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Starting from a relativistic Lagrangian for pseudoscalar Goldstone bosons and vector mesons in the
antisymmetric tensor representation, a one-loop calculation is performed to pin down the divergent
structures that appear for the effective low-energy action at chiral orders Q2 and Q4. The corresponding
renormalization-scale dependencies of all low-energy constants up to chiral order Q4 are determined.
Calculations are carried out for both the pseudoscalar octet and the pseudoscalar nonet, the latter in the
framework of chiral perturbation theory in the limit of a large number of colors.
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I. INTRODUCTION AND SUMMARY

A. Scale separation

Chiral perturbation theory (χPT) [1–5], the low-energy
incarnation of the nonperturbative aspects of the standard
model of particle physics, is based on a separation of scales.
This separation allows for systematic power counting and
qualifies χPT as an effective field theory. The dynamical
(low-energy/soft) scale is provided by the masses of the
lowest pseudoscalar multiplet, the Goldstone bosons. Their
smallness is caused by the smallness of the current quark
masses of the lightest (two or three) quark flavors. To be
more specific, the spontaneous breaking of chiral symmetry
demands the appearance of massless pseudoscalar
Goldstone bosons. The explicit breaking of chiral sym-
metry by the current quark masses induces nonvanishing
masses for these pseudoscalars. But the masses are small as
compared to typical hadronic scales. The latter are related
to the scale ΛQCD where the strong interaction really
becomes strong, which in turn is caused by the scale
anomaly of the theory [6,7].
Coming back to the scale separation, the static (high-

energy/hard) scale is given by the typical hadronic
scales. Conceptually, it is useful to distinguish between
different high-energy scales [8]. The “external” high-
energy scale is the energy where neglected degrees of
freedom become important. For chiral perturbation
theory, this scale is at least given by the vector-meson
mass mV ≈ 0.77 GeV of the ω and ρ mesons [9,10] if
not by the mass of the somewhat lighter σ meson [11].
The “intrinsic” high-energy scale is given by the energy
where loops become as important as tree-level diagrams.
For chiral perturbation theory, this scale is roughly
at 4πFπ ≈ 1.2 GeV.
Conceptually, the scale separation provides a clear-cut

power counting scheme if the momenta of the considered
processes are on the order of the Goldstone-boson masses.
Expansions are carried out around the formal limit where

the considered momenta vanish along with the Goldstone-
boson masses. The latter takes place in the chiral limit.
It is clear that the smaller the dynamical scale relative to the
static scale is, the better the convergence of the expansions.
For the two lightest quark flavors, there is a large scale
separation between the pion mass and corresponding
momenta at close-to-threshold processes on the one
side and the typical hadronic scales mentioned above on
the other side. Including strangeness, however, with a
kaon mass (dynamical scale) of about 500 MeV and a
K� mass (degree of freedom that is integrated out) of
about 900 MeV, the scales already move significantly
together [11].
Another formally clear-cut power counting scheme,

where however the numerical values for the dynamical
and the static scale gets even more intertwined, is χPT for
a large number of colors, Nc [12,13]. In the combined
Nc → ∞ and chiral limit, the mass of the η0 meson
vanishes [14,15]. The pseudoscalar octet is enlarged to
a nonet. Systematic expansions in powers of 1=Nc, masses
of the nonet states, and momenta become possible [16].
Schemes based on χPT and the large-Nc expansion
[17–19] lead to many phenomenologically appealing
results in spite of the fact that in the real world the mass
of the η0 is not at all lower than the masses of mesonic
resonances like the vector mesons. In the large-Nc limit,
one has the ordering

m2
η0 ≪ m2

V ≪ ð4πFπÞ2: ð1Þ

The first quantity scales like 1=Nc [14,15]. For the mass of
a typical mesonic resonance, here the vector-meson mass
mV , scales like 1=N0

c. Finally, the scale where loops
become as important as tree-level processes, ð4πFπÞ2,
scales like Nc. In the real world, (1) is contrasted by

m2
V < m2

η0 < ð4πFπÞ2: ð2Þ
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Nonetheless, the large-Nc approximation provides many
insights in the dynamics of hadrons [12–19].

B. Excursion to baryons

The previous discussions provide a motivation why one
might want to include additional degrees of freedom on top
of the Goldstone bosons. Before addressing the central
aspect of this work, the inclusion of vector mesons, it is
illuminating to discuss a better established case where
additional degrees of freedom have been included in the
framework of chiral perturbation theory, namely, the case of
baryons [20]. As always, one has to distinguish the two-
[5,21–25] and three-flavor [19,26–31] case, and it should
be clear that the scale separation and therefore the con-
vergence properties are better for the two-flavor case. But,
in addition, it matters whether the scheme treats the baryons
relativistically [5,19,23–25,28–34] or nonrelativistically
[21,22,26,27] and whether [19,21,23–27,29] or not
[5,22,28,30,31] the decuplet (for two flavors: the Delta
iso-quartet) is included on top of the ground-state baryon
octet (for two flavors: the nucleon iso-doublet).
Before addressing these issues, we should stress right

away that the inclusion of baryonic degrees of freedom in a
chiral effective-field-theory framework is conceptually
much more straightforward than the inclusion of (non-
Goldstone) mesonic degrees of freedom (meson resonan-
ces). Because of baryon number conservation, a heavy
(static) scale—the baryon mass—remains in the considered
process from beginning to end. The small (dynamical)
scales are then given by the masses of the Goldstone
bosons, the three-momenta of the involved particles, and
the mass differences between the baryon states. In contrast,
for a meson resonance, one has to deal with the fact that this
resonance can decay into Goldstone bosons. If one treats
the resonance mass as a heavy (static) scale, like the baryon
mass, then this implies that the momenta of the emerging
Goldstone bosons cannot (all) be soft [35–38]. One
suggestion to deal with this problem is the hadrogenesis
conjecture [39–45] where a significant mass gap is pro-
posed between the JP ¼ 0−, 1−, 1

2
þ, and 3

2
þ ground states on

the one hand and all other large-Nc stable hadrons on the
other hand. In this scheme the vector-meson mass con-
stitutes a dynamical/soft scale. Consequently, all Goldstone
bosons emerging from vector-meson decays have soft
momenta. The work presented here is fully compatible
with the hadrogenesis conjecture, but it is not restricted to
it. In the present work and in [46], we explore the
quantitative impact of one-loop contributions with dynami-
cal vector mesons on the low-energy effective action and on
the properties of pseudoscalar mesons. Vector-meson
masses and coupling constants are adopted from phenom-
enology. The formal power counting of the vector-meson
mass is of little concern as we fully integrate out the vector
mesons. We come back to this point below after discussing
the case of baryon χPT.

In spite of the conceptual difference between the
inclusion of baryons or mesons, we want to use the better
established case of including baryonic degrees of freedom
to discuss two issues relevant for both cases (meson and
baryon): (i) connected to the previous discussion around (1)
and (2), the issue of how well or not well separated the
static and the dynamical scales actually are in practice and
(ii) the important technical issue how to deal with loops that
contain non-Goldstone bosons.
In the chiral limit, one can find a momentum regime

where only the ground-state baryons and the Goldstone
bosons are active degrees of freedom. In reality, however,
the mass difference between Delta and the nucleon is not
very large [11]. In fact, in the combined chiral and large-Nc
limit (and ignoring electromagnetic effects), the nucleon
and Delta become degenerate [17]. Thus, it might make
sense to include the Deltas (and their flavor partners) as
active degrees of freedom. Of course, this adds credit to the
central theme of this work, the inclusion of additional
degrees of freedom.
If baryons are included in chiral perturbation theory, it

turns out that the naive chiral power counting of loops is
spoiled by the appearance of the additional static scale, the
(average) baryon mass [20]. This problem will not show up
if one treats the baryons nonrelativistically (heavy-baryon
chiral perturbation theory). In principle, all contributions
from a nonrelativistic expansion (Foldy-Wouthuysen
expansion) of relativistic interactions and propagators show
up at appropriate orders in the chiral power counting. In
reality, however, it turns out that often better results are
obtained with a fully relativistic framework, see, e.g.,
[5,28,31]. If the convergence properties were excellent,
this would not matter. In reality, it does to some extent, even
for the case of two flavors.
In a relativistic setup, there are, in principle, two

possibilities how to deal with loop integrals: (a) One splits
up each integral in two parts, one that is in accordance with
the chiral power counting and one that is not. The latter is
then disregarded. We note in passing that there are several
ways how to perform this splitting of integrals [29,32–34].
The quality of convergence might depend on the way that
one chooses [31]. The alternative (b) is to keep the integrals
as they are. As a consequence, the integrals do not only
contribute at the chiral order that is formally assigned to
them. Instead (polynomial parts of) the integrals contribute
to lower, i.e., more important, orders of the chiral expan-
sion. Corresponding low-energy constants from these lower
orders serve to renormalize the loops [20]. This is the
approach that we follow in the present work.
We summarize the discussion of baryon chiral perturba-

tion theory as follows: The more separated the hard and soft
scales are the less it matters how one includes heavy
degrees of freedom. But the closer the scales move to each
other, the more problematic it might become to ignore the
loops with additional degrees of freedom or parts of these
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loops. Consequently, we use in the present work a fully
relativistic framework and identify explicitly the counter
terms for the loop divergences irrespective of the formal
chiral order of the loops and counter terms.

C. Inclusion of vector mesons

While there is a clear gap between the masses of the
lightest pseudoscalar mesons and the masses of other
hadrons built from the lightest two quark flavors, the mass
difference for the light vector mesons and the η meson is
not that big anymore. The η0 meson is even heavier than
most of the vector mesons from the lowest-lying multiplet.
All this concerns the physical masses. On the theory side,
there is one more situation where the dynamical and the
static scale move closer together: Still, until today, a
significant part of lattice QCD calculations deals with
too heavy “light” quark masses [47]. Therefore, it is valid
to discuss if and, if yes, which hadrons should be included
as additional degrees of freedom in an extended effective
theory. The lightest non-Goldstone boson, the σ meson, is a
notoriously complicated state; see, for instance, the dis-
cussion in [11] on low-lying scalars. In addition, it is a very
broad resonance. Thus, its general impact might be limited.
On the other hand, the low-lying vector mesons have both
masses close to the Goldstone-boson masses and small
widths. Thus, they are expected to be prominent in an
effective theory including Goldstone bosons and other light
mesons.
As already mentioned, the inclusion of additional

mesonic degrees of freedom in an effective theory is
not free of complications and/or input assumptions.
Concerning the scale separation, one complication is
caused by the fact that numerically the masses of the
vector mesons are similar to the scale 4πFπ where loops
become as important as tree-level contributions, see (1) and
(2). Here, a possible solution could come from the
resummation of the numerically most important loop
diagrams [29,44,45,48].
Another important issue is the representation depend-

ence. In principle, it should not matter for an effective
theory whether vector degrees of freedom are represented,
e.g., by ordinary vector fields, massive Yang-Mills fields,
hidden gauge fields, or antisymmetric tensor fields; see,
for instance, the discussions in [49–51]. However, the
explicit power counting, i.e., the classification of interac-
tion terms and diagrams, might change when changing the
representation.
In the present work, we have a much more modest aim

than setting up and/or checking the validity of a power
counting scheme for vector mesons. Here and in the follow-
up work [46], we check the quantitative influence of one-
loop contributions with dynamical vector mesons. We have
chosen the antisymmetric tensor representation based on its
phenomenological success, see, e.g., [2,9,52,53]. The
present work should be understood as a feasibility study

for one-loop calculations with vector mesons in the anti-
symmetric tensor representation. In addition, we intend to
scrutinize the effective-field-theory assumption that at low
—but practically relevant—energies the influence of vector
mesons can fully be accounted for by the low-energy
constants of the chiral Lagrangian. Starting out from a
Lagrangian with vector mesons, one will obtain a nonlocal
effective action if one integrates out the vector mesons and
the fluctuations in the pseudoscalar fields. The local part of
this effective action, i.e., the polynomial terms, can be
matched by an adjustment of the low-energy constants. The
nonlocal part, related to the logarithms emerging from the
loop integrals, can only be matched if it is further Taylor
expanded. However, if this part is numerically significant,
the Taylor expansion might not converge very well and
jeopardize in that way the convergence of the chiral
expansion. In the present work, we address the cancellation
of one-loop divergences by the counter terms provided in
the form of the low-energy constants of χPT. Equipped
with the knowledge about these local structures, we address
in the follow-up work [46] the possible importance of the
nonlocal logarithmic structures.
As already discussed, the inclusion of additional

(mesonic) degrees of freedom in χPT is representation
dependent. Vector mesons can be described as vectors or
antisymmetric tensors or can be included via a hidden local
gauge mechanism [54]. As a glance of this representation
dependence, we compare in this article our final results to
those obtained from a hidden local gauge mechanism [54].
Aiming at a systematic inclusion of vector mesons as

active degrees of freedom in an effective-field-theory
framework, we perform in the present work a feasibility
study concerning renormalization aspects at the one-loop
level. We focus on the full effective actions at chiral order
Q2 and Q4 where the vector mesons have been completely
integrated out. This approach is complementary to the
explicit calculation of selected n-point functions as carried
out, for instance, in [55] for vector-meson properties or in
[56–59] for some low-energy constants of χPT. Note that in
the latter works not only vector mesons have been
considered, and also, additional assumptions about the
high-energy behavior [60] of resonance Lagrangians have
been made there. We are aiming at the construction of a
low-energy theory for the lowest-lying (vector-meson)
resonances and do not claim that our theory is valid a
high energies. Therefore, it is not possible to compare the
divergences calculated in [56–59] with the results obtained
within this article.
In the present work, we determine the infinity structure

and the corresponding renormalization-scale dependence of
all low-energy constants up to chiral order Q4 that are
needed to compensate the corresponding effects from loops
that include vector mesons. The found scale dependence
should be qualitatively interpreted in the following way:
The finite parts of the loops with vector mesons depend on

RENORMALIZATION OF THE LOW-ENERGY CONSTANTS … PHYSICAL REVIEW D 94, 014021 (2016)

014021-3



the masses of vector and pseudoscalar mesons, on the
external momenta, and on the renormalization scale. For
observables, (only) the scale dependence of the loops is
compensated by the scale dependence of the low-energy
constants. What is particularly interesting for observables is
the impact of loops with vector mesons on the momentum
dependence. Concerning results of the lattice calculations
also, the impact on the quark-mass dependence is of interest.
Based on dimensional arguments, it can be expected that at
least part of the log μ2 dependence, which we uncover in the
present work, comes along with a log s and/or logm2

P
dependence of observables. Here, μ denotes the renormal-
ization scale, s the square of a generic external momentum,
and mP the mass of a pseudoscalar Goldstone boson.
Detailed studies of these dependencies of observables
are delegated to future works, where one is already in
progress [46].
We concentrate in the present work on the appearing

infinities as defined by a slightly modified MS bar scheme
according to [3]. Technically, we use nonperturbative path-
integral methods to keep the full chiral structure of the
effective Lagrangian instead of just calculating loops for
specific n-point functions. In contrast to χPT one-loop
calculations as carried out in [2,3], a standard heat-kernel
technique cannot be used for vector mesons represented by
antisymmetric tensor fields since these fields contain frozen,
nonpropagating degrees of freedom which have different
short-distance behaviors compared with the active, propa-
gating degrees of freedom. This is an unfortunate finding
because the standard heat-kernel technique keeps in every
step the full chiral structure of the effective action and brings
along recursive relations which simplify and systematize the
calculations when proceeding from one chiral order to the
next. We regard it as illuminating to devote a subsection to
the discussion of this not working technique before we
present a formalism that does work and serves to isolate and
classify the infinities of the loop calculations. The calcu-
lations are involved, but a viable cross-check emerges from
the fact that the full chiral structure needs to be reconstructed
in the end from several distinct expressions. In other words,
the elegance of the heat-kernel technique of [2,3] concerning
the full chiral structure is lost, but technically a powerful
cross-check of the results has been gained.
Given that the calculations are rather involved, we have

decided for this exploratory work that we limit the
possible interaction terms between vector mesons and
low-energy degrees of freedom. We only consider the
(chiralized) three-flavor versions of the phenomenologi-
cally well-known ρ − 2π and ρ − v couplings where v
denotes an external vector source. Other interaction terms
that might be relevant for a full effective theory of
pseudoscalar and vector mesons are presented and dis-
cussed, e.g., in [43,53].
The article is organized in the following way. In Sec. II,

the building blocks and pertinent Lagrangians for

pseudoscalar and vector mesons are introduced. It is
discussed how one-loop contributions in this framework
are calculated. Hereby, approaches for calculating one-
loop contributions with vector mesons which are not
applicable are discussed as well. The calculation itself
is split up into two parts. First, in Sec. III, we discuss one-
loop contributions for χPT plus vector mesons and their
influence on the low-energy constants of χPT for the case
where one includes only the pseudoscalar Goldstone
octet. Afterwards, the calculations are extended by includ-
ing the η-singlet as well (Sec. IV). All calculations are
carried out up to (including) chiral order Q4. In the last
section, an outlook is given.

II. GENERAL CONSIDERATIONS

In this section, techniques used to calculate the one-loop
contributions of light vector mesons are introduced. We
also document (in Secs. II B and II C) methods which were
tested in order to calculate the one-loop contributions but
turned out to be intractable.
Although in the classical sense effective theories are

nonrenormalizable, they can be renormalized order by
order. In pure χPT, a diagram containing n loops is at
least suppressed by order Q2n for a typical momentum Q
according to general power counting arguments [1–3]. To
calculate diagrams up toOðQ4Þ in pure χPT, both tree-level
diagrams based on the leading-order (LO) and next-to-
leading-order (NLO) Lagrangian and loop diagrams based
only on the LO Lagrangian have to be involved. In [2,3],
the one-loop contributions to the effective action were
calculated using the pure χPT-Lagrangian describing
pseudoscalar fields only. Based on the techniques used
therein, one-loop contributions including light vector mes-
ons are calculated in this article. Thereby, the calculations
are first restricted to the pseudoscalar octet; the singlet is
only included in Sec. IV. These calculations are a feasibility
check for loop calculations based on a Lagrangian that
includes vector mesons (in the antisymmetric tensor
representation).
In this article, the χPT power-counting scheme is used;

i.e., both derivatives and pseudoscalar masses are treated as
soft while the vector masses are not,

∂μ; mP ∈ OðQÞ; mV ∈ Oð1Þ: ð3Þ

Thus, the effective action will not contain vector mesons.
They are fully integrated out.
In the following, we perform one-loop calculations based

on the LO Lagrangian of χPT and on a vector-meson
Lagrangian to be specified below. We focus in the present
work on those infinities where the counter terms are
provided by the low-energy constant of the χPT
Lagrangians of LO, OðQ2Þ, and NLO, OðQ4Þ. Those
Lagrangians are given by [3]
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LLO
χPT ¼ 1

4
F2fhDμU†DμUi þ hχU† þ χ†Uig;

LNLO
χPT ¼ L1hDμU†DμUi2 þ L2hDμU†DνUi2 þ L3hðDμU†DμUÞ2i þ L4hDμU†DμUihχ†U þ χU†i

þ L5hðDμU†DμUÞðχ†U þ U†χÞi þ L6hχ†U þ χU†i2 þ L7hχ†U − χU†i2 þ L8hχ†Uχ†U þ χU†χU†i
− iL9hFμν

R DμUDνU† þ Fμν
L DμU†DνUi þ L10hU†Fμν

R UFL
μνi þH1hFR

μνF
μν
R þ FL

μνF
μν
L i þH2hχ†χi: ð4Þ

The matrix U ≔ expðiΦ=FÞ describes the pseudoscalar
fields with the octet matrix

Φ ¼

0
BBB@

π0 þ 1ffiffi
3

p η8
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþffiffiffi

2
p

π− −π0 þ 1ffiffi
3

p η8
ffiffiffi
2

p
K0ffiffiffi

2
p

K−
ffiffiffi
2

p
K̄0 − 2ffiffi

3
p η8

1
CCCA; ð5Þ

while the external vector, axialvector, scalar, and pseudo-
scalar sources vμ, aμ, s, and p, respectively, are included
in FR

μ ≔ vμ þ aμ, FL
μ ≔ vμ − aμ and χ ≔ 2B0ðsþ ipÞ.

Throughout this work, we ignore isospin breaking effects.
Thus, we use an averaged quark mass mq for up and down
quarks. The strange-quark mass ms is kept distinct. If
the external fields are switched off, χ ¼ 2B0M ≔
2B0diagðmq;mq;msÞ. Furthermore, hAi ≔ trðAÞ and1

DμU ≔ ∂μU − iFR
μU þ iUFL

μ ;

DμU† ≔ ∂μU† þ iU†Fμ
R − iFμ

LU
†;

FR=L
μν ≔ ∂μF

R=L
ν − ∂νF

R=L
μ − i½FR=L

μ ; FR=L
ν �: ð6Þ

The vector mesons are given in an antisymmetric tensor
representation and collected in the nonet matrix

Vμν ¼

0
BB@

ρ0μν þ ωμν

ffiffiffi
2

p
ρþμν

ffiffiffi
2

p
Kþ

μνffiffiffi
2

p
ρ−μν −ρ0μν þ ωμν

ffiffiffi
2

p
K0

μνffiffiffi
2

p
K−

μν

ffiffiffi
2

p
K̄0

μν

ffiffiffi
2

p
ϕμν

1
CCA: ð7Þ

Approximating the vector-meson masses by a common
mass mV ¼ 776 MeV, the vector-meson Lagrangian used
in this article is given as [42,43]

Lvec ¼ Lfree þ Llin;

Lfree ¼ −
1

4
hDμVμνDρVρνi þ 1

8
m2

VhVμνVμνi;

Llin ¼
1

2
ifVhPhUμVμνUνi þ

1

2
fVhVμνfþμνi; ð8Þ

with the still to be determined parameters fV and hP and the
abbreviations

DμVαβ ≔ ∂μVαβ þ ½Γμ; Vαβ�;

Γμ ≔
1

2
ð½u†; ∂μu� − iu†FR

μuþ iuFL
μu†Þ;

Uμ ≔
1

2
u†DμUu† ¼ −

1

2
uDμU†u;

f�μν ≔
1

2
ðuFL

μνu† � u†FR
μνuÞ;

U ¼ u2: ð9Þ

With the particular choice of the kinetic terms given in (8),
the three vector-meson fields Vik for i, k ¼ 1, 2, 3 are
frozen, i.e., non-propagating fields [9]. For a different
choice of the kinetic terms, other fields would be non-
propagating.
Note that the chiralized “free” Lagrangian Lfree does

contain interactions encoded in the chirally covariant
derivative. The interactions between vector mesons and
low-energy degrees of freedom are limited to V − 2P and
V − v couplings with vector mesons V, pseudoscalar
mesons P, and an external vector source v, as already
discussed in the Introduction. These couplings describe the
most prominent ways of interactions of vector mesons with
pseudoscalar mesons. In particular, if one probes pions by
the electromagnetic interaction, the pion form factor
receives significant contributions from an intermediate ρ-
meson, see, e.g., [53,61] and references therein. The next
most significant terms, the 2V − P coupling [42,53] and the
mass splitting of the vector-meson masses [42,43], are not
part of the present feasibility study. Note that the notation
used within this article follows the one used in [43] and
differs from, e.g., the one used in [9]. In Table I, the
corresponding notations are matched.
The generating functional to calculate one-loop contri-

butions is given by

eiZ ¼ ei
R

d4xLNLO
χPT ½Ū�

Z
dμ½fU;Vg�ei

R
d4xL1 ;

L1 ≔ LLO
χPT þ Lvec:

The first integral describes tree-level diagrams up toOðQ4Þ
only so that it has to be evaluated at the classical solution Ū
for pseudoscalar fields determined through the equation of
motion (EOM) of the LO-χPT Lagrangian LLO

χPT. Hereby,
the vector-meson fields are treated as pure fluctuations; i.e.,
they do not contribute to the classical fields. The integral

1Note that the chirally covariant derivative Dμ is defined
depending on the field it is acting on and acts differently onU,U†

and the vector field V.
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measure dμ denotes an integral over the pseudoscalar and
vector fields UðxÞ and VμνðxÞ, respectively.
To calculate the one-loop approximation, the field U is

expanded around its classical solution Ū as [3]

U ¼ ūexpiξū; Ū ¼ ū2; ð10Þ

whereby ξ is a traceless, Hermitian matrix. Treating in
addition the vector-meson fields V as fluctuations yields a
combined fluctuation vector ξ̂ ¼ ðξ; VÞt. Therewith, L1 can
be expanded in the neighborhood of the classical solution
Ū. In that way, we define the matrix operator D viaZ

d4xL1½U� ≕
Z

d4xL1½Ū� − 1

2

Z
d4xd4yξ̂tðxÞDðx; yÞξ̂ðyÞ

þOðξ̂3Þ: ð11Þ

The one-loop contribution can be expressed in terms of D
and, up to an irrelevant constant, is given by

Zone loop ¼
1

2
i logðdetDÞ: ð12Þ

Since the vector-meson fields are treated as pure fluctua-
tions, the one-loop contribution depends only on the
classical pseudoscalar fields and on external sources.
Thus, all singularities therein have to have the structure
of terms in the pure χPT-Lagrangians and have to renorm-
alize the low-energy constants therein such that the one-
loop approximation for Z is finite. In the present work, we
restrict ourselves to LLO

χPT and LNLO
χPT .

A. Determining the matrix D for a general Lagrangian

If one-loop contributions are calculated using Eq. (12),
the matrixD defined according to Eq. (11) is needed. It can
be determined by expanding an action Z ¼ R

d4xL at the
classical fields Ū. Let Z be a general action depending on

fields Ai, i ¼ 1;…; n for a given n ∈ N. Then, the EOM of
a field Aj reads as

0 ¼ ∂Z
∂Aj

����
fAig¼fĀig

for all j ¼ 1;…; n. Hereby, fĀig denotes the classical
fields. With the EOM, the action can be expanded and the
matrix operatorD determined according to (integrations are
implicit)

Z½fAig� ¼ Z½fĀig� −
1

2
ξ̂tDξ̂þOðξ3Þ;

Dijðx; yÞ ¼ −
∂Z

∂AiðxÞ∂AjðyÞ
����
fAkg¼fĀkg

: ð13Þ

B. Expanding the one-loop contribution in powers of
pseudoscalar and other external fields

In general, one is not only interested in how the low-
energy constants are renormalized by the one-loop con-
tribution including light vector mesons but also in their
influence on observables like the pseudoscalar masses and
decay constants (see further work by the same authors
[46]). Thus, one might wonder whether one can determine
the renormalization of (some of) the low-energy constants
by just calculating two-point functions, i.e., by expanding
the one-loop functional up to second order in classical
fields and/or external sources. However, there are several
chiral structures up to OðQ4Þ which contribute in the same
way to (on shell) two-point functions. Therefore, only
linear combinations of low-energy constants are related in
this way to the infinities emerging from loops with vector
mesons. To disentangle the impact of the loops on the
various low-energy constants, one has to keep the complete
chiral structure encoded in the field U instead of expanding
in powers of the fields.

C. Heat-kernel approach

Since the one-loop calculation including light vector
mesons seems to be similar to the calculation with
pseudoscalar mesons only, one could try to follow [2,3]
using a heat-kernel approach. In general, for using a heat-
kernel approach, a matrix D according to the definition in
Eq. (11) is considered. This matrix has to fulfil the
condition D → D0 ∼□þ ðmassÞ2 in the limit of no
external fields. Here and in the following, the phrase “limit
of no external fields” refers to the classical solution ū≡ 1,
the scalar source s≡M, and all other external sources set
to zero. Therewith, the matrix elements in d dimensions can
be expressed as [2,62]

TABLE I. Comparison between notations used in this article
and in [9]. The latter are denoted by .̂

Notation in this article Notation in [9]

fΦ; Vμνg fΦ̂; V̂μνg ¼ 1ffiffi
2

p fΦ; Vμνg
u2 ¼ U ¼ expði ΦFÞ û2 ¼ Û ¼ expð− ffiffiffi

2
p

i Φ̂FÞ ¼ U†

DμU ¼ ∂μU − iFR
μU D̂μÛ ¼ ∂μU† − iFR

μU†

þiUFL
μ þiU†FL

μ

Γμ ¼ 1
2
ð½u†; ∂μu� − iu†FR

μu Γ̂μ ¼ 1
2
ð½u†; ∂μu� − iuFR

μu†

−iuFL
μu†Þ −iu†FL

μuÞ
Uμ ¼ −U†

μ ¼ 1
2
u†DμUu† ûμ ¼ û†μ ¼ iû†D̂μÛû†

f�μν ¼ 1
2
ðuFL

μνu† � u†FR
μνuÞ f̂�μν ¼ 2ðf�μνÞ†

χ� ≔ u†χu† � uχ†u χ̂� ¼ uχu� u†χ†u†

fhP; fVg fĜV; F̂Vg ¼ f1
4
fVhP; fVg
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hxje−λDjyi ≕ hxje−λ□jyiHðxjλjyÞ;

hxje−λ□jyi ¼ ið4πλÞ−d=2 exp
�ðx − yÞ2

4λ

�
;

with a purely imaginary parameter λ. Then,

logðdetDÞ ¼ −Tr
Z

i∞

0

dλ
λ
e−λD

¼ −ið4πλÞ−d=2
Z

i∞

0

dλλ−ð1þd=2Þ
Z
ddxhHðxjλjxÞi:

ð14Þ

After Taylor-expanding H around λ ¼ 0,

HðxjλjyÞ ¼
X∞
n¼0

λnHnðxjyÞ; ð15Þ

the one-loop contribution is given by

i
2
logðdetDÞ ¼ −

i
2

Z
ddx

�
1

d
H0ðxjxÞ þ

1

4πðd− 2ÞH1ðxjxÞ

þ 1

ð4πÞ2ðd− 4ÞH2ðxjxÞ
�
þ ðirrelÞ: ð16Þ

Therefore, only H2ðxjxÞ has to be determined to identify
the infinite contribution for the physical number of dimen-
sions, d ¼ 4. It can be determined using the differential
equation for HðxjλjyÞ which is generated by taking the
derivative of the matrix element with respect to λ,

∂
∂λ hxje

−λDjyi ¼ −Dxhxje−λDjyi;

and the initial condition Hðxj0jxÞ ¼ H0ðxjxÞ ¼ 1. This
differential equation yields recursive relations for the
HnðxjyÞ which can be used to calculate H2ðxjxÞ.
For loops including vector mesons in the antisymmetric

tensor representation, the corresponding matrix D does not
have the required standard form □þ ðmassÞ2 in the limit
of no external fields. However, a projection on the space
of antisymmetric rank-2 tensors can be performed
(cf. Sec. III A for details on this projection) such that
the vector fields are decomposed into a propagating mode
and a nonpropagating mode; i.e., in the limit of no external
fields, the matrixD is equal to□þ ðmassÞ2 if acting on the
propagating mode and equal to ðmassÞ2 only if acting on
the nonpropagating mode. It turns out that due to the
nonstandard form of the matrix D acting on the non-
propagating mode, a heat-kernel approach is not applicable.
This is discussed in greater detail in Appendix Awhere the
heat-kernel approach is applied to a toy Lagrangian with
only one vector-meson flavor.

D. Calculating one-loop contributions
in powers of D − D0

The heat-kernel method of [3] is very elegant in
providing a closed form H2 for the divergences in four
dimensions and in keeping a chirally covariant structure
throughout the calculation. In lack of this method, we have
to resort to a more direct brute force approach. It turns out
that this requires at some point a derivative expansion of a
nonlocal expression with the aim of obtaining a local
effective action. The ordinary derivatives that appear in this
way must be fused in the end with the appropriate fields to
obtain the pertinent chirally invariant structures that fit the
Lagrangians of χPT. This painful bookkeeping procedure
can, on the other hand, be seen as an important cross-check
of our calculations. It is a highly nontrivial check if several
separately nonchiral terms fuse to chirally invariant
structures.
To determine divergences in four dimensions, the cal-

culation of one-loop contributions via an expansion in
δD ≔ D −D0 is discussed in this subsection. Hereby, D0

denotes again the matrixD in the limit of no external fields.
Using D ¼ D0 þ δD, the one-loop contribution can be
rewritten as

Zone loop ¼
1

2
i log ½detðD0 þ δDÞ� ¼ 1

2
i tr½logðD0 þ δDÞ�

¼ 1

2
i
X∞
N¼1

ð−1ÞNþ1
1

N
tr½ðD−1

0 δDÞN � þ ðirrelÞ: ð17Þ

Thus, for an arbitrary N ∈ N one has to calculate

tr½ðD−1
0 δDÞN �

¼
YN
i¼1

�Z
d4x2i−1d4x2i

Z
d4ki
ð2πÞ4 exp ½ikiðx2i−1 − x2iÞ�

�

·

�YN
j¼1

D−1
0 ðkjÞδDðx2j; x2jþ1Þ

	����
x2Nþ1≔x1

: ð18Þ

Hereby, D−1
0 denotes both the matrix in coordinate space

and the corresponding one in momentum space. However,
it is always clear from the context which one is used.
As a first step, derivatives acting on δ functions which

show up in δD (see determination of Dvec, Dpseudo, and
Dmix in the following sections) have to be evaluated,

Z
d4xeikxAðxÞ∂x

ηδðx − yÞ ¼ −eikyðikη þ ∂ηÞAðyÞ: ð19Þ

Next, the multidimensional space integral has to be
localized, i.e., expanded around one space coordinate,
e.g., around x1 ≕ x with xi ≕ x − zi for i ≠ 1 and
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AðxiÞ ¼ Aðx − ziÞ ¼
X∞
n¼0

ð−1Þn
n!

zμ1i � � � zμni ∂μ1 � � � ∂μnAðxÞ:

Since ∂ ∈ OðQÞ, this Taylor expansion can be approxi-
mated by a finite series if calculating trðlogDÞ to a given
order in Q. Note that at this point the ordinary derivatives
appear which have to be fused with appropriate fields in the
end to obtain chirally invariant structures.
If the integrand is proportional to the exponential eikzi for

a given momentum k and space point zi after the trans-
formation above, it will not be proportional to the expo-
nential eikzj for the same momentum k and another space
point zj ≠ zi. Furthermore, no exponential function in the
integrand depends on the expansion point x. Thus, after the
transformation

Z
d4k
ð2πÞ4 z

μ
i e

ikziBðkÞ ¼ i
Z

d4k
ð2πÞ4 e

ikzi∂μBðkÞ;

all integrals
R
d4zi can be performed yielding δ functions

for the momentum variables. The evaluation of those δ
functions reduces hðD−1

0 δDÞNi to an integral over both one
space and one momentum variable only.
To identify the infinite part of the momentum integral,

dimensional regularization is used; i.e., the integral in
momentum space is calculated in (4þ 2ε) instead of four
dimensions. Its integrand can be further simplified con-
taining one propagator with a common mass instead of
several propagators with separate masses using Feynman
parameters [7],

ðaα11 � � �aαnn Þ−1

¼ ΓðPαiÞQ
ΓðαiÞ

Z
1

0

du1

Z
u1

0

du2 � � �
Z

un−2

0

dun−1

·

� ð1− u1Þα1−1ðu1 − u2Þα2−1 � � �uαn−1n−1

½a1ð1− u1Þ þ a2ðu1 − u2Þ þ � � � þ anun−1�
P

αi

�
:

ð20Þ

In (4þ 2ε) dimensions, a momentum integral with one
propagator is given by [6]

1

μ2ε

Z
d4þ2εk
ð2πÞ4þ2ε

½k2�α
½k2 −m2 þ iη�β

¼ i
16π2

ð−m2Þα−βþ2



m2

4πμ2

�
ε

×
Γð2þ αþ εÞΓð−αþ β − 2 − εÞ

ΓðβÞΓð2þ εÞ

¼ ifðm2; α − βÞ
16π2



1

ε
þ Γ0ð1Þ − 1 − logð4πÞ

�
þ ðfiniteÞ

≕ ifðm2; α − βÞ · λ̄þ ðfiniteÞ ð21Þ

for a small ε ∈ R, α ∈ N0 and β ∈ N. The finite part
consists of terms of Oð1Þ and terms of OðεÞ which vanish
for ε → 0. The function f∶ R2 → R depends only on the
mass m and the combination (α − β) but not on ε. Indeed,
fð•;α − βÞ≡ 0 for ðβ − αÞ ≥ 3; i.e., the integral is finite.
The renormalization scale μ is introduced by dimensional
regularization. Note that all physical observables have to be
independent of the scale μ.
Furthermore, if an integrand of the form given in the

integral above is multiplied with kμ1 � � � kμn , the integral will
be zero for all odd n ∈ N. Otherwise, the multiplicand can
be substituted by [6]

kμ1kμ2 ↦
k2

4þ 2ε
gμ1μ2 ;

kμ1 � � � kμ4 ↦ k4

ð4þ 2εÞð6þ 2εÞ ðg
μ1μ2gμ3μ4 þ gμ1μ3gμ2μ4

þ gμ1μ4gμ2μ3Þ ð22Þ
and accordingly for n > 4, n even.
In Appendix B, an integral is calculated as an example

for the procedure described in this subsection.

III. ONE-LOOP CONTRIBUTIONS INCLUDING
VECTOR MESONS UP TO OðQ4Þ

In this section, the one-loop contribution including
vector mesons are calculated up to OðQ4Þ (Secs. III B–
III D). The calculation method is based on the techniques
discussed in Sec. II D. Furthermore, the results are used to
renormalize the low-energy constants of the LO- and NLO-
χPT Lagrangians (4) (see Sec. III E).
For fluctuations both in the pseudoscalar and in the

vector-meson fields as considered in this article, the matrix
D can be written as a block matrix such that

ξ̂tDξ̂ ¼ ðξt; VtÞ


Dvec Dmix

Dt
mix Dpseudo

�

ξ

V

�

¼ VtDvecV þ VtDmixξþ ξtDt
mixV þ ξtDpseudoξ:

ð23Þ
Using this block structure, Eq. (17), which expresses the
one-loop contribution as a sum over D0 and δD with
D ¼ D0 þ δD, can be split up into parts containing or not
containing Dmix, respectively,

trðlogDÞ ¼ trðlogDvecÞ þ trðlogDpseudoÞ þ


parts with

Dmix

�

≕ trðlogDvecÞ þ trðlogDpseudoÞ þ trðlogDÞmix:

ð24Þ
The different parts of this sum are calculated separately in
Secs. III B–III D. First, the one-loop contribution fromDvec
is calculated, then the additional contribution from Dpseudo,
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and at last the contributions containing Dmix. Thereby, all
calculations are performed up to OðQ4Þ. Furthermore, the
projection on the space of antisymmetric rank-2 tensors
necessary in order to determine D0

vec is discussed in the
Sec. III A.

A. Projection on the space of antisymmetric
rank-2 tensors

As discussed in Sec. II D, the limit D0 for no external
fields has to be determined in order to calculate the one-
loop contribution. If the matrix D is written as a block
matrix, this limit has to be determined for all block-matrix
parts separately. As already calculated in [3], D0

pseudo ∼
□þ ðmassÞ2. Furthermore, D0

mix ¼ 0. For determining
D0

vec, consider the free Lagrangian Lfree given in Eq. (8)
evaluated at the classical solution of the pseudoscalar
fields, Ū ¼ ū2,Z

d4xLfreejU¼Ū

¼ −
1

4

Z
d4xd4yVa

μνðxÞDvecðx; yÞμναβab Vb
αβðyÞ: ð25Þ

Since Dvec is generated by the parts in the Lagrangian
containing two vector-meson fields, it is generated by Lfree
only. Hereby, the matrix Dvec is twice the definition in
Eq. (13) in order to simplifying further calculations. This
only adds a constant to trðlogDvecÞ and, hence, does not
change the final result. In the following, the matrices
Dpseudo and Dmix are determined in the same way.
In the limit of all external fields set to zero,

Dvecðx; yÞμναβ → D0
vecðx; yÞμναβ

¼ −ð2Pμντρ
1 Pαβησ

1 gρσ∂x
τ∂x

η þm2
VP

μναβ
1 Þ

× δðx − yÞ; ð26Þ

including the unit element of the vector space of all
antisymmetric rank-2 tensors,

Pμναβ
1 ≔

1

2
ðgμαgνβ − gμβgναÞ: ð27Þ

Since the vector-meson fields Vμν are antisymmetric tensor
fields, Dvec only acts on the space of antisymmetric rank-2
tensors. Hence, Dvec can be reduced explicitly to a matrix
over the vector space of antisymmetric tensor fields without
changing the result of trðlogDvecÞ. Therefore, the antisym-
metric projection operators in momentum space

~Pμναβ
V ðkÞ ≔ 1

2k2
ðgμαkνkβ − gμβkνkα − gναkμkβþgνβkμkαÞ;

~PA ≔ ~P1 − ~PV; ~P2
A ¼ ~PA; ~P2

V ¼ ~PV; ~PA⊥ ~PV

ð28Þ

are introduced. Reduced to the antisymmetric space, the
matrix Dvec ↦ PDvecP with P ¼ diagfPA; PVg and the
projection operators PA=V in coordinate space. Then,

trðlogDvecÞ ¼ tr½log ðPDvecPÞ�

¼
X∞
N¼1

ð−1ÞNþ1
1

N
tr½ðP½D0

vec�−1P · PδDvecPÞN �

¼
X∞
N¼1

ð−1ÞNþ1
1

N
tr½ðP½D0

vec�−1 · δDvecÞN �

ð29Þ

since ½D0
vec�−1P ¼ P½D0

vec�−1 and P2 ¼ P. Hence, the only
matrix which actually has to be reduced to the antisym-
metric space is D0

vec. Then, the inverted matrix of the
reduced matrix PD0

vec is equal to

P½D0
vec�−1 ¼ −ð□þm2

VÞ−1PV −m−2
V PA: ð30Þ

As can be seen here, the operator PV projects on the
propagating vector-meson mode, while the operator PA
projects on the nonpropagating mode.
The mixed matrix operator Dmix acts both on antisym-

metric vector fields Vμν and pseudoscalar fieldsU. The part
acting on vector fields is multiplied with D0

vec in all further
calculations. Again, D0

vec and therewith also the corre-
sponding part of Dmix have to be reduced explicitly to
matrices over the vector space of antisymmetric tensor
fields to achieve the desired form of D0

vec. Hereby, the
reduced matrix Dmix is equal to PDmix and Dt

mixP,
respectively. Then,

P½D0
vec�−1�P · PDmix ·D−1

pseudo ¼ P½D0
vec�−1 ·Dmix ·D−1

pseudo;

D−1
pseudo ·D

t
mixP · P½D0

vec�−1P ¼ D−1
pseudo ·D

t
mix · P½D0

vec�−1:

Hence, also for terms including Dmix in trðlogDÞ, it is
sufficient to only reduce ½D0

vec�−1 to P½D0
vec�−1.

B. Result for trðlogDvecÞ
As discussed before,Dvec is generated by the parts in the

Lagrangian containing two vector-meson fields with all
pseudoscalar fields evaluated at their classical solution
Ū ¼ ū2. It can be decomposed as2

Dvec ≕ PD0
vec þ Δ;

Δðx; yÞμναβab ≕ ½Fðx; yÞμναβab þHðx; yÞμναβ;ηab ∂x
η�δðx − yÞ;

ð31Þ

2Recall from the previous subsection that P½D0
vec�−1 is needed

to calculate trðlogDvecÞ instead of ½D0
vec�−1 only.
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with Δ containing both a local term, F, and a term with an
additional derivative, H∂. The matrices F and H are both
antisymmetric in the Lorentz indices ðμ; ν; α; βÞ,

Fðx; yÞμναβab ≔ Pμντρ
1 Pαβηρ̄

1 Eðx; yÞabτη gρρ̄;

Hðx; yÞμναβ;ηab ≔ Pμντρ
1 Pαβηρ̄

1 GðxÞabτ gρρ̄ þ


μν ↔ αβ;

x ↔ y

�
:

ð32Þ

Finally, the matrices E andG contain the flavor information
of Δ and the building blocks of the Lagrangian directly,

Eðx; yÞabτη ≔ h½ΓτðxÞ; λa�½ΓηðyÞ; λb�i ¼ Eðy; xÞbaητ ;
GðxÞabτ ≔ h½λa; λb�ΓτðxÞi ¼ −GðxÞbaτ ; ð33Þ

with λ0 ≔
ffiffiffiffiffiffiffiffi
2=3

p
· 1 and the Gell-Mann matrices λ1;…; λ8.

AsH ∈ OðQÞ, the one-loop contribution fromDvec up to
OðQ4Þ is given by the finite sum

trðlogDvecÞ ¼
X4
N¼1

ð−1ÞNþ1

N
tr½ððPD−1

0 · ΔÞN � þOðQ6Þ

≕ iλ̄
Z

d4xQvec
4 þ ðfiniteÞ þOðQ6Þ;

with λ̄ as defined in Eq. (21) and

Qvec
4 ¼ −

3

2
m2

VhG2 þ 2Eτ
τi −

1

128
f16hð∂GÞ2 þG ·□Gi

− 32h∂τGηGτGηi − 10hðG2Þ2i þ 13hðGτGηÞ2i
þ 12hEτ

τG2 þ Eτη½Gτ; Gη�i − 128h∂τGηEτηi
þ 12hðEτ

τÞ2i þ 4hEτηðEτη − EητÞig: ð34Þ

Be aware that there are two types of traces involved inQvec
4 .

Both E and G are 9 × 9 matrices in flavor space. However,
according to the definition in Eq. (33), each component of
E andG is given by a trace over 3 × 3matrices. If the traces
in flavor space in Qvec

4 are rewritten component-by-
component, the involved traces of 3 × 3 matrices can be
calculated using [3]

X8
a¼0

hλaAλaBi ¼ 2hAihBi;
X8
a¼0

hλaAihλaBi ¼ 2hABi:

ð35Þ

Therewith, it is easy to see that the OðQ2Þ contribution of
Qvec

4 is vanishing since hG2i ¼ −2hEτ
τi. With the field

strength tensor Γμν ≔ ∂μΓν − ∂νΓμ þ ½Γμ;Γν�, the full
result for Qvec

4 can then be expressed as

Qvec
4 ¼ 0þOðQ4Þ ¼ −

3

2
hΓμνΓμνi

¼ −
3

32
hDμŪ†DμŪi2 − 3

16
hDμŪ†DνŪi2

þ 9

16
hðDμŪ†DμŪÞ2i þ 3

4
hFR

μνŪFμν
L Ū†i

þ 3

4
ihFμν

R DμŪDνŪ† þ Fμν
L DμŪ†DνŪi

þ 3

8
hFμν

R FR
μν þ Fμν

L FL
μνi: ð36Þ

Hereby, the relation [3]

hðDμŪ†DνŪÞ2i ¼ 1

2
hDμŪ†DμŪi2 þ hDμŪ†DνŪi2

− 2hðDμŪ†DμŪÞ2i ð37Þ

was used. We also took from [3] the matching of hΓμνΓμνi
to the form in which the NLO Lagrangian LNLO

χPT is
displayed there. The contributions from Dvec renormalize
the low-energy constants L1, L2, L3, L9, L10, andH1 of the
NLO-χPT Lagrangian (see Sec. III E).

C. Result for trðlogDpseudoÞ
Here, Dpseudo is generated by terms in the Lagrangian

proportional to ξ2. As shown in the following, all three parts
of the Lagrangian, LχPT, Lfree, and Llin, can contribute to
Dpseudo. The contribution generated only by LχPT was
already calculated in [3]. We have used these results to
successfully check our calculation method. However, this
calculation is not presented in this article.
The Lagrangians Lfree and Llin do not directly depend on

the matrix U describing the pseudoscalar fields but on the
matrix u ¼ ffiffiffiffi

U
p

. However, the expansion rule (10) for
expanding U at its classical solution Ū cannot be reformu-
lated easily as an expansion rule for u. Therefore, the vector
fields V are rewritten such that Lfree and Llin depend on U
directly by introducing the fields ~V ≔ uVu†. In terms of ~V,
the free vector Lagrangian reads as

Lfree ¼
1

4
h ~Dμ ~Vμν

~Dρ
~Vρνi þ 1

8
m2

Vh ~Vμν
~Vμνi;

~Dμ ~Vμν ≔ ∂μ
~Vμν þ ½ ~Γμ; ~Vμν�;

~Γμ ≔ −
1

2
∂μUU†−

1

2
iðrμ þ UlμU†Þ ¼ uΓμu† − ∂μuu†;

ð38Þ

and the linear one as

Llin ¼
1

8
ifVhPh ~VμνDμUDνU†i þ 1

2
fVh ~Vμν ~fþμνi;

~fþμν ≔
1

2
ðUFL

μνU† þ FR
μνÞ ¼ ufþμνu†: ð39Þ
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The fluctuation vector ξ̂ is replaced by the transformed
fluctuation vector f ~V; ξg and can be treated in the sameway
as the original one in all calculations. Thereby, the differ-
ential transforms as

Y
i;j

dVij ¼ ½detðuÞ detðu†Þ�−Nf

Y
i;j

d ~Vij ¼
Y
i;j

d ~Vij;

with the number of flavors Nf ¼ 3. Using this trans-
formation, one can rewrite

trðlogDÞ ¼ trðlog ~DÞ: ð40Þ

In particular, the result for trðlogDvecÞ (36) calculated in
the previous subsection does not change for V ↦ ~V.
The vector-meson fields ~V have to be evaluated

at their classical solution ~Vcl to get the terms in
the Lagrangian quadratic in the fluctuations ξ of the
pseudoscalar field. Here, ~Vcl is the solution of the EOM
generated by the Lagrangians with vector mesons, Lfree
and Llin,

0 ¼ −


~D0
vec þ ~F þ ~Hη∂η −

1

2
∂η

~Hη

�
ab

μναβ

½ ~Vcl�αβb

þ 1

8
ifVhPhλaDμŪDνŪ†i þ 1

2
fVhλa ~fþμνi ð41Þ

evaluated at the classical solution Ū for the pseudoscalar
fields. Here, ~F and ~H are defined as in Eq. (32) but with
~Γ instead of Γ. The classical field can be determined
order by order as a solution of the EOM in the

corresponding order, i.e., ~Vcl ¼ ~Vð0Þ
cl þ ~Vð2Þ

cl þOðQ4Þ.
At OðQ0Þ, the classical field is equal to zero since
the EOM at OðQ0Þ is given by

0 ¼ 1

4
m2

V
~Vð0Þ
cl : ð42Þ

Thus, the classical field is of OðQ2Þ, and its LO
contribution is given as3

½ ~Vð2Þ
cl �aμν ¼ −

fV
32m2

V
ðihPhλaDμŪDνŪ†i þ 4hλa ~fþμνiÞ ð43Þ

for ~fþμν evaluated at the classical field Ū. Note that in the
present work we are interested in the effective

Lagrangian where vector mesons are completely inte-
grated out. Thus, the solution of the EOM for the
vector-meson fields is the one where the homogeneous
solution is put to zero, and the inhomogeneous
solution is purely caused by the source terms encoded
in Llin (8).
If the vector Lagrangians are evaluated at the classical

solution ~Vcl, the Lagrangian Lfree will be quadratic in ~Vcl,
while in the Lagrangian Llin

~Vcl will always appear
together with a block of OðQ2Þ. Therefore, Lfree þ Llin

evaluated at the classical solution ~Vcl is a chiral invariant
Lagrangian of OðQ4Þ in the pseudoscalar fields since
~Vcl ∈ OðQ2Þ; i.e., it has the same form as the χPT-
Lagrangian of OðQ4Þ, LNLO

χPT . Hence, it cannot contribute
to the one-loop contributions at OðQ4Þ because the χPT-
Lagrangian LNLO

χPT does not contribute either. Thus,
trðlogDpseudoÞ up to OðQ4Þ is determined by the pure
χPT Lagrangian LLO

χPT only. This contribution was already
calculated in [3] renormalizing all low-energy constants
in LNLO

χPT except L3 and L7.

D. Result for trðlogDÞ containing Dmix

Here, Dmix is determined from terms in the Lagrangian
containing both one vector-meson field ~V as a fluctuation
and one fluctuation ξ in the pseudoscalar fields, i.e., from
both the Lagrangian Lfree and Llin. Thereby, one vector-
meson field ~V inLfree is taken as a fluctuation, and the other
one is replaced by the classical field ~Vcl given in (43). Since
there are no terms involving Dmix in the first term (N ¼ 1)
of the series (17), Dmix is only needed up to OðQ3Þ
to calculate one-loop contributions up to OðQ4Þ.
Additionally, Dmix → 0 in the limit of no external fields.
Dmix is given by4

Dmixðx; yÞ ¼ ½LðxÞ þ KηðxÞ∂η
x þ JτηðxÞ∂τ

x∂η
x�δðx − yÞ;

Lμν ¼ 1

4
fVhPðγ − 2δÞμν þ 1

2
ifVζμν;

Kμν
η ¼ 1

2
fVhPP

μναβ
1 gαηϑβ

þ fV
2m2

V
f−½hpιþ 2iκ�ταβPμναβ

τη

þ ½hPðφþ dγÞ þ 2iðψ þ dωÞ�ταβ
× ðPμναβ

τη þ Pμναβ
ητ Þg;

Jμντη ¼ 1

2
fVm−2

V fhpγ þ 2iωgαβPμναβ
τη ; ð44Þ

with the abbreviations
3In the following subsection, ~V has to be split according to

~V ¼ PV
~V þ PA

~V. For OðQ4Þ and higher, the classical solution
has to be calculated separately for PV

~V and PA
~V since ~D0

vec acts
for higher orders differently on both parts. 4Recall thatDmix is twice the definition inEq. (13) (cf. Sec. III A).
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Pμναβ
τη ≔ Pμνρσ

1 Pαβρ̄ σ̄
1 gτρgηρ̄gσσ̄;

γabαβ ≔ h½ū†λaū; λb�½Ūα; Ūβ�i; dγτ;abαβ ≔ γabαβj½Ū;Ū�↦∂τ½Ū;Ū�;

δabαβ ≔ P1;αβρσh½ū†λaū; Ūρ�½λb;Γσ�i;
ζabαβ ≔ h½ū†λaū; λb�ūFL

αβū
†i; ϑabβ ≔ h½ū†λaū; λb�Ūβi;

ιτ;abαβ ≔ h½ū†λaū; ½Ūα; Ūβ��½λb; Ūτ�i;
κτ;abαβ ≔ h½ū†λaū; fþαβ�½λb; Ūτ�i;
φτ;ab
αβ ≔ h½ū†λaū;Γτ�½λb; ½Ūα; Ūβ��i;

ψτ;ab
αβ ≔ h½ū†λaū;Γτ�½λb; fþαβ�i;
ωab
αβ ≔ h½ū†λaū; λb�fþαβi; dωτ;ab

αβ ≔ ωab
αβjfþ↦∂τfþ ;

Ūα ≔
1

2
ū†DαŪū†; ð45Þ

and Γα and f
þ
αβ evaluated at the classical solutions Ū and ū.

Hereby, the first flavor index a in Dab
mix denotes the vector-

meson flavor, and hence, a ¼ 0;…; 8, whereas the second
flavor index b denotes the pseudscalar flavor and
b ¼ 1;…; 8, as long as the η-singlet is not included (see
Sec. IV for inclusion of the η-singlet). However, the Gell-
Mann matrix λb corresponding to the pseudoscalar fluc-
tuation only shows up in commutators such that including
b ¼ 0 does not change the result, and the summation rule
(35) can be used.
Both L and J are of OðQ2Þ. In K, ϑ is of OðQÞ, and the

remaining parts are of OðQ3Þ. To simplify finding possible
ways of structuring terms, the calculation was additionally
ordered in powers of hP yielding the following contribu-
tions to trðlog ~DÞmix:

trðlog ~DÞmix ¼ iλ̄
Z

d4x
X4
j¼0

Qmix
4 ðhjPÞ þ ðfiniteÞ þOðQ6Þ

Qmix
4 ðh0PÞ ¼

f2V
16F2

hζ · ðζ þ 2ψÞt − ψ · ψ ti

Qmix
4 ðh1PÞ ¼

f2VhP
16F2

if2hδ · ðω − ζÞti þ 4hðψτη
τ − ∂τω

τη þ dωτη
τ Þϑtηi − 3hκτητ ϑtηi − hϑτGηζtτηi þ hðϑτGη þ 2 ~GηϑτÞωt

τηig

Qmix
4 ðh2PÞ ¼

f2Vh
2
P

3 · 128F2
f18m2

Vhϑ · ϑti þ 18hMðϑt · ϑÞi þ 24hδ · δt þ 2ðφ − ∂γ þ dγÞ · ϑti − 36hι · ϑti
þ 2h5□ϑ · ϑt þ 2ð∂ϑÞð∂ϑtÞi þ 24hδtτηϑτGη þ γtτη ~G

ηϑτi þ 18hFχðϑt · ϑÞi − 3h ~Eτ
τðϑ · ϑtÞ þ 2 ~Eτηϑηϑτi

þ 2h10 ~Gτ∂ηϑτϑtη − 8 ~Gτð∂ϑÞϑtτ − 5 ~Gτ∂τϑ
ηϑtηi þ 2h−5Gτ∂τϑ

t
ηϑ

η − 2ðϑ · GÞð∂ϑtÞ þ 4Gτ∂ηϑ
t
τϑ

ηi
þ h−5 ~Gτ ~Gηϑτϑ

t
η þ ðϑt · ~GÞð ~G · ϑÞ þ ~G2ðϑ · ϑtÞi þ h−5 ~GτϑηGτϑ

t
η þ 2ð ~G · ϑÞðG · ϑtÞi − 5hG2ðϑt · ϑÞi

þ hGτGηðϑtτϑη þ ϑtηϑτÞig
Qmix

4 ðh3PÞ ¼ 0

Qmix
4 ðh4PÞ ¼

f4Vh
4
P

3 · 64 · 128F4
h13ðϑt · ϑÞ2 þ ðϑ · ϑtÞ2 þ ðϑτϑtηÞ2i: ð46Þ

Here, ~G and ~E denote G and E, respectively, as given
in (33) with ~Γ instead of Γ. Transposing a matrix refers
only to transposing in flavor space. The matrix Fχ is
part of the pseudoscalar contribution Dpseudo and given
by [3]

Fχ ≔ −
1

2
∂τGτ þ 1

4
G2 þ σ̂ −M;

σ̂ab ≔
1

2
h½λa; Ūτ�½λb; Ūτ�i þ 1

8
hfλa; λbgðūχ†ūþ ū†χū†Þi:

ð47Þ

All terms except Qmix
4 ðh2PÞ can be calculated directly

using the sum rules (35) and the trace relation (37)
yielding

Qmix
4 ðh0PÞ ¼ −

3f2V
8F2

ðhF2
L þ F2

Ri − 2hŪ†Fμν
R ŪFL

μνiÞ;

Qmix
4 ðh1PÞ ¼ −

9f2VhP
16F2

ihFμν
L DμŪ†DνŪ þ Fμν

R DμŪDνŪ†i;

Qmix
4 ðh4PÞ ¼

f4Vh
4
P

64 · 128F4
f24hðDμŪ†DμŪÞ2i

þ 11ð2hDμŪ†DνŪi2 þ hDμŪ†DμŪi2Þg:
ð48Þ

For calculating Qmix
4 ðh2PÞ, the EOM of the LO χPT

Lagrangian LLO
χPT is needed. It can be expressed as [63]

DμŪμ ¼ 1

4



χ− −

1

3
hχ−i

�
; ð49Þ
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with DμŪν ≔ ∂μŪν þ ½Γμ; Ūν� and χ− ≔ ū†χū† − ūχ†ū. Furthermore, the fields f� are equal to [63]

fþμν ¼ iðΓμν þ ½Ūμ; Ūν�Þ;
f−μν ¼ −iðDμŪν −DνŪμÞ: ð50Þ

Therewith, the contribution proportional to h2P can be rewritten as

Qmix
4 ðh2PÞ ¼

9f2Vh
2
P

32F2
m2

VhDμŪ†DμŪi þ f2Vh
2
P

128F2

�
1

3
ð11hDμŪDμŪ†i2 þ 22hDμŪDνŪ†i2 − 6hðDμŪ†DμŪÞ2iÞ

þ 3hχŪ† þ Ūχ†ihDμŪ†DμŪi þ 9hðχ†Ū þ Ū†χÞDμŪ†DμŪi − hχ†Ū − χŪ†i2 þ 3hχ†Ūχ†Ū þ χŪ†χŪ†i

þ 20hŪ†Fμν
R ŪFμν

L i þ 28ihFμν
R DμŪDνŪ† þ Fμν

L DμŪ†DνŪi − 10hFμν
R FR

μν þ Fμν
L FL

μνi − 6hχ†χi
�
: ð51Þ

The contribution includingDmix renormalizes the low-energy
constantF2 in the LO-χPT LagrangianLLO

χPT and all constants
except L6 in the NLO Lagrangian LNLO

χPT (see Sec. III E).

E. Renormalization of the low-energy constants of the
leading- and next-to-leading-order χPT Lagrangians

At OðQ4Þ, the effective action is given by

Z ¼
Z

d4xLcl
χPT þ Zone loop þOðQ6Þ; ð52Þ

with LχPT ¼ LLO
χPT þ LNLO

χPT as defined in Eq. (4). The one-
loop infinities have to be absorbed by renormalizing the
low-energy constants “const” such that Z is finite at OðQ4Þ
if expressed in terms of the renormalized low-energy
constants ðconstÞr. We have the following low-energy
constants at our disposal: F and B0 of the Q2

Lagrangian LLO
χPT together with L1;…; L10, H1 and H2

of the Q4 Lagrangian LNLO
χPT .

Only Qmix
4 ðh2PÞ is nonzero at OðQ2Þ renormalizing the

wave function renormalization constant F in LLO
χPT as

F2
r ¼ F2 þ φ

F2
r

�
λ̄ −

1

16π2
ðlog μ2 þ finiteÞ

�
;

φ ≔ −
9

16
f2Vh

2
Pm

2
V; ð53Þ

depending on the renormalization scale μ and for λ̄ as
defined in Eq. (21). In practice, it is useful to expand F2

r in
contributions sorted by the number of loops. Equivalently,
one can sort in inverse powers of the number of colors, Nc,
assuming Nc to be large. In this case,

mV ∈ Oð1Þ; F2; f2V ∈ OðNcÞ:

Therewith, the dependence of F2
r on the renormalization

scale can be determined as

dF2
r

dμ2
¼ −

φ

16π2F2
r
·
1

μ2
þOð1=NcÞ:

This differential equation can be solved for an arbitrary
reference scale μ0 yielding

F2
rðμÞ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F4
rðμ0Þ þ

2φ

16π2
log

μ20
μ2

s
þOð1Þ: ð54Þ

In Fig. 1, the renormalized constant FrðμÞ is plotted as a
function of the scale μ assuming that the value F ¼
92 MeV is reproduced for μ0 ¼ mV ¼ 0.776 GeV.
Hereby, two different values for both the parameter hP
and the vector-meson decay constant fV are used. On the
one hand, hP has been determined from decays of light
vector mesons into two pseudoscalar mesons in [42],5

hP ¼ 1.50. On the other hand, the KSFR relation FV ¼
2GV [49] yielding hP ¼ 2 is used (see also Table I). The
vector-meson decay constant is either approximated by
fV ¼ 150 MeV [53] or by fV ¼ ffiffiffi

2
p

F ¼ ffiffiffi
2

p
· 92 MeV

[49]. Note that FrðμÞ becomes imaginary for too small
values of μ. In general, Fig. 1 displays a quite drastic
renormalization-scale dependence of FrðμÞ. Also the
dependence on the actual values for the vector-meson
coupling constants hP and fV is rather significant. To
which extent, how all this carries over, for instance, to a
vector-meson loop-induced quark-mass dependence of the
pseudoscalar decay constants remains to be seen [46]; see
the corresponding discussion in Sec. I.
The low-energy constants of LNLO

χPT are already renor-
malized by pure χPT [3],6

5Note that the parameter hP was redefined compared to the
definition used in [42].

6Note that the parameter λ̄ is twice the corresponding param-
eter in [3] yielding adapted coefficients in Table II.
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ðLr
i ÞpureχPT ¼ ðLiÞpureχPT þ

1

2
Γiλ̄;

ðHr
i ÞpureχPT ¼ ðHiÞpureχPT þ

1

2
Δiλ̄;

Γ1 ¼ −
3

32
; Γ2 ¼ 2Γ1; Γ3 ¼ 0;

Γ4 ¼ −
1

8
; Γ5 ¼ 3Γ4;

Γ6 ¼ −
11

144
; Γ7 ¼ 0; Γ8 ¼ −

5

48
; Γ9 ¼ −

1

4
;

Γ10 ¼ −Γ9; Δ1 ¼ −Γ4; Δ2 ¼ 2Γ8: ð55Þ

If loops with vector mesons are additionally taken into
account, the renormalized constants will change to

ðLr
i ÞχPTþV ¼ ðLiÞχPTþV þ



1

2
Γi þ Λi

�
λ̄;

ðHr
i ÞχPTþV ¼ ðHiÞχPTþV þ



1

2
Δi þ ηi

�
λ̄;

Λ1 ¼
3

64
−
11

6
h2Pψ −

11

2
h4Pψ

2; Λ2 ¼ 2Λ1;

Λ3 ¼ −
9

32
þ h2Pψ − 24h4Pψ

2; Λ4 ¼ −
3

2
h2Pψ ;

Λ5 ¼ 3Λ4; Λ6 ¼ 0; Λ7 ¼
1

2
h2Pψ ; Λ8 ¼ Λ4;

Λ9 ¼
3

8
þ 2hPψð7hP − 18Þ;

Λ10 ¼ −
3

8
− 2ψð5h2P þ 24Þ;

η1 ¼ −
3

16
þ ψð5h2P þ 24Þ; η2 ¼ −2Λ4; ð56Þ

with ψ ≔ f2V=ð128F2
rÞ. At one-loop accuracy or in LO of a

large-Nc counting, we have to make a choice for the value
of Fr to determine the numerical values for Λi and ηi,

respectively. We decided to use again F2
rðμ ¼ mVÞ ¼

ð92 MeVÞ2 [cf. Eq. (54)]. The other parameters hP and
fV are varied as specified previously.
Comparing to the contributions from pure pseudoscalar

loops [3] shows that L6 is only renormalized by loops
emerging from the pure χPT-Lagrangian, while L3 and L7

are only renormalized by loops from Lagrangians contain-
ing vector mesons. Before looking at the numerical results,
we stress again that the divergence structure and the
corresponding renormalization-scale dependence of the
low-energy constants are not directly related to observ-
ables. Nonetheless, a strong dependence might provide a
first hint on possible momentum and/or quark-mass
dependencies of observables. Therefore, we determine
how much the low-energy constants change numerically
if the renormalization point is varied within a reasonable
range. We compare this spread with the corresponding
absolute size of the respective low-energy constant as
determined from phenomenology.
Before addressing this issue at the end of this section, we

want to highlight the opposite aspect, the fact that the low-
energy constants are not observables. One result that points
to this fact is the finding that the choice of different
representations for the vector mesons leads to a different
renormalization of the low-energy constants. To display
this issue, we compare our results with the ones based on
the hidden local gauge formalism (HLG) [54].

TABLE II. Numerical values for the renormalization coeffi-
cients in different frameworks. The first column shows the
respective low-energy constant. The second to fourth columns
provide the renormalization coefficients generated by loops
including vector mesons as given in Eqs. (53) and (56). For
instance, the value of Λ1 is given in the row of L1. The values for
the parameters hP, fV , and Fr are discussed in the main text. The
fifth column yields the corresponding HLG value. The last
column provides the χPT result [3] for the renormalization
coefficients generated by loops that only contain pseudoscalar
mesons.

Loops incl. vector mesons

fV ¼ 150 MeV fV ¼ ffiffiffi
2

p
F0

hP ¼ 1.50 hP ¼ 2 hP ¼ 2 HLG Pure χPT

F −0.017 −0.030 −0.023 2.805 0
L1 −0.051 −0.143 −0.089 −0.060 −0.047
L2 −0.102 −0.287 −0.178 −0.120 −0.094
L3 −0.287 −0.364 −0.313 2.267 0
L4 −0.070 −0.125 −0.094 0.160 −0.063
L5 −0.210 −0.374 −0.281 0.479 −0.188
L6 0 0 0 0.115 −0.038
L7 0.023 0.042 0.031 −0.032 0
L8 −0.070 −0.125 −0.094 0.149 −0.052
L9 −0.092 0.043 0.125 −2.371 −0.125
L10 −1.839 −2.203 −1.750 2.371 0.125
H1 0.545 0.726 0.500 1.315 0.063
H2 0.140 0.249 0.188 −0.090 −0.104

 0

 40

 80

120

0.6 0.7 0.8 0.9 1.0
µ [GeV]

Fr [MeV]
fV = 150 MeV, hP = 1.50
fV = 150 MeV, hP = 2
fV = 2 F0, hP = 2

FIG. 1. Renormalized constant FrðμÞ as a function of the
renormalization scale μ [Eq. (54)] for different values of fV and
hP (see legend).
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In Table II, we provide the numerical values for the
renormalization coefficients Γi=2 and Δi=2 as generated by
pure pseudoscalar loops and for Λi and ηi caused by loops
including vector mesons. As one can see, the renormaliza-
tion coefficients are very sensitive to the actual choice of
the parameters hP and fV . Whenever nonvanishing, the
renormalization coefficients from pure pseudoscalar loops
and from loops including vector mesons are comparable in
absolute size except for the quantities L10 and H1. We have
not found a deeper reason for this fact, but we note that
these are the quantities that contain two field strength
tensors of the external vector and axial-vector sources. In
HLG, a much larger renormalization effect can be observed
for some of the low-energy constants. This stresses again
the representation dependence of the results for nonobserv-
able quantities like the low-energy constants. If these
differences have any impact on observables remains to
be seen.
Finally, we introduce the renormalization-scale depend-

ence (variation) of the NLO low-energy constants by

ΔLi ≔ ½Lr
i ðμ2Þ − Lr

i ðμ1Þ�χPTþV

¼ −
1

16π2



1

2
Γi þ Λi

�
log

μ22
μ21

ð57Þ

for two scales μ1 and μ2. In Table III, the changes in the
low-energy constants L1;…; L10 for μ1 ¼ 0.5 GeV and
μ2 ¼ 1 GeV for a calculation with both pseudoscalar
and vector mesons in the loop, for a pure χPT calculation,
and for a calculation using the HLG formalism [54] are
compared to the phenomenologically determined values for

the low-energy constants based on pure χPT [3,64]. We
observe that the changes caused by varying the renormal-
ization scale are comparable in size to the absolute values of
the low-energy constants.

IV. ONE-LOOP CONTRIBUTIONS UP TO OðQ4Þ
INCLUDING THE η-SINGLET

In the calculations presented so far, the Goldstone-boson
octet described by the matrix Φ [cf. Eq. (5)] was used; i.e.,
the physical η-meson was approximated by the (unphys-
ical) octet state η8. If the η0-meson is included additionally,
the Goldstone-boson nonet with the singlet state ϕ0 has to
be considered, i.e.,

Φ ↦ Φoctet þ
ffiffiffi
2

3

r
ϕ01: ð58Þ

A formally systematic framework for the low-energy
effective theory of the pseudoscalar nonet is χPT for a large
number of colors [16]. There the LO large-Nc χPT
Lagrangian is given by7

Lþη0
LO ¼ LLO

χPTjΦ¼P8

c¼0
λcϕc

−
1

2
m2

0ϕ
2
0; ð59Þ

with m2
0 ¼ 6τ=F2 and the topological susceptibility τ.

In the power counting of large-Nc χPT, the “NLO”
Lagrangian in (4) contains NLO terms and terms of next-to-
next-to-leading order (N2LO). In addition, the NLO
Lagrangian of large-Nc χPT receives additional contribu-
tions [16]. To cancel the infinities of one-loop diagrams
including vector mesons, we need parts of the LO, NLO,
and N2LO Lagrangians of large-Nc χPT. Instead of writing
down all these Lagrangians, we restrict ourselves to the
terms that are needed for the renormalization of the loops
including vector mesons. These terms are covered by (4),
(59), and

Lþη0
ct ¼ LNLO

χPT jΦ¼P8

c¼0
λcϕc

þ 1

2
ffiffiffi
6

p F ~Λ2iϕ0hχ†U − χU†i:

ð60Þ

In the following, we focus on the changes caused by this
extension of the framework. We provide less details since
most of the calculations technically proceed in the very
same way. The matrix Dpseudo corresponding to the
extended LO Lagrangian (59) changes to

½Dþη0
pseudo�ab ¼ ½Dpseudo�abjΦ¼P8

c¼0
λcϕc

þ 2m2
0δ

a0δb0: ð61Þ

TABLE III. Variation of the low-energy constants with the
renormalization scale as given in Eq. (57) including loops with
vector mesons or using the HLG formalism [54] or including only
pseudoscalar loops (“pure χPT”), respectively. The used renorm-
alization points are μ1 ¼ 0.5 GeV and μ2 ¼ 1 GeV. The results
are compared to the phenomenologically determined values
for the low-energy constants [3,64]. All values are given in units
of 10−3.

Renormalization point variation

fV ¼ 150 MeV fV ¼ ffiffiffi
2

p
F0 pure

χPT
Phenom.

valueforLihP ¼ 1.50 hP ¼ 2 hP ¼ 2 HLG

ΔL1 0.9 1.7 1.2 0.5 0.4 1.0� 0.1
ΔL2 1.7 3.3 2.4 1.1 0.8 1.6� 0.2
ΔL3 2.5 3.2 2.7 −19.9 0 −3.8� 0.3
ΔL4 1.2 1.6 1.4 −1.4 0.6 0.0� 0.3
ΔL5 3.5 4.9 4.1 −4.2 1.7 1.2� 0.1
ΔL6 0.3 0.3 0.3 −1.0 0.3 0.0� 0.4
ΔL7 −0.2 −0.4 −0.3 0.3 0 −0.3� 0.2
ΔL8 1.1 1.6 1.3 −1.3 0.5 0.5� 0.2
ΔL9 1.9 0.7 0.0 20.8 1.1 6.9� 0.7
ΔL10 15.1 18.2 14.3 −20.8 −1.1 −5.5� 0.7

7In the present work we ignore the vacuum angle θ that is
related to the chiral anomaly and to strong P and CP violation
[7].
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In contrast to the case for the Goldstone-boson octet, the

matrix Dþη0
pseudo is not diagonal in the limit of no external

fields,

½D0;þη0
pseudoðkÞ�−100 ¼ αþðk2 −MþÞ−1 þ α−ðk2 −M−Þ−1;

½D0;þη0
pseudoðkÞ�−111=…=33 ¼

�
2F2



k2 −

1

2
M2

π

��
−1
;

½D0;þη0
pseudoðkÞ�−144=…=77 ¼

�
2F2



k2 −

1

2
M2

K

��
−1
;

½D0;þη0
pseudoðkÞ�−108 ¼ ½D0;þη0

pseudoðkÞ�−180
∼ ½4F4ðk2 −MþÞðk2 −M−Þ�−1;
all other matrix entries equal to zero:

ð62Þ

Hereby,M� and α� denote a combination of pion massMπ ,
kaon mass MK, and topological susceptibility τ with
αþ þ α− ¼ 1. In [16], the changes in the renormalization
of the low-energy constants caused by adding the η-singlet
to the pure χPT-Lagrangian have been determined. They
are not repeated in this article.
For the calculation of trðlogDÞ containing Dmix includ-

ing the η-singlet, note that ~Δa0 ¼ 0 for all vector-meson
flavors a ¼ 0;…; 8, as already mentioned in Sec. III D.

Furthermore, the nonzero terms including ½D0;þη0
pseudoðkÞ�−108 or

½D0;þη0
pseudoðkÞ�−180 are proportional to

Z
d4þ2εk
ð2πÞ4þ2ε k

2ðk2 −m2Þ−4 ¼ ðfiniteÞ: ð63Þ

Additionally, if using αþ þ α− ¼ 1, the only difference for
trðlog ~DÞ containing Dmix with and without the η-singlet is
visible in terms containing the pseudoscalar masses explic-
itly. For calculations without the η-singlet, the only terms
containing these masses explicitly are

Qmix
4 ðh2PÞ ∼ hMðϑt · ϑÞi þ hðmass part of FχÞðϑt · ϑÞi;

ð64Þ

with ϑ and Fχ as defined in Eqs. (45) and (47), respectively.

However, inserting Dþη0
pseudo into the equations for those

terms yields the same result with the mass matrix M and
the corresponding part in Fχ modified according to (62).
Therefore, the sum of these two terms vanishes both for the
calculation with and without the η-singlet. Hence, the parts
containing Dmix in trðlog ~DÞ are the same up to finite parts
and terms of OðQ6Þ for both not including and including
the η-singlet. Thus, we are back to the same expression as
given in (46).

However, the final results of Sec. III D have been
obtained by using the EOM (49) emerging from the LO
Lagrangian. In the presence of the singlet field and, in
particular, due to the effect from the topological suscep-
tibility, the EOM changes to

DμUμ ¼ 1

4
χ− − i

m2
0ffiffiffi
6

p
F
ϕ0: ð65Þ

The results from the previous section are modified and
extended in the following way: The results for the renorm-
alization of all the previously introduced low-energy
constants remains the same except for L7, which now does
not receive any renormalization. In addition, the new low-
energy constants τ and ~Λ2 receive the following renorm-
alization from loops with vector mesons:

τr ¼ τ −
9f2Vh

2
Pτ

2
r

8F6
r

λ̄;

~Λr
2 ¼ ~Λ2 −

9f2Vh
2
Pτr

8F6
r

λ̄: ð66Þ

As already spelled out, everything else remains unchanged.

V. OUTLOOK

In the present work, the infinity structure and corre-
sponding renormalization-scale dependence of all χPT
low-energy constants up to chiral order Q4 have been
determined. Thereby, the finite parts of the loops with
vector mesons depend in addition on the masses of vector
and pseudoscalar mesons and on the external momenta. It is
therefore interesting how physical observables depend on
these. In the follow-up work [46], we study the influence of
loops with vector mesons on the pseudoscalar properties
(mass and decay constant) within the same framework as
used in the present work.
Furthermore, a plausibility check of the counting scheme

with both light pseudoscalar and vector mesons as degrees
of freedom as suggested in [43] can be performed. Therein,
vector mesons are counted as soft; i.e., the vector-meson
massmV is of chiral orderQ. Therefore, one-loop diagrams
ofOðQ4Þ could have a chiral structure ofOðQ6Þ divided by
m2

V . Since the corresponding infinities would have no
counterterms in the NLO-χPT Lagrangian of OðQ4Þ, all
these infinities either have to vanish directly or for specific
parameter combinations within a reasonable framework.
Note that such a plausibility check has to be performed for
the full Lagrangian given in [43] and not only for the
restricted Lagrangian as used in this work. Additionally,
calculations with vector mesons as nonvanishing classical
fields and the renormalization of parameters in an NLO
Lagrangian with vector mesons are of interest.
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APPENDIX A: HEAT-KERNEL CALCULATION
FOR A TOY MODEL WITH ONLY ONE

CHARGED VECTOR MESON

In Sec. II C, the heat-kernel approach is discussed and
that it is not applicable to Lagrangians with vector mesons
represented by antisymmetric tensor fields. Here, the heat-
kernel approach is tried to be applied to a vector-meson
Lagrangian, and it is discussed in greater detail why such a
procedure is not applicable. For that, consider a toy
Lagrangian for one complex vector-meson flavor,
Vμν ¼ −Vνμ,

Ltoy ¼ −ðDμVμνÞ†DρVρν þm2V†
μνVμν;

with Dμ ¼ ∂μ þ iΓμ for an arbitrary Γμ ¼ Γ†
μ. The vector

field is split into its projections,

VμνðxÞ ¼
X
j¼A;V

Z
d4y

Z
d4k
ð2πÞ4 e

−ikðx−yÞ ~Pμναβ
j ðkÞVαβðyÞ

≕ AμνðxÞ þ VμνðxÞ;

including the antisymmetric projection operators in
momentum space as defined in Eq. (28). Therewith, the
Lagrangian can be rewritten as

Ltoy ¼ V†
μν□Vμν þm2ðA†

μνAμν þ V†
μνVμνÞ

þ i½ΓμðAþ VÞ†μν∂ρVρν − ∂μV†
μνΓρðAþ VÞρν�

− ΓμΓρðAþ VÞ†μνðAþ VÞρν:

In this notation, one can identify a nonpropagating modeA,
i.e., a field with mass term only and without kinetic term,
and a propagating mode V, i.e., a field with both mass and
kinetic term. First, the equation of motion (EOM) for the
classical nonpropagating mode Ā has to be calculated
yielding

0 ¼ m2Āμν − Pμναβ
1 ΓαΓρðĀþ VÞρβ þ iPμναβ

1 Γα∂ρVρβ:

Note that this EOM depends on the full field V and not only
on its classical part V̄. The Lagrangian can be expanded
around Ā via A ≕ Āþ δA yielding

Ltoy ¼ V†
μν□Vμν þm2ðĀ†

μνĀ
μν þ V†

μνVμνÞ
þ i½ΓμðĀþ VÞ†μν∂ρVρν − ∂μV†

μνΓρðĀþ VÞρν�
− ΓμΓρðĀþ VÞ†μνðĀþ VÞρν þ #ðδAÞ2 þOðδA3Þ:

In principle, a heat-kernel calculation for the term quadratic
in δA has to be performed, yet this yields zero in dimen-
sional regularization anyway. Next, the EOM for the
classical propagating mode V̄ is determined,

0 ¼ □V̄μν þm2V̄μν − Pμναβ
1 ΓαΓρðV̄ þ Ā0Þρβ

þ iPμναβ
1 ½Γα∂ρV̄ρβ þ ∂αðΓρV̄ρβ þ ΓρĀ0

ρβÞ�;

with Ā0 ≔ ĀðV̄Þ ≕ ĀðVÞ − a, i.e., the classical nonpropa-
gating mode evaluated at the classical propagating mode.
Recall that in the last formulation of the Lagrangian Ā was
used not Ā0. The Lagrangian can be written in terms of
V ¼ V̄ þ δV þOðδVÞ2 as

Ltoy ¼ ðδVÞ†μν□ðδVÞμν þm2ðδV − aÞ†μνðδV − aÞμν
þ i½ΓμðδVÞ†μν∂ρðδVÞρν − ∂μðδVÞ†μνΓρðδVÞρν�
þ ΓμΓρ½ðδVÞ†μνðδVÞρν − a†μνaρν� þ #ðδAÞ2
þ ðterms with Ā0; V̄ onlyÞ þOðδ3Þ:

From the EOM for Ā, the field a can be determined as a
function of δV,

aμν ¼ J−1μναβ½m2ðδVÞαβ − iPαβρσ
1 Γρ∂τðδVÞτσ� − δVμν;

Jμναβ ≔ ðm2gρα − ΓρΓαÞPμνρβ
1 :

Therewith, the relevant part in the Lagrangian, i.e., the
terms proportional to ðδVÞ2, can be identified,

Ltoy ¼ ðδVÞ†μν□ðδVÞμν − 2m2ðδVÞ†μνðδVÞμν
þ 2i½∂μðδVÞ†μνΓρðδVÞρν − ΓμðδVÞ†μν∂ρðδVÞρν�
− ðJ−1ÞμναβΓμ∂ρðδVÞ†ρνΓα∂σðδVÞσβ
þm4ðδVÞ†μνðJ−1ÞμναβðδVÞαβ þ #ðδAÞ2
þ ðterms with Ā0; V̄ onlyÞ þOðδ3Þ:

Since the Lagrangian has to be antisymmetric in the
Lorentz indices, it can be rewritten in the form

Ltoy ¼ ðδVÞ†μν½ð2m2 þ RÞ þ Sτ∂τ þ ð1 − TÞ□�μναβðδVÞαβ
þ � � �

≕ ðδVÞ†μνDμναβðδVÞαβ þ � � � ;

with symmetric matrices R and T and an antisymmetric
matrix S. Furthermore, R, S, and T will vanish in the limit
of no external fields.
In a heat-kernel approach, the matrix element for D is

given by

hxje−λDjyi ¼ ð4πλÞ−d=2 exp
�ðx − yÞ2

4λ
− 2m2λ

�
HðxjλjyÞ;

HðxjλjyÞ ¼
X∞
n¼0

λnHnðxjyÞ:
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The differential equation determined from this matrix
element,

∂
∂λ hxje

−λDjyi ¼ −Dxhxje−λDjyi;

can be written in powers of λ. Since λ is arbitrary, each
order of λ yields a recursive equation for the Hn which can
be used to determine H2.

8 In particular, the contribution
proportional to λ−2 yields

0 ¼ 1

4
ðx − yÞ2TμναβH0ðxjyÞαβρσ:

Since T ≠ 0 by definition and ðx; yÞ are arbitrary,

H0ðxjyÞ ¼ 0:

However, this result is contrary to the initial condition

H0ðxjyÞ ¼ 1þOðx − yÞ:

Therefore, the heat-kernel approach is not applicable for the
toy Lagrangian Ltoy for one vector meson. The same
procedure can be applied to the full Lagrangian Lvec for
vector mesons yielding that a heat-kernel approach is not
applicable.

APPENDIX B: EXAMPLE OF AN INTEGRAL
FOR ONE-LOOP CONTRIBUTIONS

IN POWERS OF D − D0

The general procedure how to calculate the one-loop
contribution in powers of δD ¼ D −D0 is described in
Sec. II D. In this section, an integral contributing to the
second term in the sum (17) for trðlogDÞ is determined as
an example for such an calculation. Thereby, a contribution
to trðlogDmixÞ is chosen,

I ≔
if2VhP
4

Z
d4xd4yd4x0d4y0

Z
d4kd4p
ð2πÞ8 eikðx−x0Þþipðy−y0Þ

· hP½D0
vecðkÞ�−1μναβζαβðx0Þδðx0 − yÞ½D0

pseudoðpÞ�−1
·Pμνρσ

1 gρηϑσðxÞ∂η
xδðx − y0Þi ∈ tr½ðD−1

0 δDÞ2�

for PD0
vec, ζ, and ϑ as defined in Secs. III B and III D,

respectively. After partial integration with respect to x, both
δ functions in coordinate space can be evaluated,

I ¼ if2VhP
4

Z
d4xd4y

Z
d4kd4p
ð2πÞ8 eiðk−pÞðx−yÞhP½D0

vecðkÞ�−1μναβ
·ζαβðyÞ½D0

pseudoðpÞ�−1Pμνρσ
1 gρηð−ikη − ∂ηÞϑσðxÞi:

First, the term proportional to kη is calculated. For that, the
integral is localized, i.e., y ≕ x − z, and ζðyÞ is expanded at
z ¼ 0 up to OðQ4Þ,

I1 ¼
f2VhP
4

Z
d4xd4z

Z
d4kd4p
ð2πÞ8 eiðk−pÞzkηhP½D0

vecðkÞ�−1μναβ
·ð1 − zτ∂τ

zÞζαβðzÞ½D0
pseudoðpÞ�−1Pμνρσ

1 gρηϑσðxÞi
þOðQ6Þ:

Thereby, the first term in the expansion of ζ yields zero due
to the odd number of k’s. For the second term, the
integration over d4z can be performed after partial inte-
gration with respect to z as described in Sec. III B,

−zτeiðk−pÞz½D0
pseudoðpÞ�−1 → ieiðk−pÞz∂p

τ ½D0
pseudoðpÞ�−1;

yielding the δ function δðk − pÞ in momentum space. So,
the resulting integral over one space coordinate x and one
momentum coordinate k is given by

I1 ¼ −
if2VhP
2

Z
d4x

Z
d4k
ð2πÞ4 hP½D

0
vecðkÞ�−1μναβ∂τ

xζ
αβðxÞ

·½D0
pseudoðkÞ�−2Pμνρσ

1 gρηϑσðxÞikηkτ þOðQ6Þ

¼ −
if2VhP
4F2

Z
d4x

Z
d4k
ð2πÞ4 kηkτðk

2 −m2
VÞ−1PV;μναβ

· ∂τ
xζ

αβ
aPðxÞðk2 −MP

2Þ−2Pμνρσ
1 gρηϑPaσ ðxÞ þOðQ6Þ

since the part proportional to PA;μναβ yields zero. The two
propagators can be reformulated using Feynman
parameters,

½ðk2 −m2
VÞðk2 −MP

2Þ2�−1

¼ Γð3Þ
Γð1ÞΓð2Þ

Z
1

0

d4u

×
u

½ð1 − uÞðk2 −m2
VÞ þ uðk2 −MP

2Þ�3

¼ 2

Z
1

0

d4u
u

½k2 −MðuÞ�3 ;

MðuÞ ≔ ð1 − uÞm2
V þ uMP

2:

Furthermore, the momentum vectors contracted with the
corresponding Lorentz indices can be substituted according
to Eq. (22) as

kηkτPV;μναβP
μνρσ
1 gρη ¼

1

2
kτðkαgβρ − kβgαρÞgρσ

→
1

4þ 2ε
k2P1;αβτρgρσ:

With this substitution, the momentum integral can be
determined as [cf. Eq. (21)]

8Recall from Sec. II C that only H2 is needed to identify the
infinities for d ¼ 4 dimensions.
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Z
d4k
ð2πÞ4

k2

½k2 −MðuÞ�3 ¼
i

16π2



m2

4πμ2

�
ε Γð3þ εÞΓð−εÞ
Γð3ÞΓð2þ εÞ

¼ −iλ̄þ ðfiniteÞ:

So, the integral I1 is given as

I1 ¼ −
f2VhP
8F2

Z
d4xP1;αβτρgρσ∂τ

zζ
αβ
aPðxÞϑPaσ ðxÞ þ ðfiniteÞ þOðQ6Þ

¼ f2VhP
8F2

Z
d4xhζτηðxÞ∂τϑηðxÞi þ ðfiniteÞ þOðQ6Þ:

The second part of the integral I can be calculated in a similar way yielding

I ¼ I1 þ I2 ¼ I1 þ f−I1 þ ðfiniteÞ þOðQ6Þg
¼ ðfiniteÞ þOðQ6Þ:
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