and Q* where the vector mesons have been completely
integrated out. This approach is complementary to the
explicit calculation of selected n-point functions as carried
out, for instance, in [55] for vector-meson properties or in
[56-59] for some low-energy constants of yPT. Note that in
the latter works not only vector mesons have been
considered, and also, additional assumptions about the
high-energy behavior [60] of resonance Lagrangians have
been made there. We are aiming at the construction of a
low-energy theory for the lowest-lying (vector-meson)
resonances and do not claim that our theory is valid a
high energies. Therefore, it is not possible to compare the
divergences calculated in [56—59] with the results obtained
within this article.

In the present work, we determine the infinity structure
and the corresponding renormalization-scale dependence of
all low-energy constants up to chiral order Q* that are
needed to compensate the corresponding effects from loops
that include vector mesons. The found scale dependence
should be qualitatively interpreted in the following way:
The finite parts of the loops with vector mesons depend on

014021-3



CARLA TERSCHLUSEN and STEFAN LEUPOLD

the masses of vector and pseudoscalar mesons, on the
external momenta, and on the renormalization scale. For
observables, (only) the scale dependence of the loops is
compensated by the scale dependence of the low-energy
constants. What is particularly interesting for observables is
the impact of loops with vector mesons on the momentum
dependence. Concerning results of the lattice calculations
also, the impact on the quark-mass dependence is of interest.
Based on dimensional arguments, it can be expected that at
least part of the log u> dependence, which we uncover in the
present work, comes along with a logs and/or log m3
dependence of observables. Here, ;1 denotes the renormal-
ization scale, s the square of a generic external momentum,
and mp the mass of a pseudoscalar Goldstone boson.
Detailed studies of these dependencies of observables
are delegated to future works, where one is already in
progress [46].

We concentrate in the present work on the appearing
infinities as defined by a slightly modified MS bar scheme
according to [3]. Technically, we use nonperturbative path-
integral methods to keep the full chiral structure of the
effective Lagrangian instead of just calculating loops for
specific n-point functions. In contrast to yPT one-loop
calculations as carried out in [2,3], a standard heat-kernel
technique cannot be used for vector mesons represented by
antisymmetric tensor fields since these fields contain frozen,
nonpropagating degrees of freedom which have different
short-distance behaviors compared with the active, propa-
gating degrees of freedom. This is an unfortunate finding
because the standard heat-kernel technique keeps in every
step the full chiral structure of the effective action and brings
along recursive relations which simplify and systematize the
calculations when proceeding from one chiral order to the
next. We regard it as illuminating to devote a subsection to
the discussion of this not working technique before we
present a formalism that does work and serves to isolate and
classify the infinities of the loop calculations. The calcu-
lations are involved, but a viable cross-check emerges from
the fact that the full chiral structure needs to be reconstructed
in the end from several distinct expressions. In other words,
the elegance of the heat-kernel technique of [2,3] concerning
the full chiral structure is lost, but technically a powerful
cross-check of the results has been gained.

Given that the calculations are rather involved, we have
decided for this exploratory work that we limit the
possible interaction terms between vector mesons and
low-energy degrees of freedom. We only consider the
(chiralized) three-flavor versions of the phenomenologi-
cally well-known p — 2z and p — v couplings where v
denotes an external vector source. Other interaction terms
that might be relevant for a full effective theory of
pseudoscalar and vector mesons are presented and dis-
cussed, e.g., in [43,53].

The article is organized in the following way. In Sec. 11,
the building blocks and pertinent Lagrangians for
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pseudoscalar and vector mesons are introduced. It is
discussed how one-loop contributions in this framework
are calculated. Hereby, approaches for calculating one-
loop contributions with vector mesons which are not
applicable are discussed as well. The calculation itself
is split up into two parts. First, in Sec. III, we discuss one-
loop contributions for yPT plus vector mesons and their
influence on the low-energy constants of yPT for the case
where one includes only the pseudoscalar Goldstone
octet. Afterwards, the calculations are extended by includ-
ing the n-singlet as well (Sec. IV). All calculations are
carried out up to (including) chiral order Q* In the last
section, an outlook is given.

II. GENERAL CONSIDERATIONS

In this section, techniques used to calculate the one-loop
contributions of light vector mesons are introduced. We
also document (in Secs. II B and II C) methods which were
tested in order to calculate the one-loop contributions but
turned out to be intractable.

Although in the classical sense effective theories are
nonrenormalizable, they can be renormalized order by
order. In pure yPT, a diagram containing n loops is at
least suppressed by order Q%" for a typical momentum Q
according to general power counting arguments [1-3]. To
calculate diagrams up to O(Q*) in pure yPT, both tree-level
diagrams based on the leading-order (LO) and next-to-
leading-order (NLO) Lagrangian and loop diagrams based
only on the LO Lagrangian have to be involved. In [2,3],
the one-loop contributions to the effective action were
calculated using the pure yPT-Lagrangian describing
pseudoscalar fields only. Based on the techniques used
therein, one-loop contributions including light vector mes-
ons are calculated in this article. Thereby, the calculations
are first restricted to the pseudoscalar octet; the singlet is
only included in Sec. I'V. These calculations are a feasibility
check for loop calculations based on a Lagrangian that
includes vector mesons (in the antisymmetric tensor
representation).

In this article, the yPT power-counting scheme is used;
i.e., both derivatives and pseudoscalar masses are treated as
soft while the vector masses are not,

d,. mp € O(Q), my € O(1). (3)
Thus, the effective action will not contain vector mesons.
They are fully integrated out.

In the following, we perform one-loop calculations based
on the LO Lagrangian of yPT and on a vector-meson
Lagrangian to be specified below. We focus in the present
work on those infinities where the counter terms are
provided by the low-energy constant of the yPT
Lagrangians of LO, O(Q?), and NLO, O(Q*). Those
Lagrangians are given by [3]
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L(D,U'D*U)* + Ly(D,U'D,U)* + L3((D,U'D*U)?) + Ly(D,U'D*U)(¥"U + xU")

+ Ls((D,UD*U)(y'U + U'y)) + Le(r'U 4+ yU")* + Ly (y"U — yU")* + Ly (y ' Uy"U 4+ y Uy U")
— iLo(F D,UD,U" + F{*D,U'D,U) + L o(U FUFL)) + H\(FR Fiy + FLF}*) + Hy(x'x). (4)

The matrix U :=exp(i®/F) describes the pseudoscalar
fields with the octet matrix

71.0 +%778 \/§”+ \/§K+
o=| V2rr =2+ png V2K | (5)
V2K~ V2K° _%’78

while the external vector, axialvector, scalar, and pseudo-
scalar sources v,, a,, s, and p, respectively, are included
in FR:=v,+a, FL=wv,—a, and y:=2B(s+ip).
Throughout this work, we ignore isospin breaking effects.
Thus, we use an averaged quark mass m, for up and down
quarks. The strange-quark mass m, is kept distinct. If
the external fields are switched off, y =2ByM :=
2Bydiag(m,, m,, m,). Furthermore, (A) := tr(A) and'

D,U = 8,U - iF*U + iUF%,
DU = ,U" + iU Fly — iFL U,
FRb =0, P8 =0, FX" —ilFY" FEM. (6)

The vector mesons are given in an antisymmetric tensor
representation and collected in the nonet matrix

P+ o N2k V2K,
V;w = \/20;1/ _pgy + Wy \/_ ;u/ : (7)
\/EK v \/EI_(BU \/_¢/w

Approximating the vector-meson masses by a common
mass my = 776 MeV, the vector-meson Lagrangian used
in this article is given as [42,43]

['vec = ‘Cfree + ‘Clinv

1 1
'Cfree = _Z <DﬂV/u/Dpry> + gm%/<V/wVW>a

1, 1
Elin = 5 lthP<u;4VMDZ/[U> + EfV<V”Df;u>’ (8)
with the still to be determined parameters f and /p and the
abbreviations

'Note that the chirally covariant derivative D, is defined
depending on the field it is acting on and acts dlfferently onU, Ut
and the vector field V.

DMVO,/; = aﬂVaﬂ + [F/u VaﬂL

1 .
r, = E(W,aﬂu} — iu" FRu + iuFLu'),
U '—1 D, Uut = ! D, U'
u = El/t " u = _Eu u u,
1
f’:ltD:=§< I:I:I/tIF,,M)
U = u?. )

With the particular choice of the kinetic terms given in (8),
the three vector-meson fields V;; for i, k=1, 2, 3 are
frozen, i.e., non-propagating fields [9]. For a different
choice of the kinetic terms, other fields would be non-
propagating.

Note that the chiralized “free” Lagrangian L., does
contain interactions encoded in the chirally covariant
derivative. The interactions between vector mesons and
low-energy degrees of freedom are limited to V — 2P and
V — v couplings with vector mesons V, pseudoscalar
mesons P, and an external vector source v, as already
discussed in the Introduction. These couplings describe the
most prominent ways of interactions of vector mesons with
pseudoscalar mesons. In particular, if one probes pions by
the electromagnetic interaction, the pion form factor
receives significant contributions from an intermediate p-
meson, see, e.g., [53,61] and references therein. The next
most significant terms, the 2V — P coupling [42,53] and the
mass splitting of the vector-meson masses [42,43], are not
part of the present feasibility study. Note that the notation
used within this article follows the one used in [43] and
differs from, e.g., the one used in [9]. In Table I, the
corresponding notations are matched.

The generating functional to calculate one-loop contri-
butions is given by

eifd%ﬁ%‘TO[U]/dﬂ (U, Ve i [at =

Ly = E 1+ Lyec

The first integral describes tree-level diagrams up to O(Q*)
only so that it has to be evaluated at the classical solution U
for pseudoscalar fields determined through the equation of
motion (EOM) of the LO-yPT Lagrangian E 1. Hereby,
the vector-meson fields are treated as pure ﬂuctuatlons, 1.e.,
they do not contribute to the classical fields. The integral
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TABLE 1. Comparison between notations used in this article
and in [9]. The latter are denoted by ".

Notation in this article Notation in [9]

{®.V,,} {,V,} = 5{®. V)

w=U= exp(z%) 02 = lA] = exp(—\/ii%) =yt
— IR AT -

DU =0,U—-iFRU b,U=0,U" —iFRUT
+iUF% +iU'FL
I, =3([u’,0,u) —iu"FRu I, =3[, 0,u) — iuFRu’
—iuFku®) —iu'Flu)
u,= Tu; = ;u'D,Uu’ , = iy, = io"D, U’

iz = f(uFﬁqu + MIF;TDM) fj:u = 2( /ﬁ)-r
yo=uyu' £uytu Je=uwyutuytul
{hp.fv} {Gv.Fy} = {ifvhp.fv}

measure dy denotes an integral over the pseudoscalar and
vector fields U(x) and V,,(x), respectively.

To calculate the one-loop approximation, the field U is
expanded around its classical solution U as [3]

U = iexp”i, U =i, (10)
whereby & is a traceless, Hermitian matrix. Treating in
addition the vector-meson fields V as fluctuations yields a
combined fluctuation vector & = (£, V). Therewith, £, can
be expanded in the neighborhood of the classical solution
U. In that way, we define the matrix operator D via

[ i) = [ 0] [atats mne i)
+O@) (1)

The one-loop contribution can be expressed in terms of D
and, up to an irrelevant constant, is given by

1
Z one loop = Eilog(detD). (12)

Since the vector-meson fields are treated as pure fluctua-
tions, the one-loop contribution depends only on the
classical pseudoscalar fields and on external sources.
Thus, all singularities therein have to have the structure
of terms in the pure yPT-Lagrangians and have to renorm-
alize the low-energy constants therein such that the one-
loop approximation for Z is finite. In the present work, we
restrict ourselves to L0 and L5

A. Determining the matrix D for a general Lagrangian

If one-loop contributions are calculated using Eq. (12),
the matrix D defined according to Eq. (11) is needed. It can
be determined by expanding an action Z = | d*xL at the
classical fields U. Let Z be a general action depending on
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fields A;, i = 1, ..., n for a given n € N. Then, the EOM of
a field A; reads as

oz

0=_—2
0A,

{Ai}={A;}

for all j=1,...,n. Hereby, {A;} denotes the classical
fields. With the EOM, the action can be expanded and the
matrix operator D determined according to (integrations are
implicit)

Z{AY] = 21{A)] - 3 EDE + O(),
0Z

S — . 13
OAIX)OA; (M) 4~y -

Dij(x7y) -

B. Expanding the one-loop contribution in powers of
pseudoscalar and other external fields

In general, one is not only interested in how the low-
energy constants are renormalized by the one-loop con-
tribution including light vector mesons but also in their
influence on observables like the pseudoscalar masses and
decay constants (see further work by the same authors
[46]). Thus, one might wonder whether one can determine
the renormalization of (some of) the low-energy constants
by just calculating two-point functions, i.e., by expanding
the one-loop functional up to second order in classical
fields and/or external sources. However, there are several
chiral structures up to O(Q*) which contribute in the same
way to (on shell) two-point functions. Therefore, only
linear combinations of low-energy constants are related in
this way to the infinities emerging from loops with vector
mesons. To disentangle the impact of the loops on the
various low-energy constants, one has to keep the complete
chiral structure encoded in the field U instead of expanding
in powers of the fields.

C. Heat-kernel approach

Since the one-loop calculation including light vector
mesons seems to be similar to the calculation with
pseudoscalar mesons only, one could try to follow [2,3]
using a heat-kernel approach. In general, for using a heat-
kernel approach, a matrix D according to the definition in
Eq. (11) is considered. This matrix has to fulfil the
condition D — Dy~ [+ (mass)?> in the limit of no
external fields. Here and in the following, the phrase “limit
of no external fields” refers to the classical solution # = 1,
the scalar source s = M, and all other external sources set
to zero. Therewith, the matrix elements in d dimensions can
be expressed as [2,62]
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(xle™*P]y) = (x[e™*"|y)H (x[A]y),
- y)z]

(xle™T|y) = i(4mA) /2 exp F’“ 0

with a purely imaginary parameter A. Then,

log(det D) = —TrAim%e"w
—i(4a)-d2 /0 ) / d4x(H (x|)x)).
(14)
After Taylor-expanding H around 1 = 0,
H(x|2ly) = Zﬂ" (x]). (15)

the one-loop contribution is given by

élog(detD) = _%/ddx{c—liHo(be) +mH1 (x|x)
1 .
+mﬂz<xm} Clmel). (16)

Therefore, only H,(x|x) has to be determined to identify
the infinite contribution for the physical number of dimen-
sions, d = 4. It can be determined using the differential
equation for H(x|A|y) which is generated by taking the
derivative of the matrix element with respect to A,

0

i — (x[e™P|y) =

_Dx<x|e_lD |y>3

and the initial condition H(x|0|x) = Hy(x|x) = 1. This
differential equation yields recursive relations for the
H,(x|y) which can be used to calculate H,(x|x).

For loops including vector mesons in the antisymmetric
tensor representation, the corresponding matrix D does not
have the required standard form [J + (mass)? in the limit
of no external fields. However, a projection on the space
of antisymmetric rank-2 tensors can be performed
(cf. Sec. IIT A for details on this projection) such that
the vector fields are decomposed into a propagating mode
and a nonpropagating mode; i.e., in the limit of no external
fields, the matrix D is equal to [J + (mass)? if acting on the
propagating mode and equal to (mass)? only if acting on
the nonpropagating mode. It turns out that due to the
nonstandard form of the matrix D acting on the non-
propagating mode, a heat-kernel approach is not applicable.
This is discussed in greater detail in Appendix A where the
heat-kernel approach is applied to a toy Lagrangian with
only one vector-meson flavor.

PHYSICAL REVIEW D 94, 014021 (2016)

D. Calculating one-loop contributions
in powers of D — D,

The heat-kernel method of [3] is very elegant in
providing a closed form H, for the divergences in four
dimensions and in keeping a chirally covariant structure
throughout the calculation. In lack of this method, we have
to resort to a more direct brute force approach. It turns out
that this requires at some point a derivative expansion of a
nonlocal expression with the aim of obtaining a local
effective action. The ordinary derivatives that appear in this
way must be fused in the end with the appropriate fields to
obtain the pertinent chirally invariant structures that fit the
Lagrangians of yPT. This painful bookkeeping procedure
can, on the other hand, be seen as an important cross-check
of our calculations. It is a highly nontrivial check if several
separately nonchiral terms fuse to chirally invariant
structures.

To determine divergences in four dimensions, the cal-
culation of one-loop contributions via an expansion in
oD := D — Dy is discussed in this subsection. Hereby, D,
denotes again the matrix D in the limit of no external fields.
Using D = Dy + 0D, the one-loop contribution can be
rewritten as

Z

one loop —

1
ilog [det(Dy + 6D)] = Eitr[log(Do + 6D)]

N = N =

I %tr[(Dal(SD)N] + (irrel). (17)

Thus, for an arbitrary N € N one has to calculate

d*k; .
puv exp [ik;(xpi_1 — xzi)]}

(18)

XoN+17=X]

Hereby, Dj' denotes both the matrix in coordinate space
and the corresponding one in momentum space. However,
it is always clear from the context which one is used.
As a first step, derivatives acting on 6 functions which
show up in 6D (see determination of Dye., Dpseudo» and
D,.ix in the following sections) have to be evaluated,

/d4xeikxA(x)8j§5(x —y) = —®(ik, + 9,)A(y).  (19)

Next, the multidimensional space integral has to be
localized, i.e., expanded around one space coordinate,
e.g., around x; =: x with x; = x —z; for i # 1 and
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Ax) =A(x —z;) = i%zﬁl

n=0

210, -0, A(x).

Since 0 € O(Q), this Taylor expansion can be approxi-
mated by a finite series if calculating tr(log D) to a given
order in Q. Note that at this point the ordinary derivatives
appear which have to be fused with appropriate fields in the
end to obtain chirally invariant structures.

If the integrand is proportional to the exponential e’** for
a given momentum k and space point z; after the trans-
formation above, it will not be proportional to the expo-
nential e’*% for the same momentum k and another space
point z; # z;. Furthermore, no exponential function in the
integrand depends on the expansion point x. Thus, after the
transformation

d*k d*k
/(2 )42 ek B(k) = i/We

all integrals [ d*z; can be performed yielding & functions
for the momentum variables. The evaluation of those &
functions reduces ((D;'8D)") to an integral over both one
space and one momentum variable only.

To identify the infinite part of the momentum integral,
dimensional regularization is used; i.e., the integral in
momentum space is calculated in (4 + 2¢) instead of four
dimensions. Its integrand can be further simplified con-
taining one propagator with a common mass instead of
several propagators with separate masses using Feynman
parameters [7],

*i0,B(k),

(af' -+ aa”)

du1

Uy_
du2 du,,_l

{ l_ul)al 1<u1_u2)az 1...uZ"__11 }
lay (1 =uy) + ay(uy — uy) +'”+anun—l]zai
(20)

In (4 + 2¢) dimensions, a momentum integral with one
propagator is given by [6]

1 d4+2£k [kZ]a
ﬂzs (Zﬂ)4+2£ [k2 — m? + i,,l]ﬂ

: 2 €
_ b o ovapr2 [ T
1672 (=m’) <4ﬂ'ﬂ2>

F2+a+el(—a+p-2—¢)

L(pre+e)
_ W —+T'(1) =1~ log(4ﬂ)) + (finite)
=: if(mz,a—ﬁ) A+ (ﬁnite) (21)

PHYSICAL REVIEW D 94, 014021 (2016)

for a small e€ R, a € Ny and g & N. The finite part
consists of terms of O(1) and terms of O(e) which vanish
for € — 0. The function f: R?> — R depends only on the
mass m and the combination (a — ) but not on . Indeed,
f(e,a—p)=0 for (f—a) > 3; ie., the integral is finite.
The renormalization scale y is introduced by dimensional
regularization. Note that all physical observables have to be
independent of the scale p.

Furthermore, if an integrand of the form given in the
integral above is multiplied with k#1 - - - k*», the integral will
be zero for all odd n € N. Otherwise, the multiplicand can
be substituted by [6]

2
1H#2
+ 28'9/‘ ’
k4
(4 4 2¢)(6 + 2¢)
+ gﬂlm gﬂzﬂs )

kM 2
Ty

o e s (gﬂlllzgmm + g ghaka

(22)

and accordingly for n > 4, n even.
In Appendix B, an integral is calculated as an example
for the procedure described in this subsection.

III. ONE-LOOP CONTRIBUTIONS INCLUDING
VECTOR MESONS UP TO O(Q*%)

In this section, the one-loop contribution including
vector mesons are calculated up to O(Q*) (Secs. Il B~
HID). The calculation method is based on the techniques
discussed in Sec. II D. Furthermore, the results are used to
renormalize the low-energy constants of the LO- and NLO-
xPT Lagrangians (4) (see Sec. IIIE).

For fluctuations both in the pseudoscalar and in the
vector-meson fields as considered in this article, the matrix
D can be written as a block matrix such that

PRI Dvec Dmix 5
éDgz(ét’Vt)<Df Dseud ><V)
mix pseudo

- VtDvecV + VtDmle + étDmle + étDpseudof-
(23)
Using this block structure, Eq. (17), which expresses the
one-loop contribution as a sum over D, and 6D with

D = Dy + 6D, can be split up into parts containing or not
containing D, respectively,

parts with
oo )
=: tr(log Dye.) + tr(log Dpseyqo) + tr(log D) iy

(24)

tr(log D) = tr(log Dy.) + tr(10g Dpseyqo) + (

The different parts of this sum are calculated separately in
Secs. III B-III D. First, the one-loop contribution from D,
is calculated, then the additional contribution from D ;ydos
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and at last the contributions containing D,,;,. Thereby, all
calculations are performed up to O(Q*). Furthermore, the
projection on the space of antisymmetric rank-2 tensors
necessary in order to determine DY, is discussed in the
Sec. LT A.

A. Projection on the space of antisymmetric
rank-2 tensors

As discussed in Sec. II D, the limit D, for no external
fields has to be determined in order to calculate the one-
loop contribution. If the matrix D is written as a block
matrix, this limit has to be determined for all block-matrix
parts separately. As already calculated in [3], ngeudo

00 + (mass)?. Furthermore, DY, = 0. For determining
DY, consider the free Lagrangian L. given in Eq. (8)
evaluated at the classical solution of the pseudoscalar
fields, U = @

/ d4x£free | U=U

1 va,
= _Z/d4~Xd4szu(x)Dvec(x y)” ﬁVZ/}( ) (25)

Since D, is generated by the parts in the Lagrangian
containing two vector-meson fields, it is generated by L.
only. Hereby, the matrix D, is twice the definition in
Eq. (13) in order to simplifying further calculations. This
only adds a constant to tr(log D,..) and, hence, does not
change the final result. In the following, the matrices
Dpeudo and Dy are determined in the same way.
In the limit of all external fields set to zero,

DVCC (x’ y)l“/aﬂ - Dgec (x7 y)”yaﬂ
_ _(2 P;]wrp P?ﬂnd oo 8’; az + m%/ P/lwaﬂ )
x8(x —y), (26)

including the unit element of the vector space of all
antisymmetric rank-2 tensors,

P;lwaﬁ = % <g;4agu/3 _ gﬂ/}gua). (27)
Since the vector-meson fields V,, are antisymmetric tensor
fields, D,.. only acts on the space of antisymmetric rank-2
tensors. Hence, D,.. can be reduced explicitly to a matrix
over the vector space of antisymmetric tensor fields without
changing the result of tr(log D,..). Therefore, the antisym-
metric projection operators in momentum space

Py (k) = kz (kK — gPhvke — gk kP + PR k),
PA::PI_PV’ i)i:i)A’ P%/:P‘/, i)AJ—PV
(28)

PHYSICAL REVIEW D 94, 014021 (2016)

are introduced. Reduced to the antisymmetric space, the
matrix Dy, > PD,..P with P = diag{P,, Py} and the
projection operators P,y in coordinate space. Then,

tr(log Dye.) = tr

log (PDyecP)]

1
(_1)N+1 NtrKP[Dgec]_lP ' PéDvecP)N]

s 775

(1% (P[P Dy

=
i3

(29)

since [D%.]"'P = P[DY ]~ and P?> = P. Hence, the only
matrix which actually has to be reduced to the antisym-
metric space is DY.. Then, the inverted matrix of the
reduced matrix PDY,. is equal to

P[Dgec]_l = _(D + m%/)_IPV - m‘_/ZPA' (30)
As can be seen here, the operator Py projects on the
propagating vector-meson mode, while the operator P,
projects on the nonpropagating mode.

The mixed matrix operator D, acts both on antisym-
metric vector fields V,,, and pseudoscalar fields U. The part
acting on vector ﬁelds is multiplied with DY, in all further
calculations. Again, DY and therewith also the corre-
sponding part of D, have to be reduced explicitly to
matrices over the vector space of antisymmetric tensor
fields to achieve the desired form of DY... Hereby, the
reduced matrix D, is equal to PD., and D!. P,
respectively. Then,

P[Dgec]_l]P “ PD iy - Dpsleudo = P[Dgec]_l Dy - Dgsleudm
DEseudo Dimxp : P[Dgec] 'P= D;:seudo Dimx ’ P[Dgec]_l'

Hence, also for terms including D, in tr(log D), it is
sufficient to only reduce [D% ]! to P[D9..]~".

B. Result for tr(log D)

As discussed before, D, is generated by the parts in the
Lagrangian containing two vector-meson fields with all
pseudoscalar fields evaluated at thelr classical solution
U = . It can be decomposed as”

Dvec =: PDgec + A
A, y)® =i [F(x, y) + H(x,y)a"05]8(x — y).,
(31)

’Recall from the previous subsection that P[DY..]~" is needed
to calculate tr(log D) instead of [D%.]~" only.
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with A containing both a local term, F, and a term with an

additional derivative, H9. The matrices F and H are both

antisymmetric in the Lorentz indices (u,v, a, f8),
F(x,y)u” =

Pﬂpraﬁm)E('x y)%]gp/)’

af,
H(x, )iy =

TP papnp Hv <= (lﬂ,
P;lw /PIﬂW/ G(x);zbgp/_) + < >

X<y

(32)

Finally, the matrices £ and G contain the flavor information
of A and the building blocks of the Lagrangian directly,

E(x,y)e := ([[(x), 2|[T,(y), 2]) = E(y, x)}¢,
G(x)4P = ([2, 2], (x)) = =G (x)>, (33)
with A° := /2/3 - 1 and the Gell-Mann matrices 1!, ..., 13,

As H € O(Q), the one-loop contribution from D, up to
O(Q*) is given by the finite sum

4 1)N+1
tr(log Dye.) = Z N

N=1

= i} / d*xQy + (finite) + O(Q).

[(PDG" - AY¥] + O(Q°)

with 1 as defined in Eq. (21) and

Xec —_ _%m%/<G2 + 2E§> {16<(8G) DG>

128
- 32(0"G"G,G,) — 10{(G?)?) + 13((G.G,)*)

+ 12(E:G* + E™|[G,, G,]) — 128(9,G,E™)

+ 12((E9)?) + 4(E,, (E" — E™))}. (34)

Be aware that there are two types of traces involved in Q).
Both E and G are 9 x 9 matrices in flavor space. However,
according to the definition in Eq. (33), each component of
E and G is given by a trace over 3 x 3 matrices. If the traces
in flavor space in Q};° are rewritten component-by-
component, the involved traces of 3 x 3 matrices can be
calculated using [3]

ZS: (1“A29B) = 2(A)(B), 28: (A“A)(29B) = 2(AB).

a=0 a=0

(35)

Therewith, it is easy to see that the O(Q?) contribution of

4 is vanishing since (G?) = —2(ET). With the field
strength tensor T, :=0,I,—0,I, +[',,[,], the full
result for O} can then be expressed as

PHYSICAL REVIEW D 94, 014021 (2016)

3
03 =0+ 0(0Y) = =5 (1)

_ _33_2 (D, T D) — 13—6 (D,U'D, T
n 1% ((D,UTDT)?) + % (FiUFUT)
+ % i(Fy'D,UD,U" + F'D,U'D,T)
+ % (FRFR, + F'Fp). (36)

Hereby, the relation [3]

_ _ 1 _ _ _ _
(D,U'D,U)?) = 3 (D, U'D*U)* + (D, U'D,U)*

~2((D, T D)) (37)

was used. We also took from [3] the matching of (I",, ")
to the form in which the NLO Lagrangian E}}LTO i

displayed there. The contributions from D,,.. renormalize
the low-energy constants L, L,, L3, Lg, L(, and H of the

NLO-yPT Lagrangian (see Sec. Il E).

C. Result for tr(log D c.q,)

Here, Dpgeuqo 18 generated by terms in the Lagrangian
proportional to &2. As shown in the following, all three parts
of the Lagrangian, £,pr, L., and Ly, can contribute to
Dpeudo- The contribution generated only by L,pp was
already calculated in [3]. We have used these results to
successfully check our calculation method. However, this
calculation is not presented in this article.

The Lagrangians Ls.. and Ly;, do not directly depend on
the matrix U describing the pseudoscalar fields but on the
matrix u = +/U. However, the expansion rule (10) for
expanding U at its classical solution U cannot be reformu-
lated easily as an expansion rule for u. Therefore, the vector
fields V are rewritten such that L. and £y, depend on U
directly by introducing the fields V = uVu'. Interms of V,
the free vector Lagrangian reads as

1 1
['free Z( ﬂV D V/)V> + SmV<V Vﬂy>

D"V 8ﬂv,w + [, V),

- 1

"= ——8"UUT X i(r +UIPUY) = ul*u’ — 0*uu’,

(38)

and the linear one as
Ly, = SlthP<V””D UD,U") + = f (VR Fh),
~ 1
fow = 5 (UFLU" + FR) = ufu'. (39)
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The fluctuation vector & is replaced by the transformed
fluctuation vector {V, £} and can be treated in the same way
as the original one in all calculations. Thereby, the differ-
ential transforms as

Hdv,,

[det(u) det(u)| N ] [dV;; =

[avs.
i

with the number of flavors N = 3. Using this trans-
formation, one can rewrite

tr(log D) = tr(log D). (40)
In particular, the result for tr(log D,..) (36) calculated in
the previous subsection does not change for V — V.

The vector-meson fields V have to be evaluated
at their classical solution V to get the terms in
the Lagrangian quadratic in the fluctuations & of the
pseudoscalar field. Here, Vcl is the solution of the EOM

generated by the Lagrangians with vector mesons, L.
and 'Clin’

ab
[Vcl] Zﬂ
uvaf

~ ~ ~ 1 ~
0
0=-— (Dvec +F+H"9, - Eanm)

v (DD TN + S L) (4
evaluated at the classical solution U for the pseudoscalar
fields. Here, F and H are defined as in Eq. (32) but with
I" instead of I'. The classical field can be determined
order by order as a solution of the EOM in the
corresponding order, ie., V¢ = V((:l)—i—VCl + O(0%).
At O(QY), the classical field is equal to zero since
the EOM at O(Q") is given by

1
0=-m

i 270, (42)
Thus, the classical field is of O(Q?), and its LO
contribution is given as’
7(2)1a f ; a 3 7] af
Vil = =g (hp(DODUN +4(0F)) - (43)

for ]‘;’,, evaluated at the classical field U. Note that in the
present work we are interested in the effective

*In the followmg subsection, V has to be split according to
V = PyV + P,V. For O(Q*) and higher, the classical solution

has to be calculated separately for PVV and P AV since DVCC acts
for higher orders differently on both parts.
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Lagrangian where vector mesons are completely inte-
grated out. Thus, the solution of the EOM for the
vector-meson fields is the one where the homogeneous
solution is put to zero, and the inhomogeneous
solution is purely caused by the source terms encoded
in Ly, (8).

If the vector Lagrangians are evaluated at the classical
solution f/cl, the Lagrangian L. will be quadratic in Vcl,
while in the Lagrangian Lj;, ‘701 will always appear
together with a block of O(Q?). Therefore, Lgee + Liin
evaluated at the classical solution V is a chiral invariant
Lagrangian of O(Q*) in the pseudoscalar fields since
Vcl € O(Q?); i.e., it has the same form as the yPT-
Lagrangian of O(Q*), L} Hence, it cannot contribute
to the one-loop contributions at O(Q*) because the yPT-
Lagrangian L}’ does not contribute either. Thus,
tr(10g Dpseudo) Up to O(Q?) is determined by the pure
xPT Lagrangian L;];IQT only. This contribution was already
calculated in [3] renormalizing all low-energy constants
in L7357 except Ly and L.

D. Result for tr(log D) containing D,,;,

Here, D, is determined from terms in the Lagrangian
containing both one vector-meson field V as a fluctuation
and one fluctuation £ in the pseudoscalar fields, i.e., from
both the Lagrangian L., and L;;,. Thereby, one vector-
meson field V in Lsee 18 taken as a fluctuation, and the other
one is replaced by the classical field f/cl given in (43). Since
there are no terms involving D, in the first term (N = 1)
of the series (17), Dy is only needed up to O(Q?)
to calculate one-loop contributions up to O(Q%).
Additionally, D,;, — 0 in the limit of no external fields.
D ik 1S given by4

Dmix(x’ y) =

1
LH = ZthP(V — 25

[L(x) + K, ()0 + J 1 (x)0708]6(x — y),
L.
+ ElfVC”y,
v 1 vy
KI’; - EthPPlll ﬁgm?&ﬂ
fV .17 vaf
+ M{—[hpl + ZIK]a/jP’TlV[
+ [hp(e + dy) +2i(y + dw)]i,
(P54 )

=3 fvm;z{hpy +2iw}, Pl

with the abbreviations

*Recall that D, is twice the definition in Eq. (13) (cf. Sec. IIL A).

014021-11



CARLA TERSCHLUSEN and STEFAN LEUPOLD

P‘%/aﬁ = P/ll//?lfpaﬂﬂ agT/)gn/)gaas

yeh o= ([ A%, 2| [U . Uy)).  dyl” =
5:;; = Pl (z/}/m<[ljﬁiaﬁ Z;[/}] [/lb F”D
oh = (@ 2%m, AP \aFLyat), 95 =

ab| _ _ o
Yap | U)ot i)

([a*2%a, Ab]uﬂ>

[
g = ([a"2a, [ua,uﬂW ).
ke = (@A, £ )12 UF)),
oo = ([0, T2, (U Ul)),
v = (@2, TE[0, f10),
a)ap, = ([a'A%, A7) 11[)’> dwfl‘/?b = a)g’ﬂ’|f+93rf+,
Uy = %u*DaUuT, (45)

4
tr(log D),;, = i/_l/d“xz QM (k) + (finite) + O(Q%)
7=0

PHYSICAL REVIEW D 94, 014021 (2016)

and T, and f; evaluated at the classical solutions U and i.

Hereby, the first flavor index a in Dgﬁx denotes the vector-
meson flavor, and hence, a = 0, ..., 8, whereas the second
flavor index b denotes the pseudscalar flavor and
b=1,...,8, as long as the x-singlet is not included (see
Sec. IV for inclusion of the n-singlet). However, the Gell-
Mann matrix A° corresponding to the pseudoscalar fluc-
tuation only shows up in commutators such that including
b = 0 does not change the result, and the summation rule
(35) can be used.

Both L and J are of O(Q?). In K, 9 is of O(Q), and the
remaining parts are of O(Q?). To simplify finding possible
ways of structuring terms, the calculation was additionally
ordered in powers of hp yielding the following contribu-

tions to tr(log D)

mix*

mix f%/
PNhp) = T (€ (C+2) —y-v)
2
h . . ~
) = TR 205 (0= €)' + 4 = 0,0+ d)By) = 385 = (9°GACL) + (G + 2519}
2 h2
mix(pl) = W{IS m(9- 9 + 18(M (9" - 9)) +24(5- &' +2(¢p — Oy + dy) - 8') — 36(1 - 9")
+2(5039 - 9" + 2(09)(99")) + 24(5,9°G" + 7., G"9) + 18(F, (9" - 9)) — 3(EL(9 - 8") + 2E™9,8,)
+2(10G, 0978, — 8G*(09) 8% — 5G°0,9"9%) + 2(—5G70, 849" — 2(9 - G)(09") + 4G*0, 9.9")
+(=5G°G"9.9, + (9" - G)(G - 8) + G*(9- 8")) + (=5G*9"G, 8, +2(G - 9)(G - 8")) — 5(G*(9" - 9))
+(G"G"(8:9, + 919,))}
(1)) = 0
4 f4 h4 2 2 2
mix (fy ———(13(9"- 9 9.9 8,.9)°). 46
(hh) = 5y rors (13(9 - 902 + (8- 87 + (8.9))°) (46)
I
Here, G and ~E denote G and E, respectively, as given mix () = _3fy 22 ((F? + F) — 2(0" F’,{,”I_JF,%,,)),
in (33) with I" instead of I'. Transposing a matrix refers 8F
only to transposing in flavor space. The matrix F, is mix 1y 9fvhp " s uw s
part of the pseudoscalar contribution D4, and given 7 (hp) = 16F2 i(FL'D, U'D,U + Fy D, up,U"),
by [3] f4 h% L
X (hp) = ———=—={24((D,U'D*U)?
Fy==50.G"+ ZGZ +6-M, + 11( (D,U'D,U)* + (D, U'D"U)?)}.

(T T + 5 (22 g+ )

(47)

l\.)l'—‘

All terms except QF*(h3) can be calculated directly
using the sum rules (35) and the trace relation (37)
yielding

(48)

For calculating Q7*(h%), the EOM of the LO yPT
Lagrangian E)I;[(,)T is needed. It can be expressed as [63]

D=1 (;{ = om) , (49)
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PHYSICAL REVIEW D 94, 014021 (2016)

with DU, =0,U, + [[,.U,] and y~ := i’ yia" — iiy" . Furthermore, the fields f* are equal to [63]

f;u = i(rﬂb + [Z;{wau])’
fm =—-i(DU,-DU,). (50)

Therewith, the contribution proportional to h% can be rewritten as

£l
128F2

_ 9fyh}
-~ 32F?

PA(13) = T (D,0DVD) +

3

{1 (11(D,UD*TY? + 22(D, UD, %) — 6((D, U DA T)?))

+ 3T+ Ty WD, DDA + 9((r T + Ty)D, T DT = (' U = 407 + 30 Uy U + 2 Uy T

+20(UTFy UFY’) + 28i(F'D,UD,U" + F{"D,U'D,U) — 10(F FR, + F}"FL)) = 6(¢'x) } (51)

The contribution including D,;, renormalizes the low-energy
constant F2 in the LO-yPT Lagrangian L1 and all constants

except L in the NLO Lagrangian L5 (see Sec. IILE).

E. Renormalization of the low-energy constants of the
leading- and next-to-leading-order yPT Lagrangians

At O(Q*), the effective action is given by
2= [+ Zaery + Q). ()

with L,pr = LLgr + L as defined in Eq. (4). The one-
loop infinities have to be absorbed by renormalizing the
low-energy constants “const” such that Z is finite at O(Q*)
if expressed in terms of the renormalized low-energy
constants (const)”. We have the following low-energy
constants at our disposal: F and B, of the Q2
Lagrangian LI together with Ly, ...,Lo, H; and H,
of the Q* Lagrangian L}5p.

Only QT*(h3%) is nonzero at O(Q?) renormalizing the
wave function renormalization constant F in Ll9 as

o
PR=r+2 -
: +F% 1672

9
0= fHhm, (53)

(log p? + finite) |,

depending on the renormalization scale x and for 4 as
defined in Eq. (21). In practice, it is useful to expand FZ in
contributions sorted by the number of loops. Equivalently,
one can sort in inverse powers of the number of colors, NV,
assuming N, to be large. In this case,
mVEO(l), Fz,f%/EO(NC)

Therewith, the dependence of F2 on the renormalization
scale can be determined as

dF? ) 1
— =————-—+0O(1/N,).
du? 1622 F? /42+ (1/N.)

This differential equation can be solved for an arbitrary
reference scale y, yielding

F2( — F4 2(ﬂ /’t(z)
r ﬂ) = r(ﬂO) + 1622 10g/7 + 0(1) (54)

In Fig. 1, the renormalized constant F,(u) is plotted as a
function of the scale p assuming that the value F =
92 MeV is reproduced for puy= my = 0.776 GeV.
Hereby, two different values for both the parameter /p
and the vector-meson decay constant fy, are used. On the
one hand, sp has been determined from decays of light
vector mesons into two pseudoscalar mesons in [42],5
hp = 1.50. On the other hand, the KSFR relation Fy =
2Gy [49] yielding hp = 2 is used (see also Table I). The
vector-meson decay constant is either approximated by
fv=150MeV [53] or by fy=+V2F =292 MeV
[49]. Note that F,(u) becomes imaginary for too small
values of u. In general, Fig. 1 displays a quite drastic
renormalization-scale dependence of F,(u). Also the
dependence on the actual values for the vector-meson
coupling constants hp and fy is rather significant. To
which extent, how all this carries over, for instance, to a
vector-meson loop-induced quark-mass dependence of the
pseudoscalar decay constants remains to be seen [46]; see
the corresponding discussion in Sec. I.

The low-energy constants of L}y are already renor-
malized by pure yPT (31,

*Note that the parameter hp was redefined compared to the
definition used in [42]. _

®Note that the parameter 4 is twice the corresponding param-
eter in [3] yielding adapted coefficients in Table II.
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FIG. 1. Renormalized constant F,.(u) as a function of the

renormalization scale y [Eq. (54)] for different values of fy and
hp (see legend).

, 1
(Li )pure;(PT = (Li)pure;(PT + Eri/l’

1 -
(H{)purexw = (Hi)pure;(PT + E Ai/l’
3
Fl __ﬁ, F2:2F1, F3 :O,
I'y= ! I's =3I
4 — 87 5 — 45
11 5 1
6= "1 770 D= h=mg
Fl() — —Fg, Al — —F4, AZ — 2F8 (55)

If loops with vector mesons are additionally taken into
account, the renormalized constants will change to

1 _
(L])priv = (Li)prsv + <§Fi + Ai)’L

1 _
(H])prev = (Hi)proy + (5 A+ 775)/1,

3 11 11
1:64__6 h%al//——z hé;) 2, A2:2A1,
9 2 4.2 3.,
A = ——32+hpy/—24hpz;/ , Ay = —Ehpyf,

1
A5 = 3A4, A6 = O, A7 - zh%’w’ AS = A4’
3
Ag = § + 2hpl//(7hp —_ 18),
3 2
A = g 2w (5hs +24),

3
m = ——+y(5h} +24),

16 Ny = =2y, (56)

with y == f%/(128F?2). At one-loop accuracy or in LO of a
large-N, counting, we have to make a choice for the value
of F, to determine the numerical values for A; and #;,
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respectively. We decided to use again F2(u = my) =
(92 MeV)? [cf. Eq. (54)]. The other parameters hp and
fv are varied as specified previously.

Comparing to the contributions from pure pseudoscalar
loops [3] shows that Lg is only renormalized by loops
emerging from the pure yPT-Lagrangian, while L5 and L,
are only renormalized by loops from Lagrangians contain-
ing vector mesons. Before looking at the numerical results,
we stress again that the divergence structure and the
corresponding renormalization-scale dependence of the
low-energy constants are not directly related to observ-
ables. Nonetheless, a strong dependence might provide a
first hint on possible momentum and/or quark-mass
dependencies of observables. Therefore, we determine
how much the low-energy constants change numerically
if the renormalization point is varied within a reasonable
range. We compare this spread with the corresponding
absolute size of the respective low-energy constant as
determined from phenomenology.

Before addressing this issue at the end of this section, we
want to highlight the opposite aspect, the fact that the low-
energy constants are not observables. One result that points
to this fact is the finding that the choice of different
representations for the vector mesons leads to a different
renormalization of the low-energy constants. To display
this issue, we compare our results with the ones based on
the hidden local gauge formalism (HLG) [54].

TABLE II. Numerical values for the renormalization coeffi-
cients in different frameworks. The first column shows the
respective low-energy constant. The second to fourth columns
provide the renormalization coefficients generated by loops
including vector mesons as given in Egs. (53) and (56). For
instance, the value of A, is given in the row of L;. The values for
the parameters &p, fy, and F, are discussed in the main text. The
fifth column yields the corresponding HLG value. The last
column provides the yPT result [3] for the renormalization
coefficients generated by loops that only contain pseudoscalar
mesons.

Loops incl. vector mesons

fv=150MeV  f, — \3F,
hp=150 hp=2  hp=2 HLG  Pure yPT

F 0017 -0.030  —0.023 2805 0

L, —-0051 -0.143  —0.089  —0.060 —0.047
L, -0.102 -0287 -0.178  -0.120 —0.094
L, -0287 -0364 —0313 2267 0

L, -0070 —0.125  —0.094 0.160  —0.063
Ls  -0210 -0374  —0.281 0479  —0.188
Lg 0 0 0 0.115 —0.038
L, 0023  0.042 0031 -0032 0

Ly  —-0070 —0.125  —0.094 0.149  —0.052
Ly  —0.092  0.043 0.125  -2371 —0.125
L, -1839 -2203 —1.750 2371 0.125
H, 0.545  0.726 0.500 1315 0.063
H, 0.140  0.249 0.188  —0.090 —0.104
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TABLE III. Variation of the low-energy constants with the
renormalization scale as given in Eq. (5§7) including loops with
vector mesons or using the HLG formalism [54] or including only
pseudoscalar loops (“pure yPT”), respectively. The used renorm-
alization points are y; = 0.5 GeV and yu, = 1 GeV. The results
are compared to the phenomenologically determined values
for the low-energy constants [3,64]. All values are given in units
of 1073,

Renormalization point variation

fv =150 MeV 7, = /2F,

pure Phenom.

hp=150 hp =2 hp=2 HLG yPT valueforL,
AL, 0.9 1.7 1.2 05 04 1.0+0.1
AL, 1.7 33 2.4 1.1 08 1.6+02
AL, 25 3.2 27 -199 0 -38+03
AL, 1.2 1.6 14 -14 06 00£03
ALs 35 49 41 42 17 12401
ALg 0.3 0.3 03 -10 03 00+04
AL;  -02  -04 -03 03 0 —03+02
ALyg 1.1 1.6 13 -13 05 05+02
AL, 1.9 0.7 00 208 1.1 69407
AL, 15.1 18.2 143  -208 -1.1 -5.5+0.7

In Table II, we provide the numerical values for the
renormalization coefficients I';/2 and A;/2 as generated by
pure pseudoscalar loops and for A; and #; caused by loops
including vector mesons. As one can see, the renormaliza-
tion coefficients are very sensitive to the actual choice of
the parameters sp and fy. Whenever nonvanishing, the
renormalization coefficients from pure pseudoscalar loops
and from loops including vector mesons are comparable in
absolute size except for the quantities L, and H,. We have
not found a deeper reason for this fact, but we note that
these are the quantities that contain two field strength
tensors of the external vector and axial-vector sources. In
HLG, a much larger renormalization effect can be observed
for some of the low-energy constants. This stresses again
the representation dependence of the results for nonobserv-
able quantities like the low-energy constants. If these
differences have any impact on observables remains to
be seen.

Finally, we introduce the renormalization-scale depend-
ence (variation) of the NLO low-energy constants by

AL; = [Li(#2) = L7 (1)) pr v

1 1 u3
=——— (=, +A; ) log=2 57
167[2 <2 i + l> Ogll% ( )

for two scales y; and u,. In Table III, the changes in the
low-energy constants L, ...,L;y for u; = 0.5 GeV and
1, =1 GeV for a calculation with both pseudoscalar
and vector mesons in the loop, for a pure yPT calculation,
and for a calculation using the HLG formalism [54] are
compared to the phenomenologically determined values for

PHYSICAL REVIEW D 94, 014021 (2016)

the low-energy constants based on pure yPT [3,64]. We
observe that the changes caused by varying the renormal-
ization scale are comparable in size to the absolute values of
the low-energy constants.

IV. ONE-LOOP CONTRIBUTIONS UP TO O(Q%)
INCLUDING THE #-SINGLET

In the calculations presented so far, the Goldstone-boson
octet described by the matrix ® [cf. Eq. (5)] was used; i.e.,
the physical #-meson was approximated by the (unphys-
ical) octet state 7g. If the 77-meson is included additionally,
the Goldstone-boson nonet with the singlet state ¢, has to
be considered, i.e.,

2
D (I)octet + \/;(Iﬁoﬂ . (58)

A formally systematic framework for the low-energy
effective theory of the pseudoscalar nonet is yPT for a large
number of colors [16]. There the LO large-N. yPT
Lagrangian is given by7

/ 1
[:irg = ﬁ;];]g)TLI):Zi:O lhe Em%(b(%a (59)

with m} = 67/F? and the topological susceptibility 7.

In the power counting of large-N. yPT, the “NLO”
Lagrangian in (4) contains NLO terms and terms of next-to-
next-to-leading order (N’LO). In addition, the NLO
Lagrangian of large-N, yPT receives additional contribu-
tions [16]. To cancel the infinities of one-loop diagrams
including vector mesons, we need parts of the LO, NLO,
and N’LO Lagrangians of large-N,. yPT. Instead of writing
down all these Lagrangians, we restrict ourselves to the
terms that are needed for the renormalization of the loops
including vector mesons. These terms are covered by (4),
(59), and

, |
$” = EEPLTOLDZZLO%@ +7FA21¢0<ZTU—)(UT>-

21/6
(60)

In the following, we focus on the changes caused by this
extension of the framework. We provide less details since
most of the calculations technically proceed in the very
same way. The matrix Dpg.q, corresponding to the
extended LO Lagrangian (59) changes to

[D;—s;éudo}ab = {Dpseudo]ab|¢.:25:0 . + 2m(2)5a05b0‘ (61)

"In the present work we ignore the vacuum angle 6 that is
related to the chiral anomaly and to strong P and CP violation

[7].
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In contrast to the case for the Goldstone-boson octet, the

matrix D"
fields,

pgeudo is not diagonal in the limit of no external

[DinioK)lag =

pseudo
) 1
Dpieuso QT 33 = {2F ’ <k2 2MZ>}

(Do )z 7 = {ZF (k2 le)]
[Ditho (Ot = (Do ()5

pseudo pseudo
~ AP = M)k -

a+(k2 M+) 1+a kz—M_)_l,

-1

M)

all other matrix entries equal to zero.

(62)

Hereby, M* and a™ denote a combination of pion mass M,
kaon mass Mg, and topological susceptibility z with
at +a” = 1. In [16], the changes in the renormalization
of the low-energy constants caused by adding the #-singlet
to the pure yPT-Lagrangian have been determined. They
are not repeated in this article.

For the calculation of tr(log D) containing D, includ-
ing the #-singlet, note that AaO = 0 for all vector-meson
flavors a =0, ..., 8, as already mentioned in Sec. III D.

Furthermore, the nonzero terms including [Dgé:fdo(k)]azal or

[Dg;m;o(k)]g‘(} are proportional to

d4+25k 5 s s )
/Wk (k —-m )_ = (fil’llte). (63)

Additionally, if using a™ + a~ = 1, the only difference for
tr(log D) containing D,;, with and without the 7-singlet is
visible in terms containing the pseudoscalar masses explic-
itly. For calculations without the #-singlet, the only terms
containing these masses explicitly are

Q™ (hp) ~

(M(I"-9)) 4 ((mass part of F,)(9"-9)),

(64)

with § and F, as defined in Egs. (45) and (47), respectively.

However, inserting Dpseudo into the equations for those

terms yields the same result with the mass matrix M and
the corresponding part in F, modified according to (62).
Therefore, the sum of these two terms vanishes both for the
calculation with and without the #-singlet. Hence, the parts
containing D, in tr(log D) are the same up to finite parts
and terms of O(Q®) for both not including and including
the n-singlet. Thus, we are back to the same expression as
given in (46).
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However, the final results of Sec. III D have been
obtained by using the EOM (49) emerging from the LO
Lagrangian. In the presence of the singlet field and, in
particular, due to the effect from the topological suscep-
tibility, the EOM changes to

YL ¢ (65)
=—x —i——=.
SN TS

The results from the previous section are modified and
extended in the following way: The results for the renorm-
alization of all the previously introduced low-energy
constants remains the same except for L, which now does
not receive any renormalization. In addition, the new low-

energy constants 7 and A, receive the following renorm-
alization from loops with vector mesons:

93
T, = 8F6 ",
~ o~ 92t -
Y :Az-fSVng. (66)

As already spelled out, everything else remains unchanged.

V. OUTLOOK

In the present work, the infinity structure and corre-
sponding renormalization-scale dependence of all yPT
low-energy constants up to chiral order Q* have been
determined. Thereby, the finite parts of the loops with
vector mesons depend in addition on the masses of vector
and pseudoscalar mesons and on the external momenta. It is
therefore interesting how physical observables depend on
these. In the follow-up work [46], we study the influence of
loops with vector mesons on the pseudoscalar properties
(mass and decay constant) within the same framework as
used in the present work.

Furthermore, a plausibility check of the counting scheme
with both light pseudoscalar and vector mesons as degrees
of freedom as suggested in [43] can be performed. Therein,
vector mesons are counted as soft; i.e., the vector-meson
mass my is of chiral order Q. Therefore, one-loop diagrams
of O(Q*) could have a chiral structure of O(Q°%) divided by
m?. Since the corresponding infinities would have no
counterterms in the NLO-yPT Lagrangian of O(Q*%), all
these infinities either have to vanish directly or for specific
parameter combinations within a reasonable framework.
Note that such a plausibility check has to be performed for
the full Lagrangian given in [43] and not only for the
restricted Lagrangian as used in this work. Additionally,
calculations with vector mesons as nonvanishing classical
fields and the renormalization of parameters in an NLO
Lagrangian with vector mesons are of interest.
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APPENDIX A: HEAT-KERNEL CALCULATION
FOR A TOY MODEL WITH ONLY ONE
CHARGED VECTOR MESON

In Sec. I C, the heat-kernel approach is discussed and
that it is not applicable to Lagrangians with vector mesons
represented by antisymmetric tensor fields. Here, the heat-
kernel approach is tried to be applied to a vector-meson
Lagrangian, and it is discussed in greater detail why such a
procedure is not applicable. For that, consider a toy

Lagrangian for one complex vector-meson flavor,
VI — Yk,
Ligy = —(D, VT Dr Vi, + szI”,V””,

with D, = 0, +il’, for an arbitrary I', = F;. The vector
field is split into its projections,

e =Y [ / e B (1) ()
J=AV
= A (x) + V().

including the antisymmetric projection operators in
momentum space as defined in Eq. (28). Therewith, the
Lagrangian can be rewritten as

Lioy = VROV + m?(Aj, A + Vj, V)
+ilH(A+V)L,00V,, — VT, (A+ V)]
— DT, (A+ V), (A+ V)™,

In this notation, one can identify a nonpropagating mode A,
i.e., a field with mass term only and without kinetic term,
and a propagating mode V, i.e., a field with both mass and
kinetic term. First, the equation of motion (EOM) for the
classical nonpropagating mode A has to be calculated
yielding
0 = m> A" — P\ T IP(A+ V)5 + iPPT,00,5.

Note that this EOM depends on the full field V and not only
on its classical part V. The Lagrangian can be expanded
around A via A =: A + A yielding

Loy = V5L, O 4 mz(;l;wzl"” + Vi)
+i[[H(A+ V)L, 00V, — VT,(A+ V)]
—TC,(A+ V)L (A4 V)" + #(8A)* + O(SA).
In principle, a heat-kernel calculation for the term quadratic
in 6.4 has to be performed, yet this yields zero in dimen-

sional regularization anyway. Next, the EOM for the
classical propagating mode V is determined,
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0 = OV 4 V% — PROT, DD+ A0)
+ PP IT,00V 05 + 05 (TPV 5 + TP AL ]
with A° := A(V) =: A(V) — a, i.e., the classical nonpropa-
gating mode evaluated at the classical propagating mode.
Recall that in the last formulation of the Lagrangian .4 was

used not A°. The Lagrangian can be written in terms of
V=V+35V+0@©V)?

Lyoy = (8V), 0V + m*(8V — a)}, (8V — a)"
+ i[T*(8V) Wap (V) — o (sV)! T L (V)]
+ T, [(3V)], (BV)" — afua] + #(5A)?

+ (terms with A%, V only) + O(8°).

From the EOM for A, the field a can be determined as a
function of &V,

2(8V)% — iP{"°T, 07 (8V),,] — 8V
— T, 1) P},

J;vaﬂ [

J"”“ﬁ = (m? 9,

Hv

Therewith, the relevant part in the Lagrangian, i.e., the
terms proportional to (§))?, can be identified,

Ly = (6V);, 06V = 2m*(6V)], (5V )™

+ 2i[04(8V) [, TP (8Y),,, = TH(8V)],07(8V),,,]

— (J7)T, 00 (8V)F, 407 (8V) 55
m*(8V)}, (J7 P (8V) 5 + #(5A)?

+ (terms with A%,V only) + O(5%).

Since the Lagrangian has to be antisymmetric in the
Lorentz indices, it can be rewritten in the form

Loy = (8V)},[2m* + R) + 5,07 + (1

= (5V);UDﬂwﬁ(5v)aﬁ N

= 1) (8Y) 4p

with symmetric matrices R and 7 and an antisymmetric
matrix S. Furthermore, R, S, and T will vanish in the limit
of no external fields.

In a heat-kernel approach, the matrix element for D is
given by

Y= )2
(xle=#Ply) = (4n2) /2 exp [% - 2m%] Hxlily).

H(lAly) = 3 47H, (x]y).
n=0
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The differential equation determined from this matrix
element,

x|e”*Ply) = =D (x|e™Ply).

A
can be written in powers of A. Since 4 is arbitrary, each
order of A yields a recursive equation for the H, which can
be used to determine H2.8 In particular, the contribution
proportional to 172 yields

0 =—(x—y)* T H(x]y)

appo*

4>|~

Since T # 0 by definition and (x,y) are arbitrary,
Hy(x[y) = 0.
However, this result is contrary to the initial condition
Ho(xly) = 1+ O(x —y).

Therefore, the heat-kernel approach is not applicable for the
toy Lagrangian L, for one vector meson. The same
procedure can be applied to the full Lagrangian £,.. for
vector mesons yielding that a heat-kernel approach is not
applicable.

APPENDIX B: EXAMPLE OF AN INTEGRAL
FOR ONE-LOOP CONTRIBUTIONS
IN POWERS OF D - D,

The general procedure how to calculate the one-loop
contribution in powers of 6D = D — D, is described in
Sec. IID. In this section, an integral contributing to the
second term in the sum (17) for tr(log D) is determined as
an example for such an calculation. Thereby, a contribution
to tr(log Dy, ) is chosen,

if2h d*kd*
I:=T/d4xd4yd4x’d4y’/(2ﬂ)fe

(P[DVec (k) s (2)8(x" = y) Do (P)] ™!

P g8, (x)0%S(x = y')) € t[(Dy'6D)?]

for PDY.., £, and & as defined in Secs. III B and III D,
respectively. After partial integration with respect to x, both
o0 functions in coordinate space can be evaluated,

d4kd4
[ — lfV P/d4 d4 / i(k=p)(x— y< [Dgec(k)]m/aﬁ

Caﬂ(y)[ pseudo(p>] IPW//”T ( lkﬂ_ﬁﬂ) ( )>

ik(x=x")+ip(y=')

¥Recall from Sec. 11 C that only H, is needed to identify the
infinities for d = 4 dimensions.

PHYSICAL REVIEW D 94, 014021 (2016)

First, the term proportional to k" is calculated. For that, the
integral is localized, i.e., y =: x — z, and {(y) is expanded at
z=0up to O(Q*),

I = fvh”/d4 diz /d4kd4

(1 —Z aT)Caﬁ( )[ pieudo(p)] lpllwpggﬂﬂlgﬁ('x»
+ O(0%).

(k= p)zk< [ Vec(k)];ylaﬂ

Thereby, the first term in the expansion of { yields zero due
to the odd number of k’s. For the second term, the
integration over d*z can be performed after partial inte-
gration with respect to z as described in Sec. III B,
—z.ek=r)z[po

pseudo

(P = i *=P=P[DY o (P

yielding the & function §(k — p) in momentum space. So,
the resulting integral over one space coordinate x and one
momentum coordinate k is given by

__ifbh [ /d“

Deec )],uyla[} 5 Caﬂ (X)

[Dggeudo(k)]‘zP"””" 9,(x))k,k, + O(Q°)

ir2h d*k
- ‘Z‘;;Qp/dzt / _m%/)_IPV,,uDa/}
LI (x) (K = M >-2P'f””“gmz9£a (x) + O(0°)

since the part proportional to Py 44 yields zero. The two
propagators can be reformulated wusing Feynman
parameters,

[ = n) (K2 = M2
T [
‘r<1>r<2>l d

=) = m2) + u(l® = M)

1 u
=2, i
M(u) = (1 — u)m? + uMp>.

Furthermore, the momentum vectors contracted with the
corresponding Lorentz indices can be substituted according
to Eq. (22) as

1
k}ykTPV,yml[)’P/fypGg/)n = EkT(k(Lgﬂf) - k/)’g(lp)g/)o—

2
_’4+2€ Pl,aﬂrpgpg'

With this substitution, the momentum integral can be
determined as [cf. Eq. (21)]
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d*k K2

i

PHYSICAL REVIEW D 94, 014021 (2016)

/ Qr) =MW 1672

( m? )5 '3+ &e)'(—e)
) T(3)I(2+¢)

= —il + (finite).

So, the integral /; is given as

_fvhe
8F?
_ fihe
8F?

11:

/ APy ey 7O ()97 (x) + (finite) + O(QF)

/ de(071(0)0°9, (x)) + (finite) + O(QF).

The second part of the integral / can be calculated in a similar way yielding

I = 11 +12 = 11 + {_Il + (ﬁnite) +O(Q6)}

= (finite) + O(Q°).
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