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We construct a hadron-quark two-phase model based on the Walecka-quantum hadrodynamics and the
improved Polyakov–Nambu–Jona-Lasinio (PNJL) model with an explicit chemical potential dependence
of Polyakov loop potential (μPNJL model). With respect to the original PNJL model, the confined-
deconfined phase transition is largely affected at low temperature and large chemical potential. Using the
two-phase model, we investigate the equilibrium transition between hadronic and quark matter at finite
chemical potentials and temperatures. The numerical results show that the transition boundaries from
nuclear to quark matter move towards smaller chemical potential (lower density) when the μ-dependent
Polyakov loop potential is taken. In particular, for charge asymmetric matter, we compute the local
asymmetry of u, d quarks in the hadron-quark coexisting phase, and analyze the isospin-relevant
observables possibly measurable in heavy-ion collision (HIC) experiments. In general new HIC data on the
location and properties of the mixed phase would bring relevant information on the expected chemical
potential dependence of the Polyakov loop contribution.
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I. INTRODUCTION

The exploration of the QCD phase diagram of
strongly interacting matter and the transition signatures
from nuclear to quark-gluon matter are subjects of great
interest in recent decades. Intensive searches on high-
energy heavy-ion collision (HIC) have been performed
in laboratories such as RHIC and LHC, and a near
perfect fluid of quark-gluon plasma (QGP) has been
created [1]. Further experiments to look for the critical
end point (CEP) and the boundaries of the phase
transition are in the plan in the next generation facilities
such as the second stage of the beam energy scan
(BES II) project on RHIC and programs on
NICA/FAIR/J-PARC. In particular, experiments will
be performed in the region of high baryon density
where a promising observation of the signatures of
the phase transformation is being looked forward to.
Ultimately these phenomena have to be understood in

the frame of quantum chromodynamics (QCD). However,
in spite of tremendous theoretical and experimental efforts,
the QCD phase diagram has not been unveiled yet [2,3]. In
particular, at finite chemical potential μB, the situation is
not clear. Lattice QCD simulation is a fundamental tool to
investigate the thermodynamics of QCD matter at vanish-
ing and/or small chemical potential [4–9], but it suffers the
sign problem of the fermion determinant with three colors
at finite baryon chemical potential. Some approximation

methods have been proposed to try to overcome the
problem, however, the region of large chemical potential
and low temperature essentially remains inaccessible
[10–13].
In addition to the lattice QCD simulation, kinds

of quantum field theory approaches and phenomeno-
logical models, such as the Dyson-Schwinger equation
approach [14–19], the Nambu–Jona-Lasinio (NJL)
model [20–31], the PNJL model [32–38], the entangle-
ment extended PNJL model [39–45], and the Polyakov
loop extended quark-meson (PQM) model [46–48], have
been developed to give a complete description of QCD
matter.
Among these models, the PNJL model which takes into

account both the chiral dynamics and (de)confinement
effect at high temperature, gives a good reproduction
of lattice data at vanishing chemical potential. On the
other hand, in the original PNJL model, a “quarkyonic
phase” in which the quarks are confined but the
dynamical chiral symmetry is already restored appear
at high density and finite T [49,50]. In theory, quark
deconfinement should also occur at high density. The
absence of quark deconfinement at low T and high
density in the original PNJL model originates from that
the Polyakov loop potential is extracted from pure
Yang-Mills lattice simulation at vanishing μB. In the
presence of dynamical quarks, the contribution from
the matter sector and its quantum backreaction to the
glue sector should be included. This can realized
by introducing a flavor and chemical potential depen-
dent Polyakov loop potential in the functional
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renormalization group (FRG) approach [51]. With the
incorporation of both the matter and glue dynamics, the
flavor and chemical potential dependent Polyakov loop
potential has been taken in the PQM model [51–53] and
the PNJL model [54,55] to study the full QCD phase
diagram and thermodynamics. The calculations show
that the chiral restoration and deconfinement transition
almost coincide at low T and large μB region [52,55].
All these effective models describe strongly interact-

ing matter based on quark degrees of freedom. Baryons
are not treated in these models. However, as far as we
know, the strongly interacting matter is governed by
hadronic degrees of freedom at low T and small μB.
When we investigate the phase transformation from
nuclear to quark matter, it is practical to describe nuclear
matter based on the hadronic degrees of freedom at low
T and small μB, but quark matter with quark-gluon
degrees of freedom at high T and large μB. The phase
transition boundaries can be derived by constructing an
equilibrium phase transition between hadronic and quark
matter, possibly reached in the interior of compact stars
and in HIC experiments. In the equilibrium transition,
the hadronic and quark phases are connected through the
Gibbs conditions. This approach is widely used in the
description of the phase transition in the neutron star
with a quark core or kaon condensate [56–65]. It is also
generalized to explore the phase transformation from
nuclear to quark matter at finite density and temperature
in HICs [66–76].
In our previous study [73–76], attention was focused

on the isospin asymmetric matter, and some observable
effects on isospin-relevant meson yield ratios were
proposed. As a further study along this line, in this
study we take a chemical potential dependent Polyakov
loop potential in the PNJL model to construct the two-
phase model and explore the full QCD phase diagram.
Compared with the previous results in the original PNJL
model, the calculation presents that the phase transition
lines move towards low densities (small μB). The
transition region is possibly reached in the planed
experiments at the facilities of NICA/FAIR/J-PARC
and the BES II program at RHIC. We also analyze
the transition signatures changing with the μ-dependence
of the Polyakov loop potential. This is another strong
motivation to measure the mixed phase region in HIC
experiments.
The paper is organized as follows. In Sec. II, we describe

briefly the two-phase approach and give the relevant
formulas of the hadron-μPNJL model. In Sec. III, we
present the numerical results about the phase diagram of the
equilibrated phase transition, and analyze the influence of
the μ-dependent Polyakov loop potential on the boundaries
from nuclear to quark matter and transition signatures
possibly observed in the next generation facilities. Finally,
a summary is given in Sec. IV.

II. THE MODELS

A. Description of hadronic matter

The pure hadronic matter at low T and small μB is
described by the nonlinear Walecka-type model. The
Lagrangian is given as

LH ¼
X
N

ψ̄N ½iγμ∂μ −M þ gσσ − gωγμωμ − gργμτ · ρμ�ψN

þ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ − VðσÞ þ 1

2
m2

ωωμω
μ

−
1

4
ωμνω

μν þ 1

2
m2

ρρμ · ρμ −
1

4
ρμν · ρμν; ð1Þ

where ωμν ¼ ∂μων − ∂νωμ, ρμν ≡ ∂μρν − ∂νρμ. In this
model, the interactions between nucleons are mediated
by σ, ω, ρ mesons. The self-interactions of the σ meson,
VðσÞ ¼ 1

3
bðgσσÞ3 þ 1

4
cðgσσÞ4, are included to give the

correct compression modulus, the effective nucleon mass
at nuclear saturation density. The parameter set NLρ is used
in the calculation, which gives a good description of the
properties of nuclear matter. (The details can be found in
Refs. [68–70,73,74,76].)
To describe asymmetric nuclear matter, we define the

baryon and isospin chemical potential as

μHB ¼ ðμp þ μnÞ
2

; μH3 ¼ ðμp − μnÞ: ð2Þ

The asymmetry parameter of nuclear matter is defined as

αH ¼ ðρn − ρpÞ=ðρp þ ρnÞ; ð3Þ

which is determined by the heavy ions taken in experi-
ments. The values of αH are compiled for some heavy-ion
sources in [71], and the largest one is αH ¼ 0.227 in the
238Uþ 238U collision for stable nuclei. For unstable nuclei,
αH can take a larger value.

B. Description of quark matter

To describe pure quark matter at large μB and finite T, we
use the recently developed chemical potential dependent
PNJL model. First, we introduce the original PNJL model,
and then consider the μ-dependent Polyakov loop potential.
The Lagrangian of the standard two-flavor PNJL model is

LQ ¼ q̄ðiγμDμ − m̂0Þqþ G½ðq̄qÞ2 þ ðq̄iγ5~τqÞ2�
− UðΦ½A�; Φ̄½A�; TÞ; ð4Þ

where q denotes the quark fields with two flavors, u
and d, and three colors; m̂0 ¼ diagðmu;mdÞ in flavor
space. The covariant derivative in the Lagrangian is defined
as Dμ ¼ ∂μ − iAμ − iμqδ0μ. The gluon background field
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Aμ ¼ δ0μA0 is supposed to be homogeneous and static, with
A0 ¼ gAα

0
λα

2
, where λα

2
is SUð3Þ color generators.

The effective potential UðΦ½A�; Φ̄½A�; TÞ is expressed in
terms of the traced Polyakov loop Φ ¼ ðTrcLÞ=NC and its
conjugate Φ̄ ¼ ðTrcL†Þ=NC. The Polyakov loop L is a
matrix in color space

Lð~xÞ ¼ P exp

�
i
Z 1

T

0

dτA4ð~x; τÞ
�
; ð5Þ

where A4 ¼ iA0.
The temperature-dependent Polyakov loop effective

potential UðΦ; Φ̄; TÞ proposed in [77] takes the form

UðΦ; Φ̄; TÞ
T4

¼ −
aðTÞ
2

Φ̄Φþ bðTÞ ln½1 − 6Φ̄Φ

þ 4ðΦ̄3 þ Φ3Þ − 3ðΦ̄ΦÞ2�; ð6Þ

where

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

; bðTÞ ¼ b3

�
T0

T

�
3

:

ð7Þ

The parameters ai, bi summarized in Table I are precisely
fitted according to the result of lattice QCD thermodynam-
ics in pure gauge sector.
The parameter T0 ¼ 270 MeV is the confinement-

deconfinement transition temperature in the pure Yang-
Mills theory at vanishing chemical potential [78]. In the
presence of fermions, the quantum backreaction of the
matter sector to the glue sector should be considered, which
leads to a flavor and quark chemical potential dependence
of the transition temperature T0ðNf; μÞ (μ ¼ μu ¼ μd for
symmetric quark matter) [51–55]. By using renormaliza-
tion group theory in [51], the form of T0ðNf; μÞ is proposed
with

T0ðNf; μÞ ¼ Tτe−1=ðα0bðNf;μÞÞ; ð8Þ

where

bðNf; μÞ ¼
11Nc − 2Nf

6π
− β

16Nf

π

μ2

T2
τ
: ð9Þ

The running coupling α0 ¼ 0.304 is fixed at the τ scale
Tτ ¼ 1.770 GeV according to the deconfinement transition

temperature T0 ¼ 270 MeV of pure gauge field with
Nf ¼ 0 and μ ¼ 0. When fermion fields are included,
T0 is rescaled to 208 MeV for 2 flavor and 187 MeV for
2þ 1 flavor at vanishing chemical potential. The parameter
β in Eq. (9) governs the curvature of T0ðμÞ as a function of
quark chemical potential.
With the consideration of the chemical potential depend-

ence of Polyakov loop potential, this improved PNJL
model is named the μPNJL model. We then replace the
T0 with T0ðNf; μÞ in the Polyakov loop potential given in
Eq. (7). The thermodynamical potential of quark matter in
the μPNJL model within the mean field approximation can
be derived then as

Ω ¼ UðΦ̄;Φ; TÞ þ Gðϕu þ ϕdÞ2 − 2

Z
Λ

d3k
ð2πÞ3 3ðEu þ EdÞ

− 2T
X
u;d

Z
d3k
ð2πÞ3 ½lnð1þ 3Φe−ðEi−μiÞ=T

þ 3Φ̄e−2ðEi−μiÞ=T þ e−3ðEi−μiÞ=TÞ�

− 2T
X
u;d

Z
d3k
ð2πÞ3 ½lnð1þ 3Φ̄e−ðEiþμiÞ=T

þ 3Φe−2ðEiþμiÞ=T þ e−3ðEiþμiÞ=TÞ�; ð10Þ

where Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

i

p
is energy-momentum dispersion

relation of quark flavor i, and μi is the corresponding quark
chemical potential.
The dynamical quark masses and quark condensates are

coupled with the following equations:

Mi ¼ m0 − 2Gðϕu þ ϕdÞ; ð11Þ

ϕi ¼ −2Nc

Z
d3k
ð2πÞ3

Mi

Ei
ð1 − niðkÞ − n̄iðkÞÞ; ð12Þ

where niðkÞ and n̄iðkÞ

niðkÞ ¼
Φe−ðEi−μiÞ=T þ 2Φ̄e−2ðEi−μiÞ=T þ e−3ðEi−μiÞ=T

1þ 3Φe−ðEi−μiÞ=T þ 3Φ̄e−2ðEi−μiÞ=T þ e−3ðEi−μiÞ=T ;

ð13Þ

n̄iðkÞ ¼
Φ̄e−ðEiþμiÞ=T þ 2Φe−2ðEiþμiÞ=T þ e−3ðEiþμiÞ=T

1þ 3Φ̄e−ðEiþμiÞ=T þ 3Φe−2ðEiþμiÞ=T þ e−3ðEiþμiÞ=T

ð14Þ

are modified Fermion distribution functions of quark and
antiquark. The values of ϕu, ϕd,Φ and Φ̄ can be determined
by minimizing the thermodynamical potential

∂Ω
∂ϕu

¼ ∂Ω
∂ϕd

¼ ∂Ω
∂Φ ¼ ∂Ω

∂Φ̄ ¼ 0: ð15Þ

TABLE I. Parameters in Polyakov effective potential given in
[77].

a0 a1 a2 b3

3.51 −2.47 15.2 −1.75
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All the thermodynamic quantities relevant to the bulk
properties of quark matter can be obtained from Ω.
Particularly, we note that the pressure and energy density
should be zero in the vacuum. In the calculation a cutoff
Λ is implemented in 3-momentum space for divergent
integrations. Λ ¼ 651 MeV, G ¼ 5.04 GeV−2, mu;d ¼
5.5 MeV will be taken by fitting the experimental values
of pion decay constant fπ ¼ 92.3 MeV and pion mass
mπ ¼ 139.3 MeV [33].
For asymmetric quark matter, the baryon and isospin

chemical potential are defined as μQB ¼ 3
2
ðμu þ μdÞ,

μQ3 ¼ ðμu − μdÞ, respectively. The quark chemical potential
μ in T0ðNf; μÞ can take the mean values of the u, d quark.
The asymmetry parameter of pure quark matter is

αQ ¼ −
ρQ3
ρQB

¼ −
ðρu − ρdÞ

ðρu þ ρdÞ=3
; ð16Þ

where ρQ3 ¼ ðρu − ρdÞ, and ρQB ¼ ðρu þ ρdÞ=3.

C. Transformation from hadronic to quark matter

The above is a separate description of the purely
hadronic and quark matter. When the equilibrium transition
between the hadronic and quark matter forms, the Gibbs’
conditions with the thermal, chemical and mechanical
equilibrium need to be satisfied (a general discussion of
phase transitions in multicomponent systems can be found
in Ref. [57]),

μHB ¼ μQB ; μH3 ¼ μQ3 ; TH ¼ TQ; PH ¼ PQ;

ð17Þ
where μH3 and μQ3 are the isospin chemical potential of the
hadronic and quark phase, separately. In the coexisting
region, the total baryon density is consisted of two parts,
ρB ¼ ð1 − χÞρHB þ χρQB , where χ is the fraction of quark
matter, and 1 − χ is the ratio of nuclear matter. Similarly,
ρ3 ¼ ð1 − χÞρH3 þ χρQ3 is the total isospin density.
As shown in the previous study [66–76], the phase

transition features of asymmetric matter are isospin depen-
dent. Once the species of heavy ions are chosen in HIC
experiments, the asymmetry parameter will be determined.
Due to the isospin conservation in strong interaction, the
global asymmetry parameter α,

α≡ −
ρ3
ρB

¼ −
ð1 − χÞρH3 þ χρQ3
ð1 − χÞρHB þ χρQB

; ð18Þ

for the mixed phase should maintain constant. However, in
the coexisting region the local asymmetry parameters, αH

and αQ, can vary for a different quark fraction χ. It is just
the χ-dependence of αH and αQ that provides the possibility
to test the isospin relevant signals generated in the

hadronization stage in HIC experiments. The details about
the phase transformation from asymmetric nuclear matter
to quark matter will be discussed in the next section. One
can also refer to our previous researches [69,73–76].

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Features of pure quark matter in the μPNJL model

In this subsection, we present some properties of pure
symmetric quark matter in the μPNJL model. First, we
present in Fig. 1 the chemical potential dependence of
T0ðμÞ. Different values of β are used in the calculation for a
tentative study. In the case of β ¼ 0, corresponding to the
standard PNJL model in which only the contribution from
gauge field to Polyakov loop potential is considered,
T0ðμÞ ¼ 208 MeV is a constant, as shown with the solid
line in Fig. 1. The dotted lines show the results for β ≠ 0.
This figure manifests that T0ðμÞ is sensitive to β which in
some degree can be taken as a parameter to reflect the
interaction strength between the matter sector and the glue
sector.
Figure 2 presents the values of Polyakov loopΦ and Φ̄ as

functions of baryon density for various β at T ¼ 20 MeV.
In the original PNJL model (the case β ¼ 0), Φ and Φ̄
always take small values at low temperature. This means
that quarks are confined, even in the high density region
where the chiral symmetry is restored already. This forms
the so-called quarkyonic phase at low T and high density
region. However with the consideration of quark back-
reaction to glue sector, quark confinement-deconfinement
phase transition can occur at low T, as shown by the dotted
lines with different values of β. If we take the standard that
Φ or Φ̄ ¼ 0.5 marks the happening of deconfinement
transition, as adopted in [32,39], we find the transition
density moves to a lower one for a larger β. If we take
β ≫ 1 in the calculation, unphysical results will be derived
with too small deconfined baryon density where the chiral
symmetry is still breaking. For more details about the

FIG. 1. T0ðμÞ as a function of μ with various β from 0 to 1. The
case β ¼ 0 corresponds to the standard PNJL model.
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properties of quark matter, one can refer to [54,55]. In this
study we mainly emphasize the transformation from
hadronic to quark matter at intermediate densities in the
two-phase model.

B. Transition boundaries from hadronic to quark
matter in the two-phase model with different β

In this part we focus on the phase transition from
asymmetric nuclear to quark matter in the two-phase
model. Since the largest asymmetry parameter that can
be reached for stable nuclei is α ¼ 0.227 in 238Uþ 238U
collision, we choose α ¼ 0.2 and different β to demonstrate
the features of the phase transition of asymmetric matter.
As a matter of fact, α can take a larger value for neutron-
rich unstable nuclei.
The equilibrium phase transition is constructed based on

Gibbs criteria given in Eq. (17) and the isospin charge
conservation given in Eq. (18) for strong interaction.
Figures 3 and 4 show the boundaries of hadron-quark
transition in the T − ρB and T − μB diagram with a series of
β. For each value of β, the curves with the same color mark
the boundaries of purely hadronic matter (at low densities)
and purely quark matter (at high densities). For the
equilibrium transition derived with the original PNJL
model (the case β ¼ 0), the transition lines as functions
of ρB and μB vary nonmonotonously with the increase of T.
This feature maintains when a weak interaction between
matter sector and glue sector is included, e.g., in the case of
β ¼ 0.2 and 0.4. But the transition lines as functions of ρB
and μB decrease monotonously when β ≥ 0.6 is taken.
These features indicate that the backreaction of the matter
sector to the glue sector is crucial and indispensable for the
hadron-quark phase transition.
In Figs. 3 and 4, the region between the curves with the

same color for each β is the hadron-quark coexisting phase.
The transition in the coexisting phase is the first order
because of the discontinuity of baryon density in the two
phases. Figures 3 and 4 also present that, with the increase

of β, the transition boundaries move towards smaller ρB and
μB. In particular, the end point of the phase transition moves
also towards lower T with the increase of β. The main
reason is that the confinement-deconfinement transition
temperature T0ðμÞ decreases to a lower value when a larger
parameter of β is taken, as shown in Fig. 1.
To further understand the effect of β on the phase

transition, we plot the P − μB phase diagram of symmetric
nuclear and quark matter in Fig. 5. The solid and dashed
curves are the pressure of pure hadronic and quark matter,
respectively. The solid dots indicate the locations of the
hadron-quark phase transition where the Gibbs criteria are
fulfilled at different conditions. For a given temperature, we
can see that the phase transition (solid dot) moves to a
smaller μB with the increase of β. The reason is the pressure
of quark matter increases more quickly when a larger β is
taken, and then the mechanical equilibrium can be reached

FIG. 2. Polyakov loop Φ and Φ̄ as functions of baryon density
ρB for different β at T ¼ 20 MeV.

FIG. 4. Phase diagram of the hadron-quark phase transition in
the T-μB plane for different β with the asymmetry parameter
α ¼ 0.2.

FIG. 3. Phase diagram of the hadron-quark phase transition in
the T-ρB plane for different β with the asymmetry parameter
α ¼ 0.2.
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at a smaller μB. On the other hand, for a given β, with the
increase of temperature the phase transition also moves
towards a smaller μB, since the increase of the pressure of
quark matter is faster than that of hadronic matter. The
intersection point (solid dot) will finally vanish when the
temperature is higher than a critical value beyond which the
pressure of quark phase will be always higher than that of
the hadronic phase, then the phase equilibrium cannot be
reached any more. Therefore, there is an end point and the
mixed phase finally disappears at high temperature in the
two-phase model.
Similar results can be obtained for asymmetric matter. In

addition, we note that there is a critical value of β ¼ 0.89.
For the case β > 0.89, the equilibrium transition cannot be
realized for α ¼ 0.2 in the two-phase model. The meas-
urement of the mixed phase in HIC experiments possibly
provides relevant information on the β parameter, i.e. on the
μ-dependence of the Polyakov loop potential.
Furthermore, we give a comparison of the phase tran-

sition in the μPNJL model and the two-phase model. The
confinement-deconfinement phase transition can be real-
ized at low T in the μPNJL model, but the threshold
depends on the parameter β, which reflects the interaction
strength of the matter sector to the glue sector. Compared
with the two-phase model, if a smaller β is taken, the onset
density of deconfinement phase transition in the μPNJL
model will be larger than that in the two-phase model. But
the phase transition line moves towards lower densities
with the increase of β. The onset density can be even
smaller than that of the two-phase model if β is large
enough.
For the case β ¼ 0.4 or smaller, when the hadron-quark

phase transition happens in the two-phase model as shown
in Fig. 3, the values of Φ and Φ̄ in the quark phase are still
smaller than 0.5 as shown in Fig. 2, it seems that the two-
phase model predicts a transition to confined quark matter.

The appearance of such a behavior is attributed to the quark
model. We know that in the original PNJL model the
confinement-deconfinement phase transition cannot be
realized at very low T because Φ and Φ̄ always take small
values. This is one of the most important reasons that
motivate us to take the μPNJL model. However, even in the
μPNJL model with β ¼ 0.4 or smaller, the confinement-
deconfinement phase transition at low T can only happen at
very high baryon number densities. This explains why it
seems that the two-phase model predicts a transition to
confined quark matter for a small β in the two-phase model.
In principle, the two-phase model describes the phase
equilibrium where quarks have deconfined. From this point
of view, in the two-phase model the results derived with
β ¼ 0.4 or smaller are unphysical. Therefore, it is necessary
to introduce the μ-dependent T0 and take a value of β larger
than 0.4, which also means the backreaction of matter to
glue sector is strong at finite densities.
We also note that the two kinds of phase transitions are

constructed in different methods. The two-phase model
describes the equilibrium phase transition possibly reached
during the formation of quark matter in heavy-ion colli-
sions. The deconfinement phase transition in the PNJL or
μPNJL quark model is derived based on the quark-gluon
degrees of freedom. To what degree the phase transition
from deconfinement to confinement in the quark model can
be identified with the formation of hadronic matter is still
not clear. For example, there exists the so-called quarkyonic
phase in the PNJL model where the chiral symmetry has
restored but quarks are still confined at low T, and the
“coincidence problem” exists at high T. We emphasize that
related discussions are still open issues. The experiments in
the future will provide us more information about the phase
transition.

C. Effects of isospin asymmetry

Now we discuss the influence of asymmetry parameter α
on the phase diagram. Different values of α correspond to
different kinds of heavy-ion sources chosen in HIC experi-
ments. Considering the unstable nuclei, α can take a value
larger than 0.227. Therefore, we take the values of α
between 0 and 0.35 in the calculation to show the isospin
effect.
We plot the phase diagram of equilibrium transition from

asymmetric hadronic to quark matter in Figs. 6 and 7 in the
two-phase model. In the two figures, the upper panels are
the results of the original PNJL model. The lower panels are
the results of the μ-dependent PNJL model with the
contribution of both matter sector and glue sector with
β ¼ 0.8. In addition to the conclusion derived in the last
subsection, the two figures show that the onset densities
(chemical potentials) move to smaller ones with the
increase of asymmetry parameter α, and the corresponding
coexisting region enlarges. On the other hand, for each
value of α the coexisting region shrinks greatly at high

FIG. 5. Pressure of symmetric hadronic (solid) and quark
pressure (dashed) as functions of baryon chemical potential at
T ¼ 50, 100 and 150 MeV for several β.
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temperature. We note that for symmetric matter (the case
α ¼ 0), only one transition line but not transition region
exists in the T − μB diagram.
To show more clearly how the asymmetry parameter α

affects the phase transition near the end point, we present in
Fig. 8 the details of the T − ρB phase diagram in the high-
temperature region. The upper panels of Fig. 8 are the
results of symmetric matter with α ¼ 0, and the middle and
lower panels are the results of asymmetric matter with α ¼
0.2 and 0.3, respectively. The upper panels shows that the
boundaries of χ ¼ 0 and χ ¼ 1 have the same end point at
high temperature for symmetric matter. However, for
asymmetric matter, the locations of the end points for χ ¼
0 and χ ¼ 1 are slightly different for asymmetric matter, as
shown with the solid dots in the middle panels for α ¼ 0.2
and in the lower panels for α ¼ 0.3. In Figs. 6 and 7
(including also the relevant phase diagram in our previous
study [73–76]) only the boundaries with χ ¼ 0 and χ ¼ 1

are plotted. As a matter of fact, we can find an end point for
each value of χ in the region 0 < χ < 1. For a given χ in the
calculation, before the end point is reached, ρHB < ρQB can
be derived for the phase equilibrium in the mixed phase.
The two curves of T − ρHB and T − ρQB intersect at one point
(the end point) at high T. Therefore, there exists a critical
end point for each χ for asymmetric matter. It means that
the end point is χ dependent for asymmetric matter. If these
end points for different χ are connected, a short phase
transition line forms as shown with the red bubbles in the
middle and lower panels in Fig. 8.

D. Isospin distillation effect in the mixed phase and
observables in the hadronization

Now we discuss the isospin distillation effect in the
hadron-quark coexisting phase of asymmetric matter. It is
related to the isospin-relevant observables in the hadroni-
zation process. In the two-phase model, the asymmetry
parameter α is globally conserved in the mixed phase, but
the local asymmetry parameter αH and αQ can vary with the
changing of quark fraction χ during the phase transition.
We fix α ¼ 0.2 in the following calculation to explore the
isospin distillation effect with different β. We note that the
results for β > 0.4 are required with the presupposition that
the phase transition is from nuclear matter to deconfined
quark matter.
Figure 9 shows the local asymmetry parameter αQ as a

function of T at the beginning of the transition with χ ¼
0.01 for different values of β. This figure demonstrates that
αQ decreases with the increase of β. This behavior is
relevant to the symmetry energy of both nuclear and quark
matter. Our previous calculation [73] shows that the
symmetry energy of nuclear matter increases quickly with
the rising baryon density, but that of quark matter increases
slightly. When a larger β is taken to construct the
equilibrium transition, the phase equilibrium moves to
smaller ρB and μB as shown in Figs. 3 and 4. Then the

FIG. 6. Phase diagrams of the hadron-quark phase transition in
the T-ρB plane with various asymmetry parameters for β ¼ 0
(upper panel) and β ¼ 0.8 (lower panel).

FIG. 7. Phase diagrams of the hadron-quark phase transition in
the T-μB plane with various asymmetry parameters for β ¼ 0
(upper panel) and β ¼ 0.8 (lower panel).

FIG. 8. Critical behavior of the hadron-quark phase transition
for symmetric and asymmetric matter with different α, β.
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difference of the symmetry energy between nuclear and
quark matter at low density (small μB) is relatively smaller,
which results in the reduction of αQ. For more details, one
can refer to [73].
Figure 9 also presents that for each β there is an

inflection point of αQ in the region of high T (correspond-
ing to low ρB and small μB). This behavior reflects the
relations between dynamical quark mass and u, d quark
chemical potential. To see more clearly this phenomenon,
we plot in Fig. 10 the evolution curves of the dynamical
quark mass and u, d quark chemical potential (upper panel)
as well as the ratio of ρd=ρu (lower panel), as functions of
temperature in the mixed phase with a fixed χ ¼ 0.01.
Figure 10 shows that the dynamical quark mass in the
equilibrium transition increases with the rising T (towards
low ρB and small μB). It implies that the chiral dynamics is
affected by both temperature and density (chemical

potential). From Fig. 10 we can also see that both u and
d quark chemical potentials decrease with the rising T.
Because μu is smaller than μd, the intersection of the
curves of μu and quark mass M appear at a relatively
lower T than that of μd and M. If the system is a simple
fermion system with the fermion distribution function
f ¼ 1=ð1þ eðE−μÞ=TÞ, ρu will sharply decrease when μu
is smaller than the dynamical quark mass M at low T.
Correspondingly, an inflection point of αQ [with the
definition of αQ ¼ ðρd − ρuÞ=ðρu þ ρdÞ=3] at the intersec-
tion point of μu and M should appear. However, such a
behavior is not seen in Fig. 10. As a matter of fact, for
β ¼ 0.8 (0), the fast increase of ρd=ρu occurs for temper-
atures larger (smaller) than the one corresponding to the
crossing point of μu and M. The deviation of the inflection
point from μu ¼ M shows that the quark system cannot be
taken as a simple fermion system. There exists complex
interactions as indicated by the quark distribution function
given in Eq. (13). Besides μ and M, Eq. (13) indicates that
the quark distribution function is also relevant to Φ and Φ̄
which are affected by the temperature and quark chemical
potential (i.e., by the parameter β). On the other hand, since
the temperature at the inflection point is in the region about
(150–165) MeV, the thermal excitation to some degree
alleviates the fast decrease of the quark distribution
function at the crossing point of μu ¼ M. Therefore, the
location of the inflection point is much more complex than
that in a simple fermion system.
If the phase equilibrium can be reached in HIC experi-

ments, the generated quarks will recombine into hadrons in
the later hadronization process, and a sudden increase of
isospin relevant meson yield ratio such as π−=πþ, K0=Kþ
possibly be observed since the isospin enrichment in the
quark phase is well present (in particular in the initial part
of the mixed phase). The strength of these signals depends
on the value of αQ (or ρd=ρu) which is relevant to the
parameter β in the μPNJL model. Compared with the
original PNJL model, the introduction of μ-dependent
Polyakov loop potential (with β > 0.4) will weaken the
isospin relevant signals at high T, leading to a relatively
smaller ratio of π−=πþ,K0=Kþ. However, the isospin effect
is still distinct at low T as demonstrated in Fig. 9 and the
lower panel of Fig. 10. There is also an inflection point of
these isospin relevant signals at high temperature as
indicated in Figs. 9 and 10. For more discussion about
the phase transition signatures in the two-phase model, one
can refer to [79] prepared for the NICA white paper.
Due to the isospin conservation during the phase

transition with strong interaction, the global isospin asym-
metry parameter α given by Eq. (18) for the mixed phase
includes the contribution from both nuclear and quark
component. For a given heavy ion source in HIC experi-
ments, i.e., a given α, if the local asymmetry parameter αQ

is larger when the equilibrium is reached, the local
asymmetry parameter αH will be reduced, and vice versa.

FIG. 9. Local isospin asymmetry parameter αQ in the mixed
phase with quark fraction χ ¼ 0.01 as a function of temperature
for various β with the global asymmetry parameter α ¼ 0.2.

FIG. 10. (upper panel) u, d quark chemical potentials and
dynamical quark mass as well as ρd=ρu (lower panel) as functions
of T inside the mixed phase at χ ¼ 0.01 with α ¼ 0.2 for β ¼ 0
and β ¼ 0.8, respectively.
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The value of αQ reached in the coexisting phase
determines the production of isospin-rich meson reso-
nances and subsequent decays in the hadronization
process. Simultaneously, the value of αH of the nuclear
component determines the emission of neutron-rich
clusters in the collision. Therefore, the ratio of isospin
relevant meson (e.g., π−=πþ) and neutron-rich cluster
production have an opposite tendency when the mixed
phase forms in experiments. In the hadron-PNJL model,
the emission of neutron-rich cluster is reduced because of
the larger isospin trapping (larger αQ) in the quark
component of the mixed phase. But in the hadron-
μPNJL model with β > 0.4, the isospin asymmetry of
u, d quark decreases greatly at high temperature.
Correspondingly, the neutron-rich clusters will increase
in comparison with the case of the hadron-PNJL model.
In fact, in the two-phase model, only the results given by
β > 0.4 fulfill the requirement that the phase transition is
from nuclear matter to deconfined quark matter as
discussed in Sec. III B. Therefore, a combination of
the isospin relevant observables including both isospin
mesons and neutron-rich clusters in HIC experiments can
be used to constrain the value of β. What is more, a
detailed analysis of the generated particles in the trans-
port theory for heavy ion collision is deserving for
further study.
From Fig. 9 we can also see that the value of αQ is T

dependent, which means the strength of isospin relevant
signatures depends on the beam energy in experiments.
To look for the location of the critical end point and the
critical behaviors, the second stage of the beam energy
scan (BES II) will be performed on RHIC soon. Relevant
experiments at intermediate densities is also in the plan
on NICA/FAIR/J-PACK. In particular, J-PACK experi-
ments will focus on the low-T and high-density region.
Therefore, the beam energy scan will be performed in a
wide energy range and the relevant signals can be
measured in the next generation facilities. Through
mapping the isospin effects of generated hadrons it
provides an optional method to explore the transition
boundaries from nuclear to quark matter.
We also note that the vector interactions between

quarks are not included in this study. We have discussed
elaborately the role of vector interactions on the phase
transition in our previous research [75]. The calculation
shows that with the inclusion of isoscalar-vector inter-
action the transition will move towards higher densities
(chemical potential). Then the asymmetry parameter αQ

in the mixed phase will be enhanced due to the
enlargement of the imbalance of symmetry energy in
the two phases. For more details, one can refer
to [73,76].

IV. SUMMARY

We have studied the properties of quark matter in the
improved PNJL model with the chemical potential depen-
dent Polyakov loop potential which reflects to some degree
the backreaction of the matter sector to the glue sector.
Compared with the original PNJL model, a superiority of
the μPNJL model is that it can effectively describe the
confinement-deconfinement transition at low T and high
density region.
Furthermore, we constructed the hadron-μPNJL two-

phase model, and use it to explore the equilibrium transition
from asymmetric nuclear matter to quark matter. We
derived the boundaries of the phase transition and analyzed
the isospin-relevant signatures deduced from the two-phase
model. Compared with the hadron-PNJL model, the cal-
culation shows that the transition curves move to lower
density (smaller chemical potential) when the μ-dependent
Polyakov loop potential is taken. Correspondingly, the
isospin asymmetry in the quark component decreases at
high T for a larger β, which leads to a reduced ratio of
π−=πþ, K0=Kþ, but these observables are not sensitive to β
at low T. In the future, good data on the location of the
mixed phase observed in HIC experiments will give
valuable information on the μ-dependence of the
Polyakov loop potential. In particular, we suggest to
measure the isospin-relevant signatures in the next gen-
eration accelerators such as NICA, FAIR and J-PACK, as
well as the BES II program on RHIC, which would be
helpful to explore the strongly interacting matter. In
addition, the research deserves to be extended to investigate
the evolution of the protoneutron star, which will be done as
a further study.
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