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We analyze the lowest spectral moments of the left-right two-point correlation function, using all known
short-distance constraints and the recently updated ALEPH V — A spectral function from 7z decays.
This information is used to determine the low-energy couplings L, and Cg; of chiral perturbation theory
and the lowest-dimensional contributions to the operator product expansion of the left-right correlator.
A detailed statistical analysis is implemented to assess the theoretical uncertainties, including violations

of quark-hadron duality.
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I. INTRODUCTION

The hadronic decays of the 7 lepton provide very
valuable information on low-energy properties of the strong
interaction, allowing us to analyze important perturbative
and nonperturbative aspects of QCD [1]. A very precise
determination of the strong coupling can be extracted
from the inclusive hadronic 7 decay width [2-7], while the
SU(3)-breaking corrections to the AS =1 decay width
[8,9] are very sensitive to the Cabibbo quark mixing |V |
[10,11]. In this paper, we are interested in the difference
between the vector (V) and axial-vector (A) 7 spectral
functions, which gives a direct access to nonperturbative
parameters related to the spontaneous chiral symmetry
breaking of QCD [12-27]. A very detailed phenomeno-
logical study of the nonstrange V — A spectral function,
using the 2005 release of the ALEPH 7 data [28], was
already done in Refs. [22-24]. The recent update of the
ALEPH nonstrange 7 spectral functions [29] motivates
an updated numerical analysis, based on the strategies
developed in those references, which we present here.
A comparison with other works available in the literature
that employ different theoretical approaches will also be
performed.

Compared to the 2005 ALEPH data set, the new public
version of the ALEPH 7 data incorporates an improved
unfolding of the measured mass spectra from detector
effects and corrects some problems [30] in the correlations
between unfolded mass bins. The improved unfolding
brings an increased statistical uncertainty near the edges
of phase space. It has also reduced the number of bins
in the spectral distribution, as a larger bin size has been
adopted.

The starting point of our analysis is the two-point
correlation function of the left-handed and right-handed
quark currents:
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where L' (x)=a(x)y*(1 —ys)d(x) and R, (x)=
a(x)y*(1 +ys)d(x). Owing to the chiral invariance of
the massless QCD Lagrangian, this correlator vanishes

identically to all orders in perturbation theory when
m, 4 = 0. The nonzero value of
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originates in the spontaneous breaking of chiral sym-
metry by the QCD vacuum, which results in different
vector and axial-vector two-point functions. Thus, I1(s)
is a perfect theoretical laboratory to test nonperturbative
effects of the strong interaction, without perturbative
contaminations. The perturbative corrections induced
by the nonzero quark masses are tiny and can be easily
taken into account. In Eq. (2), we have made explicit the
contribution of the pion pole to the longitudinal axial-
vector two-point function. We will work in the isospin
limit m,, = my; = m,, where the longitudinal part of the
vector correlator vanishes.

The correlator T1(s) is analytic in the entire complex s
plane, except for a cut on the positive real axis that starts at
the threshold s, = 4m2. Applying Cauchy’s theorem in the
circuit in Fig. 1 to the function w(s)I1(s), one gets the exact
expression [24],
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FIG. 1. Analytic structure of T1(s).
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= 2f2w(m2) + Res[w(s)I1(s), s = 0], (3)

which relates the correlator in the complex plane with
its imaginary part at Minkowskian momenta, accessible
experimentally at low energies. For sy <s < m?2, the
spectral function p(s) =L1ImII(s) is determined by the
difference between the vector and axial-vector hadronic
spectral functions measured in 7 decays. Choosing different
weight functions w(s), one can change the sensitivity to
different kinematical domains. We have only assumed
that w(s) is an arbitrary analytic function in the whole
complex plane except maybe at the origin where it
can have poles, generating the corresponding residue
Res[w(s)I1(s), s = 0]. The pion pole contribution is given
by the term 2f2w(m2).

The operator product expansion (OPE) expresses the
correlator as an expansion in inverse powers of momenta
[31,32],

more(g) = 324 @

k (_S)k ’

which approximates very well I1(s) in the complex plane,
away from the real axis, at large values of |s|. Therefore, it
provides a very reliable short-distance tool to compute the
integral along the circle |s| = s, for sufficiently large values
of so. The main source of uncertainty is the integration
region near the real axis, but it can be suppressed with
adequately chosen weight functions [7]. In order to account
for the small difference between the physical (exact)
correlator and its OPE representation along the circle
integration, one can introduce the correction [16,23,33-36],
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which becomes zero at sy, — co. A nonzero value of
Spv|m(s), so] signals a violation of quark-hadron duality
in the spectral integration between sy, and 5. We will discuss
later the best strategy to control and minimize this kind of
theoretical uncertainty.

Taking w(s) = s” with non-negative values of the integer
power n, the pion pole is the only singularity within the
contour. Therefore, the integral over the spectral function
from s, to s, is equal to the pion pole term 2 f2m2", plus the
OPE contribution (—1)"Oy,) generated by the integra-
tion along the circle, up to duality violations (DV).
However, in the chiral limit (m, = 0) and owing to the
short-distance properties of QCD, TT°PE(s) contains only
power-suppressed terms from dimension d = 2k operators,
starting at d = 6 [37], which implies a vanishing OPE
contribution for n =0, 1:

/SO ds%ImH(s) =2f7 — pv/[1, so). (6)
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The superconvergence properties of I(s) guarantee that
the DV corrections to both sum rules approach zero very
fast for increasing values of s,. When s; — oo, there is
no duality violation and one gets the well-known first
and second Weinberg sum rules (WSRs) satisfied by the
physical spectral functions [38]. With nonzero quark
masses taken into account, the first relation is still exact,
while the second gets a negligible correction of O(m).

For higher values of the power n, Eq. (3) gives relations
involving the different OPE coefficients:

s 1
[ s tmi(s) = (=1 O + 232 =550

Sth

(n>2). (8)

For negative values of n = —m < 0, the OPE does not
give any contribution to the integration along the circle
s = 5, but there is a nonzero residue at the origin propor-
tional to the (m — 1)th derivative of T1(s) at s = 0. At low
values of s, the correlator can be rigorously calculated
within chiral perturbation theory (yPT) [39-43]. At present,
II(s) is known to O(p®) [44], in terms of the so-called
chiral low-energy couplings (LECs) that we can determine
through the following relations:

So 1 1 f% 1
dss™' —ImII(s) = 25 +T1(0) = dpy (s, so]
Sth T mz
= —8L§( — dpv[s~, 50, 9)
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The explicit expression of the correlator [1(s) at O(p®) in
¥PT is given in the Appendix. The relation between the
effective parameters LS and CSf and their yPT counter-
parts, the LECs Ly and Cg7, will be discussed in Sec. V.

II. A FIRST ESTIMATION OF THE
EFFECTIVE COUPLINGS

Using the updated ALEPH spectral function [29], we can
determine LS and CSI with Egs. (9) and (10). As a first
estimate, we neglect the DV terms and show in Fig. 2 the
resulting effective couplings, for different values of s,. As
expected and as it was already observed in Ref. [22], the
results exhibit a strong dependence on s at low energies,
where the duality-violation corrections are not negligible.

PHYSICAL REVIEW D 94, 014017 (2016)

At larger momentum transfers, the curves start to
stabilize, indicating that the violations of duality become
smaller. However, especially for L?Bf, the curves are not yet
horizontal lines at s, near m2, which implies that duality-
violation effects are still present.

Instead of weights of the form s”, we can try to reduce
DV effects using pinched weight functions [7,16,45], which
vanish at s = s, (or in the vicinity) where the OPE breaks
down. Following Ref. [22], we employ the WSRs in
Egs. (6) and (7) and take w_; o(s) = s~ (1 —s/sy) and
w_y(s)=s5s"1(1—s/s0)? for estimating Lil, and w_, ((s) =
s72(1 = s2/s3) and w_y(s)=s"2(1—s5/50)*(1+2s/s,) for
estimating CSI. Again, neglecting the DV terms, we plot
the values of the effective couplings for different s, in
Fig. 3. We observe that using these pinched weights the
results converge and become stable below s = m2. This
suggests that DV effects are negligible at s, ~ m2, when
these pinched weight functions are used. Assuming that, we
obtain
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FIG. 2. LS and CE from Eqgs. (9) and (10), neglecting DVs, for different values of sy.
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FIG. 3. LS and CSf at different values of s, using pinched weight functions and neglecting DVs.
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LS = —(6.49 +0.05) x 1073, (11)

Celf — (8.40 +0.18) x 1072 GeV2. (12)

III. DEALING WITH VIOLATIONS
OF QUARK-HADRON DUALITY

The stability under changes of sy of the L$i and Cglf
determinations is a necessary condition for vanishing
duality violations. However, the plateau could be accidental
and disappear at slightly higher values of s, where
experimental data are not available. Although this possibil-
ity looks rather unlikely, we want to gain confidence on our
numerical results and perform a reliable estimation of the
uncertainties associated with violations of duality, using
Eq. (5). The problem is that the spectral function is
experimentally unknown above s = m?2.

Fortunately, there are strong theoretical constraints on
p(s) that originate in the special chiral-symmetry-breaking
properties of I1(s), implying its very fast falloff at large
momenta. In addition to the two WSRs, the spectral
function should satisfy the so-called pion sum rule
(#SR), which determines the electromagnetic pion mass
splitting in the chiral limit [46]:

oo 1
/Slh dsslog (%);Iml’[(s)

= (m2y —mZ,)

m,=0

8 ,,
ems_f” A
a my=0

(13)

Owing to the second WSR, the 7SR does not depend on the
arbitrary scale A. The rhs of this equation is well known in
xPT and, within the needed accuracy, we can identify in the
lhs the spectral function in the chiral limit with the physical
p(s) because m, corrections are tiny.

A. Parametrization of the spectral function

All the theoretical and phenomenological knowledge we
have about I1(s) can be used to get an estimate of the DV
uncertainties. In order to do that, let us adopt the following
ansatz for the spectral function at large values of s
[23,24,33,35,47,48],

pls > 5) = kePsin{fls—s)h,  (14)

with four free parameters «, y, B, and s,. This para-
metrization incorporates the expected strong falloff when
s — oo and the oscillating behavior predicted in resonance-
based models [33,47,49]. We will split the spectral inte-
grations in two parts, using the experimental data in the
lower energy range and the ansatz (14) at higher energies.
From the ALEPH data we know that the V — A spectral
function has a zero around s, ~2 GeV?2, which is repre-
sented in Eq. (14) through the s, parameter. We will take
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this zero as the separation point between the use of the data
and the use of the model.

Our parametrization is compatible with the ALEPH
spectral function above s,. Fitting the parameters given in
(14) to the ALEPH data in the interval s € (1.7 GeV2, m?2),
we obtain a very good fit with y2. /d.o.f. = 8.52/9.
In fact, the fit with the updated ALEPH data looks more
reliable compared to the previous one, where a value of
Jain/d.o.f. < 1 was obtained [23].

We want to stress that the exact s-dependence of the
spectral function in the high-energy region cannot be derived
from first principles. The ansatz (14) is just a convenient
parametrization, consistent with present knowledge, that we
are going to use to estimate theoretical uncertainties asso-
ciated with violations of quark-hadron duality. Imposing
that p(s) should satisfy all known theoretical and exper-
imental constraints, the free parameters in the ansatz will
allow us to measure how much freedom remains for the
spectral function shape and, therefore, to obtain a reliable
estimate of the associated uncertainty.

There is an inherent systematic error in any work that
estimates DV effects, namely the dependence on the chosen
parametrization. The comparison with other works that
parametrize the data in a different way represents an
important step in this regard.'

B. Selection of acceptable spectral functions

Following the procedure described in [23], we generate
3 x 10° tuples of the parameters (k,7,p,s.), randomly
distributed in a rectangular region large enough to contain
all the possible acceptable tuples. Among all generated
tuples, we select those satisfying the following four
physical conditions:

(1) The tuples must be consistent with the ALEPH data
above s = 1.7 GeVZ; ie., they must be contained
within the 90% C.L. region in the fit to the exper-
imental ALEPH spectral function described before:

22 <y +7.78 = 16.30. (15)

'Tn Refs. [25,27] the exact s dependence of the resonance-based
model (14) is assumed to be true for the V and A distributions
separately, above s ~ 1.55 GeV?, with channel-dependent param-
eters. Unfortunately, one must then perform a complex fit
involving nine parameters, including a model-dependent deter-
mination of the strong coupling, and use the parametrization near
the a, resonance where it is not expected to work properly. In this
way, uncertainties related to an a, determination from the V and A
spectral distributions are introduced in the analysis of the corre-
lator I1(s), which does not contain any perturbative contribution.
As recently shown in Ref. [50], the resulting fit is very unstable
with a dramatic dependence of the fitted parameters on the adopted
assumptions. Moreover, the LECs and vacuum condensates are
directly extracted from the fitted V and A spectral functions
without imposing any further requirement, as WSRs and 7SR are
only checked to be satisfied within errors a posteriori, in contrast
with our approach (see next subsection).
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FIG. 4. Updated ALEPH V — A spectral function [29] (blue
points) and all the ‘“acceptable” spectral functions (red band
above 2.0 GeV?) that follow our parametrization and satisfy the
physical conditions described in the main text.

Although we will only use the ansatz above
s, ~2 GeV?, we impose the compatibility with the
data from 1.7 GeV?> to ensure the continuity
of the spectral function in the matching region
between the data and the model.

(i) The tuples must satisfy within the experimental
uncertainties up to s, the first and second WSRs
with:
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/ “dsp(s)NLEPH 4 / " dsp(six.y.p.s.)
0 5

— 17.0 x 107 GeV2, (16)
/s, dssp(s) P+ /m dssp(s;x.y.p.s.)
0 s,
= 0.24 x 1073 GeV*, (17)

where the right-hand-side errors are omitted as they
are negligible compared to the left-hand-side ones.
In the second WSR, there are contributions of the
form O(mjays,), but they are negligible for the
values of s, that we are considering.

(iii) The tuples must satisfy within the experimental
uncertainties the zSR:

2 s
A dss log(1 GCV2>p(s)ALEPH

o s
+ / dsslog <1Gevz>p(s; K, 7., 5;)

= —(10.9 + 1.3) x 103 GeV*. (18)

The quoted error in the 7SR takes into account that
quark masses do not vanish in nature and we are using
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FIG.5. Distributions of the parameters (k, y, f, s,) that satisfy the physical constraints. GeV units are used for dimensionful quantities.
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FIG. 6. Statistical distribution of LS, CS, Og, and O for the tuples accepted, using s" weights (light gray) and pinched weight

(dark gray) functions.

real data instead of chiral-limit one. We estimate this
uncertainty taking for the pion decay constant the
range f, = (87 £ 5) MeV [23], which includes the
physical value and its estimated value in the chiral
limit [51]. We also include a small uncertainty
coming from the residual scale dependence of the
logarithm, which is proportional to the second WSR.
We accept only those tuples that fulfill the four con-
ditions. This requirement constrains the regions in the
parameter space of the ansatz (14) that are compatible with
both QCD and the data. From the initial set of 3 x 10°
randomly generated tuples, we obtain 3716, satisfying our
set of minimal conditions. They represent the possible
shapes of the spectral function beyond s,, as shown in
Fig. 4. In Fig. 5, we plot the statistical distribution of the
parameters (k,y,f,s.) for the accepted tuples.

IV. DETERMINATION OF PHYSICAL
PARAMETERS, INCLUDING
DV UNCERTAINTIES

For every selected tuple, we have an acceptable spectral
function” that can be used to estimate the different physical

*Given by the ALEPH data below s, and by the parametriza-
tion (14) above that value.

parameters through the corresponding spectral integrals.
Using Eqgs. (9), (10), and (8) (for n = 2, 3) with s = 5, we
determine LS, CE, Og, and Oy for each of the 3716
accepted tuples. The statistical distributions of the calcu-
lated parameters are shown in Fig. 6 (light gray).

We can reduce both the experimental and the DV

uncertainties using the following pinched weight functions

[24]:
s 2 2
/ °ds’Lj) (1 —i> <1 +—S>
S s S0 So
P F A
= 16G§j] = 65 + 475 = Spy[os, 50], (19)
0 0
[ras2(i-zy
Sth s So
2 2 2
= —8LSi — 4& + 2f”21” — dpv|w_1, so]. (20)
So 5o
So
[ dspts)s=s07
Sth
=2f2s5—4f2mzso+2famy+ Og —py|wa.sol.  (21)
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[ dspls)ts = so(s + 20

Sth
= —6fzmzs + 4f 755 + 2f zm — Og = Spy[ws, sol.
(22)
Following the same method with these relations, we obtain
new distributions of acceptable physical parameters, which

are also shown in Fig. 6 (dark gray). From these new
distributions we get

LS = (—6.47770:00%¢ +0.05) x 1073

= (=6.48 £ 0.05) x 1073, (23)
Celf = (8.39970502 £0.18) x 1073 GeV~2
= (8.40 £0.18) x 1073 GeV~2, (24)
O = (=3.6707 £0.5) x 1073 GeV®
= (-3.6139) x 1073 GeV®, (25)
Og = (-1.0£0.3£0.2) x 1072 GeV®
= (-1.0£0.5) x 1072 GeV?, (26)

The first errors correspond to DV uncertainties, computed
from the dispersion of the histograms (corresponding to
the 68% probability region) and the second errors are the
experimental ones. The final uncertainties are computed
from them assuming conservatively they are 100%
correlated.

We observe that pinched weight functions reduce indeed
the DV effects, and that they are negligible for LS and CSif
at s, ~ m2, compared with the experimental uncertainties.
The results obtained for these two LECs are in perfect
agreement with our first determinations in Eqs. (11) and
(12) that did not include any estimate of DV. The
corresponding spectral integrals contain weight functions
with negative powers of s that suppress the contribution
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FIG. 7.
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from the upper end of the integration range, making DV
irrelevant. This is no longer true for the vacuum conden-
sates Oy and (g, which are determined with weight
functions growing with positive powers of s. The use of
pinched weights is then essential to suppress the contri-
butions from the region around s, in the contour integra-
tion. This is clearly reflected in the strong reduction of
uncertainties observed in the two lower panels of Fig. 6.

Actually, ignoring completely the DV effects, from the
double-pinched weight functions in Egs. (21) and (22), one
obtains values for Og and Oy that are perfectly compatible
with our determinations in Eqgs. (25) and (26), although
with much larger experimental uncertainties. This is illus-
trated in Fig. 7, which shows how the extracted condensates
stabilize at large s, around the right values but with very
large error bars. The implementation of short-distance
constraints (WSRs and zSR), through the procedure
described in the previous section, has made possible to
better pin down the spectral function in that region and
obtain the more precise values in Eqgs. (25) and (26).

Our results are in good agreement with those obtained
previously in Ref. [24] with the 2005 ALEPH data set.
Thus, the improvements incorporated in the 2014 release of
the ALEPH data do not introduce sizeable modifications
of the physical outputs. Similar results have been obtained
recently in Ref. [27], using also the 2014 ALEPH data set.

Ref. [27] emphasizes the existence of a slight tension
with the results obtained in Ref. [25] with the 1999 OPAL
data set [52]. In view of this, we have repeated our
numerical analyses with the OPAL spectral function
[52]. As happened with the 2005 ALEPH data set, the
fit of the ansatz (14) to the OPAL data in the interval
s € (1.7 GeV?,m?) has a ymi,/d.o.f. < 1. Applying the
same procedure used for ALEPH, we have obtained the
following results with the OPAL data:

L = (=6.427319) x 107, @7)
Cell = (8.35+0.29) x 107° GeV~2, (28)
0.02 [ { { ’ ‘ ‘
0.01 - ff‘ﬁ%& l
ol % ,
_ i
% 001 IIT? i
S oot HH |
o
-0.03 - |
-0.04 - 4
-0.05 : : ‘ \ l J

0 0.5 1 1.5 2 2.5 3
sp (GeV?)

Values of the condensates Og and Os, at different values of s, obtained from Eqs. (21) and (22) ignoring duality violations.
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O = (=5.7513) x 1073 GeV®, (29)
Og = (0.0709) x 1072 GeV®. (30)

Owing to the larger uncertainties of the OPAL data,
specially at higher values of s, the extracted parameters
are less precise than those obtained with the ALEPH data.
Nevertheless, comparing Eqs. (27)—(30) with (23)—(26), we
observe a good agreement between both sets of results, the
differences being only 0.5, 0.1, 1.10, and 1.16 for LS,
C§f7f, O, and Og, respectively. We conclude that the much
larger fluctuations obtained in Refs. [25,27] between the
results extracted from the two data sets are a consequence
of the particular approach adopted in their DV analyses.’

Finally, we can use double-pinched weight functions in
order to estimate higher-dimensional condensates:

[ dspls)(s = s (57 4 2505 4 35)

Sth
= —8f2misy + 6f%s§ + 2f2m5 + O19 — Spv[wa. 50),

(31)

S
/ " dsp(s)(s = 50)2(s® + 25052 + 3s3s +4s3)
Sth

—10f2mZsg + 8125 + 2f2m3’ — Oy — Spy|ws, 5.

(32)

/‘O dsp(s)(s —s0)(s* +2s0s> 4 3s35% + 4s3s + 557)

Sth

= —12f7mzsg + 10f7§ + 2fzmz? + O14 — Spy [we. 5o

(33)

/l ”dsp(s)(s —50)2 (8% 4 2s05* + 35353 + 455>+ 5545+ 653)

Sth
=—1412m2s§+12f2s]+2f2mi* — O — Spy |7, 50].
(34)
Using these equations with the same method, we obtain
from the ALEPH data:
O =(56+1.2+0.8) x 1072 GeV!©
= (5.6+2.0) x 1072 GeV'", (35)

Op, = (=0.131993 £ 0.02) GeV'?
= (=0.13709%) GeV'?, (36)

3Since DV is not very relevant for the extraction of the LECs,
Refs. [25,27] obtain similar values for LSl and C§I with the two
data sets. However, sizeable differences show up in their
determinations of Og and Og where DV is more important.

PHYSICAL REVIEW D 94, 014017 (2016)

Oy4 = (0247531 £0.06) GeV'
= (0.2475-]) GeV'4, (37)

Oy = (—0.381)7% £0.13) GeV'
= (—0.38703%) GeV'e. (38)

A. Comparison with previous works

Our final results for LS, CS, Oy, and Og are compared
in Table I with recent (post-2005) phenomenological
determinations of these parameters, obtained with different
data sets [28,29,52] and various DV parametrizations.4

There is an excellent agreement among the different
values quoted for the effective LECs L$i and Cglf, showing
that these determinations are very solid and do not get
affected by DV effects. In fact, as shown in Table I, the
precision has not changed in the last ten years. Nonetheless,
the robustness of these determinations has increased
significantly thanks to the thorough studies of DV effects
with different approaches. The values obtained from differ-
ent data sets are also in good agreement, although one can
notice a difference of 1o between the Cf from the updated
(2014) ALEPH data comparing with the old one (2005).

The different results for Og and Oy are also in reasonable
agreement, within the quoted uncertainties. A good control
of DV effects is more important for these vacuum con-
densates. The use of pinched weights allows us to sizeably
reduce their impact and obtain more reliable determina-
tions. With the ALEPH’14 data one reaches a 30%
accuracy for O, but the error remains still large (50%)
for Og. As commented before, we do not see any significant
discrepancy between the results obtained from the OPAL
and ALEPH data samples.

V. xPT COUPLINGS

The effective couplings LS and Cgli can be rewritten
in terms of O(p*) and O(p®) couplings of the yPT
Lagrangian [22,44]:

1.

1 u? 1 m%
=L —— [1—log( = | +5log( —=
o)+ g { °g<m%> 3 °g<m,%

—*(Co+C’)( ) = 2(2pz + px) (Lo + 2L7,) (u)
+ Gor(u.s = 0) + O(p%), (39)

*A complete list including theoretical estimates [53-55] and
previous phenomenological determinations of these quantities
(and of higher-dimensional condensates) [13-18,20,28,34,
52,56-60] can be found in Refs. [24,61].
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TABLE I. Compilation of recent determinations of the LECs and vacuum condensates.

103 - Lt 10% - C& (GeV2) 10 - Og (GeV®) 10% - Og (GeV?) Reference Comments
—6.45 £ 0.06 -23+0.6 -54+£33 BPDS’06 [19] ALEPH’05 +DV =0
e e —6. gjgg 3,2j92.-§ ASS’08 [21] ALEPH’05 +DV =0
—6.48 £ 0.06 8.18 £0.14 e GPP’08 [22] ALEPH’05 +DV =0
—6.44 £+ 0.05 8.17 £0.12 —4. 4 i 0.8 -0.7£0.5 GPP’10 [23,24] ALEPH’05 +DVy_4
—6.45 £0.09 8.47£0.29 —-6.6 £ 1.1 0.5+0.5 Boito 12 [25] OPAL’99 + DVy 4
—-6.50 £0.10 e -5.0+£0.7 -09+£05 DHSS’15 [26] ALEPH’14 +DV =0
—6.45 £ 0.05 8.38 +0.18 -3.24+09 -1.34+0.6 Boito’15 [27] ALEPH’14 4+ DVy 4
—6.42f8:1‘? 8.35+£0.29 _5_7j11:75 0_0j8~79 This work OPAL’99 4+ DVy_,4
—6.48 £ 0.05 8.40 £0.18 _3,63:8 -1.0£05 This work ALEPH’14 +DVy_4

1
Cett :_H/(O)

87_16
! N L (miNT
o 2 o) *32 () |

1 12\ 1
768022 (m +m2> =G (ks =0)+0(p").
K

=Cy (u)

(40)

where the factors y; = m?log(m;/u)/(16x%f2) originate
from one-loop corrections and Gy, (u,s =0) and
b1 (. s =0) are two-loop functions, whose numerical

values are given in the appendix. We have also defined
Co = 32mz(Cyy

— Cg1 + Cyp). (41)

C = 32(my +2mg)(Ci3 — Cep + C1).  (42)
To first approximation the effective parameters correspond
to the chiral couplings L, and Cg;, which appear at O(p*)
and O(p®), respectively, in the yPT expansion. The scale
dependence of Lj,(u) is cancelled by the one-loop loga-
rithmic terms in the second line of Eq. (39), which are
suppressed by one power of 1/N with respect to L{,(u),
where N is the number of QCD colors. The remaining
contributions in Eq. (39) contain the O(p®) corrections,
which unfortunately introduce other O(p®) and O(p*)
chiral couplings (third line). The corrections to Cg,(u) in
Eq. (40) only involve one additional LEC, L§(u), through a
one-loop correction with the O(p*) chiral Lagrangian.

It is convenient to give the following compact numerical
form of these equations to ease their future use,

LS = L7, —0.00126 + O(p%), (43)
LS = 1.53L7, + 0.263L} — 0.00179

~ 5 (G + O(p"), (44)
C§ = Cg; +0.296L5 +0.00155 + O(p®),  (45)

where we have used u = M, as the reference value for the
yPT renormalization scale. The uncertainties in these
numbers are much smaller than those affecting the different
LECs and can therefore be neglected.

Working with O(p?) precision, the determination of
L, (u) is straightforward and we find
Liy(M,) =—(52240.05) x 107 [O(p*)analysis]. (46)

As mentioned before, an O(p®) determination of L,
requires us to know some next-to-next-to-leading-order
(NNLO) LECs,’ namely those in C ;. This has motivated
some interest in these quantities in the last few years. Here
we briefly review the different approaches.

In the first O(p®) determination of L7, [22], Cj was
extracted from a combination of phenomenological (Cg ,)

[63-66] and theoretical (Cg,, RyT) [44,67] inputs, namely,6

Cr (M) = (1.740.6) x 107 GeV™2 [63,65,66],  (47)
Cry(M,) = (0.4 +6.3) x 107 GeV=2  [64], (48)
Cro(M,) = (2.1 +0.5) x 107 GeV=2  [44,67),  (49)

whereas Cf, which was completely unknown at the time,
was estimated using

Tt also requires Ly, which we take from Ref. [62]:
L§(M,) =5.93(43) x 107>, Let us note that this is the value
used also in all other O(p ) extractions of L], from tau data.

®This value of Cg, comes from a flavor-breaking finite-energy
(0+1)

sum rule involving the correlator IT, ;" us.vy(0). The original result
[63] has been updated recently [66], finding

32(m% — m2)Ce; + 1.06L}, = 0.00727(134).

Since L', appears in this relation only at one loop, i.e., at O(p®),
we can use here an O(p*) determination of L], to extract C%,. We
can indeed see that the L}, contribution to the Cg, error is
subdominant. We use the conservative value L}, = —0.0052(17)
to extract Cg,.
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Compilation of recent determinations of the LECs. The determinations of L‘}gf, i.e., TI(0), are obtained as explained in

Table 1. 1/N, refers to Eq. (50), whereas AII(0) refers to the sum rule given in Eq. (51). Additional details are given in the text.

Liy(M,) x103 Cy(M,) x103 Cr(M,) x103 Reference Input

—4.06 (39) +0.54 (42) 0(5) GPP’08 [22] 1(0) + Cghenv/R)(T +1/N,
~3.10(80) ~0.81 (82) 14 (10) Boito’12 [25] T1(0) + I1(s),,,
~3.46(32) ~0.34(13) 8.1 (3.5) Boyle' 14, GMP’ 14 [66,68] T1(0) + I(s)yy, + AII(0)
~3.50(17) ~0.35(10) 7.5 (1.5) Boito’15 [27] T1(0) + I(s)yy, + AIT(0)
—4.08 (44) 1021 (34) 0(5) This work 11(0) + CemReT | 1/
—4.17 (35) ~0.43 (12) ~1(6) This work 11(0) + ATI(0) + 1/N,

1
|Cor = Cls = G| <516 = € = (50)

i.e., a simple educated guess based on the fact that those
LECs are suppressed by a factor 1/N.. Using these
numbers and Eq. (44), we obtain the results shown in
Table II (5th row) and Fig. 8 (magenta point), which
supersede those found in Ref. [22].

An alternative sum rule involving L}, and C; was

recently derived in Ref. [66] from an analysis of the

flavor-breaking left-right correlator 1:[1(4(21:)5, 1 z(0), namely’

% 2(0) = T050(0)], o = —0.7218LE + 1.423L)

2 _
+2.125L7, —mK—zm”cg
m

T

=0.0113(15), (51)

agaln at u = M,. Combining this constraint with the sum
rule® in Eq. (44) and the naive inequality in Eq. (50), we
obtain the results shown in Table II (6th row) and Fig. 8
(dark blue region). We see that L], is in excellent agree-
ment with the value obtained using Eqgs. (47)—(49) and has a
smaller error. Concerning the NNLO LECs, almost the
same value is obtained for C!, whereas a 1.8¢ tension is
present in the Cj, case.

Another interesting development was performed in
Ref. [68], where additional constraints on L7, C; and C}
were obtained from lattice simulations of the correlator
[1(s) at unphysical meson masses. As shown in Table II, the
lattice data allow for a more accurate determination of the
LECs, making unnecessary the use of the naive guess in
Eq. (50). However, to derive the lattice constraints one
needs to assume that the O(p®) yPT expansion reproduces
well the correlator at s ~ —0.25 GeV?, the energy region
with smaller lattice uncertainties, which dominates these

"We use the value obtained in Ref. [66] using 1999 OPAL data
for the nonstrange part, 0.0113(15), instead of the more precise
value of Ref. [27] from 2014 ALEPH data, 0.0111(11), in order to
aV01d possible correlations with our determination of L

*We use Li(M,)=(1.19+0.25) x 107* [69] and, once agam
L§(M,) =5.93(43) x 1073 [62].

constraints. Unfortunately, it was shown in Ref. [25] that
O(p®) xPT does not approximate well enough I1(s) at these
energies, taking into account the low uncertainties we are
dealing with, and one needs to incorporate the so-far
unknown O(p?) chiral corrections.

In order to take advantage of the most precise lattice
constraint, Ref. [27] makes the strong assumption that the
missing O(p?) chiral contributions are dominated by mass-

independent terms, i.e., I1(s) ~ HZPT + Ds?, so that they

O(p°)
2 PT xPT
cancel in the lattice-continuum difference It} ;. — physical

It is worth noting that this is not a good approximation at
the previous chiral order, O(p®), since more than 25% of
the O(p®) correction proportional to s comes from known
mass-dependent chiral terms. Therefore, the uncertainties
associated with these lattice constraints seem at present
underestimated.

Additionally, correlations between the continuum and
the lattice sum rules (e.g. due to Lg) are not publicly
available. It is worth mentioning nonetheless that if we
implement these lattice constraints’ [instead of the inequal-
ity in Eq. (50)], neglecting such correlations, we reproduce
the results of Ref. [27] except for the uncertainties
associated to L5 and Lg, for which the neglected correla-
tions are likely to be relevant. Such an agreement is not
surprising, as our determinations of the effective coupling
LS were very close.

From Table II and Fig. 8, we see that the determinations
obtained with the lattice constraints are (in most cases)
significantly more precise than those using instead the
inequality of Eq. (50). The agreement is reasonable (in the
0.5-1.70¢ range depending on the quantity), taking into
account that Eq. (50) is nothing but a naive educated guess,
while the lattice improvement suffers from additional
uncertainties not yet included in the quoted errors.

The determination of C§; from Cg at O(p®) does not
involve any unknown LEC. The relation (40) contains a
one-loop correction of size —(3.16 4 0.13) x 1073, which
only depends on Li(M,) and the pion and kaon masses,
and small nonanalytic two-loop contributions collected in

"We find that the constraint associated to the third lattice
ensemble used in [27] fully dominates the fits.
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-0.010+
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— M(0) + Ar(o)

M(0) + GP™eoRXT 4+ 1/N;, [GPP'08, updated]
M(0) + Ar1(0) + 1/N;
M(0) + A (0) + I'(S)at [Boito'15]

FIG. 8.

Latest determinations of the linear combinations of NNLO LECs C()‘, ,at g = M,. We follow the same notation as in Table IL

The region allowed by the inequality of Eq. (50), inspired by large-N,. arguments, is indicated in light blue, whereas the light gray area
around it (dashed) simply represents a naive estimate of its error, namely 33%.

the term G5, (M, s = 0) = —0.28 x 107 GeV~2. In spite
of its 1/N suppression, the one-loop correction is very
sizeable, decreasing the final value of the O(p®) LEC:

r(M,) = (5.10 £ 0.22) x 103 GeV=2.  (52)

A. Previous determinations with other methods
Our phenomenological determinations of L{,(M,) and
Cg,(M,) from 7 decay data are in good agreement with the

large-N estimates based on lowest-meson dominance
[44,70-74]:

F},  F? 3f7
L= ~ —5.4x 1073,
10 4M2 + 4M2 8M2 x
F? F? 7f2
O f”4 ~53x107% GeV2.  (53)
8My,  8Mj  32My,

They also agree with the Cg; determinations based on Pade
approximants [54,75], which are however unable to fix the
renormalization-scale dependence that is of higher-order
in 1 / N C-

The resonance chiral theory (RyT) Lagrangian
[71,72,76,77] was used to analyze the left-right correlator
at NLO in the 1 /N expansion in Ref. [55]. Matching the
effective field theory description with the short-distance
QCD behavior, both LECs are determined, keeping full
control of their u dependence. The predicted values [55]

Liy(M,) = —(44+0.9) x 1073,
Ci,(M,) = (3.6 £ 1.3) x 107 GeV~2, (54)

are in good agreement with our determinations, although
they are less precise.

Lattice determinations of the yPT LECs have improved
considerably in recent times, although they are still limited to
O(p*) accuracy. The most recent simulations find [78,79]:

—(5.7+£1.1+0.7) x 1073,

L'W(M,) =
fo(M,) { —(5.2+0.2%93) x 1073
These lattice results are in good agreement with our
determinations, but their accuracy is still far from the
phenomenological precision.

VI. CONCLUSIONS

We have determined the LECs L$i and C¢I, using the
recently updated ALEPH spectral functions [29], with the
methods developed in Refs. [22-24]. Our final values,
obtained using pinched weight functions with a statistical
analysis that includes possible DV uncertainties, are:

LT = (—6.48 + 0.05) x 1072, (56)
C = (8.40 +0.18) x 1073 GeV~2. (57)

These results are in excellent agreement with the values
extracted with nonpinched weights and with those deter-
mined neglecting DV in Egs. (11) and (12). Thus, DV does
not play any significant role in the determination of LECs,
where the weight functions strongly suppress the high
energy region of the spectral integrations. Our results are in
good agreement with the ones obtained previously with the
2005 release of the ALEPH r data [24]:

LS = (=644 4 0.05) x 103, (58)

Cf = (8.17£0.12) x 1073 GeV—=. (59)
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The improvements introduced in the 2014 ALEPH data set
did not bring major changes in these parameters. The values
in Egs. (56) and (57) also agree with the results obtained
recently with the same experimental data but with a
different approach in Ref. [27].

The statistical approach adopted in our analysis allows
for a precise determination of the dimension-six and -eight
terms in the OPE of the left-right correlator I1(s). We obtain

O = (—3.6703) x 1073 GeV?®, (60)

Og = (-1.0£0.5) x 1072 Ge V8, (61)
also compatible with the determinations performed in
Refs. [24] (with nonupdated ALEPH data) and [27] (with
a different approach for estimating DV effects). Using the
same method, some higher-dimensional terms in the OPE
have also being estimated in Egs. (35)—(38).

The numerical determination of the effective couplings
LS and CET has allowed us to derive the corresponding
LECs of the yPT Lagrangian. At O(p®), we find

Liy(M,) = —(4.1+04) x 1073, (62)

t7(M,) = (5.104£0.22) x 1073 GeV=2.  (63)
The final value quoted for Lj,(M,) takes into account our
two different estimates in Table II, keeping conservatively
the individual errors in view of the present uncertainties
induced by the NLO LECs.
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APPENDIX: LOW-ENERGY EXPANSION OF THE
LEFT-RIGHT CORRELATION FUNCTION

At low energies, the correlator I1(s) can be expanded in
powers of momenta over the chiral symmetry-breaking
scale. The series expansion has been calculated to O(p®) in
¥PT [40,41,44]:

2f7 KK
I(s) = s—m2 8L, — 8B (s) —4By* (s)
+ 16Cs — 32m2(CE, — Chy — Chy)
—32(mz 4 2mi)(Cg, — Ci3 = Cyy)
16 (e + ) (L + 2L7)
N
~ [2B7(5) + BEF()ILg 75) = 8Gu(s). (A1)
where
Bii(s) L 2lortog(Z71) 1 21— tog (5) -
s)=————| o7lo; - — ) —=),
v 192722 \ 71908 57 8\7) 73
(A2)
A2
o =/1 -0 (A3)
S
Hi = m? log(mi/,u)/(lénzf%), (A4)

and G, (s) is the two-loop contribution. The analytic
expression of G,; (s) is too large to be given here, even
in the s — O limit; it can be extracted from Ref. [44]. For
# = M, the numerical values for its contribution and its
derivative at s = 0 are

Gy, (0) = —0.53 x 1073, (AS)

G5, (0) = —0.28 x 1073 GeV 2. (A6)
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