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We construct four kinds of Z3-symmetric three-dimensional (3D) Potts models, each with a different
number of states at each site on a 3D lattice, by extending the 3D 3-state Potts model. Comparing the
ordinary Potts model with the four Z3-symmetric Potts models, we investigate how Z3 symmetry affects the
sign problem and see how the deconfinement transition line changes in the μ-κ plane as the number of states
increases, where μ (κ) plays a role of chemical potential (temperature) in the models. We find that the sign
problem is almost cured by imposing Z3 symmetry. This mechanism may happen in Z3-symmetric QCD-
like theory. We also show that the deconfinement transition line has stronger μ dependence with respect to
increasing the number of states.
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I. INTRODUCTION

Thermodynamic properties of quantum chromodynam-
ics (QCD) are often described as a phase diagram in the μ-T
plane, where T and μ mean temperature and quark-number
chemical potential, respectively. However, the QCD phase
diagram is known only in the vicinity of the T axis, because
lattice QCD (LQCD) simulations as the first principle
calculation have a serious sign problem at finite real μ.
Exploration of the QCD phase diagram then becomes one
of the most challenging subjects in particle and nuclear
physics, and the results have been playing an important role
in cosmology and astrophysics. The quark determinant,
which appears after the quark field is integrated out in the
grand-canonical QCD partition function in the Euclidean
path integral formalism, becomes complex for finite real μ.
Several approaches have been proposed so far to resolve
this sign problem, such as the reweighting method [1], the
analytic continuation from imaginary μ to real μ [2–7], and
the Taylor expansion method [8,9]. Recently, remarkable
progress has been made in the complex Langevin simu-
lation [10–14] and the Picard-Lefschetz thimble theory
[15–17], but our understanding is still far from perfection.
Z3 symmetry is exact in pure gauge theory but not in

QCD with finite quark masses. However, the symmetry is
considered to work well as an approximate symmetry and
be related to the deconfinement transition. It was pointed
out that the Z3 symmetry or group may play an important
role in the sign problem. In Refs. [18] and [19], it was
shown that, using the properties of Z3 group elements, an
effective center field theory with sign problem can be

transformed into a flux model with no sign problem. It was
also conjectured that the center-dressed quarks undergo a
new phase due to the Fermi-Einstein condensation in cold
but dense matter of the hadronic phase and the phenomena
are key to the solution of the sign problem [20]. Recently, in
Ref. [21], it was suggested that, even in the case of the full
QCD having Z3 symmetry approximately, the sign problem
may be cured to some extent by using the Z3-averaged
subset method, at least in the strong coupling limit.
However, there are still many difficulties, when the
methods are applied to realistic full LQCD simulations.
As mentioned above, in pure SU(3) gauge theory, Z3

symmetry is exact and characterizes the confinement-
deconfinement transition. The Polyakov loop LðxÞ [22],
not invariant under the Z3 transformation, is an order
parameter of the transition. The expectation value hLðxÞi
is also related with the free energy of a static quark. If
hLðxÞi ¼ 0, the free energy becomes infinite and thereby
quarks are confined. In the full QCD with dynamical
quarks, however, Z3 symmetry is not exact anymore and
the relation between Z3 symmetry and the confinement-
deconfinement transition is not clear.
In a series of papers [23–27], Z3-symmetric QCD-like

theory was proposed and studied extensively. In this paper,
we simply refer to the theory as Z3-QCD. In Z3-QCD, the
symmetric three flavor quarks are considered and the flavor
dependent imaginary chemical potential is introduced to
retain Z3 symmetry. In the papers, the phase structure in the
Z3-QCD was studied by using the Polyakov-loop extended
Nambu–Jona-Lasinio (PNJL) model [28–32] as an effec-
tive model of QCD. Recently, lattice simulations of Z3-
QCD was done at μ ¼ 0 [33]. The result was shown to be
consistent with the PNJL-model prediction. It should be
also remarked that the Z3-QCD tends to three flavor QCD
in the limit of T → 0 as is explained in next section.
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There is a possibility that the sign problem becomes
milder in Z3-QCD than in QCD. Kouno et al. pointed
out this possibility by making a qualitative comparison
between the heavy-dense model [13,34] and its Z3-
symmetric extension newly constructed, and proposed a
Taylor-expansion method of deriving QCD results from
Z3-QCD ones [27]. The interplay between the sign problem
and Z3 symmetry is thus quite interesting.
The heavy-dense model is well known as an effective

model of QCD for large massM and large μ keeping μ −M
is finite. The three-dimensional (3D) three-state Potts
model [18,19,35–37] is a simplified version of the
heavy-dense model. In this sense, the Potts model should
be considered at large M and μ. In the Potts model, three
elements ð1; exp½�i2π=3�Þ of the group Z3 are taken as
three states at each site on a 3D lattice. Considering the Z3

elements as a substitute for the Polyakov-loop operator
LðxÞ in QCD, one can discuss Z3 symmetry and confine-
ment through the 3D Potts model. In QCD, the operator
LðxÞ depends on the 3D coordinate x and T, but in the Potts
model the Z3 elements can depend on x but lose informa-
tion on T as a result of the substitution. One can regard
x-dependent Z3 elements as a Polyakov-loop operatorΦx in
the 3D Potts model. The Φx should be averaged over x to
define random and ordered states. The average hΦi depends
on the coupling strength κ of the interaction between Φx at
site x and those at the nearest neighbor sites. As an
interesting result, κ dependence of hΦi in the Potts model
is shown to be similar to T dependence of the Polyakov
loop hLðxÞi in QCD [35]. This indicates that κ plays a role
of temperature and one can consider the phase diagram in
the μ-κ plane.
In this paper, we construct four kinds of Z3-symmetric

3D Potts models, each with different number of states, in
order (1) to clarify the interplay between Z3 symmetry and
the sign problem, and (2) to see how the deconfinement
transition line changes in the μ-κ plane with respect to
increasing the number of states of Φx. Basic properties of
the four Z3-symmetric 3D Potts models, (A)–(D), are
tabulated in Table I, together with those of the original
3D 3-state Potts model. We clarify subject (1) by compar-
ing the original Potts model with model (D) and subject (2)
by changing the number of states from 3 of model (A) to 13
of model (D).
The Potts model is missing the chiral symmetry, because

it considers the case of large quark mass. Hence, we cannot
discuss the chiral phase transition directly. However, there
is an onset transition of quark number density, in addition to
the deconfinement transition, in the Potts model. The order
parameter of the transition is, of course, the quark number
density itself. As for the critical endpoint of chiral transition
at finite T and μ in QCD, it was pointed out [38] that
the order parameter is not the scalar density only, but a
linear combination of the scalar, quark number and energy
densities. This mixing makes the chiral transition the first

order at middle and large μ=T. In this sense, we can regard
the quark number density as the quantity related to the
chiral transition at middle and large μ. Similarly, the onset
transition also affects the deconfinement transition. We will
show that, in the Z3-symmetric 3D Potts model, the sign
problem appears when the deconfinement transition is
entangled strongly with the onset transition.
This paper is organized as follows. We recapitulate

Z3-QCD in Sec. II. In Sec. III, we overview the sign
problem and show a way of making the QCD partition
function real. In Sec. IV, the sign problem in the 3D 3-state
Potts model is examined. In Sec. V, we construct Z3-
symmetric 3D Potts models. Numerical simulations are
done for the models in Sec. VI. Section VII is devoted to a
summary.

II. QCD AND Z3-QCD

As for finite T, the action S of three-flavor QCD with
symmetric quark masses (m) and symmetric chemical
potentials (μ) is defined by

S ¼
Z

β

0

dx4

Z
∞

−∞
d3xL ð1Þ

with β ¼ 1=T and the Lagrangian density

L ¼ LQ þ LG ð2Þ

composed of the quark and gluon parts

LQ ¼ q̄Mðμ; AμÞq; ð3Þ

LG ¼ 1

4g2
Fa
μν

2 ¼ 1

2g2
Tr½Fμν

2�; ð4Þ

where

Mðμ; AμÞ ¼ DμðAμÞγμ þm − μγ4; ð5Þ

Fμν ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�; ð6Þ

TABLE I. Potts and Z3-symmetric Potts models considered in
this paper. Z3-symmetric Potts models (A)–(D) are classified with
the number of states at each site. The definition and properties of
models are shown in Sec. IV for the Potts model and in Sec. V for
the Z3-symmetric Potts models.

Model States Z3 symmetry Free from sign problem?

Potts 3 non-symmetric No
(A) 3 symmetric Yes
(B) 4 symmetric Yes
(C) 7 symmetric Yes
(D) 13 symmetric No
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Aμ ¼
X8
a¼1

Aa
μTa: ð7Þ

Here q, Aμ and Ta are the quark field, the gluon field, and
the generator of SU(3) group, respectively, and the trace Tr
is taken for the color indices. As for Ta, we use the standard
notation Ta ¼ λa

2
defined by the Gell-Mann matrices λa.

The action S then can be decomposed into the quark and
gluon components as S ¼ SQ þ SG with

SQ ¼
Z

β

0

dx4

Z
∞

−∞
d3xLQ;

SG ¼
Z

β

0

dx4

Z
∞

−∞
d3xLG: ð8Þ

In the present formalism, we have used the following
Euclidean notations:

x4 ≡ ix0 ¼ ix0 ¼ it; A4 ≡ iA0 ¼ iA0;

DμðAμÞ ¼
∂
∂xμ − iAμ;

γ4 ¼ γ0M; γi ≡ iγiM ði ¼ 1; 2; 3Þ; ð9Þ

where the γμMðμ ¼ 0; 1; 2; 3Þ are the standard gamma
matrices in Minkowski space [39]. The temporal anti-
periodic boundary condition on the quark field is given by

qðx4 ¼ β; xÞ ¼ −qðx4 ¼ 0; xÞ; ð10Þ

while the gluon field satisfies the temporal periodic
boundary condition. The Lagrangian density L is invariant
under the Z3 transformation,

q → q0 ¼ Uq;

Aμ → A0
μ ¼ UAμU−1 þ ið∂μUÞU−1; ð11Þ

where

Uðx4; xÞ ¼ exp ðiαaTaÞ ð12Þ

is an element of SU(3) group characterized by real
functions αa satisfying the boundary condition

Uðx4 ¼ β; xÞ ¼ exp ð−i2πk=3ÞUðx4 ¼ 0; xÞ ð13Þ

for any integer k. However, the quark field boundary
condition (10) is changed by the Z3 transformation as

qðx4 ¼ β; xÞ ¼ −ei2πk=3qðx4 ¼ 0; xÞ: ð14Þ

In full QCD with dynamical quarks, Z3 symmetry is thus
broken through the quark boundary condition.

Z3 symmetry can be recovered by introducing the flavor-
dependent twist boundary condition (FTBC) as follows.

qðx4 ¼ β; xÞ ¼ −e−iθfqðx4 ¼ 0; xÞ ð15Þ

with

θf ¼
2π

3
f ðf ¼ −1; 0; 1Þ: ð16Þ

For later convenience, the flavor indices are numbered as
−1, 0, 1. Under the Z3 transformation (11), the FTBC (15)
is changed into

qfðx4 ¼ β; xÞ ¼ −e−iθ
0
fqfðx4 ¼ 0; xÞ ð17Þ

with

θ0f ¼ 2π

3
ðf − kÞ ðf ¼ −1; 0; 1Þ: ð18Þ

The boundary condition (17) after Z3 transformation
returns to the original one (15) by relabeling the flavor
indices f − k as f. Hence, if we consider the FTBC instead
of the standard one in S, the QCD-like theory obviously
has Z3 symmetry. This theory is abbreviated as Z3-QCD in
this paper.
The Z3-QCD tends to QCD with symmetric three flavor

quarks in the limit of T → 0, since the difference between
the two theories comes only from the temporal fermion
boundary condition that has no contribution in the limit.
When the fermion fields qf are transformed as [40]

qf → exp ð−iθfTx4Þqf; ð19Þ

the boundary condition (15) returns to the ordinary one
(10), but L is changed into

Lθ ¼ q̄ðγνDθ
ν þmÞqþ 1

4g2
Fa
μν

2 ð20Þ

withDθ
ν ≡ ∂ν − iðAν þ θ̂δν;4TÞ, where the flavor-dependent

imaginary chemical potentials iθ̂T are defined by

θ̂ ¼ diagðθ−1; θ0; θ1Þ
¼ diagð−2π=3; 0; 2π=3Þ: ð21Þ

The flavor-dependent imaginary chemical potentials parti-
ally break SUð3Þ flavor symmetry and associated SUð3Þ
chiral symmetry [23,24]. In the chiral limit m → 0,
global SUVð3Þ × SUAð3Þ symmetry is broken down to
ðUð1ÞVÞ2 ⊗ ðUð1ÞAÞ2 [25]. The symmetry is even broken
into ðUð1ÞVÞ2, as soon as chiral symmetry is spontaneously
broken.
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III. SIGN PROBLEM AND CHARGE
CONJUGATION OF GAUGE FIELDS

The grand canonical partition function of QCD with
finite μ is obtained by

ZðμÞ ¼
Z

DAμDq̄Dqe−S ð22Þ

with the action S of Eqs. (1)∼(7) in the previous section.
The path integration over the quark fields leads to

ZðμÞ ¼
Z

DAμ det ½Mðμ; AμÞ�e−SG : ð23Þ

We start with the general case that μ and Aa
μ are complex.

Using the relation

Mðμ; AμÞ† ¼ −DμðA†
μÞγμ þm − μ�γ4

¼ γ5Mð−μ�; A†
μÞγ5; ð24Þ

one can obtain

fdet ½Mðμ; AμÞ�g� ¼ det½Mðμ; AμÞ†�
¼ det ½γ5Mð−μ�; A†

μÞγ5�
¼ det½γ5� det½γ5� det ½Mð−μ�; A†

μÞ�
¼ det ½Mð−μ�; A†

μÞ�: ð25Þ

In general, the last form of (25) does not agree with
det ½Mðμ; AμÞ�. This leads to the fact that det ½Mðμ; AμÞ� is
not real generally. Even in the case that μ and Aa

μ are real,
Eq. (25) does not ensure that det ½Mðμ; AμÞ� is real. If the
integrand is not real in (25), we cannot interpret the
integrand as a probability. This makes it impossible to
apply the importance sampling method to the QCD action
for the case of finite real μ. This is nothing but the famous
sign problem.
The sign problem is originated in the fact that the

fermion determinant det½Mðμ; AμÞ� is complex. For real
μ and Aa

μ, however, it is always possible to make ZðμÞ real
by averaging the gauge configurations partially, as shown
below. Using the charge conjugation matrix C ¼ γ2γ4, one
can get

½ðCtÞ−1Mð−μ�; A†
μÞCt�t ¼ Dμð−A�

μÞγμ þmþ μ�γ4
¼ Mðμ�;−A�

μÞ; ð26Þ

and, hence, [17]

ðdet ½Mðμ; AμÞ�Þ� ¼ det ½Mð−μ�; A†
μÞ�

¼ detðCtÞ−1 det ½Mð−μ�; A†
μÞ� detCt

¼ det ½ðCtÞ−1Mð−μ�; A†
μÞCt�t

¼ det ½Mðμ�;−A�
μÞ�: ð27Þ

In QCD with real μ and Aa
μ, the relation A�

μ ¼ At
μ leads to

ðdet ½Mðμ; AμÞ�Þ� ¼ det ½Mðμ;−At
μÞ�; ð28Þ

where ðAa
μTaÞt ¼ Aa

μTa for a ¼ 1, 3, 4, 6, 8 and ðAa
μTaÞt ¼

−Aa
μTa for a ¼ 2, 5, 7. Noting the relation (28), we

consider a gauge configuration Aa
μ
0 satisfying

A0
μ ¼

X8
a¼1

Aa
μ
0Ta ¼ −

�X8
a¼1

Aa
μTa

�t

¼ −At
μ; ð29Þ

where Aa
μ
0 ¼ −Aa

μ for a ¼ 1, 3, 4, 6, 8 and Aa
μ
0 ¼ Aa

μ for
a ¼ 2, 5, 7. The gauge action SG and the Haar measure are
invariant under the transformation Aμ → A0

μ ¼ −At
μ, since

this transformation is nothing but the charge conjugation
for the gauge field. In fact, after this transformation, Fμν is
transformed into

Fμν
0 ¼ −∂μðAν

tÞ þ ∂νðAμ
tÞ − ig½ðAμ

tÞ; ðAν
tÞ�

¼ −½Fμν�~t; ð30Þ

where ~t denotes the transpose operation only on the color
index. Hence, the gauge action SG is invariant under this
transformation.
In QCD with real μ, we then obtain

ðdet ½Mðμ; AμÞ�Þ� ¼ det ½Mðμ;−At
μÞ�

¼ det ½Mðμ; A0
μÞ�: ð31Þ

Averaging the integrand of ZðμÞ over the two configura-
tions Aμ and A0

μ, one can get

1

2
ðdet ½Mðμ; AμÞ�e−SG þ det ½Mðμ; A0

μÞ�e−SG 0 Þ

¼ 1

2
½det ½Mðμ; AμÞ� þ ðdet ½Mðμ; AμÞ�Þ��e−SG

¼ Reðdet ½Mðμ; AμÞ�Þe−SG : ð32Þ

This ensures that the integrand of ZðμÞ becomes real.
Now we consider Z3-QCD. The theory tends to QCD

with symmetric three flavor quarks in the T ¼ 0 limit, since
the difference between the two theories comes only from
the temporal fermion boundary condition that has no
contribution in the limit. Equation (28) is modified by
the charge conjugation matrix as
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Y
f¼−1;0;1

ðdet ½Mðμþ i2πf=3; AμÞ�Þ�

¼
Y

f¼−1;0;1
det ½Mðμ − i2πf=3;−At

μÞ�

¼
Y

f¼1;0;−1
det ½Mðμþ i2πf=3;−At

μÞ�

¼
Y

f¼−1;0;1
det ½Mðμþ i2πf=3;−At

μÞ�: ð33Þ

In Z3-QCD, the integrand of the partition function thus
becomes real after the averaging procedure mentioned
above. Even if the integrand of the partition function
becomes real, it does not mean that the sign problem is
solvable. This will be discussed later in Sec. IV.

IV. SIGN PROBLEM IN 3D 3-STATE
POTTS MODEL

We first construct a Z3-symmetric Potts model to
investigate the interplay between the sign problem and
Z3 symmetry. The standard 3D 3-state Potts model is not
Z3-symmetric and has a sign problem, as shown below.
Here we use the 3D 3-state Potts model presented in
Ref. [37]. The partition function of the 3D 3-state Potts
model is defined by [36,37]

Zðκ; hÞ ¼
Z

DΦe−S ¼
Z

DΦe−S0e−S1 ; ð34Þ

S0½Φx; κ� ¼ −κ
X
x;i

δΦx;Φxþi
; ð35Þ

S1½Φx; h� ¼ −
X
x

fhþΦx þ h−Φ�
xg; ð36Þ

hþ ¼ exp ð−βðM − μÞÞ; h− ¼ exp ð−βðM þ μÞÞ
ð37Þ

for the parameter κ and the unit vector i in 3D space, where
M and μ correspond to the mass and the chemical potential
of heavy quark, respectively. In Eq. (34),Φx represents a Z3

element on site x and plays a role of the Polyakov-loop
operator in the Potts model, as already mentioned in Sec. I.
The Φx can be averaged over x as

Φ̄ ¼ 1

V

X
x

Φx ¼
1

V

X
x

ΦR;x þ
1

V

X
x

ΦI;x ¼ Φ̄R þ iΦ̄I;

ð38Þ

where Φx;R (Φ̄R) and Φx;I (Φ̄I) mean the real and imaginary
parts of Φx (Φ̄), respectively, and V is the lattice volume.
We can regard the expectation value hΦ̄i as a Polyakov
loop in the Potts model, since hΦ̄i has a property similar to

the Polyakov loop hLðxÞi in QCD [35]. Obviously, S0 is
Z3-invariant, but S1 is not. In addition, S1 can be complex
for finite μ.
In the Potts model, the sign problem is originated in the

fact that the effective chemical potential is complex. If we
denote the phase of Φx as ϕx, Eq. (36) is rewritten as

S1½Φx; h� ¼ −2e−βM
X
x

jΦxj cosh ðβ ~μxÞ ð39Þ

with the complex effective chemical potential
β ~μx ¼ βμþ iϕx. When ~μx is complex, it makes
coshðβ ~μxÞ complex in S1 and consequently induces the
sign problem. In this sense, the entanglement between μ
and iϕx is an origin of the sign problem in the Potts model.
When μ is pure imaginary, so is ~μ: namely S�1 ¼ S1. This
make the model free from the sign problem.
The Potts model is constructed by simplifying the heavy-

dense model of QCD in the limit of M → ∞ and μ → ∞
with M − μ fixed at a finite value. Therefore, the Potts
model should be considered for large M and μ. The term
having h− is occasionally neglected, but is retained in the
present paper.
In the Potts model, Z3 elements are taken as three states

at each site on a 3D lattice. Considering the Z3 elements as
a substitute for the Polyakov-loop operator LðxÞ in QCD,
one can discuss the deconfinement transition through the
3D Potts model. The operator LðxÞ depends on both x and
T, but information on T is eliminated in the Potts model as a
result of the substitution. Furthermore, in the 3D Potts
model, there is no temporal direction and the average over
spatial volume should be taken on the Polyakov loop.
However, the Potts model has a parameter κ in S0. It was
found in Ref. [35] that κ dependence of hΦ̄i in the Potts
model is similar to T dependence of hLðxÞi in QCD.
Although the relation between κ and T is not simple, we
assume that larger (smaller) κ in the Potts model corre-
sponds to higher (lower) T in QCD and 1=β is just a
parameter having the same dimension as M and μ. Below,
we mainly use dimensionless parameters M̂ ¼ βM and μ̂ ¼
βμ instead of dimensionful ones M and μ.
The factor e−S1 in (34) can be rewritten as e−iSI−SR

with

SR½Φx; M̂; μ̂� ¼ −2e−M̂ coshðμ̂ÞVΦ̄R; ð40Þ

SI½Φx; M̂; μ̂� ¼ −2e−M̂ sinhðμ̂ÞVΦ̄I: ð41Þ

Since Φx takes any value of Z3 elements, ei2πk=3ðk ¼
−1; 0; 1Þ, S1 becomes complex in general when μ ≠ 0.
Hence, we take the configuration average over Φx
and Φ0

x ¼ Φ�
x, following the discussion in the previous

section:
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1

2
feð−S0½Φx;κ�Þeð−S1½Φx;h�Þ þ eð−S0½Φ0

x;κ�Þeð−S1½Φ0
x;h�Þg

¼ cos ðSI½Φx;I; M̂; μ̂�Þeð−S0½Φx;κ�−SR½Φx;R;M̂;μ̂�Þ. ð42Þ

The integrand of the partition function (34) thus becomes
real, but the cosine function becomes negative when

π

2
≤ 2e−M̂ sinhðμ̂ÞVΦI ≤

3π

2
ðmod½2π�Þ: ð43Þ

Hence, the sign problem appears even after the averaging
procedure and it becomes stronger as V increases.
It is known that, although the Potts model has a sign

problem in its path integral formulation, the model can be
transformed into a “flux model” that has no complex action
problem [18,19]. However, it is not clear that such a
transformation is possible or not in the case of full
LQCD simulations. Since we are interested in the sign
problem itself, we treat the 3D Potts model in the
formulation where the sign problem is obvious.
Since the 3D 3-state Potts model has a sign problem in

our formulation, namely, FðΦxÞ ¼ e−S, it becomes com-
plex in general. Hence, we consider the following phase
quenched approximation:

hOi0 ¼
R
DΦOðΦxÞF0ðΦxÞ

Z0 ; ð44Þ

F0ðΦxÞ ¼ e−S0−SR ;

Z0 ¼
Z

DΦF0ðΦxÞ: ð45Þ

The phase factor hF=F0i and the true average hOi are then
given by

�
F
F0

�0
¼ he−iSIi0 ¼

R
DΦ½e−iSI �F0ðΦxÞ

Z0

¼
R
DΦ½cos SI�F0ðΦxÞ

Z0 ¼ hcos SIi0 ¼
Z
Z0 ; ð46Þ

hOi ¼
R
DΦ½O�FðΦxÞ

Z
¼ hOðΦxÞe−iSIi0

hFF0i0 : ð47Þ

Since Φx can be complex in general, the calculation of
the expectation value of the Polyakov loop itself is some-
what complicated when the sign problem appears. Hence,
for convenience, we calculate the absolute value jΦ̄j instead
of Φ̄ itself by using Monte Carlo simulations. To calculate
physical quantities in a wide region of κ-μ plane, we took a
rather small lattice with spatial volume V ¼ 63. For this
reason, in this paper we postpone the determination of the
order of the deconfinement transition and simply define the

transition point with the point where hΦ̄i ∼ 0.5. We also put
M̂ ¼ 10 below.
Figure 1 shows the results of the phase factor hcos SIi0

calculated with the quenched approximation in the κ-μ
plane. The sign problem is serious in a “triangle” area
composed of three points ðμ=M; κÞ ≈ ð0.8; 0.4Þ, (1.1, 0.4),
(1, 0.6), since hcos SIi0 is small or negative there.
Figure 2 shows the results of hjΦ̄ji calculated with

the reweighting method in the κ-μ plane. The line where
hjΦ̄ji rapidly changes can be regarded as a “critical line”
κ ¼ κcðμ=MÞ. The value of κcðμ=MÞ is about 0.55 for
μ=M < 0.5, but rapidly decreases from 0.55 to 0.4 as μ=M
increases from 0.5 to 0.75.
Comparing Fig. 1 with Fig. 2, we can see, as an

interesting property, that hcos SIi0 tends to be small on
the critical line particularly in 0.4 < μ=M < 0.75. In the
triangle area composed of three points ðμ=M;κÞ≈ ð0.8;
0.4Þ, (1.1, 0.4), (1, 0.6), the value of hjΦ̄ji is larger than 1 or
negative, since hcos SIi0 is small or negative. The unnatural
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FIG. 1. The phase factor hcos SIi0 calculated with the phase
quenched approximation in ordinary 3D 3-state Potts model as a
function of κ and μ=M.
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FIG. 2. The expectation value hjΦ̄ji calculated with the re-
weighting method in ordinary 3D 3-state Potts model as a
function of κ and μ=M.
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behavior of hjΦ̄ji is caused by that of hcos SIi0. Therefore,
physical discussion cannot be made in the triangle region.

V. Z3-SYMMETRIC 3D POTTS MODEL

Using the same method as the extension of QCD to
Z3-QCD, we now construct a Z3-symmetric 3D Potts
model from the 3D Potts model defined in the previous
section. The action SZ3

of the new model is assumed
to be described in a power series of Φx and Φ�

x just as the
original Potts model, and the flavor-dependent imaginary
chemical potentials are introduced by replacing hþΦx,
h−Φ�

x by

hþ;fΦx ¼ ei2πf=3 exp ðμ̂ − M̂ÞΦx; ð48Þ

h−;fΦ�
x ¼ e−i2πf=3 exp ð−μ̂ − M̂ÞΦ�

x: ð49Þ

Here we consider Z3 elements as three states of Φx for a
while, but will increase the number of states later in which
some states do not belong to the group Z3.
The pure gauge and first-order terms, S0;Z3

and S1;Z3
, of

SZ3
are then defined as

S0;Z3
½Φx; κ� ¼ −κ

X
x;i

jΦxjjΦxþijδΦx;Φxþi
; ð50Þ

S1;Z3
½Φx; h�� ¼ −

X
f¼−1;0;1

X
x

ðhþ;fΦx þ h−;fΦ�
xÞ: ð51Þ

Here, S0;Z3
is Z3 invariant, but S1;Z3

is Z3 variant. Note that
S0;Z3

is reduced to S0 when the values of Φx are restricted to

Z3 elements only. If the f summation is taken in S1;Z3
, the

term vanishes as follows:

S1;Z3
½Φx; h�� ¼ −

X
f¼−1;0;1

X
x

ðhþ;fΦx þ h−;fΦ�
xÞ

¼
X
x

ðhþΦx þ h−Φ�
xÞ

X
f¼−1;0;1

ei2πf=3 ¼ 0:

ð52Þ

Similarly, anyZ3-variant terms vanish after the f summation.
Considering the power series of SZ3

up to the third order ofΦx

and Φ�
x, we can construct a Z3-symmetric Potts model as

Zðκ; hM; h�Þ ¼
Z

DΦe−SZ3 ¼
Z

DΦe−S0;Z3e−S2þ3;Z3 ;

ð53Þ

where hM ¼ e−M̂ and

S2þ3;Z3
½Φx; hM; h�� ¼ S2;Z3

½Φx; hM� þ S3;Z3
½Φx; h��;

ð54Þ

S2;Z3
½Φx; hM� ¼ −g2hM2

X
x

ΦxΦ�
x; ð55Þ

S3;Z3
½Φx; h�� ¼ −g3

X
x

ðh3þΦ3
xþh3−Φ�

x
3Þ ð56Þ

with thecouplingparametersg2 andg3. For simplicity,we take
g2 ¼ g3 ¼ 1. Note that, e.g., the third-order terms of Φx can
appear when the logarithmic Fermionic effective Lagrangian
[13] is expanded by Φx as

X
f¼−1;0;1

log ð1þ 3hþ;fΦx þ 3h2þ;fΦ
�
x þ ðhþ;fÞ3Þ þ

X
f¼−1;0;1

log ð1þ 3h−;fΦ�
x þ 3h2−;fΦx þ ðh−;fÞ3Þ

¼ log

� Y
f¼−1;0;1

ð1þ 3hþ;fΦx þ 3h2þ;fΦ
�
x þ ðhþ;fÞ3Þ

�
þ log

� Y
f¼−1;0;1

ð1þ 3h−;fΦ�
x þ 3h2−;fΦx þ ðh−;fÞ3Þ

�

¼ log½ðaþ 27ðhþÞ3Φ3
x þ 27ðhþÞ6Φ�

x
3 þ � � �Þ� þ log½ðbþ 27ðh−Þ3Φ�

x
3 þ 27ðh−Þ6Φx

3 þ � � �Þ�; ð57Þ

where a and b are Φx-independent real quantities. On the
other hand, the terms proportional to ΦxΦx

� are expected to
appear if the mesonic contribution in the effective Lagran-
gian is expanded.
The factor e−S2þ3;Z3 can be rewritten into

e−S2;Z3−S3;Z3 ¼ e−iSI;Z3e−SR;Z3e−S2;Z3 ð58Þ

with

SR;Z3
½Φx; M̂; μ̂� ¼ −2e−3M̂ cosh ð3μ̂Þ

X
x

ðΦx
3ÞR; ð59Þ

SI;Z3
½Φx; M̂; μ̂� ¼ −2e−3M̂ sinh ð3μ̂Þ

X
x

ðΦx
3ÞI ð60Þ

for the real and imaginary parts, ðΦx
3ÞR and ðΦx

3ÞI, of
Φx

3. When the values of Φx are restricted to Z3

elements, both S0;Z3
and S2þ3;Z3

are real, indicating that
no sign problem takes place. This model is referred to as
the “Z3-symmetric 3-state Potts model” in the
present paper.
Meanwhile, the Z3-symmetric heavy-dense model of

QCD has the sign problem, since the Polyakov-loop
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operator LðxÞ can take not only Z3 elements but also ones
not belonging to the group Z3. In the model, LðxÞ can be
parametrized as [13]

LðxÞ ¼ 1

3
ðeiϕ1ðxÞ þ eiϕ2ðxÞ þ e−iðϕ1ðxÞþϕ2ðxÞÞÞ; ð61Þ

and the region that LðxÞ can take is illustrated in Fig. 3(a).
The region has a hyperbolic-triangle-like shape. Three
vertices of the triangle correspond to Z3 elements, and
the other points in the region do not belong to the group Z3.
Figure 3(b) corresponds to the region that L3ðxÞ is allowed
to take. The allowed region of L3ðxÞ is well localized near
the real axis compared with that of LðxÞ. This suggests that
the sign problem is less serious in Z3-QCD than in QCD
[27]. Since it is not easy to confirm this suggestion directly
in QCD, we will compare three types of models: (i) the
original Potts model, (ii) the Z3-symmetric 3-state Potts
model defined above, and (iii) the Z3-symmetric several-
state Potts models, each with different number of states
larger than 3. The Z3-symmetric several-state Potts model
is an extension of the Z3-symmetric 3-state Potts model and
is not free from the sign problem in general.

Before constructingZ3-symmetric several-state Pottsmod-
els explicitly, we make the following preparation. When the
Φx are allowed to take values not belonging to the group Z3

just as the heavy quark model, the term S2þ3;Z3
can be

complex. In that case, we take the average ofΦx andΦ0
x ¼ Φ�

x
configurations to make the partition function real, following
the discussion in the previous section. This leads to

e−S0;Z3 ½Φx�e−S2þ3;Z3
½Φx� þ e−S0;Z3 ½Φ

0
x�e−S2þ3;Z3

½Φ0
x�

2

¼ cos ðSI;Z3
½Φx�Þeð−S0;Z3 ½Φx�−S2;Z3 ½Φx�−SR;Z3 ½Φx�Þ: ð62Þ

The integrand of the partition function (53) thus becomes real,
but the cosine function becomes negative when

π

2
≤ 2e−3M̂ sinh ð3μ̂Þ

X
x

ðΦx
3ÞI ≤

3π

2
ðmod½2π�Þ: ð63Þ

As mentioned in Fig. 3, however, the absolute value of the
imaginary part Im½LðxÞ3� is much smaller than that of
Im½LðxÞ�. This is true also in the Z3-symmetric Potts models
with several states; namely, max½jðΦ3

xÞIj� ≪ max½jðΦxÞIj�.
Hence, it can be expected that the sign problem is less serious
in theZ3-symmetric Pottsmodelwith several states than in the
original Potts model without exact Z3 symmetry.
Now we explicitly consider four kinds of Z3-symmetric

Potts models, each with 3, 4, 7, and 13 states:
(A) Z3-symmetric 3D 3-state Potts model with

fΦxg ¼ f1; e�i2π=3g; ð64Þ

which is denoted by three solid triangle symbols in
Fig. 4. This model is free from the sign problem,
since S2þ3;Z3

is always real.
(B) Z3-symmetric 3D 4-state Potts model with

fΦxg ¼ f1; e�i2π=3; 0g; ð65Þ

which is denoted by three solid triangles and a solid
circle in Fig. 4. The sign problem does not appear.

(C) Z3-symmetric 3D 7-state Potts model with

fΦxg ¼ f1; e�i2π=3; 0;−1=3; e�iπ=3=3g; ð66Þ

which is denoted by three solid triangles, a solid
circle and three solid squares in Fig. 4. The sign
problem does not appear.

(D) Z3-symmetric 3D 13-state Potts model with

fΦxg ¼ f1; e�i2π=3; 0;−1=3; e�iπ=3=3;

re�iπ=6; re�iπ=2; re�i5π=6g; ð67Þ

where r is taken to be 0.4. Equation (67) is denoted
by three solid triangles, a solid circle, three
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FIG. 3. Allowed regions of (a) LðxÞ and (b) L3ðxÞ in the
complex plane.
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solid squares and six crosses in Fig. 4. Note that,
except for the origin, the other 12 values are
chosen to lie on the boundary of the region
where the value of LðxÞ can be taken in
Fig. 3(a). The sign problem comes from six
crosses fΦxg ¼ fre�iπ=6; re�iπ=2; re�i5π=6g, since
ðΦxÞ3 has a finite phase in this case.

Properties of the four Z3-symmetric Potts models
(A)–(D) are summarized in Table I, together with those
of the original 3D 3-state Potts model.
Before closing this section, we add one more comment.

If we denote Φx ¼ rx exp ðiϕxÞ, where rx and ϕx are the
absolute value and the phase of Φx, respectively, ðΦxÞ3 ¼
r3x exp ð3iϕxÞ ¼ r3xðcos ð3ϕxÞ þ i sin ð3ϕxÞÞ. Therefore, if
rx is small, the sign problem is not severe. Hence, it can
be expected that, for fixed ϕx, larger rx configurations
dominate the sign problem. So we choose our simulation
points on the boundary of the hyperbolic triangle in Fig. 4,
except for the origin, the special point for confinement.
Furthermore, to keep the Z3 symmetry, we use the
configurations of Φx with the discrete phase ϕj

x ¼
2πj=ð3nÞðj ¼ 0; 1; 2;…n − 1Þ, where n is a positive inte-
ger. In principle, the calculation is possible by using the
other points on the boundary with larger n > 4, but it
requires huge computing time. Estimation of the contribu-
tions of other points is an open question for the future.

VI. SIGN PROBLEM IN Z3-SYMMETRIC
POTTS MODEL

In this section, we perform numerical simulations for the
Z3-symmetric Potts models (A)–(D) and compare the
results with those of the original Potts model. In particular,
the expectation value hjΦ̄ji of the absolute value jΦ̄j is
calculated to determine the confinement-deconfinement

transition line. The purpose of these analyses is to (1) clarify
the interplay between Z3 symmetry and the sign problem
and (2) see how the deconfinement transition line changes
in the κ-μ plane when the value of Φx is extended bit by bit.
As mentioned in Sec. IV, the standard Metropolis algorithm
is taken for the simulations.

A. Z3-symmetric 3D 3-state Potts model

Figure 5 shows the expectation value hjΦ̄ji in the κ-μ
plane for model (A). Note that the reweighting is not
necessary for this model, since the model has no sign
problem. There appears a rapid change of hjΦ̄ji at κ ¼ 0.55,
independently of μ. The μ independence comes from the
fact that the μ-dependent term S2þ3;Z3

becomes constant
because ofΦxðΦxÞ� ¼ Φx

3 ¼ Φ�
x
3 ¼ 1. In fact, hjΦ̄ji can be

rewritten as

hjΦ̄ji ¼
R
DΦjΦje−S0;Z3−S2þ3;Z3R
DΦe−S0;Z3−S2þ3;Z3

¼ e−S2þ3;Z3
R
DΦjΦje−S0;Z3

e−S2þ3;Z3
R
DΦe−S0;Z3

¼
R
DΦjΦje−S0;Z3R
DΦe−S0;Z3

: ð68Þ

The final form of Eq. (68) has no μ dependence. However,
this does not means that all quantities do not depend on μ.
In fact, the number density,

n ¼ 1

βV
∂ðlogZÞ

∂μ ¼ 1

V
∂ðlogZÞ

∂μ̂
¼ 6e−3M̂

V

�
sinh ð3μ̂Þ

�X
x

ðΦ3
xÞR

�

þ i cosh ð3μ̂Þ
�X

x

ðΦx3ÞI
��

; ð69Þ

FIG. 4. Values of Φx taken in the Z3-symmetric 3D Potts
models (A)∼(D).
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FIG. 5. The expectation value hjΦ̄ji in the Z3-symmetric 3D
3-state Potts model as a function of κ and μ=M.
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has μ dependence, as shown in Fig. 6. (Note that (68) is true
only in the 3D 3-state Z3-symmetric Potts model, whereas
(69) is true for all Z3-symmetric Potts models.) The quark
number density n can be regarded as an order parameter for
the onset phase transition that is located at μ=M ¼ 1 and
T ¼ 0. Below we will see how the two transitions entangle
each other and the sign problem appears when the value
region of Φx is extended bit by bit. Note that the second
term in the second line of (69) vanishes when ðΦ3

xÞI ¼ 0
and the sign problem does not appear.
In Fig. 7, the μ-dependence of n is shown at κ ¼ 0.65 for

three Z3-symmetric Potts models. When κ ¼ 0.65, in the
Z3-symmetric 3-state Potts model, the onset of n is smooth
and n is proportional to e−3M̂ sinh 3μ̂ in the model, since
ðΦ3

xÞR ¼ 1 and ðΦ3
xÞI ¼ 0 in (69).

It is interesting that, in the Z3-symmetric 3D 3-s Potts
model, the resulting deconfinement transition line then
becomes a horizontal line in the μ-κ plane. Similar property

is also seen in SUðNÞ gauge theory in the large N limit
[41,42], where the contribution of the fermion with N
degrees of freedom to the thermodynamic potential is
negligible compared with that of gauge field with
N2 − 1 degrees of freedom. In the case of Z3-symmetric
theory, Z3 symmetry suppresses the fermion contribution
and weakens the μ dependence of the critical temperature of
the deconfinement transition [24].

B. Z3-symmetric 3D 4-state Potts model

In this case, the model has no sign problem as is in the
previous one. Figure 8 shows the expectation value hjΦ̄ji in
the κ-μ plane. The deconfinement transition line κ ¼
κcðμ=MÞ defined by a rapid change of hjΦ̄ji is located at
κ ¼ 0.60 for μ=M < 1, but goes down to κ ¼ 0.55 at
μ=M ≈ 1, and keeps κ ¼ 0.55 for μ=M > 1.
Thus, the deconfinement transition is beginning to have

μ dependence.

C. Z3-symmetric 3D 7-state Potts model

In this case, the model has no sign problem as is in the
previous two cases. Figure 9 shows the expectation value
hjΦ̄ji in the κ-μ plane. The deconfinement transition line
κ ¼ κcðμ=MÞ is located at κ ¼ 0.7 for μ=M < 1, but goes
down to κ ¼ 0.55 at μ=M ≈ 1, and keeps κ ¼ 0.55 for
μ=M > 1. The deconfinement transition line thus has
stronger μ dependence in model (C) than in model (B).
Figure 10 shows μ dependence of hjΦ̄jiwith κ fixed at 0.65.
We can see that hjΦ̄ji suddenly increases at μ=M ≈ 1. In
Fig. 7, the μ dependence of n is shown. In this model, n also
rapidly increases at μ=M ≈ 1.

D. Z3-symmetric 3D 13-state Potts model

In model (D), when S2þ3;Z3
beoomes complex, FðΦxÞ ¼

e−S also does, so that the sign problem appears. We then
use the following phase quenched approximation:
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FIG. 7. μ-dependence of n at κ ¼ 0.65 in the Z3-symmetric 3D
Potts model. The boxes, the crosses, and the circles represent the
results in 3-, 7-, and 13-state Potts models.
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FIG. 8. The expectation value hjΦ̄ji in the Z3-symmetric 3D
4-state Potts model as a function of κ and μ=M.
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hOi0 ¼
R
DΦOðΦxÞF0ðΦxÞ

Z0 ; ð70Þ

F0ðΦxÞ ¼ e−S0;Z3−S2;Z3−SR;Z3 ;

Z0 ¼
Z

DΦF0ðΦxÞ: ð71Þ

The phase factor is then given by

�
F
F0

�0
¼ he−iSI;Z3 i0 ¼

R
DΦ½e−iSI;Z3 �F0ðΦxÞ

Z0

¼
R
DΦ½cos SI;Z3

�F0ðΦxÞ
Z0 ¼ hcos SI;Z3

i0 ¼ Z
Z0 ; ð72Þ

and the true average hOi is by

hOi ¼
R
DΦ½O�F0ðΦxÞ

Z
¼ hOðΦÞe−iSI;Z3 i0

hFF0i0 : ð73Þ

Figure 11 shows the phase factor (72) in the κ-μ plane.
As an important result, the sign problem is serious only in
the narrow region of μ=M ∼ 1 and κ < 0.9.
Figure 12 shows the expectation value of hjΦ̄ji in the κ-μ

plane. The result was obtained by using the quenched
approximated probability function and the reweighting
method. The deconfinement transition line κ ¼ κcðμ=MÞ
is located at κ ¼ 0.87 for μ=M < 1, but goes down to κ ¼
0.55 at μ=M ≈ 1, and keeps κ ¼ 0.55 for μ=M > 1. Thus,
the μ dependence of κ ¼ κcðμ=MÞ becomes strong as the
number of states on each site increases. Eventually, the
transition line of model (D) is rather similar to that of
the original Potts model. Nevertheless, as for the serious-
ness of the sign problem, there is a big difference between
the two models. Comparing Fig. 11 with Fig. 1, we can
conclude that the sign problem is almost cured by Z3

symmetry, even if the value region of Φx is extended.
It is interesting that, in Fig. 11, the narrow dark region

(where the phase factor is small) lies on the line μ=M ≈ 1
where the onset transition takes place. In fact, as shown in
Fig. 7, n rapidly increases at μ=M ≈ 1. Of course, this dark
region may be only an artifact due to the sign problem, but
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FIG. 10. μ-dependence of hjΦ̄ji at κ ¼ 0.65 in the Z3-
symmetric 3D 7-state Potts model.
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FIG. 11. The expectation value hcos SI;Z3
i0 calculated with the

phase quenched approximation in the Z3-symmetric 3D 13-state
Potts model as a function of κ and μ=M.
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FIG. 12. The expectation value hjΦ̄ji calculated with the
reweighting method in Z3-symmetric 3D 13-state Potts model
as a function of κ and μ=M.
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FIG. 9. The expectation value hjΦ̄ji in Z3-symmetric 3D 7-state
Potts model as a function of κ and μ=M.
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may imply that a physical sharp transition occurs on the
line and the partition function ZðμÞ becomes small around
the line. Hence, Lee-Yang zeros analyses [43] may be valid
in this phenomena. On the contrary, the deconfinement
transition appears on the line of κ ∼ 0.87 and μ=M < 1 in
Fig. 12, but any dark area is not found around the line in
Fig. 11. This may be caused by the fact that the lattice size
is small in our simulations and the deconfinement transition
does not induce any singular behavior in the partition
function. This is an interesting question to be solved in
future.

VII. SUMMARY

In summary, we have constructed four versions of the
Z3-symmetric 3D Potts models, each with a different
number of states, in order to investigate (1) the interplay
between Z3 symmetry and the sign problem and (2) the
relation between the number of states and the deconfine-
ment transition line in the μ-κ plane. Properties of the four
Z3-symmetric Potts models (A)–(D) are summarized in
Table I, together with those of the original 3D 3-state
Potts model.
As for subject (1), we have found from the comparison

between the Potts model and model (D) that the sign
problem is almost cured by imposing Z3 symmetry. The
Z3-symmetric Potts models are described by a power series
of the Polyakov-loop operator Φx and its complex con-
jugate Φ�

x. Z3 symmetry eliminates the linear term, so that
the imaginary part of the model action starts with the terms
of ðΦxÞ3 and ðΦ�

xÞ3. This makes the sign problem less
serious, because of jΦxj < 1; note that only Z3 elements
satisfy jΦxj ¼ 1, but they do not contribute to the imaginary
part. This mechanism may happen in Z3-QCD. Therefore,
there is a possibility that the sign problem is circumvented
by the Taylor-expansion method of Ref. [27] to derive QCD
results from Z3-QCD ones, even if T ≠ 0.
Subject (2) was clarified by changing the number of

states from 3 of model (A) to 13 of model (D). Comparing
the results of model (A)–(D), we have found that the μ
dependence of the deconfinement transition line becomes
stronger with respect to increasing the number of states.

The lattice size we used is not enough, so that there is a
possibility that the sign problem becomes more serious as
the lattice volume becomes larger. We also postponed the
determination of the order of the deconfinement transition
for the same reason. The study based on larger lattice is
needed as a future work.
There is a possibility that, as in the original Potts model

[18], the Z3 symmetric Potts model also can be transformed
into the flux model that has no sign problem. In Ref. [19],
the effective model based on the Polyakov loop, the values
of which are not restricted to Z3 element, was transformed
into the flux model. However, except for pure gauge term,
only the linear terms ofΦx are considered in that formalism.
The extension of the formalism to the Z3-symmetric Potts
model is nontrivial, because the extension to the case with
higher Φx terms is nontrivial. Therefore, we postpone the
extension for a future work.
In the Potts models, chiral symmetry and its dynamical

breaking cannot be discussed, since these models consider
the case of large quark mass, and thereby chiral symmetry
is largely broken from the beginning. In QCD with light
quark masses, when the phase quenched approximation is
used, chiral dynamics induces the problem of early onset
of quark number density [44] (or the baryon Silver Blaze
problem [45]). The problem may happen also in Z3-QCD
with light quark masses. Analyses beyond the phase
quenched approximation may be important for future work.
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