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We present our work on the simulation of the early stages of heavy-ion collisions with finite longitudinal
thickness in the laboratory frame in 3þ 1 dimensions. In particular we study the effects of nuclear
thickness on the production of a glasma state in the McLerran-Venugopalan model within the color glass
condensate framework. A finite thickness enables us to describe nuclei at lower energies, but forces us to
abandon boost invariance. As a consequence, random classical color sources within the nuclei have to be
included in the simulation, which is achieved by using the colored particle-in-cell method. We show that the
description in the laboratory frame agrees with boost-invariant approaches as a limiting case. Furthermore
we investigate collisions beyond boost invariance, in particular the pressure anisotropy in the glasma.
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I. INTRODUCTION

Heavy ion collisions allow us to study strongly interact-
ing matter in a deconfined phase, the quark gluon plasma.
In search for a critical point in the QCD phase diagram,
experiments cover a wide range of collision energies, from
very high energies at RHIC and LHC, down to lower
energies in the Beam Energy Scan program of RHIC [1]
and at future programs at GSI FAIR and JINR NICA. The
early times of heavy ion collisions can be appropriately
described in the color glass condensate (CGC) frame-
work [2,3].
The CGC framework models ultrarelativistic, highly

Lorentz-contracted nuclei in terms of an effective classical
field theory. Hard partons are described as color charges,
which act as sources for the soft partons in terms of
classical non-Abelian gauge fields due to gluon saturation.
The distribution of the color charges of very large nuclei is
given by the McLerran-Venugopalan (MV) model [4,5].
More recent sophisticated models such as IP-Glasma base
the color charge distribution on fits to deep-inelastic
scattering data [6,7]. As a result of the collision the glasma
is produced [8], which can be studied by numerically
solving the Yang-Mills equations.
A common simplification is to assume infinitely thin

incoming nuclei, which leads to a single collision point in
time and consequently to boost invariance. This reduces the
system to effectively 2þ 1 dimensions [9–11]. In this
formulation the gauge fields are rapidity independent by
assumption. It is possible to introduce rapidity dependence
by including boost-invariance breaking fluctuations on top
of boost-invariant background fields [12–14]. However, the
initial conditions and evolution of the background fields are
still formulated in a boost-invariant way. Simulations of the

early stages of heavy-ion collisions using the CGC frame-
work and real-time lattice gauge theory have been highly
successful in describing particle multiplicities [15] and the
azimuthal anisotropy [16,17]. Studies of somewhat later
time intervals involving isotropization and thermalization
of the glasma have been undertaken using classical-
statistical lattice gauge theory with [18] and without
fermions [19–22], hard loop approximation [23–27] as
well as kinetic theory [28–31]. Within the CGC framework,
there has also been progress in finding analytical solutions
for the gauge fields in the forward light cone using
expansions in small τ [32–34]. Because of the infinitesimal
thickness of nuclei in all the boost-invariant approaches, the
evolution of the color sources can be solved analytically.
Nontrivial evolution of color sources in the form of

charged particles can be simulated using the colored
particle-in-cell method (CPIC) method. It combines
classical field dynamics described by real-time non-
Abelian lattice gauge theory [35] with classical colored
particle dynamics based on Wong’s equations [36]. It is a
non-Abelian generalization of the particle-in-cell (PIC)
method for the simulation of Abelian plasmas [37].
CPIC has been successfully applied to hard-thermal-loop
simulations [38,39], the investigation of plasma instabilities
[40,41] and to jet energy loss [42] in the quark-gluon
plasma. Apart from pioneering work [43–45] for very small
transversal lattices this approach has not been used yet to
investigate the collision itself.
In this paper, we simulate the collision of two nuclei with

finite thickness in the laboratory frame in 3þ 1 dimensions
in the CGC framework. A finite nuclear thickness enables
us to describe nuclei at lower energies. Without a well-
defined collision point, we have to drop the assumption of
boost invariance for the fields in the forward light cone. As
a consequence of an extended collision, we cannot describe
the evolution of the color sources analytically and we are
forced to include the color charges as dynamical degrees of
freedom in the simulation as they traverse the evolving
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overlap region of the two nuclei. In studying lower collision
energies, we are probing the limits of applicability of the
CGC framework, which becomes an accurate effective
description of QCD only at infinitely high energies. The
goal of this work is to show that a description in the
laboratory frame using CPIC is viable and can reproduce
well-known results of boost-invariant classical Yang-Mills
simulations in the limit of small longitudinal thickness of
the nuclei. For simplicity we restrict ourselves to collisions
in the MV model, which describes ultrarelativistic nuclear
matter infinitely extended in the transversal directions, and
to the gauge group SU(2). We do not take into account
other possible effects that might come into play if the CGC
picture is applied to lower energies, but simply approach
this region as a first step by varying the thickness of the
incoming nuclei.
This paper is organized as follows: In Sec. II we describe

the CPIC method for heavy-ion collisions. We discuss the
equations of motion for the fields and color charges and
initial conditions in the laboratory frame. In Sec. III we
present our numerical results for collisions in theMVmodel
with finite thickness. We investigate the structure of the
fields in the forward light cone created during the collision
and compare them to the initial conditions used in boost-
invariant simulations.We recover the usual result of pressure
anisotropy and investigate the energy conservation in the
system.

II. COLORED PARTICLE-IN-CELL METHOD FOR
HEAVY-ION COLLISIONS

The model of a heavy-ion collision which we implement
in this work is that of two sheets of color fields and charges,
each occupying a two-dimensional plane, colliding with
each other at the speed of light in the laboratory frame. The
sheets modeling Lorentz contracted nuclei as depicted in
Fig. 1 have a finite extent in the longitudinal direction in
which they propagate and a largely random transversal color
structure. On the other hand, in our setup the longitudinal
color structure is assumed to be coherent, spreading a given
color configuration over the complete thickness of a
nucleus. Each of the sheets consists of two contributions,
a charge distribution and its corresponding classical fields.
The charge distributions are chosen according to the
McLerran-Venugopalan model and are not directly partici-
pating in the collision dynamics while being tied to the
light cone. In our CPIC approach we model these charges
as classical particles with a non-Abelian color charge.
Following the core assumptions of the CGC framework,
the charges generate classical gluon fields, which travel
alongside them in the sheet and are responsible for the
creation of matter during and after the collision. The
dynamics of these fields are consistently described by
Yang-Mills equations without any approximations.
The CPIC method simulates the evolution of colored

point charges in continuous phase space coupled to

non-Abelian gauge fields on a discrete lattice. In each
simulation step, the equations of motion for particles and
fields are solved alternately. Currents for the field equations
are obtained by interpolating the motion of charges to the
lattice, while interpolating the discretized fields back to the
continuous particle positions gives rise to forces and
parallel transport. The simulation volume is modeled as
a three-dimensional grid with NL · N2

T cells, where NL and
NT are the number of cells in the longitudinal and trans-
versal directions respectively with spatial lattice spacing as
and time step at. In each cell we define the electric fields
Ex;i, the gauge links Ux;i, and the charge and current
densities ρx and jx;i, where x denotes the lattice site of the
cell and i ∈ f1; 2; 3g is a vector index. The box is periodic
in the transversal directions and fixed boundary conditions
are used for the longitudinal direction.
The initial conditions for the fields are generated from

the charge densities ρ1 and ρ2 of the two nuclei. This step is
described in Sec. II C. The exact form of ρð1;2Þ depends on
the model used to describe the nuclei. We choose the
longitudinal separation of the nuclei such that the fields do
not overlap in the beginning. The color charge densities
ρð1;2Þ are then used to sample the particle charges. We place
Np particles in each cell and apply the charge refinement
algorithm from Sec. II D to get a smooth distribution of
color charges among the particles. The fields and particles
are then evolved via the lattice equations of motion (see
Sec. II A) and the nearest-grid-point interpolation method
(see Sec. II B). Consequently, the Gauss constraint is
fulfilled throughout the simulation of the system. Similar
to most collision simulations in the color glass condensate
framework we do not take the backreaction from the fields
onto the particles into account (apart from parallel transport
of the charges), i.e. the particles' velocity is held constant at
the speed of light. As a consequence the particles act as a

FIG. 1. Schematic overview of a heavy-ion collision modeled
with CPIC in the laboratory frame. The random color charge
densities of the nuclei are modeled by placing color charge
carrying particles (here depicted as small spheres) into each cell
along the longitudinal direction. These particles move continu-
ously in the longitudinal direction, but are fixed to the grid points
in the transversal plane.
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reservoir of energy for the fields and total energy is not
conserved. The maximum simulation time is limited by the
longitudinal length of the simulation box, since the nuclei
are continuously moving in the longitudinal direction and
will reach the end of the box after some time. The color
charge density ρaðxÞ is treated as a random variable
following a probability functional W½ρ� given by the MV
model. Observables are recorded during the simulation and
then averaged using a number of different initial charge
densities ρð1;2Þ according to W½ρ�.

A. Field equations of motion

In this section we review the standard lattice Yang-Mills
equations of motion. We start by discretizing the continuum
Yang-Mills action

S ¼
Z

d4x

�
−
1

2
trðFμνFμνÞ þ 2trðjμAμÞ

�
; ð2:1Þ

with current density jμ, gauge field Ax;μ ≡ AμðxÞ ¼ Aa
x;μta,

and field strength tensor Fμν ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�,
on a hypercubic lattice taking advantage of the lattice gauge

formalism in Minkowski space. The gauge links Ux;i and
Ux;0 at the lattice site x are defined by

Ux;i ¼ expðigasAx;iÞ; ð2:2Þ

Ux;0 ¼ expðigatAx;0Þ; ð2:3Þ

with the temporal and spatial lattice spacings at and as. We
also define Ux;−μ ≡U†

x−μ;μ and the plaquette variables

Ux;ij ¼ Ux;iUxþi;jU
†
xþj;iU

†
x;j ≃ exp ðiga2sFx;ijÞ; ð2:4Þ

Ux;0i ¼ Ux;0Uxþ0;iU
†
xþi;0U

†
x;i ≃ exp ðigasatFx;0iÞ; ð2:5Þ

where Fx;ij and Fx;0i are components of the non-Abelian
field-strength tensor. The continuum action can then be
approximated as

S≃ SYM þ SJ; ð2:6Þ
with the Yang-Mills part

SYM ¼ as
g2at

X
x

�X3
i¼1

tr½Ux;0i þ U†
x;0i� −

1

2

�
at
as

�
2X3

i¼1

X3
j¼1

tr½Ux;ij þ U†
x;ij�

�
þ C; ð2:7Þ

and the source terms

SJ ¼ 2a3sat
X
x

�
tr½ρxAx;0� −

X3
i¼1

tr½jx;iAx;i�
�
; ð2:8Þ

where C is an irrelevant constant. By varying the dis-
cretized action with respect to the gauge fields Ax;μ and
employing the temporal gauge Ux;0 ¼ 1, which corre-
sponds to A0 ¼ 0, we obtain the discretized equations of
motion. For our numerical approach we choose the electric
field Ex;i ≡ Fi0 and the spatial gauge links Ux;i as our

degrees of freedom. The equations can be solved numeri-
cally using a leap-frog scheme, where the electric fields Ex;i

and charge density ρx are evaluated at whole time steps
tn ¼ nat, while the gauge links Ux;i and current density jx;i
are evaluated at half time steps tnþ1

2
¼ ðnþ 1

2
Þat. The

discretized equations then read

Ux;i

�
tþ at

2

�
¼ exp ð−iatgasEx;iðtÞÞUx;i

�
t −

at
2

�
; ð2:9Þ

Ea
x;iðtþ atÞ ¼ Ea

x;iðtÞ þ
at
ga3s

X
j≠i

2Im tr

�
taUx;ij

�
tþ at

2

�
þ taUx;i−j

�
tþ at

2

��
− atjax;i

�
tþ at

2

�
: ð2:10Þ

Since the Gauss constraint

X3
i¼1

Ex;iðtÞ −U†
x−i;iðt − at

2
ÞEx−i;iðtÞUx−i;iðt − at

2
Þ

as
¼ ρxðtÞ ð2:11Þ

must be preserved at every time step, the charge density ρx and the current density jx;i must obey the covariant continuity
equation, i.e.

ρxðtÞ − ρxðt − atÞ
at

þ
X3
i¼1

jx;iðt − at
2
Þ −U†

x−i;iðt − at
2
Þjx−i;iðt − at

2
ÞUx−i;iðt − at

2
Þ

as
¼ 0: ð2:12Þ
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B. Particle equations of motion and interpolation

In the CGC framework hard partons are described by
classical color sources in terms of the charge density ρx.
Within our simulations we sample ρx by a number of
pointlike particles carrying color charge. The interpolation
step reconstructs the charge density from the particle
charges and continuous positions. In the transverse plane
of the heavy ion, we place one particle per cell in order to
match the resolution of the grid. As we will see later,
multiple particles per cell in the propagating direction are
needed for better resolution of the longitudinal profile.
While the colored particles move through the grid, they
induce color currents jax , which are used to evolve the gauge
fields via the lattice equations of motion (2.9) and (2.10). A
main requirement is that the Gauss constraint (2.11) must
be satisfied at all times. This can be accomplished by
making sure that the currents generated by the particle

movement satisfy the covariant continuity equation (2.12).
This is the main idea behind charge-conserving methods,
which are commonly used in Abelian PIC simulations [46].
One of the assumptions of the color glass condensate

framework is that the nuclei involved in the collision can be
thought of as recoilless sources moving at the speed of
light. The charges of the nuclei pass through each other
without loss of energy or change of momentum, i.e. the
particle trajectories are fixed. The longitudinal particle
positions zðtÞ are simply updated with

zðtþ atÞ ¼ zðtÞ þ vat; ð2:13Þ

with the velocity v ¼ �1. This renders the interpolation
problem one dimensional in the longitudinal direction.
Using this simplification the continuity equation (2.12)
reads

ρxðtÞ − ρxðt − atÞ
at

þ jxðt − at
2
Þ −U†

x−ezðt − at
2
Þjx−ezðt − at

2
ÞUx−exðt − at

2
Þ

as
¼ 0; ð2:14Þ

where we choose i ¼ z as the longitudinal direction and
drop the direction indices.
In the simulation, we also need to interpolate the

continuous particle positions to the fixed lattice points of
the charge density ρxðtÞ. In this work, we implement a
simple interpolation method called the nearest-grid-point
(NGP) method [39]. In the NGP method a particle charge
QðtÞ at position xðtÞ is fully mapped to the closest lattice
point n. The charge density contribution at this point from
one particle is then given by

ρnðtÞ ¼
QðtÞ
a3s

: ð2:15Þ

As the charge moves through the grid, the charge density
only changes when the particle crosses the boundary in
the middle of a cell such that its nearest-grid-point changes.
These boundaries can be formally defined as the ones
separating two cells on a lattice, which is shifted by
half a lattice spacing (Wigner-Seitz lattice), with lattice
points now marking the center and not the edges of
each cell. A current is only induced at such a boundary
crossing. Evaluating the one-dimensional continuity
equation (2.14) at x ¼ n and at x ¼ nþ 1 and requiring
that the only nonzero current is jnðt − at

2
Þ, we find for a

right-moving particle that moves from position n to nþ 1
from time t − at to t the following current and updated
charge:

jn

�
t −

at
2

�
¼ as

at

Qðt − atÞ
a3s

; ð2:16Þ

QðtÞ ¼ U†
n

�
t −

at
2

�
Qðt − atÞUn

�
t −

at
2

�
: ð2:17Þ

For the case of a left-moving particle from position n to
n − 1 we get

jn−1

�
t −

at
2

�
¼ −

as
at

Qðt − atÞ
a3s

; ð2:18Þ

QðtÞ ¼ Un−1

�
t −

at
2

�
Qðt − atÞU†

n−1

�
t −

at
2

�
: ð2:19Þ

Equations (2.17) and (2.19) take care of the parallel
transport of the charges.
The current generated by the NGP scheme can give rise

to a lot of numerical noise due to peaklike currents being
induced only at certain time steps. However, we can
circumvent this problem by initializing multiple particles
per cell and by employing charge refinement procedures
(see Sec. II D). These improvements allow us to simulate
sufficiently accurate currents on the grid. Another way to
address this issue is to use more sophisticated interpolation
schemes such as the cloud-in-cell (CIC) interpolation,
which is standard for Abelian PIC simulations and also
has been developed for the CPIC method [40].

C. Initial conditions

As a model of a single nucleus, we want to construct a
propagating solution with given color charge ρ̂aðxTÞ (not to
be confused with ρx, the charge density in three dimen-
sions) in the transverse plane as given by the MV model
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with xT ¼ ðx; yÞ denoting the transverse coordinates. The
boost-invariant case assumes that the nucleus is infinitely
Lorentz contracted in the longitudinal direction and there-
fore described by a color current,

Jaμ ¼ δðz − tÞρ̂aðxTÞsμ; ð2:20Þ
with sμ ≡ ð1; 0; 0; 1Þμ for a random transverse color charge
configuration ρ̂aðxTÞ that travels at the speed of light in the
positive z-direction. The restriction we release is the
requirement of an infinitely thin nucleus, by spreading
the color charge along the longitudinal direction. It is
possible to find a corresponding consistent field configu-
ration such that charge and fields both propagate together at
the speed of light.
It is easiest to set up the solution in Lorenz gauge

∂μAaμ ¼ 0. We use the following ansatz for the four-current
Jaμ ¼ ðρa; jai Þ and vector potential Aaμ:

Jaμ ¼ fðz − tÞρ̂aðxTÞsμ; ð2:21Þ

Aaμ ¼ fðz − tÞφ̂aðxTÞsμ: ð2:22Þ
The envelope fðz − tÞ is arbitrary, and we will choose a
Gaussian profile

fðz − tÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−

ðz−tÞ2
2σ2 ; ð2:23Þ

with a given width σ, which is proportional to the thickness
of the nucleus in the laboratory frame.1 Plugging the ansatz
into the non-Abelian Maxwell equations

Dab
μ Fbμν ¼ Jaν; ð2:24Þ

nonlinear terms vanish due to sμsμ ¼ 0 and the time
dependence drops out because of sμ∂μfðz − tÞ ¼ 0. As a
consequence one is left with the Poisson equation

−ΔTAaν ≡ −
� ∂2

∂x2 þ
∂2

∂y2
�
Aaν ¼ Jaν; ð2:25Þ

which is solved in Fourier space for each color component
separately and formally denoted using the inverse Laplace
operator Δ−1

T ¼ ð∇2
TÞ−1 by

φ̂aðxTÞ ¼ −
ρ̂aðxTÞ
∇2

T
: ð2:26Þ

The corresponding electric field is then given by

Ea
i¼1;2 ¼ fðz − tÞ∂iφ̂

aðxTÞ; Ea
3 ¼ 0: ð2:27Þ

In Lorenz gauge the chromoelectric fields are purely
transverse while the gauge fields retain only their temporal
and longitudinal components. All fields are nonzero exclu-
sively in the space-time region close to the light cone,
where Jaμ is nonvanishing. In order to switch to temporal
gauge we apply a gauge transformation to the gauge fields
via

A0a
μta ¼ V

�
Aa
μta þ

i
g
∂μ

�
V†; ð2:28Þ

such that A0
0ðxÞ ¼ 0 is fulfilled at all times. Consequently,

V must satisfy the equation

∂
∂t V

† ¼ igAa
0t

aV†: ð2:29Þ

Since the gauge field configurations (2.22) commute at
different times, the solution to this equation does not
require a time-ordered exponential, but is simply given by

V†ðt; x; y; zÞ ¼ exp ðigφ̂aðx; yÞtaFðt; zÞÞ ð2:30Þ

with Fðt; zÞ≡ R
t
−∞ fðz − t0Þdt0. Using this gauge

transformation, the fields in the temporal axial gauge are
given by

A0a
μ¼1;2t

a ¼ i
g
Vð∂μV†Þ; A0a

μ¼0;3t
a ¼ 0: ð2:31Þ

The current has to be transformed properly into the temporal
axial gauge J0aμta ¼ VðJaμtaÞV† as well. The corresponding
electric field can be calculated fromEa

i ≡ −∂0Aai. Wemake
two important observations at this point. In contrast to the
situation in Lorenz gauge, the gauge fields are now purely
transversal. Additionally, they are now defined not only on
the nuclear sheet close to the light cone as before, but also in
the spatial region behind each nucleus, forming a trace of
constant gauge fields (see Fig. 2). Although these fields are
pure gauge configurations, which can be gauge transformed
to vacuum and thus do not carry any energy, their emergence
forces us to choose fixed boundary conditions in the
longitudinal direction.
The Wilson line (2.30) required for the transformation to

temporal gauge is completely analogous to the lightlike

1In the boost-invariant case it is common to write the
expressions Jaμ and Aaμ a bit differently using light-cone
coordinates x� ¼ 1ffiffi

2
p ðt� zÞ. One would then write Eq. (2.20)

as Jaμ ¼ δðx−Þρ̂aðxTÞs̄μ, where s̄μ ¼ 1ffiffi
2

p ð1; 0; 0; 1Þμ is the unit
vector in the þ direction. Applying this to nuclei with finite
thickness we would have Jaμ ¼ f̄ðx−Þρ̂aðxTÞs̄μ and
Aaμ ¼ f̄ðx−Þφ̂aðxTÞs̄μ, where f̄ðx−Þ is a Gaussian profile with
thickness parameter σ̄. Our convention differs from this by
introducing the thickness parameter σ in the laboratory frame
coordinates instead of the light-cone coordinate frame. The
different conventions for the widths σ and σ̄ are geometrically
related by

ffiffiffi
2

p
σ̄ ¼ σ. In the end it does not matter which

convention one uses, but one should be aware that a finite width
in the light-cone frame differs from the width in the laboratory
frame by a factor of

ffiffiffi
2

p
.
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Wilson lines used in the boost-invariant formulation [2,3].
If we consider ρ̂aðxTÞ as a random variable, the ansatz
(2.21) and (2.22) leads to uncorrelated fields in the trans-
versal direction, but correlation over the longitudinal extent
of the nucleus. A more general ansatz, which is beyond the
scope of the current work, would also allow for fluctuations
in the longitudinal direction [47] making a time-ordered
exponential in Eq. (2.30) necessary.
Furthermore, we introduce infrared (IR) and ultraviolet

(UV) regulators for the solution of the Poisson equa-
tion (2.26). This is done by solving in momentum
space:

φ̂aðkTÞ ¼
(

ρ̂aðkTÞ
jkT j2þm2 ; jkT j ≤ Λ;

0; jkT j > Λ;
ð2:32Þ

where the parameters m and Λ control the IR and UV
regulation and φ̂aðkTÞ, ρ̂aðkTÞ are the Fourier components
of φ̂aðxTÞ and ρ̂aðxTÞ respectively. The IR regulator m in
the expression for φ̂a introduces a finite correlation length
on the order of m−1 in the transversal directions. The
inclusion of the IR regulator and the UV cutoff does not
violate the field equations of motion or the Gauss con-
straint, since it can be absorbed into a redefined charge
density

ρ̂0aðkTÞ ¼
jkT j2

jkT j2 þm2
ΘðΛ − jkT jÞρ̂aðkTÞ; ð2:33Þ

which satisfies the unmodified Poisson equation in momen-
tum space

φ̂aðkTÞ ¼
ρ̂0aðkTÞ
jkT j2

: ð2:34Þ

Regulating the infrared modes with m > 0 also enforces
global color neutrality, i.e.

ρ̂0aðkT ¼ 0Þ ¼ 0: ð2:35Þ
On the lattice we initialize the transversal gauge links at
t0 −

at
2
and t0 þ at

2
via

Ux;i

�
t0�

at
2

�
¼V

�
t0�

at
2
;x

�

×V†
�
t0�

at
2
;xþi

�
; i∈f1;2g; ð2:36Þ

and the longitudinal gauge links are set to the unit element.
The initial electric fields Ex;iðt0Þ are computed from the
gauge link update (2.9). We then evaluate the Gauss
constraint (2.11) to obtain the correct three-dimensional
color charge density ρxðt0Þ, which is sampled by a number
of particles. One point charge per transverse grid cell is
sufficient to reproduce a given charge density in a trans-
verse plane. The longitudinal structure requires a higher
resolution: In order to obtain a smooth current with the
NGP algorithm, the charge is distributed among Np ¼
as=at particles per cell, which are placed with equal
spacing along the longitudinal direction such that at each
time step exactly one particle crosses a Wigner-Seitz cell
boundary. It is not sufficient to divide the total charge
within a cell to the particles equally. The sublattice
distribution of the charges has to be optimized with the
charge refinement algorithm described in the next section.

D. Charge refinement

Up to this point, we have only specified the total charge
in a cell, but not how the charge is distributed within the
cell. A constant charge distribution within each cell as seen
in Fig. 3 on the left results in a “jittery” color current
distribution on the grid over time. This also impacts the
evolution of the fields and in particular leads to spurious
longitudinal fields in the direction of propagation.2 In order

FIG. 2. Schematic overview of the initial conditions in temporal
gauge before the collision. The color charge densities ρð1;2Þ of the
colliding nuclei are depicted as colorful clouds. The gauge field
Aμ in the center region of the box is exponentially close to zero.
Behind each nucleus the fields asymptotically approach the pure

gauge configurations Að1;2Þ
μ depicted as blue and red transparent

regions. At the longitudinal boundaries of the simulation box the
gauge fields are fixed to the static pure gauge configurations.

2To see why this is the case consider the equation of motion of
the longitudinal chromoelectric field. This argument can already
be made with the Abelian equation _EL ¼ ð ~∇ × ~BÞL − jL. The
electric and magnetic fields of a single nucleus moving at the
speed of light are purely transverse, there are no longitudinal
components. Consequently, the longitudinal current must satisfy
jL ¼ ð ~∇ × ~BÞL at all times at each point in space. Any deviation
from this produces longitudinal chromoelectric fields, which in
turn affect the future time evolution of the other fields. In our
simulations the spatial shape and time behavior of the interpo-
lated current depend on the sublattice distribution of particle
charges. A smooth distribution of the charges is better at
preserving the transversal field structure.
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to avoid this, the shape of the charge distribution should be
as smooth as possible as seen in Fig. 3 on the right.
For the NGP algorithm, we have to satisfy that the sum of

all small charges within a Wigner-Seitz cell equals its given
total charge Qj. In order to distribute the total cell charge
Qj to Np small charges qi with Npj ≤ i < Npðjþ 1Þ
within the cell, we can initialize them according to

qi ¼
Qj

Np
; for Npj ≤ i < Npðjþ 1Þ: ð2:37Þ

We then apply an iterative procedure that ensures that the
total charge within a cell is not altered. At each iteration
step, two randomly chosen neighboring charges qi and qiþ1

(with iþ 1 not a multiple of Np) are assigned new values q0i
and q0iþ1 according to

q0i ¼ qi − Δq; ð2:38Þ

q0iþ1 ¼ qiþ1 þ Δq: ð2:39Þ

This ensures for arbitraryΔq that the total charge within the
cell is not modified. If one demands that the discrete second
derivative is constant within a cell, which is equivalent to
demanding that the discrete first derivatives of adjacent
points form an arithmetic series

q0iþ1 − q0i
as

¼ 1

2

�
qiþ2 − qiþ1

as
þ qi − qi−1

as

�
; ð2:40Þ

then we find

Δq ¼ qiþ2 − 3qiþ1 þ 3qi − qi−1
4

: ð2:41Þ

Applying Eqs. (2.38) and (2.39) with (2.41) repeatedly to
all points leads to a convergent solution that is continuous
and piecewise linear in the first derivative. The algorithm
cannot be applied directly to the border of two cells (i.e.
i ¼ Npj − 1), so these points have to be left out.
One can also demand that the discrete third derivatives

form an arithmetic series:

qiþ2 − 3q0iþ1 þ 3q0i − qi−1
a3s

¼ 1

2

�
qiþ3 − 3qiþ2 þ 3qiþ1 − qi

a3s
þ qiþ1 − 3qi þ 3qi−1 − qi−2

a3s

�
: ð2:42Þ

On the left-hand side, we use that qiþ2 and qi−1 remain
untransformed. The result is

Δq¼−qiþ3þ5qiþ2−10qiþ1þ10qi−5qi−1þqi−2
12

: ð2:43Þ

Convergence is fastest if the results are first iterated
according to condition (2.41) and then according to

(2.43). An example of this procedure is shown in
Fig. 3.

E. Simulation cycle

For comprehensiveness we summarize the individual
steps in our simulations. First we generate initial conditions
using the methods described in the last two sections. This

0 5 10 15 20 25 30
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FIG. 3. Example of charge refinement: the small charge qi is plotted as a function of the position i forNp ¼ 4 small charges per cell. In
the left plot, an initial total charge per Wigner-Seitz cell (separated by the gray vertical lines and given in this example by the integral of
the dashed line per cell) is equally distributed among four small charges per cell. After applying the charge refinement algorithm (right
plot), the total charge per Wigner-Seitz cell is exactly the same as in the left plot, but it approximates the continuous charge distribution
(dashed line) significantly better. Red dots indicate the result for constant discrete second derivative, Eq. (2.41), while black dots show
the result for constant discrete fourth derivative within a cell, Eq. (2.43).
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includes generating random charge distributions according
to the MV model, solving the two-dimensional Poisson
equation and initializing the chromoelectric fields and
gauge links in the temporal gauge. The Gauss constraint
is then used to obtain the charge density on the grid, which
is sampled by a number of colored particles. The distri-
bution of particle charges is then made smooth with the
charge refinement algorithm.
After initialization at time t0 the known variables are

the particle positions xðt0Þ, xðt0 þ atÞ and charges Qðt0Þ,
the currents jx;iðt0 þ at

2
Þ, the electric fields Ex;iðt0Þ and the

gauge links Ux;iðt0 þ at
2
Þ. The variables are then updated as

follows:
(1) Compute the new electric field Ex;iðt0 þ atÞ via

Eq. (2.10) using jx;iðt0 þ at
2
Þ and Ux;iðt0 þ at

2
Þ.

(2) Update Ux;iðt0 þ 3at
2
Þ via Eq. (2.9) using

Ex;iðt0 þ atÞ.
(3) Update longitudinal particle positions via Eq. (2.13).
(4) Update particle charges Qðt0 þ atÞ according to

either Eq. (2.17) or Eq. (2.19) (depending on sign
of the particle velocity v) if a particle crosses a
nearest-grid-point boundary.

(5) Interpolate charge density ρxðt0 þ atÞ using the
NGP scheme and Eq. (2.15).

(6) Interpolate currents jx;iðt0 þ 3at
2
Þ using either

Eq. (2.16) or Eq. (2.18) depending on sign of the
particle velocity v.

(7) Compute various observables such as field energy,
pressure components, etc.

This completes a simulation step.

III. NUMERICAL RESULTS

For all of our simulations [48] we use a model similar
to the one proposed by McLerran and Venugopalan [4,5].
As discussed in Sec. II C, we consider charge distribu-
tions, which are random in the transversal direction, but
correlated in the longitudinal direction. The randomly
chosen color charge densities ρ̂a1;2ðxTÞ in the transversal
plane are taken to be Gaussian with the correlation
function

hρ̂a1;2ðxTÞρ̂b1;2ðyTÞi ¼ g2μ21;2δ
ð2ÞðxT − yTÞδab; ð3:1Þ

where the parameters μ1;2 control the variance of the
fluctuating charges. McLerran and Venugopalan give an
estimate of

μ2 ¼ 1.1A1=3 fm−2; ð3:2Þ

where A is the mass number of the colliding nuclei and the
gauge group is SU(3). For A ¼ 197 (Au) we get

μ ≈ 0.505 GeV: ð3:3Þ

We choose g ¼ 2 as common in CGC literature
[10,13,47,49]. This leads to a realistic value for the
saturation momentum Qs,

Qs ∼ g2μ ∼ 2 GeV: ð3:4Þ

Even though our simulation is currently restricted to
SU(2) for performance reasons, we still use this value
to test our methods in semirealistic scenarios.
In all simulations we use Au-Au collisions as the

standard case study, therefore μ is fixed. However, we
vary other parameters such as the simulation volume, the
nucleus width σ and IR and UV regulators. For example,
using NT ¼ 128 cells in the transversal directions and a
lattice spacing of a ¼ 0.028 fm, the transversal area
roughly covers 12.5% of the area of a single Au nucleus.
In the longitudinal direction we could use NL ¼ 256 cells,
which covers a length of 5.2 fm. These are the parameters
used in Sec. III A. For other parts of this paper we chose
different parameter sets, which are specified in the corre-
sponding sections.
We also have to choose the longitudinal thickness l of the

nuclei, which is controlled by the longitudinal Gaussian
width σ. In Sec. III Awe show that σ ¼ 4as is a good lower
limit to avoid lattice artifacts. We approximate the thickness
of the Gaussian profile by

l ≈ 4σ: ð3:5Þ

Comparing the thickness l to the longitudinal extent of the
Lorentz-contracted nucleus 2RA

γ , we obtain an estimate for
the gamma factor γ:

γ ¼ 2RA

4σ
¼ RA

8as
; ð3:6Þ

whereRA ≈ 1.25A1=3 fm is the radius of a nucleus. With the
values from above we get

γ ≈ 45: ð3:7Þ

This value for γ corresponds to a center-of-mass energy offfiffiffiffiffiffiffiffi
sNN

p ≈ 90 GeV, however in the course of our paper we
will demonstrate results obtained for γ ¼ 11–455, corre-
sponding to an energy range of

ffiffiffiffiffiffiffiffi
sNN

p ¼ 20–850 GeV. This
energy range contains in particular parts of the parameter
space explored by the low-energy Auþ Au collisions at
RHIC in the beam energy scan program with center-of-
mass energies between

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–62.4 GeV [1].
For the solution of the Poisson equation in the transversal

plane we employ IR and UV regularization as in Eq. (2.32).
Infrared regularization leads to average color neutrality and
suppresses long-range forces (e.g. monopoles and dipoles)
on length scales m−1. This is used to include effects of
confinement in the classical simulation. The confinement
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radius is roughly 1 fm, therefore one possibility is
to set

m ≈ ð1 fmÞ−1 ≈ 200 MeV ≈ ΛQCD: ð3:8Þ
However we also work with values of up to 2 GeV to study
the dependence of observables on the IR regulation. The
UV cutoff Λ is introduced to eliminate high-momentum
modes in the transversal plane whose dispersion relation on
the lattice differs from the analytic case. Unless otherwise
noted we use Λ ¼ 10 GeV.

A. Comparison with boost-invariant initial conditions

It is important to check if the results produced by our
3þ 1 dimensional simulations are similar to 2þ 1 dimen-
sional boost-invariant simulations, at least in the limit of
thin nuclei. In the boost-invariant formulation it is natural
to work with proper time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and rapidity η ¼

1
2
ln tþz

t−z as coordinates for the forward light cone, where the
collision event at t ¼ z ¼ 0 is used as the origin of the
coordinate system. Note however that in collisions of nuclei
with finite thickness, there is some ambiguity involved in
choosing the space-time coordinates (tc, zc) of the collision.
As a definition we set ðtc; zcÞ to the space-time point of the
maximum overlap of the Gaussian longitudinal profiles.
The main advantage of this definition is that these coor-
dinates are independent of the thickness parameter σ. To
verify the agreement with the boost-invariant case, we
compare the longitudinal chromoelectric fields created in
our simulations to the fields, which are used as initial
conditions for boost-invariant simulations. The boost-
invariant initial conditions for the electric field at τ ¼ 0þ
created by the collision of charge densities of two nuclei
ρ̂1ðxTÞ and ρ̂2ðxTÞ are given by [9]

ELðxTÞjτ¼0þ ¼ −ig
X
i¼1;2

½αi1ðxTÞ; αi2ðxTÞ�; ð3:9Þ

where αi1;2ðxTÞ is determined from the relations

eigasα
i
1;2ðxTÞ ¼ eigφ̂

a
1;2ðxTÞtae−igφ̂

a
1;2ðxTþiÞta ; ð3:10Þ

ΔTφ̂
a
1;2ðxTÞ ¼ −ρ̂a1;2ðxTÞ; ð3:11Þ

which are similar to our initial conditions in the laboratory
frame: The first equation corresponds to Eq. (2.36), and the
second one to the Poisson equation (2.25). This result is
obtained in the Fock-Schwinger gauge τAτ ¼ 0.
In our case the simulations start before the collision,

where the nuclei are well separated in the longitudinal
direction such that the gauge field in the center between
them vanishes to numerical accuracy. The longitudinal
chromoelectric fields which we want to compare to
Eq. (3.9) are produced by numerically evolving the fields
of the nuclei. We test our simulation as follows: We

generate two initial charge densities ρ̂ð1;2ÞðxTÞ and compute
trE2

LðxTÞjτ¼0þ , which is a gauge-invariant expression. Then
we use the same charge densities to run a 3þ 1 dimen-
sional simulation with some finite nuclear thickness con-
trolled by the Gaussian width σ. We record the energy
density contribution of the longitudinal electric field
trE2

LðxTÞ as a function of the transversal coordinate xT
during the collision in the central region η ¼ 0. We then
compute the correlation coefficient c between the numeri-
cal (simulation) result trE2

LðxTÞnum and the analytic (boost-
invariant) expression trE2

LðxTÞana via

cðtrðE2
LÞnum; trðE2

LÞanaÞ≡ covðtrðE2
LÞnum; trðE2

LÞanaÞ
σnumσana

;

ð3:12Þ
where the covariance across the transversal plane is
defined by

covðtrðE2
LÞnum; trðE2

LÞanaÞ ¼
X
xT

ðtrE2
LðxTÞnum − trðE2

LÞnumÞ

× ðtrE2
LðxTÞana − trðE2

LÞanaÞ;
ð3:13Þ

with the mean values trðE2
LÞðnum;anaÞ and the standard

deviations σðnum;anaÞ associated with trE2
LðxTÞnum and

trE2
LðxTÞana respectively. The mean and standard deviation

are understood to be computed across the transversal plane.
A plot of the energy densities trE2

LðxTÞ for different widths
is shown in Fig. 4.
The correlation between the numerical and analytical

results is recorded as a function of time, the nuclear thickness
σ and the UV cutoff Λ. The results for a single event as a
function of σ are shown in Fig. 5 (left panel): The blue
(lower) curve corresponds to the fixed time tc where the two
nuclei overlap completely. We see that the correlation
increases for thinner widths σ, but at a certain point around
σ ≈ 3as the correlation is reduced due to discretization
errors. Very thin longitudinal profiles tend to disperse,
produce unphysical longitudinal fields even before the
collision and eventually become unstable. This is because
thin widths cannot be properly resolved on the lattice below
a certain threshold. To ensure numerical stability we deduce
a minimum width of σmin ¼ 4as for the nuclear thickness in
our simulations. We remark that very fine lattices with small
(in physical units) lattice spacings are required to accurately
simulate thin nuclei on the lattice.
The red (upper) curve in Fig. 5 on the left is the

maximum value of the correlation during the collision.
We see that thicker nuclei also produce fields which are
similar to the boost-invariant case (thus leading to higher
correlations), but at earlier times than tc. This happens
because they start to overlap much earlier, producing the
characteristic longitudinal electric fields. The time
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evolution from the onset of the overlap to the full overlap at
tc changes the fields, resulting in low values of the
correlations at tc.
In Fig. 5 (right panel) we study the effects of the IR

regulatorm and the UV cutoff Λ on our results by fixing the
width σ and varying the values of m and Λ. We see that
cutting off high momentum modes whose dispersion
relation differs from the continuum case increases the
correlation with the analytic result. Regulating the UV
modes becomes necessary because in the MV model all

available modes in momentum space are populated up to
the lattice cutoff scale Λlatt. Increasing the resolution of the
simulation box without regulating the UV modes does not
lead to any improvement.
We also observe that the correlation coefficient is largely

independent of the IR regulator m. However, lower values
of m decrease the correlation significantly in the same
manner as small values of σ do. Small m boosts the
amplitudes of the low momentum modes of φ̂aðxTÞ [as
is apparent from Eq. (2.32)], which drives the same

FIG. 5. Comparison of simulations to boost-invariant initial conditions. This plot shows the correlation coefficient of trE2
LðxTÞnum in

the central region with the boost-invariant result for trE2
LðxTÞana at τ ¼ 0þ as a function of σ andm. A correlation coefficient of 1 implies

perfect agreement between the numerical and the analytical result. The blue solid line shows the correlation when the nuclei completely
overlap and the red line is the maximum correlation achieved during the evolution. The correlation increases for thinner nuclei. Small
values of m and σ lead to decreased correlations due to numerical instabilities, which appear at high field amplitudes. The simulation
parameters are the same as in Fig. 4 except that we vary the thickness parameter σ and IR regulator m. Left panel: Correlations as a
function of the thickness parameter σ. Right panel: Correlations as a function of the IR regulator m. For the thick curves we used
Λ ¼ 10 GeV as a UV cutoff. Dashed lines use the UV cutoff Λlatt given by the lattice.

FIG. 4. Density plot of the energy density component trE2
LðxTÞ as a function of the transverse coordinate xT ¼ ðx; yÞ in the center

region of the collision for a single event. The left panel shows the boost-invariant (“analytic”) result for τ ¼ 0þ. The middle and right
panels show the simulation results for two different values of the thickness parameter σ. The correlation coefficient c quantifies how
similar the energy density distributions are to the boost-invariant case. Thinner nuclei (middle) lead to a correlation coefficient of
c ¼ 0.85, whereas the energy density distributions of thicker nuclei (right) are more washed out with lower values of c ¼ 0.56. The grid
size NL · N2

T of the simulation is set to 256 · 1282 with a lattice spacing of as ¼ 0.028 fm and a time step of at ¼ as=2. The IR regulator
is set tom ¼ 2 GeV and the UV cutoff is Λ ¼ 10 GeV. The transversal area covers 12.5% of the full area of a single Au nucleus, but we
only show a quarter of the area to make the similarities visually more obvious.
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numerical instability we see when using very small values
of σ. This instability can be cured by using finer grids (i.e.
smaller lattice spacings as) while keeping the volume of the
simulation box and all other physical parameters fixed. A
smaller lattice spacing as for the same physical volume of
the box brings the gauge links Ux;i closer to the group
identity element 1 and consequently the lattice approx-
imations of the fields become more accurate. We note that
this instability is of numerical nature only and also appears
in the evolution of a single nucleus without any collision.
Studying the correlation between our numerical results

and the analytic expressions for the boost-invariant initial
conditions shows that we are able to correctly describe
boost-invariant collisions in the limit of thin nuclei. However
it also reveals that one has to be careful in choosing
simulation parameters, in particular σ ≳ 4as. To describe
Au-Au collisions in our simulation framework we work with
an IR regulator of m ¼ 2 GeV (which is of the order of the
saturationmomentum) and a UV cutoffΛ ¼ 10 GeV (which
is used to cut off high momentum modes not satisfactorily
described on the lattice). These parameters are used in the
following sections unless otherwise noted.

B. Pressure anisotropy

A prominent phenomenon in the early stages of heavy-
ion collisions is the pressure anisotropy of the glasma fields
and the subsequent isotropization of the system. The main
observables in this context are the transversal and longi-
tudinal pressure components pT ¼ εL and pL ¼ εT − εL
with the longitudinal and transversal energy density com-
ponents given by

εL ¼ 1

2
ðEa

zEa
z þ Ba

zBa
z Þ; ð3:14Þ

εT ¼ 1

2

X
i¼x;y

ðEa
i E

a
i þ Ba

i B
a
i Þ: ð3:15Þ

Our simulation framework enables us to compute the
pressure components as functions of time t and the
longitudinal and transverse coordinates z and xT . To
simplify we average over xT, which is natural within the
MV model. A plot of the pressure components in the
laboratory frame at different times is shown in Fig. 6.
The initially purely transverse fields of the incoming nuclei
manifest themselves as large Gaussian bumps in the
longitudinal pressure component. During the collision
the transverse pressure component builds up and remains
largely flat afterwards. The longitudinal pressure in the
laboratory frame falls off exponentially towards the center
of the collision. In order to better compare our results to the
boost-invariant case it is sensible to switch to the comoving
frame described by proper time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and rapidity

η ¼ 1
2
ln tþz

t−z. We choose the space-time coordinates ðtc; zcÞ
of the collision as in Sec. III A.
By introducing the longitudinal component of the

Poynting vector

SL ≡ 2trð~E × ~BÞz; ð3:16Þ

we can compute the transformed longitudinal pressure

p̄Lðτ; ηÞ ¼ pLðτ; ηÞ cosh2 ηþ εðτ; ηÞ sinh2 η
− 2SLðτ; ηÞ cosh η sinh η: ð3:17Þ

The transverse pressure component is unaltered by the
coordinate transformation. A plot of the longitudinal
pressure p̄Lðτ; ηÞ in the comoving frame is shown in
Fig. 7. It reveals that at early times p̄L is still largely
influenced by the tails of the colliding nuclei. At later times
p̄L becomes flat in the midrapidity region, which is
consistent with approximate boost invariance. We have
to keep in mind that within our simulations the observables
we compute are always slightly influenced by the initial
fields of the nuclei, especially at early proper times.

FIG. 6. Longitudinal and transverse pressure components as functions of the longitudinal coordinate z in the laboratory frame at
different times t before and after the collision. The coordinate origin is centered around the collision event at t ¼ 0 and z ¼ 0. The blue
curve describes the longitudinal pressure pLðzÞ and the red dashed curve is the transverse pressure component pTðzÞ. The longitudinal
chromoelectric and chromomagnetic fields characteristic for the glasma contribute to the transverse pressure pT . The pressure
components are normalized to the maximum longitudinal pressure p0 of the initial nuclei. For these plots we use a grid size of
320 × 2562 with a lattice spacing of as ¼ 0.04 fm and a time step of at ¼ as

2
. The thickness parameter is set to σ ¼ 4as (which

corresponds to a gamma factor of γ ≈ 23), the IR regulator is set to m ¼ 2 GeV and the UV cutoff is set to Λ ¼ 10 GeV. Left panel:
Before the collision: t ¼ −1 fm=c. Middle panel: After the collision: t ¼ 2 fm=c. Right panel: t ¼ 5 fm=c.
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We now turn towards studying the pressure anisotropy.
For the further analysis it will be sufficient to stay in the
central region η ¼ 0. In the boost-invariant case the initial
glasma fields at τ ¼ 0þ are made of purely longitudinal
color flux tubes, which leads to highly anisotropic initial
pressures pT jτ¼0þ ¼ εLjτ¼0þ and pLjτ¼0þ ¼ −εLjτ¼0þ . As
the flux tubes expand, they generate transversal electric and
magnetic fields until εL ≃ εT and pL ≃ 0 [50]. This is the
free-streaming limit observed in boost-invariant CGC
simulations and stands in contrast to the observation of
an isotropized quark-gluon plasma where pT ≃ pL after a
few fm=c [51,52]. It has been shown that boost-invariance
breaking fluctuations drive instabilities in the glasma,
which can move the system towards isotropization
[12–14]. In our simulations we explicitly violate boost
invariance by introducing a finite nucleus thickness. It is

therefore interesting to investigate the effects of the thick-
ness parameter σ on the pressure anisotropy of the glasma.
For our numerical studies it is convenient to introduce

the pressure to energy density ratios pT
ε and pL

ε with
ε ¼ εL þ εT . The free-streaming limit then corresponds
to pT

ε ≃ 1
2
and pL

ε ≃ 0. Isotropization would be signaled by
pT
ε ≃ pL

ε ≃ 1
3
. Both the pressure and energy density compo-

nents are averaged over the transverse plane and 32 events
are used for the statistical sampling. We choose a grid size
of 320 cells in the longitudinal direction and 2562 cells to
resolve the transversal area. For collisions of thick nuclei in
Fig. 8 (left panel) we choose a lattice spacing of
as ¼ 0.04 fm. The transversal grid then covers the full
area πR2

A of a gold nucleus.
For simulations of thin nuclei in Fig. 8 (right panel) we

are forced to use smaller lattice spacings of as ¼ 0.008 fm
(for σ ¼ 0.032 fm), as ¼ 0.004 fm (for σ ¼ 0.016 fm) and
as ¼ 0.002 fm (for σ ¼ 0.008 fm), because grids much
larger than 320 × 2562 as used here currently exceed our
available computational resources. The transversal area
then only covers 4%, 1% and 0.25% of the full area
respectively. The temporal spacing is set to at ¼ as

2
.

The results are shown in Fig. 8 and there are several
observations we make:
(1) From Fig. 8 (left panel) we see that we recover the

free-streaming limit of the boost-invariant case.
Isotropization is not reached within possible simu-
lation times due to limitations from both the longi-
tudinal and transversal simulation box size. We can
observe slight movement of both pressure compo-
nents towards the desired value of 1

3
, but not within

any realistic time scales.

FIG. 7. Longitudinal pressure component p̄LðηÞ in the comov-
ing frame as a function of rapidity η for different proper times τ.
At later times the longitudinal pressure becomes flat within the
rapidity interval ð−1; 1Þ. Even though the nuclei in this simu-
lation are relatively thick (γ ≈ 23) we still recover approximate
boost invariance. For these plots we use the same simulation
parameters as in Fig. 6.

FIG. 8. Longitudinal and transversal pressure components in the central region η ¼ 0 as a function of time for various nuclear
thicknesses σ. An IR regulator of m ¼ 2 GeV and a UV cutoff of Λ ¼ 10 GeV has been used. The detailed simulation parameters are
explained in the Sec. III B. Left panel: Pressure components for thick nuclei. Right panel: Pressure components for thin nuclei.
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(2) The initial pressures directly after the collision
behave differently compared to the boost-invariant
case. In our simulations of thick nuclei in Fig. 8 (left
panel) we see that in the beginning pL dominates pT
due to the presence of the transverse fields of the
colliding nuclei. As the nuclei recede from the
collision volume the created glasma fields have
already reached the free-streaming limit and there-
fore no negative longitudinal pressures are observed.

(3) In the results for thin nuclei in Fig. 8 (right panel) we
can recover negative longitudinal pressure. The
colliding nuclei move away from the collision center
fast enough, leaving behind longitudinal color flux
tubes, which have not decayed yet. The still largely
longitudinal fields generate negative pressure, which
is characteristic for the early glasma phase.

We remark here that our ansatz for the initial conditions
relies on an assumption about the longitudinal structure of
the nuclei. The initial conditions described in Sec. II C
imply correlation of the charge density in the longitudinal
direction of order σ and correlation in the transversal
direction of order m−1. The charge distribution is random
in the transversal direction, but there is no random
longitudinal structure. As a consequence we were able
to drop the time ordering in Eq. (2.30). However, it has
been shown that random longitudinal structure (which
demands proper path/time ordering) in the initial nucleus
fields—among other effects—leads to higher initial energy
densities in the glasma [47]. Additional longitudinal
randomness might also give rise to larger deviations from
the boost-invariant case after the collision. This could be
similar to boost-invariance breaking perturbations of
the glasma, which cause plasma instabilities that have
been found to accelerate isotropization [12–14]. It is
therefore conceivable to expect that implementing this
random longitudinal structure in our initial conditions will
change the results and could lead to faster isotropization
times. Detailed understanding of these issues requires an
analysis of gluon occupation numbers in momentum space
and their temporal behavior. We plan to investigate this in a
future publication.

C. Energy production

One of the fundamental assumptions made in the CGC
framework is the separation of hard and soft degrees of
freedom, which are modeled as external color charges and
classical gauge fields respectively. As a result of the
collision there is an energy exchange between the charges
and the fields. However, since the nuclei are assumed to be
recoilless, the hard sector acts as an inexhaustible energy
reservoir for the gauge fields. The resulting field energy
increase can be interpreted as the work done by the charges
against the field. In the boost-invariant case this effect is
implicitly included in the initial conditions for the fields at
τ ¼ 0þ. In our approach we are able to explicitly compute

the energy increase during and after the collision. The
change of the total field energy density ε as a function of
time can be formulated in terms of an energy continuity
equation,

dε
dt

þ 1

V

Z
∂iSid3xþ

1

V

Z
Ea
i J

a
i d

3x ¼ 0; ð3:18Þ

which is the non-Abelian version of the Poynting theorem.
The time dependence of ε is governed by two terms: the
components Si of the Poynting vector Sj ≡ 2trð~E × ~BÞj and
Ea
i J

a
i . The integral over the total derivative of the Poynting

vector can be omitted in the continuum. On the lattice this
term only gives a negligible contribution due to discretiza-
tion errors. In the scalar product Ea

i J
a
i the only non-

vanishing part of the current Jai is the longitudinal
component Jaz and therefore the expression reduces to
Ea
zJaz . Consequently, the energy production is caused by

longitudinal chromoelectric fields in the glasma and must
be centered around the collision event and the boundary of
the forward light cone where the color currents are nonzero.
The energy increase as a function of time is shown in

Fig. 9. We observe that the total energy density is conserved
before the onset of the collision when the external charges
and the classical fields describing both nuclei are propa-
gating through vacuum. Afterwards there is a strong energy
increase during as well as after the collision. At later times
there is an ongoing, but slowly decreasing energy produc-
tion, which finally becomes almost constant. To check the
stability of our results with respect to a change in the spatial
and temporal resolution of the grid we vary the spatial
lattice spacing as and the time step at. Overall there is a
good agreement between results at different discretizations.
The violation of Eq. (3.18) is small and can be further
reduced using smaller time steps as seen in the lower plot
of Fig. 9.

D. Suppression of longitudinal
chromomagnetic fields

In the following we investigate the production of
longitudinal chromomagnetic fields Ba

L and chromoelectric
fields Ea

L characteristic for the glasma at early times. In the
boost-invariant case the contributions to the energy density
from magnetic and electric color flux tubes (trB2

L and trE2
L

respectively) should be equal after averaging over initial
conditions. In our simulations with finite σ we observe that
this is not the case and there is a dependency on the
thickness parameter σ as well as the IR regulator m. The
results are presented in Figs. 10 and 11.
Figure 10 shows the ratio of magnetic and electric

longitudinal fields htrB2
Li=htrE2

Li in the central region
(η ¼ 0) for a range of values of the nucleus thickness σ
and an IR regulator m ¼ 2 GeV. Collisions of thick nuclei
show a very small ratio of about 0.1–0.2 after the collision.
In the case of thin nuclei in Fig. 10 (right panel) the ratio
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increases to roughly ∼0.5, which is still far away from the
“canonical” value of 1 in the boost-invariant scenario. Note
that due to the small physical volumes used in the
simulations of thin nuclei it is harder to achieve adequate
statistics. As a result, the curves in Fig. 10 in the right panel
are not as smooth as in the left panel.

The results do not only depend on the thickness σ. In
Fig. 11 the results are shown for a fixed nuclear thickness
σ ¼ 0.08 fm (γ ≈ 45) and a varying IR regulator.3 We

FIG. 10. Ratio of magnetic to electric longitudinal energy density contributions as a function of time for various nuclear thicknesses σ.
The ratio increases for thin nuclei, but magnetic flux tubes are still heavily suppressed compared to the boost-invariant scenario. The
simulation parameters are the same as in Sec. III B. Left panel: Ratio of longitudinal energy density components for thick nuclei. Right
panel: Ratio of longitudinal energy density components for thin nuclei.

FIG. 9. Energy production as a function of time with different spatial and temporal discretizations. The “Sum” curves correspond to
the left-hand side of Eq. (3.18). Their deviation from zero is a consequence of lattice artifacts and can be reduced by using finer time
discretizations. The results have been obtained on a cubic lattice with a fixed volume of ð5.12 fmÞ3 with the IR regulator set to
m ¼ 1 GeV and an UV cutoff Λ ¼ 10 GeV. The nuclear thickness σ was set to 0.16 fm. We averaged over ten configurations in order to
have a sufficient statistical sample. Upper panel: Varying spatial discretization by keeping at ¼ 0.01 fm=c fixed. Lower panel: Varying
temporal discretization by keeping as ¼ 0.04 fm fixed.

3We remark that varying the IR regulator m has only a weak
influence on the pressure anisotropy.
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observe that reducing m to 200 MeV (which roughly
corresponds to a correlation length of the color fields of
the order of the confinement radius 1 fm) leads to better
agreement with the boost-invariant case with a ratio of
∼0.8. Note that this dependency of the ratio of magnetic
and electric longitudinal fields on the IR regulator m is not
present in the boost-invariant initial conditions [9].
The presented results seemingly suggest a suppression of

chromomagnetic flux tubes (or an overproduction of
chromoelectric flux tubes) in the glasma phase when
introducing a finite nucleus thickness. However, the strong
dependency of the magnetic to electric longitudinal field
ratio on the IR regulator m leads us to suspect that this
discrepancy between our simulations and the boost-
invariant case is an artifact, which can be attributed to
the initial conditions introduced in Sec. II C. As already
mentioned there and in Sec. III B the longitudinal structure
of our nuclei does not include “longitudinal randomness.”
Consequently, the typical color structures in our initial
conditions have a thickness proportional to σ and a trans-
versal width of the order of m−1. To be consistent with the
picture of a highly Lorentz-contracted nucleus modeled by
classical Yang-Mills fields one would demand that
σm ≪ 1, such that nucleons within the nucleus are also
contracted to flat “pancakes.” Therefore, if we move away
from the limit σm ≪ 1, we can expect to see deviations
from the boost-invariant case, but these deviations may
very well solely be due to the longitudinal coherence. This
reasoning is consistent with our simulation results: In the
case of a thickness of σ ¼ 0.16 fm with an IR regulator of
m ¼ 2 GeV the longitudinal magnetic fields are weakened
as seen in Fig. 10. Here we have a value of σm ¼ 1.6,
which corresponds to color structures which are prolonged
in the longitudinal direction. We can compare this to the
case of σ ¼ 0.08 fm and m ¼ 200 MeV as presented in
Fig. 11. The ratio of magnetic to electric fields is closer to 1

and at the same time we have σm ¼ 0.08, which can be
considered small.
Including random longitudinal structure in the nuclei as

suggested in [47] will help to clarify, if suppressed
longitudinal magnetic fields are a physical consequence
of a finite thickness or if the suppression is just an artifact of
our ansatz. However with the reasoning presented above we
suspect that this effect will disappear for more realistic
initial conditions.

IV. CONCLUSION

In this work we have simulated heavy-ion collisions in
the laboratory frame with thick nuclei in the McLerran-
Venugopalan model. Finite thickness in the longitudinal
direction allows the simulation of collisions at lower
energies, but requires abandoning boost invariance in the
calculation as well as including nontrivial color source
evolution in the simulation. Both can be readily imple-
mented using CPIC in the laboratory frame. With our
framework we are able to access a range of nuclear
thicknesses down to those corresponding to center-of-mass
energies as used in the low-energy beam energy scan
program of RHIC and up to LHC energies.
We started from an analytic solution of a non-Abelian

random color current sheet of finite extent in the longi-
tudinal direction and the corresponding field configuration
that propagate at the speed of light. The discretization of
this solution on a grid requires refining the charge dis-
tribution on sublattice resolution. For the interpolation
between particles and fields, we utilized the nearest-grid-
point method as a charge conserving interpolation scheme.
A distinct feature of our approach is the possibility to
explicitly compute the energy, which is pumped into the
Yang-Mills fields by the propagating color charges. We
verified that the energy increase correctly satisfies the
Poynting theorem for non-Abelian fields.
We compared calculations in the laboratory frame with

results from boost-invariant approaches. Concentrating on
gauge-invariant observables, we see that the correlation of
initial conditions right after the collision increases for
thinner nuclei, which means that boost invariance is
restored in this limit. We computed the components of
the energy-momentum tensor, especially focusing on the
pressure parallel and perpendicular to the propagation
direction. We show that our pressure distributions in
laboratory frame coordinate space correspond to largely
rapidity-independent pressure distributions in Bjorken
coordinates for the midrapidity region. Our results confirm
the previous findings, which established the picture of
strongly pronounced pressure anisotropy during the very
early phase of the fireball evolution.
For thicker nuclei we find the following deviations:

There is a suppression of the chromomagnetic longitudinal
components of the energy-momentum tensor with respect
to their chromoelectric counterparts. We analyzed this

FIG. 11. Ratio of magnetic to electric longitudinal energy
density contributions as a function of time for various values
of the IR regulator m. For this plot we used a grid size of 2563

cells with a lattice spacing as ¼ 0.02 fm and averaged over 32
events. The transversal area covers 25% of the full area of a gold
nucleus. The thickness parameter is set to σ ¼ 0.08 fm, which
corresponds to γ ≈ 45. We approach the boost-invariant limit for
small m.
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phenomenon and determined its dependence on the thick-
ness parameter and the IR regulator. Regarding pressure
components, we observe a slow tendency towards isotrop-
ization in our simulations. A more detailed future inves-
tigation including random longitudinal structure in our
model could potentially further reduce isotropization times.
Other possible and planned improvements are the

extraction of particle spectra in order to compare with
experimentally measured multiplicities and also some
rather technical aspects, like improved interpolation pre-
scriptions, which could be beneficial to widen the scope of
parameters accessible to our numerical approach. Another
step towards a more realistic simulation of QCD processes
in heavy-ion collisions at low collision energies would be
the inclusion of backreaction of the classical gauge fields
onto the color charges. In the future the CPIC framework

could also allow us to take interactions and scatterings
between the hard constituents of both nuclei into account.
Such steps, however, would go beyond the usual assump-
tions of the CGC effective theory and may require an
improved understanding of the internal nuclear structure.
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