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We analyze the lowest spectral moments of the left-right two-point correlation function, using all known
short-distance constraints and the recently updated ALEPH V − A spectral function from τ decays.
This information is used to determine the low-energy couplings L10 and C87 of chiral perturbation theory
and the lowest-dimensional contributions to the operator product expansion of the left-right correlator.
A detailed statistical analysis is implemented to assess the theoretical uncertainties, including violations
of quark-hadron duality.
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I. INTRODUCTION

The hadronic decays of the τ lepton provide very
valuable information on low-energy properties of the strong
interaction, allowing us to analyze important perturbative
and nonperturbative aspects of QCD [1]. A very precise
determination of the strong coupling can be extracted
from the inclusive hadronic τ decay width [2–7], while the
SU(3)-breaking corrections to the ΔS ¼ 1 decay width
[8,9] are very sensitive to the Cabibbo quark mixing jVusj
[10,11]. In this paper, we are interested in the difference
between the vector (V) and axial-vector (A) τ spectral
functions, which gives a direct access to nonperturbative
parameters related to the spontaneous chiral symmetry
breaking of QCD [12–27]. A very detailed phenomeno-
logical study of the nonstrange V − A spectral function,
using the 2005 release of the ALEPH τ data [28], was
already done in Refs. [22–24]. The recent update of the
ALEPH nonstrange τ spectral functions [29] motivates
an updated numerical analysis, based on the strategies
developed in those references, which we present here.
A comparison with other works available in the literature
that employ different theoretical approaches will also be
performed.
Compared to the 2005 ALEPH data set, the new public

version of the ALEPH τ data incorporates an improved
unfolding of the measured mass spectra from detector
effects and corrects some problems [30] in the correlations
between unfolded mass bins. The improved unfolding
brings an increased statistical uncertainty near the edges
of phase space. It has also reduced the number of bins
in the spectral distribution, as a larger bin size has been
adopted.
The starting point of our analysis is the two-point

correlation function of the left-handed and right-handed
quark currents:

Πμν
ud;LRðqÞ≡ i

Z
d4xeiqxh0jTðLμ

udðxÞRν†
udð0ÞÞj0i

¼ ð−gμνq2 þ qμqνÞΠð1Þ
ud;LRðq2Þ

þ qμqνΠð0Þ
ud;LRðq2Þ; ð1Þ

where Lμ
udðxÞ≡ ūðxÞγμð1 − γ5ÞdðxÞ and Rμ

udðxÞ≡
ūðxÞγμð1þ γ5ÞdðxÞ. Owing to the chiral invariance of
the massless QCD Lagrangian, this correlator vanishes
identically to all orders in perturbation theory when
mu;d ¼ 0. The nonzero value of

ΠðsÞ≡ Πð0þ1Þ
ud;LRðsÞ≡ Πð0Þ

ud;LRðsÞ þ Πð1Þ
ud;LRðsÞ

¼ 2f2π
s −m2

π
þ Π̄ðsÞ ð2Þ

originates in the spontaneous breaking of chiral sym-
metry by the QCD vacuum, which results in different
vector and axial-vector two-point functions. Thus, ΠðsÞ
is a perfect theoretical laboratory to test nonperturbative
effects of the strong interaction, without perturbative
contaminations. The perturbative corrections induced
by the nonzero quark masses are tiny and can be easily
taken into account. In Eq. (2), we have made explicit the
contribution of the pion pole to the longitudinal axial-
vector two-point function. We will work in the isospin
limit mu ¼ md ≡mq, where the longitudinal part of the
vector correlator vanishes.
The correlator Π̄ðsÞ is analytic in the entire complex s

plane, except for a cut on the positive real axis that starts at
the threshold sth ¼ 4m2

π . Applying Cauchy’s theorem in the
circuit in Fig. 1 to the function ωðsÞΠðsÞ, one gets the exact
expression [24],
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Z
s0

sth

dsωðsÞ 1
π
ImΠðsÞ þ 1

2πi

I
jsj¼s0

dsωðsÞΠðsÞ

¼ 2f2πωðm2
πÞ þ Res½ωðsÞΠðsÞ; s ¼ 0�; ð3Þ

which relates the correlator in the complex plane with
its imaginary part at Minkowskian momenta, accessible
experimentally at low energies. For sth ≤ s ≤ m2

τ , the
spectral function ρðsÞ≡ 1

π ImΠðsÞ is determined by the
difference between the vector and axial-vector hadronic
spectral functions measured in τ decays. Choosing different
weight functions ωðsÞ, one can change the sensitivity to
different kinematical domains. We have only assumed
that ωðsÞ is an arbitrary analytic function in the whole
complex plane except maybe at the origin where it
can have poles, generating the corresponding residue
Res½ωðsÞΠðsÞ; s ¼ 0�. The pion pole contribution is given
by the term 2f2πωðm2

πÞ.
The operator product expansion (OPE) expresses the

correlator as an expansion in inverse powers of momenta
[31,32],

ΠOPEðsÞ ¼
X
k

O2k

ð−sÞk ; ð4Þ

which approximates very well ΠðsÞ in the complex plane,
away from the real axis, at large values of jsj. Therefore, it
provides a very reliable short-distance tool to compute the
integral along the circle jsj ¼ s0, for sufficiently large values
of s0. The main source of uncertainty is the integration
region near the real axis, but it can be suppressed with
adequately chosen weight functions [7]. In order to account
for the small difference between the physical (exact)
correlator and its OPE representation along the circle
integration, one can introduce the correction [16,23,33–36],

δDV½ωðsÞ; s0�≡ 1

2πi

I
jsj¼s0

dsωðsÞ½ΠðsÞ − ΠOPEðsÞ�

¼
Z

∞

s0

dsωðsÞρðsÞ; ð5Þ

which becomes zero at s0 → ∞. A nonzero value of
δDV½ωðsÞ; s0� signals a violation of quark-hadron duality
in the spectral integration between sth and s0.Wewill discuss
later the best strategy to control and minimize this kind of
theoretical uncertainty.
TakingωðsÞ ¼ sn with non-negative values of the integer

power n, the pion pole is the only singularity within the
contour. Therefore, the integral over the spectral function
from sth to s0 is equal to the pion pole term 2f2πm2n

π , plus the
OPE contribution ð−1ÞnO2ðnþ1Þ generated by the integra-
tion along the circle, up to duality violations (DV).
However, in the chiral limit (mq ¼ 0) and owing to the
short-distance properties of QCD, ΠOPEðsÞ contains only
power-suppressed terms from dimension d ¼ 2k operators,
starting at d ¼ 6 [37], which implies a vanishing OPE
contribution for n ¼ 0, 1:

Z
s0

sth

ds
1

π
ImΠðsÞ ¼ 2f2π − δDV½1; s0�; ð6Þ

Z
s0

sth

dss
1

π
ImΠðsÞ ¼ 2f2πm2

π − δDV½s; s0�: ð7Þ

The superconvergence properties of ΠðsÞ guarantee that
the DV corrections to both sum rules approach zero very
fast for increasing values of s0. When s0 → ∞, there is
no duality violation and one gets the well-known first
and second Weinberg sum rules (WSRs) satisfied by the
physical spectral functions [38]. With nonzero quark
masses taken into account, the first relation is still exact,
while the second gets a negligible correction of Oðm2

qÞ.
For higher values of the power n, Eq. (3) gives relations

involving the different OPE coefficients:

Z
s0

sth

dssn
1

π
ImΠðsÞ ¼ ð−1ÞnO2ðnþ1Þ þ 2f2πm2n

π − δDV½sn; s0�

ðn ≥ 2Þ: ð8Þ

For negative values of n ¼ −m < 0, the OPE does not
give any contribution to the integration along the circle
s ¼ s0, but there is a nonzero residue at the origin propor-
tional to the (m − 1)th derivative of Π̄ðsÞ at s ¼ 0. At low
values of s, the correlator can be rigorously calculated
within chiral perturbation theory (χPT) [39–43]. At present,
ΠðsÞ is known to Oðp6Þ [44], in terms of the so-called
chiral low-energy couplings (LECs) that we can determine
through the following relations:

Z
s0

sth

dss−1
1

π
ImΠðsÞ ¼ 2

f2π
m2

π
þ Πð0Þ − δDV½s−1; s0�

≡ −8Leff
10 − δDV½s−1; s0�; ð9Þ

s0sth

Re q2

Im q2

FIG. 1. Analytic structure of Π̄ðsÞ.
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Z
s0

sth

dss−2
1

π
ImΠðsÞ ¼ 2

f2π
m4

π
þ Π0ð0Þ − δDV½s−2; s0�

≡ 16Ceff
87 − δDV½s−2; s0�: ð10Þ

The explicit expression of the correlator Π̄ðsÞ atOðp6Þ in
χPT is given in the Appendix. The relation between the
effective parameters Leff

10 and Ceff
87 and their χPT counter-

parts, the LECs L10 and C87, will be discussed in Sec. V.

II. A FIRST ESTIMATION OF THE
EFFECTIVE COUPLINGS

Using the updated ALEPH spectral function [29], we can
determine Leff

10 and Ceff
87 with Eqs. (9) and (10). As a first

estimate, we neglect the DV terms and show in Fig. 2 the
resulting effective couplings, for different values of s0. As
expected and as it was already observed in Ref. [22], the
results exhibit a strong dependence on s0 at low energies,
where the duality-violation corrections are not negligible.

At larger momentum transfers, the curves start to
stabilize, indicating that the violations of duality become
smaller. However, especially for Leff

10 , the curves are not yet
horizontal lines at s0 near m2

τ , which implies that duality-
violation effects are still present.
Instead of weights of the form sn, we can try to reduce

DVeffects using pinched weight functions [7,16,45], which
vanish at s ¼ s0 (or in the vicinity) where the OPE breaks
down. Following Ref. [22], we employ the WSRs in
Eqs. (6) and (7) and take ω−1;0ðsÞ ¼ s−1ð1 − s=s0Þ and
ω−1ðsÞ¼s−1ð1−s=s0Þ2 for estimating Leff

10 , and ω−2;0ðsÞ ¼
s−2ð1 − s2=s20Þ and ω−2ðsÞ¼s−2ð1−s=s0Þ2ð1þ2s=s0Þ for
estimating Ceff

87 . Again, neglecting the DV terms, we plot
the values of the effective couplings for different s0 in
Fig. 3. We observe that using these pinched weights the
results converge and become stable below s ¼ m2

τ. This
suggests that DV effects are negligible at s0 ∼m2

τ , when
these pinched weight functions are used. Assuming that, we
obtain

FIG. 2. Leff
10 and Ceff

87 from Eqs. (9) and (10), neglecting DVs, for different values of s0.

FIG. 3. Leff
10 and Ceff

87 at different values of s0, using pinched weight functions and neglecting DVs.
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Leff
10 ¼ −ð6.49� 0.05Þ × 10−3; ð11Þ

Ceff
87 ¼ ð8.40� 0.18Þ × 10−3 GeV−2: ð12Þ

III. DEALING WITH VIOLATIONS
OF QUARK-HADRON DUALITY

The stability under changes of s0 of the Leff
10 and Ceff

87

determinations is a necessary condition for vanishing
duality violations. However, the plateau could be accidental
and disappear at slightly higher values of s0 where
experimental data are not available. Although this possibil-
ity looks rather unlikely, we want to gain confidence on our
numerical results and perform a reliable estimation of the
uncertainties associated with violations of duality, using
Eq. (5). The problem is that the spectral function is
experimentally unknown above s ¼ m2

τ .
Fortunately, there are strong theoretical constraints on

ρðsÞ that originate in the special chiral-symmetry-breaking
properties of ΠðsÞ, implying its very fast falloff at large
momenta. In addition to the two WSRs, the spectral
function should satisfy the so-called pion sum rule
(πSR), which determines the electromagnetic pion mass
splitting in the chiral limit [46]:

Z
∞

sth

dss log

�
s
Λ2

�
1

π
ImΠðsÞ

���
mq¼0

¼ ðm2
π0
−m2

πþÞem
8π

3α
f2π
���
mq¼0

: ð13Þ

Owing to the secondWSR, the πSR does not depend on the
arbitrary scale Λ. The rhs of this equation is well known in
χPT and, within the needed accuracy, we can identify in the
lhs the spectral function in the chiral limit with the physical
ρðsÞ because mq corrections are tiny.

A. Parametrization of the spectral function

All the theoretical and phenomenological knowledge we
have about ΠðsÞ can be used to get an estimate of the DV
uncertainties. In order to do that, let us adopt the following
ansatz for the spectral function at large values of s
[23,24,33,35,47,48],

ρðs > szÞ ¼ κe−γs sin fβðs − szÞg; ð14Þ

with four free parameters κ, γ, β, and sz. This para-
metrization incorporates the expected strong falloff when
s → ∞ and the oscillating behavior predicted in resonance-
based models [33,47,49]. We will split the spectral inte-
grations in two parts, using the experimental data in the
lower energy range and the ansatz (14) at higher energies.
From the ALEPH data we know that the V − A spectral
function has a zero around sz ∼ 2 GeV2, which is repre-
sented in Eq. (14) through the sz parameter. We will take

this zero as the separation point between the use of the data
and the use of the model.
Our parametrization is compatible with the ALEPH

spectral function above sz. Fitting the parameters given in
(14) to the ALEPH data in the interval s ∈ ð1.7 GeV2; m2

τÞ,
we obtain a very good fit with χ2min=d:o:f: ¼ 8.52=9.
In fact, the fit with the updated ALEPH data looks more
reliable compared to the previous one, where a value of
χ2min=d:o:f: ≪ 1 was obtained [23].
We want to stress that the exact s-dependence of the

spectral function in the high-energy region cannot be derived
from first principles. The ansatz (14) is just a convenient
parametrization, consistent with present knowledge, that we
are going to use to estimate theoretical uncertainties asso-
ciated with violations of quark-hadron duality. Imposing
that ρðsÞ should satisfy all known theoretical and exper-
imental constraints, the free parameters in the ansatz will
allow us to measure how much freedom remains for the
spectral function shape and, therefore, to obtain a reliable
estimate of the associated uncertainty.
There is an inherent systematic error in any work that

estimates DVeffects, namely the dependence on the chosen
parametrization. The comparison with other works that
parametrize the data in a different way represents an
important step in this regard.1

B. Selection of acceptable spectral functions

Following the procedure described in [23], we generate
3 × 106 tuples of the parameters ðκ; γ; β; szÞ, randomly
distributed in a rectangular region large enough to contain
all the possible acceptable tuples. Among all generated
tuples, we select those satisfying the following four
physical conditions:

(i) The tuples must be consistent with the ALEPH data
above s ¼ 1.7 GeV2; i.e., they must be contained
within the 90% C.L. region in the fit to the exper-
imental ALEPH spectral function described before:

χ2 < χ2min þ 7.78 ¼ 16.30: ð15Þ

1In Refs. [25,27] the exact s dependence of the resonance-based
model (14) is assumed to be true for the V and A distributions
separately, above s ∼ 1.55 GeV2, with channel-dependent param-
eters. Unfortunately, one must then perform a complex fit
involving nine parameters, including a model-dependent deter-
mination of the strong coupling, and use the parametrization near
the a1 resonance where it is not expected to work properly. In this
way, uncertainties related to an αs determination from the V and A
spectral distributions are introduced in the analysis of the corre-
lator ΠðsÞ, which does not contain any perturbative contribution.
As recently shown in Ref. [50], the resulting fit is very unstable
with a dramatic dependence of the fitted parameters on the adopted
assumptions. Moreover, the LECs and vacuum condensates are
directly extracted from the fitted V and A spectral functions
without imposing any further requirement, as WSRs and πSR are
only checked to be satisfied within errors a posteriori, in contrast
with our approach (see next subsection).
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Although we will only use the ansatz above
sz ∼ 2 GeV2, we impose the compatibility with the
data from 1.7 GeV2 to ensure the continuity
of the spectral function in the matching region
between the data and the model.

(ii) The tuples must satisfy within the experimental
uncertainties up to sz the first and second WSRs
with:

Z
sz

0

dsρðsÞALEPH þ
Z

∞

sz

dsρðs; κ; γ; β; szÞ

¼ 17.0 × 10−3 GeV2; ð16ÞZ
sz

0

dssρðsÞALEPH þ
Z

∞

sz

dssρðs; κ; γ; β; szÞ

¼ 0.24 × 10−3 GeV4; ð17Þ
where the right-hand-side errors are omitted as they
are negligible compared to the left-hand-side ones.
In the second WSR, there are contributions of the
form Oðm2

qαsszÞ, but they are negligible for the
values of sz that we are considering.

(iii) The tuples must satisfy within the experimental
uncertainties the πSR:
Z

sz

0

dss log

�
s

1 GeV2

�
ρðsÞALEPH

þ
Z

∞

sz

dss log

�
s

1 GeV2

�
ρðs; κ; γ; β; szÞ

¼ −ð10.9� 1.3Þ × 10−3 GeV4: ð18Þ
The quoted error in the πSR takes into account that
quarkmasses do not vanish in nature andwe are using

1 2 3 4 5 6
s (GeV2)

0.05

0.10

0.15
(s)

FIG. 4. Updated ALEPH V − A spectral function [29] (blue
points) and all the “acceptable” spectral functions (red band
above 2.0 GeV2) that follow our parametrization and satisfy the
physical conditions described in the main text.

FIG. 5. Distributions of the parameters (κ, γ, β, sz) that satisfy the physical constraints. GeVunits are used for dimensionful quantities.
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real data instead of chiral-limit one. We estimate this
uncertainty taking for the pion decay constant the
range f0 ¼ ð87� 5Þ MeV [23], which includes the
physical value and its estimated value in the chiral
limit [51]. We also include a small uncertainty
coming from the residual scale dependence of the
logarithm, which is proportional to the secondWSR.

We accept only those tuples that fulfill the four con-
ditions. This requirement constrains the regions in the
parameter space of the ansatz (14) that are compatible with
both QCD and the data. From the initial set of 3 × 106

randomly generated tuples, we obtain 3716, satisfying our
set of minimal conditions. They represent the possible
shapes of the spectral function beyond sz, as shown in
Fig. 4. In Fig. 5, we plot the statistical distribution of the
parameters ðκ; γ; β; szÞ for the accepted tuples.

IV. DETERMINATION OF PHYSICAL
PARAMETERS, INCLUDING

DV UNCERTAINTIES

For every selected tuple, we have an acceptable spectral
function2 that can be used to estimate the different physical

parameters through the corresponding spectral integrals.
Using Eqs. (9), (10), and (8) (for n ¼ 2, 3) with s0 ¼ sz, we
determine Leff

10 , C
eff
87 , O6, and O8 for each of the 3716

accepted tuples. The statistical distributions of the calcu-
lated parameters are shown in Fig. 6 (light gray).
We can reduce both the experimental and the DV

uncertainties using the following pinched weight functions
[24]:

Z
s0

sth

ds
ρðsÞ
s2

�
1 −

s
s0

�
2
�
1þ 2s

s0

�

¼ 16Ceff
87 − 6

f2π
s20

þ 4
f2πm2

π

s30
− δDV½ω−2; s0�; ð19Þ

Z
s0

sth

ds
ρðsÞ
s

�
1 −

s
s0

�
2

¼ −8Leff
10 − 4

f2π
s0

þ 2
f2πm2

π

s20
− δDV½ω−1; s0�; ð20Þ

Z
s0

sth

dsρðsÞðs− s0Þ2

¼ 2f2πs20−4f2πm2
πs0þ2f2πm4

πþO6−δDV½ω2;s0�; ð21Þ

FIG. 6. Statistical distribution of Leff
10 , C

eff
87 , O6, and O8 for the tuples accepted, using sn weights (light gray) and pinched weight

(dark gray) functions.

2Given by the ALEPH data below sz and by the parametriza-
tion (14) above that value.
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Z
s0

sth

dsρðsÞðs − s0Þ2ðsþ 2s0Þ

¼ −6f2πm2
πs20 þ 4f2πs30 þ 2f2πm6

π −O8 − δDV½ω3; s0�:
ð22Þ

Following the same method with these relations, we obtain
new distributions of acceptable physical parameters, which
are also shown in Fig. 6 (dark gray). From these new
distributions we get

Leff
10 ¼ ð−6.477þ0.004

−0.006 � 0.05Þ × 10−3

¼ ð−6.48� 0.05Þ × 10−3; ð23Þ

Ceff
87 ¼ ð8.399þ0.002

−0.005 � 0.18Þ × 10−3 GeV−2

¼ ð8.40� 0.18Þ × 10−3 GeV−2; ð24Þ

O6 ¼ ð−3.6þ0.5
−0.4 � 0.5Þ × 10−3 GeV6

¼ ð−3.6þ1.0
−0.9Þ × 10−3 GeV6; ð25Þ

O8 ¼ ð−1.0� 0.3� 0.2Þ × 10−2 GeV8

¼ ð−1.0� 0.5Þ × 10−2 GeV8; ð26Þ

The first errors correspond to DV uncertainties, computed
from the dispersion of the histograms (corresponding to
the 68% probability region) and the second errors are the
experimental ones. The final uncertainties are computed
from them assuming conservatively they are 100%
correlated.
We observe that pinched weight functions reduce indeed

the DVeffects, and that they are negligible for Leff
10 and Ceff

87

at s0 ∼m2
τ , compared with the experimental uncertainties.

The results obtained for these two LECs are in perfect
agreement with our first determinations in Eqs. (11) and
(12) that did not include any estimate of DV. The
corresponding spectral integrals contain weight functions
with negative powers of s that suppress the contribution

from the upper end of the integration range, making DV
irrelevant. This is no longer true for the vacuum conden-
sates O6 and O8, which are determined with weight
functions growing with positive powers of s. The use of
pinched weights is then essential to suppress the contri-
butions from the region around s0 in the contour integra-
tion. This is clearly reflected in the strong reduction of
uncertainties observed in the two lower panels of Fig. 6.
Actually, ignoring completely the DV effects, from the

double-pinched weight functions in Eqs. (21) and (22), one
obtains values for O6 and O8 that are perfectly compatible
with our determinations in Eqs. (25) and (26), although
with much larger experimental uncertainties. This is illus-
trated in Fig. 7, which shows how the extracted condensates
stabilize at large s0, around the right values but with very
large error bars. The implementation of short-distance
constraints (WSRs and πSR), through the procedure
described in the previous section, has made possible to
better pin down the spectral function in that region and
obtain the more precise values in Eqs. (25) and (26).
Our results are in good agreement with those obtained

previously in Ref. [24] with the 2005 ALEPH data set.
Thus, the improvements incorporated in the 2014 release of
the ALEPH data do not introduce sizeable modifications
of the physical outputs. Similar results have been obtained
recently in Ref. [27], using also the 2014 ALEPH data set.
Ref. [27] emphasizes the existence of a slight tension

with the results obtained in Ref. [25] with the 1999 OPAL
data set [52]. In view of this, we have repeated our
numerical analyses with the OPAL spectral function
[52]. As happened with the 2005 ALEPH data set, the
fit of the ansatz (14) to the OPAL data in the interval
s ∈ ð1.7 GeV2; m2

τÞ has a χmin=d:o:f: ≪ 1. Applying the
same procedure used for ALEPH, we have obtained the
following results with the OPAL data:

Leff
10 ¼ ð−6.42þ0.10

−0.11Þ × 10−3; ð27Þ

Ceff
87 ¼ ð8.35� 0.29Þ × 10−3 GeV−2; ð28Þ

FIG. 7. Values of the condensates O6 and O8, at different values of s0, obtained from Eqs. (21) and (22) ignoring duality violations.

UPDATED DETERMINATION OF CHIRAL COUPLINGS AND … PHYSICAL REVIEW D 94, 014017 (2016)

014017-7



O6 ¼ ð−5.7þ1.5
−1.7Þ × 10−3 GeV6; ð29Þ

O8 ¼ ð0.0þ0.9
−0.7Þ × 10−2 GeV8: ð30Þ

Owing to the larger uncertainties of the OPAL data,
specially at higher values of s, the extracted parameters
are less precise than those obtained with the ALEPH data.
Nevertheless, comparing Eqs. (27)–(30) with (23)–(26), we
observe a good agreement between both sets of results, the
differences being only 0.5σ, 0.1σ, 1.1σ, and 1.1σ for Leff

10 ,
Ceff
87 , O6, and O8, respectively. We conclude that the much

larger fluctuations obtained in Refs. [25,27] between the
results extracted from the two data sets are a consequence
of the particular approach adopted in their DV analyses.3

Finally, we can use double-pinched weight functions in
order to estimate higher-dimensional condensates:

Z
s0

sth

dsρðsÞðs − s0Þ2ðs2 þ 2s0sþ 3s20Þ

¼ −8f2πm2
πs30 þ 6f2πs40 þ 2f2πm8

π þO10 − δDV½ω4; s0�;
ð31Þ

Z
s0

sth

dsρðsÞðs − s0Þ2ðs3 þ 2s0s2 þ 3s20sþ 4s30Þ

¼ −10f2πm2
πs40 þ 8f2πs50 þ 2f2πm10

π −O12 − δDV½ω5; s0�;
ð32Þ

Z
s0

sth

dsρðsÞðs− s0Þ2ðs4 þ 2s0s3 þ 3s20s
2 þ 4s30sþ 5s40Þ

¼ −12f2πm2
πs50 þ 10f2πs60 þ 2f2πm12

π þO14 − δDV½ω6; s0�;
ð33Þ

Z
s0

sth

dsρðsÞðs−s0Þ2ðs5þ2s0s4þ3s20s
3þ4s30s

2þ5s40sþ6s50Þ

¼−14f2πm2
πs60þ12f2πs70þ2f2πm14

π −O16−δDV½ω7;s0�:
ð34Þ

Using these equations with the same method, we obtain
from the ALEPH data:

O10 ¼ ð5.6� 1.2� 0.8Þ × 10−2 GeV10

¼ ð5.6� 2.0Þ × 10−2 GeV10; ð35Þ

O12 ¼ ð−0.13þ0.03
−0.05 � 0.02Þ GeV12

¼ ð−0.13þ0.05
−0.07Þ GeV12; ð36Þ

O14 ¼ ð0.24þ0.11
−0.05 � 0.06Þ GeV14

¼ ð0.24þ0.17
−0.11Þ GeV14; ð37Þ

O16 ¼ ð−0.38þ0.25
−0.10 � 0.13Þ GeV14

¼ ð−0.38þ0.38
−0.23Þ GeV16: ð38Þ

A. Comparison with previous works

Our final results for Leff
10 , C

eff
87 , O6, and O8 are compared

in Table I with recent (post-2005) phenomenological
determinations of these parameters, obtained with different
data sets [28,29,52] and various DV parametrizations.4

There is an excellent agreement among the different
values quoted for the effective LECs Leff

10 and Ceff
87 , showing

that these determinations are very solid and do not get
affected by DV effects. In fact, as shown in Table I, the
precision has not changed in the last ten years. Nonetheless,
the robustness of these determinations has increased
significantly thanks to the thorough studies of DV effects
with different approaches. The values obtained from differ-
ent data sets are also in good agreement, although one can
notice a difference of 1σ between the Ceff

87 from the updated
(2014) ALEPH data comparing with the old one (2005).
The different results forO6 andO8 are also in reasonable

agreement, within the quoted uncertainties. A good control
of DV effects is more important for these vacuum con-
densates. The use of pinched weights allows us to sizeably
reduce their impact and obtain more reliable determina-
tions. With the ALEPH’14 data one reaches a 30%
accuracy for O6, but the error remains still large (50%)
forO8. As commented before, we do not see any significant
discrepancy between the results obtained from the OPAL
and ALEPH data samples.

V. χPT COUPLINGS

The effective couplings Leff
10 and Ceff

87 can be rewritten
in terms of Oðp4Þ and Oðp6Þ couplings of the χPT
Lagrangian [22,44]:

Leff
10 ≡ −

1

8
Π̄ð0Þ

¼ Lr
10ðμÞ þ

1

128π2

�
1 − log

�
μ2

m2
π

�
þ 1

3
log

�
m2

K

m2
π

��

−
1

8
ðCr0 þ Cr1ÞðμÞ − 2ð2μπ þ μKÞðLr

9 þ 2Lr
10ÞðμÞ

þ G2Lðμ; s ¼ 0Þ þOðp8Þ; ð39Þ

3Since DV is not very relevant for the extraction of the LECs,
Refs. [25,27] obtain similar values for Leff

10 and Ceff
87 with the two

data sets. However, sizeable differences show up in their
determinations of O6 and O8 where DV is more important.

4A complete list including theoretical estimates [53–55] and
previous phenomenological determinations of these quantities
(and of higher-dimensional condensates) [13–18,20,28,34,
52,56–60] can be found in Refs. [24,61].
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Ceff
87 ≡ 1

16
Π̄0ð0Þ

¼Cr
87ðμÞ−

1

64π2f2π

�
1− log

�
μ2

m2
π

�
þ1

3
log

�
m2

K

m2
π

��
Lr
9ðμÞ

þ 1

7680π2

�
1

m2
K
þ 2

m2
π

�
−
1

2
G0

2Lðμ;s¼0ÞþOðp8Þ;

ð40Þ
where the factors μi ¼ m2

i logðmi=μÞ=ð16π2f2πÞ originate
from one-loop corrections and G2Lðμ; s ¼ 0Þ and
G0

2Lðμ; s ¼ 0Þ are two-loop functions, whose numerical
values are given in the appendix. We have also defined

Cr0 ¼ 32m2
πðC12 − C61 þ C80Þ; ð41Þ

Cr1 ¼ 32ðm2
π þ 2m2

KÞðC13 − C62 þ C81Þ: ð42Þ

To first approximation the effective parameters correspond
to the chiral couplings L10 and C87, which appear at Oðp4Þ
and Oðp6Þ, respectively, in the χPT expansion. The scale
dependence of Lr

10ðμÞ is cancelled by the one-loop loga-
rithmic terms in the second line of Eq. (39), which are
suppressed by one power of 1=NC with respect to Lr

10ðμÞ,
where NC is the number of QCD colors. The remaining
contributions in Eq. (39) contain the Oðp6Þ corrections,
which unfortunately introduce other Oðp6Þ and Oðp4Þ
chiral couplings (third line). The corrections to Cr

87ðμÞ in
Eq. (40) only involve one additional LEC, Lr

9ðμÞ, through a
one-loop correction with the Oðp4Þ chiral Lagrangian.
It is convenient to give the following compact numerical

form of these equations to ease their future use,

Leff
10 ¼ Lr

10 − 0.00126þOðp6Þ; ð43Þ

Leff
10 ¼ 1.53Lr

10 þ 0.263Lr
9 − 0.00179

−
1

8
ðCr0 þ Cr1Þ þOðp8Þ; ð44Þ

Ceff
87 ¼ Cr

87 þ 0.296Lr
9 þ 0.00155þOðp8Þ; ð45Þ

where we have used μ ¼ Mρ as the reference value for the
χPT renormalization scale. The uncertainties in these
numbers are much smaller than those affecting the different
LECs and can therefore be neglected.
Working with Oðp4Þ precision, the determination of

Lr
10ðμÞ is straightforward and we find

Lr
10ðMρÞ¼−ð5.22�0.05Þ×10−3 ½Oðp4Þanalysis�: ð46Þ

As mentioned before, an Oðp6Þ determination of Lr
10

requires us to know some next-to-next-to-leading-order
(NNLO) LECs,5 namely those in Cr0;1. This has motivated
some interest in these quantities in the last few years. Here
we briefly review the different approaches.
In the first Oðp6Þ determination of Lr

10 [22], Cr0 was
extracted from a combination of phenomenological (Cr

61;12)
[63–66] and theoretical (Cr

80, RχT) [44,67] inputs, namely,6

Cr
61ðMρÞ ¼ ð1.7� 0.6Þ× 10−3 GeV−2 ½63;65;66�; ð47Þ

Cr
12ðMρÞ ¼ ð0.4� 6.3Þ × 10−5 GeV−2 ½64�; ð48Þ

Cr
80ðMρÞ ¼ ð2.1� 0.5Þ × 10−3 GeV−2 ½44; 67�; ð49Þ

whereas Cr1, which was completely unknown at the time,
was estimated using

TABLE I. Compilation of recent determinations of the LECs and vacuum condensates.

103 · Leff
10 103 · Ceff

87 ðGeV−2Þ 103 ·O6 ðGeV6Þ 102 ·O8 ðGeV8Þ Reference Comments

−6.45� 0.06 � � � −2.3� 0.6 −5.4� 3.3 BPDS’06 [19] ALEPH’05þ DV ¼ 0
� � � � � � −6.8þ2.0

−0.8 3.2þ2.8
−9.2 ASS’08 [21] ALEPH’05þ DV ¼ 0

−6.48� 0.06 8.18� 0.14 � � � � � � GPP’08 [22] ALEPH’05þ DV ¼ 0
−6.44� 0.05 8.17� 0.12 −4.4� 0.8 −0.7� 0.5 GPP’10 [23,24] ALEPH’05þ DVV−A
−6.45� 0.09 8.47� 0.29 −6.6� 1.1 0.5� 0.5 Boito’12 [25] OPAL’99þ DVV=A

−6.50� 0.10 � � � −5.0� 0.7 −0.9� 0.5 DHSS’15 [26] ALEPH’14þ DV ¼ 0
−6.45� 0.05 8.38� 0.18 −3.2� 0.9 −1.3� 0.6 Boito’15 [27] ALEPH’14þ DVV=A

−6.42þ0.10
−0.11 8.35� 0.29 −5.7þ1.5

−1.7 0.0þ0.9
−0.7 This work OPAL’99þ DVV−A

−6.48� 0.05 8.40� 0.18 −3.6þ1.0
−0.9 −1.0� 0.5 This work ALEPH’14þ DVV−A

5It also requires Lr
9, which we take from Ref. [62]:

Lr
9ðMρÞ ¼ 5.93ð43Þ × 10−3. Let us note that this is the value

used also in all other Oðp6Þ extractions of Lr
10 from tau data.

6This value of Cr
61 comes from a flavor-breaking finite-energy

sum rule involving the correlator Π̄ð0þ1Þ
ud−us;VVð0Þ. The original result

[63] has been updated recently [66], finding

32ðm2
K −m2

πÞC61 þ 1.06Lr
10 ¼ 0.00727ð134Þ:

Since Lr
10 appears in this relation only at one loop, i.e., at Oðp6Þ,

we can use here anOðp4Þ determination of Lr
10 to extract C

r
61. We

can indeed see that the Lr
10 contribution to the Cr

61 error is
subdominant. We use the conservative value Lr

10 ¼ −0.0052ð17Þ
to extract Cr

61.
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jCr
62 − Cr

13 − Cr
81j ≤

1

3
jCr

61 − Cr
12 − Cr

80j; ð50Þ

i.e., a simple educated guess based on the fact that those
LECs are suppressed by a factor 1=NC. Using these
numbers and Eq. (44), we obtain the results shown in
Table II (5th row) and Fig. 8 (magenta point), which
supersede those found in Ref. [22].
An alternative sum rule involving Lr

10 and Cr0 was
recently derived in Ref. [66] from an analysis of the

flavor-breaking left-right correlator Π̄ð0þ1Þ
ud−us;LRð0Þ, namely7

½Π̄ð0þ1Þ
ud;LRð0Þ − Π̄ð0þ1Þ

us;LRð0Þ�LEC ¼ −0.7218Lr
5 þ 1.423Lr

9

þ 2.125Lr
10 −

m2
K −m2

π

m2
π

Cr0

¼ 0.0113ð15Þ; ð51Þ

again at μ ¼ Mρ. Combining this constraint with the sum
rule8 in Eq. (44) and the naive inequality in Eq. (50), we
obtain the results shown in Table II (6th row) and Fig. 8
(dark blue region). We see that Lr

10 is in excellent agree-
ment with the value obtained using Eqs. (47)–(49) and has a
smaller error. Concerning the NNLO LECs, almost the
same value is obtained for Cr1, whereas a 1.8σ tension is
present in the Cr0 case.
Another interesting development was performed in

Ref. [68], where additional constraints on Lr
10, C

r
0 and Cr1

were obtained from lattice simulations of the correlator
Π̄ðsÞ at unphysical meson masses. As shown in Table II, the
lattice data allow for a more accurate determination of the
LECs, making unnecessary the use of the naive guess in
Eq. (50). However, to derive the lattice constraints one
needs to assume that the Oðp6Þ χPT expansion reproduces
well the correlator at s ∼ −0.25 GeV2, the energy region
with smaller lattice uncertainties, which dominates these

constraints. Unfortunately, it was shown in Ref. [25] that
Oðp6Þ χPT does not approximate well enough Π̄ðsÞ at these
energies, taking into account the low uncertainties we are
dealing with, and one needs to incorporate the so-far
unknown Oðp8Þ chiral corrections.
In order to take advantage of the most precise lattice

constraint, Ref. [27] makes the strong assumption that the
missingOðp8Þ chiral contributions are dominated by mass-
independent terms, i.e., Π̄ðsÞ ≈ Π̄χPT

Oðp6Þ þDs2, so that they

cancel in the lattice-continuum differenceΠχPT
lattice − ΠχPT

physical.
It is worth noting that this is not a good approximation at
the previous chiral order, Oðp6Þ, since more than 25% of
the Oðp6Þ correction proportional to s comes from known
mass-dependent chiral terms. Therefore, the uncertainties
associated with these lattice constraints seem at present
underestimated.
Additionally, correlations between the continuum and

the lattice sum rules (e.g. due to Lr
9) are not publicly

available. It is worth mentioning nonetheless that if we
implement these lattice constraints9 [instead of the inequal-
ity in Eq. (50)], neglecting such correlations, we reproduce
the results of Ref. [27] except for the uncertainties
associated to Lr

5 and Lr
9, for which the neglected correla-

tions are likely to be relevant. Such an agreement is not
surprising, as our determinations of the effective coupling
Leff
10 were very close.
From Table II and Fig. 8, we see that the determinations

obtained with the lattice constraints are (in most cases)
significantly more precise than those using instead the
inequality of Eq. (50). The agreement is reasonable (in the
0.5–1.7σ range depending on the quantity), taking into
account that Eq. (50) is nothing but a naive educated guess,
while the lattice improvement suffers from additional
uncertainties not yet included in the quoted errors.
The determination of Cr

87 from Ceff
87 at Oðp6Þ does not

involve any unknown LEC. The relation (40) contains a
one-loop correction of size −ð3.16� 0.13Þ × 10−3, which
only depends on Lr

9ðMρÞ and the pion and kaon masses,
and small nonanalytic two-loop contributions collected in

TABLE II. Compilation of recent determinations of the LECs. The determinations of Leff
10 , i.e., Πð0Þ, are obtained as explained in

Table I. 1=Nc refers to Eq. (50), whereas ΔΠð0Þ refers to the sum rule given in Eq. (51). Additional details are given in the text.

Lr
10ðMρÞ ×103 Cr0ðMρÞ ×103 Cr1ðMρÞ ×103 Reference Input

−4.06 ð39Þ þ0.54 ð42Þ 0 (5) GPP’08 [22] Πð0Þ þ Cpheno=RχT0 þ 1=Nc

−3.10 ð80Þ −0.81 ð82Þ 14 (10) Boito’12 [25] Πð0Þ þ ΠðsÞlatt
−3.46 ð32Þ −0.34 ð13Þ 8.1 (3.5) Boyle’14, GMP’14 [66,68] Πð0Þ þ ΠðsÞlatt þ ΔΠð0Þ
−3.50 ð17Þ −0.35 ð10Þ 7.5 (1.5) Boito’15 [27] Πð0Þ þ ΠðsÞlatt þ ΔΠð0Þ
−4.08 ð44Þ þ0.21 ð34Þ 0 (5) This work Πð0Þ þ Cpheno=RχT0 þ 1=Nc

−4.17 ð35Þ −0.43 ð12Þ −1 ð6Þ This work Πð0Þ þ ΔΠð0Þ þ 1=Nc

7We use the value obtained in Ref. [66] using 1999 OPAL data
for the nonstrange part, 0.0113(15), instead of the more precise
value of Ref. [27] from 2014 ALEPH data, 0.0111(11), in order to
avoid possible correlations with our determination of Leff

10 .8We use Lr
5ðMρÞ¼ ð1.19�0.25Þ×10−3 [69] and, once again,

Lr
9ðMρÞ ¼ 5.93ð43Þ × 10−3 [62].

9We find that the constraint associated to the third lattice
ensemble used in [27] fully dominates the fits.
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the term G0
2LðMρ; s ¼ 0Þ ¼ −0.28 × 10−3 GeV−2. In spite

of its 1=NC suppression, the one-loop correction is very
sizeable, decreasing the final value of the Oðp6Þ LEC:

Cr
87ðMρÞ ¼ ð5.10� 0.22Þ × 10−3 GeV−2: ð52Þ

A. Previous determinations with other methods

Our phenomenological determinations of Lr
10ðMρÞ and

Cr
87ðMρÞ from τ decay data are in good agreement with the

large-NC estimates based on lowest-meson dominance
[44,70–74]:

L10 ¼ −
F2
V

4M2
V
þ F2

A

4M2
A
≈ −

3f2π
8M2

V
≈ −5.4 × 10−3;

C87 ¼
F2
V

8M4
V
−

F2
A

8M4
A
≈

7f2π
32M4

V
≈ 5.3 × 10−3 GeV−2: ð53Þ

They also agree with the C87 determinations based on Pade
approximants [54,75], which are however unable to fix the
renormalization-scale dependence that is of higher-order
in 1=NC.
The resonance chiral theory (RχT) Lagrangian

[71,72,76,77] was used to analyze the left-right correlator
at NLO in the 1=NC expansion in Ref. [55]. Matching the
effective field theory description with the short-distance
QCD behavior, both LECs are determined, keeping full
control of their μ dependence. The predicted values [55]

Lr
10ðMρÞ ¼ −ð4.4� 0.9Þ × 10−3;

Cr
87ðMρÞ ¼ ð3.6� 1.3Þ × 10−3 GeV−2; ð54Þ

are in good agreement with our determinations, although
they are less precise.

Lattice determinations of the χPT LECs have improved
considerably in recent times, although they are still limited to
Oðp4Þ accuracy. The most recent simulations find [78,79]:

Lr
10ðMρÞ ¼

�−ð5.7� 1.1� 0.7Þ × 10−3;

−ð5.2� 0.2þ0.5−0.3Þ × 10−3.
ð55Þ

These lattice results are in good agreement with our
determinations, but their accuracy is still far from the
phenomenological precision.

VI. CONCLUSIONS

We have determined the LECs Leff
10 and Ceff

87 , using the
recently updated ALEPH spectral functions [29], with the
methods developed in Refs. [22–24]. Our final values,
obtained using pinched weight functions with a statistical
analysis that includes possible DV uncertainties, are:

Leff
10 ¼ ð−6.48� 0.05Þ × 10−3; ð56Þ

Ceff
87 ¼ ð8.40� 0.18Þ × 10−3 GeV−2: ð57Þ

These results are in excellent agreement with the values
extracted with nonpinched weights and with those deter-
mined neglecting DV in Eqs. (11) and (12). Thus, DV does
not play any significant role in the determination of LECs,
where the weight functions strongly suppress the high
energy region of the spectral integrations. Our results are in
good agreement with the ones obtained previously with the
2005 release of the ALEPH τ data [24]:

Leff
10 ¼ ð−6.44� 0.05Þ × 10−3; ð58Þ

Ceff
87 ¼ ð8.17� 0.12Þ × 10−3 GeV−2: ð59Þ

FIG. 8. Latest determinations of the linear combinations of NNLO LECs Cr0;1, at μ ¼ Mρ. We follow the same notation as in Table II.
The region allowed by the inequality of Eq. (50), inspired by large-Nc arguments, is indicated in light blue, whereas the light gray area
around it (dashed) simply represents a naive estimate of its error, namely 33%.
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The improvements introduced in the 2014 ALEPH data set
did not bring major changes in these parameters. The values
in Eqs. (56) and (57) also agree with the results obtained
recently with the same experimental data but with a
different approach in Ref. [27].
The statistical approach adopted in our analysis allows

for a precise determination of the dimension-six and -eight
terms in the OPE of the left-right correlatorΠðsÞ. We obtain

O6 ¼ ð−3.6þ1.0
−0.9Þ × 10−3 GeV6; ð60Þ

O8 ¼ ð−1.0� 0.5Þ × 10−2 GeV8; ð61Þ

also compatible with the determinations performed in
Refs. [24] (with nonupdated ALEPH data) and [27] (with
a different approach for estimating DV effects). Using the
same method, some higher-dimensional terms in the OPE
have also being estimated in Eqs. (35)–(38).
The numerical determination of the effective couplings

Leff
10 and Ceff

87 has allowed us to derive the corresponding
LECs of the χPT Lagrangian. At Oðp6Þ, we find

Lr
10ðMρÞ ¼ −ð4.1� 0.4Þ × 10−3; ð62Þ

Cr
87ðMρÞ ¼ ð5.10� 0.22Þ × 10−3 GeV−2: ð63Þ

The final value quoted for Lr
10ðMρÞ takes into account our

two different estimates in Table II, keeping conservatively
the individual errors in view of the present uncertainties
induced by the NLO LECs.
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APPENDIX: LOW-ENERGY EXPANSION OF THE
LEFT-RIGHT CORRELATION FUNCTION

At low energies, the correlator ΠðsÞ can be expanded in
powers of momenta over the chiral symmetry-breaking
scale. The series expansion has been calculated toOðp6Þ in
χPT [40,41,44]:

ΠðsÞ ¼ 2f2π
s −m2

π
− 8Lr

10 − 8Bππ
V ðsÞ − 4BKK

V ðsÞ

þ 16Cr
87s − 32m2

πðCr
61 − Cr

12 − Cr
80Þ

− 32ðm2
π þ 2m2

KÞðCr
62 − Cr

13 − Cr
81Þ

þ 16
�
ð2μπ þ μKÞðLr

9 þ 2Lr
10Þ

− ½2Bππ
V ðsÞ þ BKK

V ðsÞ�Lr
9

s
f2π

	
− 8G2LðsÞ; ðA1Þ

where

Bii
VðsÞ≡−

1

192π2

�
σ2i ½σi log

�
σi−1

σiþ1

�
þ2�− log

�
m2

i

μ2

�
−
1

3

�
;

ðA2Þ

σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
i

s

r
; ðA3Þ

μi ≡m2
i logðmi=μÞ=ð16π2f2πÞ; ðA4Þ

and G2LðsÞ is the two-loop contribution. The analytic
expression of G2LðsÞ is too large to be given here, even
in the s → 0 limit; it can be extracted from Ref. [44]. For
μ ¼ Mρ, the numerical values for its contribution and its
derivative at s ¼ 0 are

G2Lð0Þ ¼ −0.53 × 10−3; ðA5Þ

G0
2Lð0Þ ¼ −0.28 × 10−3 GeV−2: ðA6Þ
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