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The enigmatic charged states Zcð3900Þ, Zcð4020Þ, Zcð4050Þ, Zbð10610Þ, and Zbð10650Þ are studied
within a coupled-channel Schrödinger model, where radially excited quark-antiquark pairs, with the same
angular momenta and isospin as the a1ð1260Þ and b1ð1235Þ, are strongly coupled to their Okubo-Zweig-
Iizuka–allowed decay channelsDD̄� þ D̄D� andD�D̄�, or BB̄� þ B̄B� and B�B̄�, in S andDwaves. Poles,
matching the experimental mass and width of the above states, are found by varying only two free
parameters. From the wave-function analysis of each resonance, the probability of each of the components
contributing to the coupled system is estimated, and predictions can be made for the relative decay fractions
among the coupled open-charm or open-bottom decay channels.
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I. INTRODUCTION

A new family of mesonic resonances with electric
charge has been detected by Belle and BESIII
Collaborations in the charmonium and bottomonium
energy regions. Due to their similarity in mass and in
the decay channels, three sets of resonances are consid-
ered to form isospin triplets, the Zbð10610Þ�=0 [1], the
Zcð3900Þ�=0 [2,3], and the Zcð4020Þ�=0=Zð4025Þ�=0 [4].
A Zbð10650Þ� signal was found simultaneously with the
Zbð10610Þ�. All these enhancements were observed in
hadronic decay channels, the Zcð3900Þ and the Zb with
favored quantum numbers JP ¼ 1þ [5]. A broader signal
labeled Zcð4050Þ� has also been reported [6]. Due to their
electric charge, none of the Z resonances can be a pure cc̄
or bb̄ state, which is the reason why they are often called
exotic heavy mesons. Another special feature of the Z
family is that, with the exception of the Zcð4050Þ, all
resonances lie very close, yet seemingly above, some
threshold. The Zcð3900Þ and Zcð4020Þ lie near the DD�
and D�D� thresholds, and the Zbð10610Þ and Zbð10650Þ
lie near the BB� and B�B� thresholds, respectively, where
we define MM� ≔ ðMM̄� þ M̄M�Þ= ffiffiffi

2
p

and M�M� ≔
M�M̄�, M ¼ D or B. Moreover, two more Z family
members were found with higher masses, namely, the
Zcð4250Þ� and the Zcð4430Þ� [5], which also lie very
close to the DD1 and D�D1 thresholds. This very
important fact is evidence that threshold effects play a
crucial role in whatever mechanism might be behind the
generation of the Z family, and it should be kept in mind in
any theoretical approach. The unveiling of the enigmatic
structure of such exotics will give us new insights on the
complex nonperturbative phenomena dominating the
strong interactions at intermediate energies.

Attempts have been made to describe the Zc and Zb
states as tetraquarks or molecules, since the latter have been
expected for a long time. Results, when favorable, are very
imprecise and not decisive for the establishment of the true
degrees of freedom of the considered resonances. For
tetraquarks the predicted masses are too far below thresh-
old, with very large errors, of the order of 100 to 300 MeV,
and width estimates are nonexistent [7,8]. In Ref. [9] the
author makes the deceiving affirmation that the Zcð3900Þ is
a tetraquark while using this very resonance as an input to
extrapolate a hypothetical tetraquark spectrum, without
width predictions. Molecular interpretations of the Z family
are a natural supposition, yet several model results do not
favor such scenarios. In molecular models, usually one or
more mesons play the role of mediators between the two
open-charmed or bottom mesons that form the molecule. In
Refs. [10] and [11] it is shown that a slightly bound state,
which can be identified with the Zcð3900Þ, may be formed
by the influence of J=ψ exchange between D and D�. The
argument is sustained by the hypothesis that the true
Zcð3900Þ pole would lie below the DD� threshold, mean-
ing that the signal observed in this channel would be the tail
of the resonance structure, while the position of the peak
seen in the Okubo-Zweig-Iizuka (OZI)-suppressed decay
channels would be shifted from the pole. In fact, the energy
of a state does not necessarily coincide with the top of a
resonance peak. This point is delicate since it implies that
the actual mass and width parameters of the Z family are
being read off incorrectly from the experiment. Indeed, the
need of more suitable methods for data analysis has been
pointed out in some discussions [12,13]. In Ref. [14],
considering the exchange of light mesons and gluons
between B − B� or B� − B�, the authors can find molecular
bound states, but in Ref. [15] they cannot. The Zcð3900Þ
molecule is also disfavored by the light front model [16]
and by some lattice QCD results [17–19]. In some cases,*susana@impcas.ac.cn
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QCD sum rules can produce molecules with very imprecise
results [20]. If the Z signals are really above threshold, the
molecular hypothesis is very unlikely.
Finally, there is the possibility that the Z signals are due to

kinematic effects, with the origin in threshold singularities
and rescattering of final states. Such effects may still be
combined with true poles. Using regularized bubble dia-
grams, Bugg [21] and, more recently, Swanson [22] describe
several Z structures as two-body coupled-channel cusp
effects. A different kinematic treatment uses anomalous
triangle singularities, instead of bubbles, leading to more
branching points than the simpler two-body case (see
Szczepaniak [23] and Liu, Oka, and Zhao [24]). In
Ref. [25], Chen and Liu produce threshold enhancements
using an effective Lagrangian approach, but without any
singularity analysis. In Ref. [26], S-matrix poles are required
for the reproduction of the Zcð3900Þ line shapes, in both the
J=ψπ and DD� channels. More far-fetched works consider
that the Zcð3900Þ and Zcð4025Þ would be cusp effects
generated by molecules composed of DD1 and D�D1 [27].
Kinematic analyses near threshold are crucial to distinguish
true resonances from nonresonant enhancements.
One can ask if a quark model approach to the Z family

must be completely discarded. The naive meson description
in terms of pure quark-antiquark qq̄ pairs definitely cannot
work. Experiment has shown that such a simplified picture
only works below all thresholds of OZI-allowed decay
channels, i.e., channels where two mesons are generated
from the breaking of the string between the q and q̄,
alongside the creation of a new qq̄ pair from vacuum.
Above these thresholds, practically all resonances are
nonperturbatively shifted from any spectrum derived from
the naive quark model, and other hadronic degrees of
freedom must be incorporated in the description of a
resonance, so as to unquench the state. Otherwise, one
may draw the conclusion that practically all states found
above radial energy level N ¼ 2 should be considered
exotics. Indeed, a clear spectrum of regular mesons cannot
be disentangled without the unquenching because there are
no pure qq̄ mesonic states in nature, besides perhaps the
ground states.
In this spirit, Nikolai Kochelev1 suggested an analogy

between the mesonic resonance Zcð3900Þ and the meson
Xð3872Þ. Based on the assumption that the structure of the
Xð3872Þ is mainly a cc̄ core strongly coupled to open-
charmed mesons, one can formulate the hypothesis that the
Zcð3900Þmay be essentially composed of a radially excited
qq̄ core, with q ¼ u or d, coupled to the same type of open-
charmed mesons. The light-quark core would be an axial
isovector. Considering an even higher excitation, the Zb
could be proposed in the same way. At first, the idea may
seem unrealistic because a very high radial excitation has
many open decay channels, and therefore, the decay

fraction to each channel should be too small to be seen.
But it could be that the coupling of a certain radial level to
the nearby open-charm and open-bottom meson-meson
thresholds is particularly high, in such a way that a coupled
system would be formed, containing both quark core and
decay channels. In the present work, such a coupled system
is solved with quantum mechanics within the scattering
theory. The formalism has been formerly employed to the
Xð3872Þ in Ref. [28], showing that the Xð3872Þ, alias
χc2ð2PÞ, is not a pure molecule but, instead, a strongly
unquenched cc̄ state with JPC ¼ 1þþ. This result was
confirmed in Ref. [29], where additional OZI-allowed
closed decay channels were included.
The model is described in Sec. II, with details given in

Appendixes A and B. Poles and wave-function (WF)
results for Zc resonances are presented in Sec. III, and
for Zb states in Sec. IV. A summary and conclusions are
given in Sec. V.

II. COUPLED-CHANNEL SCHRÖDINGER MODEL

The formalism employed here was developed in the
coordinate-space representation in Ref. [30] and has been
successfully employed in Refs. [28] and [29] for the axial
vector Xð3872Þ. It is a coupled-channel Schrödinger model
for mesons with two or more wave-function components,
with a confining potential between a quark-antiquark qq̄
pair, viz. a harmonic oscillator (HO) with frequency
ω ¼ 190 MeV, a value that has been fixed in Ref. [31]
and unchanged in all applications of the same kind of
model, both in coordinate and in momentum space. Other
confining potentials can, in principle, be adopted. It is
obvious that the simple HO, if nonperturbative effects are
neglected, is too naive to accurately describe the meson
spectra. However, it is also true that any simple quenched
potential, even taking into account spin-orbit corrections, is
very inaccurate to describe resonances above threshold. In
particular, the well-known Coulomb-plus-linear potential
dramatically fails to predict a wide number of mesonic
resonances [32]. Here, we adopt the HO, for simplicity and
extension of the study, but also because of the good results
it has produced previously in systems with different quark
flavors and angular momenta, e.g., Refs. [28–31,33].

A. n qq̄ −mMM system

Here, a short description of the coupled-channel model is
presented. Some computational details may be found in
Appendixes A and B. A system is composed of n qq̄ con-
fined components with Hamiltonian hα, with α ¼ 1;…; n,
given by

hα ¼
1

2μα

�
−

d2

dr2
þ lαðlα þ 1Þ

r2

�
þ μαω

2r2

2
þmqα þmq̄α;

ð1Þ1Private Communication.
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coupled to m meson-meson MM final components with
Hamiltonian hj, with j ¼ 1;…; m, given by

hj ¼
1

2μj

�
−

d2

dr2
þ ljðlj þ 1Þ

r2

�
þmM1j

þmM2j
; ð2Þ

and it obeys the stationary Schrödinger equation

� hα V ~gαj

½V ~gαj�T hj

��
uα
uj

�
¼ E

�
uα
uj

�
: ð3Þ

In Eqs. (1) and (2), lα, lj, μα, μj are the orbital angular
momenta and reduced mass of each confinement and final
components, respectively, mq;q̄α are the constituent quark
masses of the confinement state α, andmM1;2j

are the masses
of the final mesons in channel j. In the Schrödinger
equation (3), uαðrÞ and ujðrÞ are related to the radial
WF RðrÞ through uðrÞ ¼ rRðrÞ, and E is the total energy of
the system. The whole problem is considered to be spheri-
cally symmetric. The three-dimensional HO potential in
Eq. (1) generates a spectrum given by

E ¼
�
2να þ lα þ

3

2

�
ωþmqα þmq̄α; ð4Þ

where the radial quantum number is given by ν, and the HO
frequency by ω. In hj, Eq. (2), both mesons are free, i.e.,
without any final state interaction. In this way,M1j andM2j

are connected exclusively by their coupling to the qq̄ bare
channels through an off-diagonal potential V given by

V ¼ λ

2r0
δðr − r0Þ; ~gαj ¼

gαj
μα

; ð5Þ

where λ is the global coupling constant, introduced as a free
parameter, r0 is a transition radius related to the string-
breaking distance of the qq̄ pairs, which is also a free
parameter, and gαj are the partial couplings between the
confinement channel α and the final channel j, which
should not be free. Although there is no explicit depend-
ence in time, a temporal relation between both components
is implicitly assumed since both mesons MM in the final
state must result from the decay of some initial qq̄ pair. Yet,
since the WF is stationary, both states coexist simulta-
neously. The physical relevant quantities for our study will
be the generated poles and the WF probability distributions
in space. TheMM center-of-mass momentum kj, to appear
in the solution ujðrÞ, and reduced mass μj are relativistic
and given by

kjðEÞ¼
E
2

��
1−

�
M1jþM2j

E

�
2
��

1−
�
M1j−M2j

E

�
2
��1

2

;

ð6Þ

μjðEÞ ¼
E
4

�
1 −

�
M2

1j −M2
2j

E2

�2�
: ð7Þ

B. Partial couplings

In the present model, all final state mesons are
connected exclusively through the bare qq̄ components,
and the confinement components are connected exclu-
sively through the final mesons, but nothing is said about
the binding mechanisms. However, all the considered
MM channels are OZI allowed: first, because the cou-
pling to this type of channels is dominant, and second,
because we wish to avoid the introduction of extra free
parameters through the partial couplings g in Eq. (5).
Indeed, a model has been developed by van Beveren in
Ref. [34] to evaluate such couplings for the case of OZI-
allowed channels. There, when the string between q and
q̄ is broken, a new qq̄ pair with quantum numbers 3P0 is
created from the vacuum, and it recombines with the
initial quarks. The transitions are computed using a HO
basis and angular momentum conservation, via Clebsch-
Gordan coefficients. For qq̄ pairs with quantum numbers
JPC ¼ 1þþ and 1þ−, or 3P1 and 1P1, respectively, the
coupling to a pseudoscalar (P)–vector (V) and to a VV
meson pair with orbital momentum lj is given in Table I,
where all mesons P and V are in the ground state. The
radially dependent partial couplings gn in Eq. (5), with

TABLE I. Partial couplings, computed from the model in
Ref. [34]. The total coupling gn, with n ¼ 0; 1;…, is given by
gn ¼ g0 × cn. P and V are nonexcited pseudoscalar and vector
mesons, respectively.

lj g2n¼0ð1þþÞ g2n¼0ð1þ−Þ c2n

PV 0 1=18 1=36 nþ 1
PV 2 5=72 5=36 2n=5þ 1
VV 0 0 1=36 nþ 1
VV 2 5=24 5=36 2n=5þ 1

FIG. 1. Phase Shift, in degrees, for the system qq̄ð1þÞ −DD�
(S wave), with r0 ¼ 0.65 fm and λ ¼ 1.1. Vertical lines corre-
spond to the real energy of the confinement pole at
3889 − i17 MeV, and the dynamical pole at 4058 − i103 MeV.
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n ¼ 0; 1; 2;…, are given by gn ¼ g0 × cn. An extra factor
1=4n over all g2 couplings is predicted in the model [34].
This factor ensures that the larger the n, the smaller the
coupling of a certain radially excited qq̄ state to each
decay channel will be. On the other hand, the number of
open decay channels increases with n, in such a way that
highly excited systems may still be significantly
unquenched. In the present study, we neglect the 1=4n

factor, resulting in significantly larger couplings between
our qq̄ systems and the decay channels under consid-
eration. These effective couplings simulate the effect of
the many decay channels which are not included in this
description. It is assumed that the off-diagonal transition
potential in Eq. (5) should be localized in space. Here it
is pointlike, mostly for the sake of simplicity.

III. Zcð3900Þ, Zcð4020Þ, AND Zcð4050Þ
As mentioned in Sec. I, the Zcð3900Þ and Zcð4020Þwere

assigned the quantum number isospin I ¼ 1, and favored
JP ¼ 1þ in the experiment. Within the present model the
isospin is accounted for by the qq̄ component, where q ¼ u
or d, without distinguishing among isospin triplet states.
Since we do not know theC-parity of the Zc resonances, we
admit that it could be a mixture of singlet 1P1 and triplet
3P1 states, which within this model couple to the same
decay channels, but we also consider the states separately.
For the final states j we use the DD� and D�D� channels
both in the S wave and the D wave. The constituent quark
mass is mq ¼ 406 MeV [31], and the meson masses are
taken from the experiment [5]. Since ω is considered as
a universal constant, the only actual free parameters are
λ and r0. Both of them are tuned so as to reproduce
the approximate experimental mass and width of the
Zcð3900Þ, viz. 3889 − i17 MeV [5]. As a pole above
threshold, it acquires an imaginary part as the coupling λ
is turned on, describing a parabolic-like trajectory,
cf. Eq. (B9). The free parameters are very restricted
if we are to reproduce the Zcð3900Þ in mass and width,
i.e., 0.63 < r0 < 0.69 fm, and 1.0 < λ < 1.2. Within this
range, and with two channels only, i.e., qq̄ð1þÞ −
DD�ðl ¼ 0Þ or the whole set of five and six coupled
channels, respectively, qq̄ð1þþor1þ−Þ − ðDD� þD�D�Þ ×
ðl ¼ 0; 2Þ and qq̄ð1þþþ1þ−Þ− ðDD� þD�D�Þðl¼ 0;2Þ,
we can always find a pole around 3889 − i17 MeV coming
from the confinement (Conf) spectrum. We also find a

dynamical (Dyn) pole from the continuum, with a very
large width. Using the same parameters, no poles are found
corresponding to the Zcð4020Þ and Zcð4050Þ.
In Fig. 1 we show the phase shift dependence with

energy when r0 ¼ 0.65 fm and λ ¼ 1.1, for the system
qq̄ð1þÞ −DD�ðl ¼ 0Þ. We can see the −90° phase shift
around 3.89 and 4.06 GeV, corresponding to the energy of
resonance poles. The width of each slope corresponds to
the width of each resonance. This typical phase shift
behavior shows consistency within the model.
If we consider the mixture 1P1 þ 3P1 for the confining

component, we find a new scenario, with higher values for

TABLE II. Poles found for the system qq̄ð1P1 þ 3P1Þ − ðDD� þD�D�Þ (SþD wave). Here, r0 ¼ 0.89 fm and
λ ¼ 6.3. Wave-function probabilities for all components are shown in %.

Poles Type PðR1þþÞ PðR1þ−Þ PðRl¼0
DD� Þ PðRl¼2

DD� Þ PðRl¼0
D�D� Þ PðRl¼2

D�D� Þ
3890 − i3 Conf 25.9 10.8 61.6 1.5 0.0 0.2
4006 − i28 Conf 46.4 40.9 9.8 0.3 1.2 1.4
4027 − i7 Dyn 10.6 37.2 27.3 0.4 22.4 2.2
4053 − i20 Dyn 25.4 39.5 13.8 0.8 13.5 7.1

2 4 6
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0.02

RDD∗ (� = 2)

RDD∗ (� = 0)

Outer: R3P1

Inner: R1P1

Upper: RD∗D∗ (� = 2)

Lower: RD∗D∗ (� = 0)

FIG. 2. Radial wave function, in GeV1=2, for the pole
3889 − i14 MeV, with r0 ¼ 0.63 fm and λ ¼ 1.0, in the six
coupled-channel system. Solid lines: ReðRðrÞÞ. Dash lines:
ImðRðrÞÞ. For meson-meson components, D-wave curves start
at zero, while S-wave curves start at a nonzero value. For qq̄
components, the real and imaginary waves with greater amplitude
are the 3P1.
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the free parameters, where Zcð3900Þ, Zcð4020Þ and
Zcð4050Þ are produced simultaneously, with Zcð4020Þ
and Zcð4050Þ being generated dynamically. Poles and
WF probabilities are described in Table II. If the 1P1

and 3P1 states do not mix, the Zcð4020Þ and Zcð4050Þ
cannot be reproduced simultaneously with the Zcð3900Þ.
The WF probabilities in Table II allow us to estimate the
relative decay fractions among the considered channels;
e.g., both poles around 4.02 and 4.05 GeV should be seen
in both DD� and D�D� channels in the S wave. However,
unlike the 3.89 GeV pole, the energy of both these
dynamical poles is quite sensitive to the values of the free
parameters. In the same way, the mass of the dynamical
poles might, as well, be sensitive to other unquenching
effects, e.g., the proximity of the axial-vector Xð3872Þ, or
the coupling to all the other OZI-allowed decay channels,
open and closed. Also, the hypothesis that the Zcð4020Þ
and Zcð4050Þ might not be axials should not be excluded.
In case of the Zcð4050Þ, the quark flavor content might
even be different, as discussed in Refs. [35,36], where this
resonance is considered a radial excitation of the cs̄ system.
The WF corresponding to the confinement pole 3889−

i14 MeV, for r0 ¼ 0.63 fm and λ ¼ 1.0, is depicted in
Fig. 2. The confinement components exhibit a nodal
structure, as expected for a high radial quantum number
nr; the DD� S-wave component converges to zero with a
slight oscillation, as it corresponds to a resonance solution;
the DD� D wave is much more nodal than the S wave, and
it scatters over a larger space before convergence. For the
D�D� component, both the S andDwaves converge to zero
without nodes, since this channel is closed.

IV. Zbð10610Þ AND Zbð10650Þ
The same analysis is performed as in Sec. III, but for the

energy region of the bottomonium. The coupled system
involves two excited qq̄ states with q ¼ u or d and JPC ¼
1þþ and 1þ−, either mixed or unmixed, and the decay

channels BB� and B�B� in the S and D waves. We take as a
reference the experimental mass and width for the
Zbð10610Þ around 10607 − i9 MeV [5] and tune both free
parameters so as to reproduce this state. Indeed, a narrow
pole is found near and above the BB� threshold for two
different radii r0, but of dynamical type. Using the same
free parameters, such a pole is found either for the simplest
system with two coupled channels only or for the system
with six or five coupled channels, with either the singlet and
triplet qq̄ states mixed or unmixed, correspondingly. A
narrow dynamical pole around 10.65 GeValso arises as an
effect of coupling the B�B� channels. If the spin singlet and
triplet states do not mix, the latter pole is only generated for
the higher radius r0 ¼ 0.93 fm, for both singlet and triplet
states. If they do mix, a 10.65 GeV pole is produced for
both radii. The idea of mixed spin in both Zb resonances
has been discussed in Ref. [37], although the confined
states were considered to be of bottomonium type. Results

TABLE III. Poles found for the system qq̄ð1P1 þ 3P1Þ − ðBB� þ B�B�Þ (SþD wave). Upper table: r0 ¼
0.61 fm and λ ¼ 2.0. Lower table: r0 ¼ 0.93 fm and λ ¼ 2.0. Radial wave-function probabilities for all components
are shown in %.

Poles (MeV) Type PðR1þþÞ PðR1þ−Þ PðRl¼0
BB� Þ PðRl¼2

BB� Þ PðRl¼0
B�B� Þ PðRl¼2

B�B� Þ
10608 − i2 Dyn 14.5 5.5 72.4 7.2 0.1 0.3
10647 − i2 Dyn 14.9 9.4 69.8 4.4 1.1 0.4
10711 − i47 Conf 47.3 45.1 3.6 0.8 0.9 2.4
10817 − i7 Conf 55.3 38.6 0.3 0.6 0.1 5.2

10607 − i4 Dyn 12.6 4.6 81.5 0.1 0.20 1.1
10650 − i3 dyn 16.4 17.2 54.7 0.1 9.1 2.6
10665 − i9 Dyn 9.0 13.4 61.5 0.1 9.7 6.3
10754 − i5 Conf 48.9 32.9 3.1 0.1 0.1 14.9
10911 − i7 Conf 5.3 6.8 20.8 15.9 16.6 34.6

FIG. 3. Radial wave function RðrÞ, in GeV1=2, for the pole
10611 − i6 MeV found for the system qq̄ð1þÞ − BB� (S wave),
with r0 ¼ 0.61 fm and λ ¼ 2.2. Solid line: ReðRc;fÞ. Dash lines:
ImðRc;fÞ. Curves with nodes: RcðrÞ, where c is the confinement
qq̄ channel. Other curves: RfðrÞ, where f is the BB� channel in
the S wave.
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with mixed confinement states are shown in Table III. The
probability of the decay channels may provide a way of
distinguishing scenarios. Most poles from the confinement
decouple from the decay channels and are not expected to
be seen experimentally. Such poles appear as the closer
systems to molecules, i.e., two qq̄ states connected through
intermediate B and B� mesons. The WF corresponding to
the pole at 10611 − i6 MeV, for the two coupled-channel
system qq̄ð1þÞ − B�B� (S wave), is plotted in Fig. 3. As a
higher radial excitation, the confinement component of the
WF becomes more nodal than in the case of 3.89 GeV,
cf. Fig. 2.

V. SUMMARY AND CONCLUSIONS

A quark-model-inspired coupled-channel system has
been analyzed by employing a quantum mechanics
scattering formalism. The aim was to represent the newly
discovered enigmatic heavy mesons with charge Zcð3900Þ,
Zcð4020Þ, Zcð4050Þ, Zbð10610Þ, and Zbð10650Þ. We have
coupled a high radial excitation of two qq̄ pairs, with q ¼ u
or d, and quantum numbers 1P1 and 3P1, to the OZI-
allowed decay channels DD� and D�D�, or BB� and B�B�,
in the S and D waves. By tuning the only two free
parameters of the model, the global coupling λ and a
transition radius r0, we have found poles matching the
experimental mass and width of the above Zc and Zb
resonances. Namely, we have found a stable pole around
3.89 GeV, and more sensitive dynamical poles at 10.61 and
10.65 GeV that are produced simultaneously. Poles at 4.02
and 4.05 GeV might have a different origin, or else result
from the mixing between 3P1 and 1P1 states. It is possible
that they actually have other angular momenta or, in the
case of Zcð4050Þ, other quark flavor content. One impor-
tant test is the detection of a neutral partner for the
Zcð4050Þ�. The studied Z states can be regarded as high
radial excitations of the a1ð1260Þ and b1ð1235Þ, which can
mix or simply superpose. The employed model is simplistic
and intends to show the feasibility of addressing new
enigmatic states as higher radial excitations within the
quark model, and to emphasize the relevance of the
unquenching. The HO confining potential used can be
replaced by other potentials, yet no phenomenological
potential is known that has proved to be more reliable
above threshold. We point out that the unquenching could
generate similar states near DD1, D�D1, BB1, and B�B1

thresholds. In fact, two Zc states have been seen near the
former two thresholds; one of them, the Zcð4430Þ, is an
axial state. Also, charged mesonic resonances should be
seen with other angular momenta, namely, vectors near the
DD and BB thresholds. Although no charged vectors have
been seen in the experiment, the signal for the neutral
ψð3770Þ is known to be distorted and may result from a
superposition of states. In the same way, radially excited
us̄ and ds̄ states should also appear near the open-charm-
strange and open-bottom-strange thresholds. Radial

excitations of light quarks far from dominant OZI-allowed
decay channels are not expected to be seen since their
nearby decay channels are composed of radially excited
mesons with small couplings to the qq̄ core.
In conclusion, we have shown that if unquenching

effects are structurally taken into account, the quark model
does not need to be abandoned when one aims to explain
the family of charged heavy mesons. One also finds that,
instead of having a traditional picture of a confined quark-
antiquark pair for mesons, new configurations emerge, with
quark and meson degrees of freedom, some of which may
be of molecular type, but with totally unexpected mass and
properties.
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APPENDIX A: SOLVING THE COUPLED-
CHANNEL SCHRÖDINGER EQUATION

Here, we find the solution to Eq. (3). The solution
involves two types of components, with uαðrÞ correspond-
ing to the qq̄ confinement components and ujðrÞ to the
MM free meson components.

1. Solutions uαðrÞ
From Eq. (3) we have

�
1

2μα

�
−

d2

dr2
þ lαðlα þ 1Þ

r2

�

þ 1

2
μαω

2r2 þmqα þmq̄α − E

�
uαðrÞ

¼ −
λ

2r0
δðr − r0Þ

X
j

~gαjujðrÞ: ðA1Þ

At r ≠ r0 the solution to the above equation is the solution
to the homogeneous equation. The delta-shell function
will later determine the boundary conditions at r ¼ r0.
Considering the homogeneous equation, we perform the
following change of variable:

x ¼ μωr2: ðA2Þ

Then, with the definition

uðxÞ ¼ xðlþ1Þ=2e−x=2ϕðxÞ; ðA3Þ

we get the equation
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x
d2ϕðxÞ
dx2

þ ðb − xÞ dϕðxÞ
dx

− aϕðxÞ ¼ 0; ðA4Þ

with

a ¼ −ν; b ¼ lþ 3=2; ðA5Þ

where

ν ¼ E − ðmq þmq̄Þ
2ω

−
lþ 3=2

2
: ðA6Þ

Here, the parameter ν is equivalent to the radial quantum
number of the HO in Eq. (4). Equation (A4) is the confluent
hypergeometric equation, or Kummer equation. It admits
the following solutions:

ϕða; b; xÞ ¼
X∞
n¼0

ðaÞn
ðbÞn

xn

n!
; ðaÞ0 ¼ 1;

ðaÞnþ1 ¼ ðaþ nÞðaÞn; ðA7Þ

or

ϕða; b; xÞ ¼ 1þ a
b
xþ ðaþ 1Þa

ðbþ 1Þb
x2

2!
þ ðaþ 2Þðaþ 1Þa
ðbþ 2Þðbþ 1Þb

x3

3!

þ � � � ;

and

ψða; b; xÞ ¼ Γð1 − bÞ
Γðc − bþ 1Þϕða; b; xÞ

þ Γðb − 1Þ
ΓðaÞ x1−bϕða − bþ 1; 2 − b; xÞ; ðA8Þ

where Γ is the complex Gamma function,

ΓðxÞ ¼
Z

∞

0

tx−1e−tdt; ReðxÞ > 0: ðA9Þ

Equations (A7) and (A8) are the confluent hypergeometric
functions of the first and second kind, respectively, with the
first regular at the origin while the second falls off at
infinity.
Equation (A6) represents the radial dependence with

energy. We notice that when the right-hand term of
Eq. (A1) is set to zero, the eigenvalues E will correspond
to the HO spectrum, and ν in Eq. (A6) will be integer
positive. In such a case, the solution would be given in
terms of the generalized Laguerre polynomials. When
λ ≠ 0, and all MM channels are closed, the discrete
spectrum is shifted in the real energy axis, and ν assumes
noninteger real values.

With the definitions

FαðrÞ ¼
1

Γðlα þ 3=2Þ x
ðlαþ1Þ=2e−x=2ϕð−ν;lα þ 3=2; xÞ;

ðA10Þ

GαðrÞ ¼ −
1

2
ffiffiffiffiffiffiffiffi
ωμα

p Γð−νÞxðlαþ1Þ=2e−x=2ψð−ν;lα þ 3=2; xÞ;

ðA11Þ

where Γ functions act simply as convenient constants, the
general solution of (A1) will be

uαðrÞ ¼
�
AαFαðrÞ r < r0
BαGαðrÞ r > r0;

ðA12Þ

where Aα and Bα are constant amplitudes.

2. Solution for ujðrÞ
From Eq. (3) we also get

�
1

2μj

�
−

d2

dr2
þ ljðlj þ 1Þ

r2

�
þM1j þM2j − E

�
ujðrÞ

¼ −
λ

2r0
δðr − r0Þ

X
α

~gαjuαðrÞ: ðA13Þ

As in the previous case, the solution of Eq. (A13) at r ≠ r0
will be the solution of the homogeneous equation. This
corresponds to the solution of the free wave for any angular
momentum lj. For E < M1j þM2j, it can be shown that
the general solution is given by

ujðrÞ ¼

8>><
>>:

AjJlfðkrÞ r < r0

Bj½JljðkrÞk2ljþ1cotgδljðEÞ−NljðkrÞ� r > r0;

ðA14Þ

with the definitions

JlðkrÞ ¼ k−lrjlðkrÞ; NlðkrÞ ¼ klþ1rnlðkrÞ; ðA15Þ

where k is the finalMM center-of-mass momentum, nlðkrÞ
and jlðkrÞ are the Neumann and Bessel functions, respec-
tively, and δl are the phase shifts. In our problem, we wish
to describe a resonance, with complex energy above
threshold. The wave function, therefore, must suffer a
modification in order to be convergent in the infinity.
For resonances we have E ¼ ðE1;−E2Þ, with E1, E2 ∈ Re,
and the general solution of (A13) will be
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ujðrÞ ¼

8>><
>>:

AjJljðkrÞ r < r0

Bj½JljðkrÞk2ljþ1cotgδlj
ðEÞ þ NljðkrÞ� r > r0:

ðA16Þ

The negative energy solution (A14) and complex energy
solution (A16) only exist due to the inhomogeneous term in
Eq. (A13) which defines the boundary conditions at r ¼ r0.
In the free case there is only a solution for E > M1j þM2j,
and it is simply given by AjJljðkrÞ in all space. The
solutions with complex energy result from the analytic
continuation of the real energy to the complex plane, when
at least one final channel j is open. This can be regarded in
terms of a scattering matrix S that one can build to
represent the problem. Such a matrix is unitary for open
channels j and can assume complex values. Since S is
meromorphic in the energy, the energy can assume com-
plex values as well.

APPENDIX B: BOUNDARY CONDITIONS

Here, we compute the boundary conditions for reso-
nances at r ¼ r0 for the coupled-channel system
nqq̄ −mMM. For the simplest qq̄ −MM case, details
may be found in Ref. [28]. From Eq. (3), the boundary
conditions at r ¼ r0 will be

u0αðr↑aÞ − u0αðr↓r0Þ ¼ −
λ

r0

X
j

gαjujðr0Þ;

uj0ðr↑r0Þ − uj0ðr↓r0Þ ¼ −
λ

r0
μj
X
α

~gαjuαðr0Þ; ðB1Þ

uαðr↑r0Þ ¼ uαðr↓r0Þ;
ujðr↑r0Þ ¼ ujðr↓r0Þ; ðB2Þ

with α ¼ 1;…; n and j ¼ 1;…; m. The conditions in
Eqs. (B1) and (B2) over Eqs. (A1) and (A13) lead to
the amplitude relations

Aα ¼
λ

r0
Gαðr0Þ

X
j

gαjJljðkr0Þ ~Aj;

~Aj ¼
λ

r0
μjCljðkr0Þ

X
ν

~gαjFαðr0ÞAα; ðB3Þ

with

Cljðkr0Þ ¼ Jlfðkr0Þk2lfþ1cotgδljðEÞ � Nlfðkr0Þ; ðB4Þ

where the plus sign holds for open MM channels and the
minus sign for closed MM channels. From Eqs. (B3) it
follows that

Aα ¼
�
λ

r0

�
2

Gαðr0Þ
X
j

gαjJljCljμj
X
β

~gjβFβðr0ÞAβ: ðB5Þ

Defining the matrices

G ¼ fGαg; G ¼ fgαjg; K ¼ fμjJljCljg;
~G ¼ f~gαjg; F ¼ fFαg; ðB6Þ

M ¼ GGK ~GTF; ðB7Þ

Eq. (B5) is equivalent to

½1I − ðλ=r0Þ2M�A ¼ 0; ðB8Þ

and poles may be found by computing the determinant

det½1I − ðλ=r0Þ2M� ¼ 0: ðB9Þ

Equation (B9) is obtained by setting the boundary con-
ditions for a set of eigenvalue equations, and it generates
real eigenvalues for E or k when the MM channels are
closed. When some MM threshold opens, it analytically
continues from a real region for E to a complex area, and
the imaginary part is interpreted as the decay width. For the
particular case where n ¼ 2, i.e., α ¼ 1, 2, the pole
condition (B9) is

�
1 −

�
λ

r0

�
2

G1F1

X
j

μjJljCljg1j ~g1j

�

×

�
1 −

�
λ

r0

�
2

G2F2

X
j

μjJljCljg2j ~g2j

�

¼
��

λ

r0

�
2

G2F1

X
j

μjJljCljg2j ~g1j

�

×

��
λ

r0

�
2

G1F2

X
j

μjJljCljg1j ~g2j

�
; ðB10Þ

with all functions defined at the point r0. For the ampli-
tudes, we divide Eq. (B5) and ~Aj in Eqs. (B3) by A1,
defined as Aα in Eq. (B5). We get

Aα ¼
Gαðr0Þ
G1ðr0Þ

P
jgαjμjJjðkr0ÞCjðkr0Þ

P
β ~gjβFβðr0ÞAβP

jg1jμjJjðkr0ÞCjðkr0Þ
P

β ~gjβFβðr0ÞAβ
A1;

Aj ¼
r0

λG1ðr0Þ
μjCjðkr0Þ

P
β ~gjβFβðr0ÞAβP

jg1jμjJjðkr0ÞCjðkr0Þ
P

β ~g1βFβðr0ÞAβ
A1:

ðB11Þ

The amplitudes in Eqs. (B11), along with the set
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A1; Bα ¼
Fαðr0Þ
Gαðr0Þ

Aα; Bj ¼
Jjðkr0Þ
Cjðkr0Þ

Aj; ðB12Þ

are completely determined for n ¼ 2, in the function of A1.
Finally, the normalization constant N of the total wave
function is determined by

Z
∞

0

drjuðrÞj2 ¼
X
α

Z
∞

0

drjuαðrÞj2

þ
X
j

Z
∞

0

drjujðrÞj2 ¼ N 2: ðB13Þ
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