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We consider a new form of analytical perturbation theory expansion in the massless SU(N,.) theory, for
the nonsinglet part of the e ¢~ -annihilation to hadrons Adler function D" and of the Bjorken sum rule of
the polarized lepton-hadron deep-inelastic scattering CH?. and demonstrate its validity at the O(a?})-level
at least. It is a two-fold series in powers of the conformal anomaly and of SU(N,.) coupling a,. Explicit
expressions are obtained for the {}-expanded perturbation coefficients at O(a}) level in MS scheme, for
both considered physical quantities. Comparisons of the terms in the {f}-expanded coefficients are made
with the corresponding terms obtained by using extra gluino degrees of freedom, or skeleton-motivated
expansion, or Rs-scheme motivated expansion in the Principle of Maximal Conformality. Relations
between terms of the {f}-expansion for the D"S- and C,Lf{p -functions, which follow from the conformal

symmetry limit and its violation, are presented. The relevance to the possible new analyses of the

experimental data for the Adler function and Bjorken sum rule is discussed.
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It was demonstrated in [1] that, in the SU(N ) model of
strong interactions, the generalized MS scheme Crewther
relation between the analytically evaluated perturbative
expression for the nonsinglet (ns) contributions to the
Adler function and the Bjorken sum rule of the polarized
lepton-hadron deep-inelastic scattering (DIS) can be writ-
ten as

Dns(as)cgsjp(as) =1+ Acsb(as)’ (1)

where Ay, ~ a2, a; = a,(Q*)/x, and Q? is the physical
scale of both D™ and Cfsj” . The unity on the rhs
corresponds to the original Crewther relation, derived in
[2] in the massless quark-parton model by applying the
operator product expansion method to the z° — yy decay
AV V-triangle amplitude in the conformal symmetry (CS)
limit. It was shown in [1,3] that in MS scheme the CS-
breaking (CSB) term A, can be presented as a product of
the conformal anomaly f(ay)/a, and a polynomial P(a;)
(~a,). In MS scheme the renormalization group (RG)
p-function is defined as

Oa,(u? A
pla) = 250 — 50y
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When ~a? contributions to D" and Cff” [4] are included,
the validity of the generalized Crewther relation (1) [1] at
this level gets confirmed [4]. The O(a?) expression for the
A p-term, fixed in [1], is proportional to the two-loop
expressions of the conformal anomaly, multiplied by a
polynomial P(a,) fixed in MS scheme. The term at a2 in
P(a,) contains three SU(N ) group monomials C%, CC,,
CrTpny of total power 2, composed of the Casimir
operators Cr, C, and the flavor-dependent factor Tpny
(with Tp = 1/2).

The expression for A, obtained in [4] is proportional to
the three-loop expression of the conformal anomaly,
multiplied by the same polynomial P(ay), which has the
third coefficient (at ) composed of six SU(N,) group
monomials C3, C3C,, CpC3, Ci(Tpns), Cp(Tpng)?,
CrCa(Tpny) of total power 3. In [5,6] concrete theoretical
arguments were presented showing that in MS scheme the
conformal anomaly is factorized in all orders of perturba-
tion theory for the A, ,-term in Eq. (1), and therefore one
should have

A, = (ﬁ(aas))f’(ax) _ (ﬂ((ZS)

s

)ZKmaT. (2)

m>1
In [7] a new form of the MS-scheme expression for the

CSB term (2) of the generalized Crewther relation was
proposed. It is written as the two-fold series
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Acpla,) =" </3(%:)>HP,,(%)
Yy <ﬁ(a‘”> "k mCsCyar. (3)

n>1 r>1

Here, r = k+m with k > 1 and m > 0, while the coef-
ficients P\ [k, m] contain rational numbers and transcen-
dental Riemann {,;,; functions with / > 1. The SU(N )
monomials in Eq. (3) do not contain terms proportional to
Tpny, in contrast to the less detailed expression in Eq. (2)
where the coefficients K, (m > 2) do depend on Tpny (see
[1,4] for explicit O(a?) and O(a}) results). In the postu-
lated representation (3) the dependence on T'pn; appears in
the powers of S-function. The validity and unambiguity of
Eq. (3) was checked in [7] at the O(a}) level.

One can ask whether it is p0351ble to formulate the
analogous two-fold MS-scheme perturbation expansion for
|
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D™ and CHP separately, at least at the analytically
available [4] O(a?) level. Here, we present the positive
answer to this question, and then discuss the main conse-
quences of this new QCD resummation procedure. In this
procedure the expansions for D" (a,) and Chi" (a,) take the
following form:

where for 0 < n < 3, at the O(af) level, the polynomials
D,(a,) and C,(ay) are defined as

4=n r abcd jJabed abed jabcd
, dabed g debed g
Dy(a,) = aiy_ DYlk.r = HCECT* + aldyg (Dé‘” [F.A) At DY P ”f>’ (6)
=1 k=1 dr dr
4—n r abcd jabed abcd jabced
’ decdy dyeld
Culag) =D a5 > Ok, r = KCECT* + até, (cé‘” FA A G, F]%nf)- (7)
r=1 k=1 R R

The double sum expressions for Eqs. (6) and (7) are
motivated by the form for the polynomials P,(a,) in
Eq. (3) introduced in [7]. In SU(N,) theory and MS
scheme they have the unambiguous form determined by
the system of linear equations, analogous to the system
presented in [7]. The coefficients with the structures
dsbedgabed [d, and d4b¢4d3P°d/dy appear at the O(aj)
level [4]. These structures were defined first in [8],
where the four-loop coefficient of the QCD p-function
|

3 3 1 69
Do(as) = _C2 + — CFCA:|Cl + |:_—C

4 32 16 128
4157 3509
— 4z 4 [ =

* [(2048 * 8C3) r (1536 8 T

30863 147, 165 s, (31
B (36864 T8 CS) Creat <R 4

13 5 dabcddabcd
+ (‘E—Q +§Cs) u”f)}a?,

Cpas + |:

dg

165 9181
55 & )C}CA + <— +

I
was evaluated. Since (d%°dd<d/dg)a} terms in (6) and
(7) are proportional to Tpny, which also enters the f-

coefficient of the QCD pS-function, one may propose to
move them into D;(a,)- and C,(a,)-polynomials. We
explain below that such a redefinition of Egs. (4) and
(5) is not supported by the QED limit. Thus, the following
MS-scheme O(a%™") expressions for D, (a,) (0 < n < 3)
are valid:

01 33\ 53 )
(ﬁ EC3>CFCA <192+ C3>CFC ]
299

165 S
2608 " 1285 T CS>C Ca

5 dabcddabcd
Csy— ZC5> IF A

dg
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33 111 83
D, (a,) = (‘g*’ 353) Cras + {( o1 " 1285 — 1555) Cr— <32 + 453 55) CFCA:| ag
758 9 165 315 3 3737 3433 315 2
+ {<ﬁ+1_66:3_7§5 +TC7>CF+<W_6—4C —53 Cs——C7>C Cy
2695 1987 9 , 175 105 )
" (384 6r BT AS Tt €7> réa } o
151 4159 2997 375
Dz(as) = <?— 19&:3) CFas + |:<_ﬁ_ C3 +27§3 > é’ )C%;
14615 39 9., 185
(256+16€3 5%~ Cs) CFCA:| (10)
6131 203
Ds(a,) = <_Y+ G+ 45§5> Cras. (11)
Analogous expressions for the polynomials in (5) read:
3 21 , 1 3 5 125 33 ) 53 33 5] 5
Colas) = =7 Cras + {32(7 16CFCA]“ + [ 128 F T (256 16C*>C Cat (192 6% )CFCA “
4823 3\ , (605 469 165 11071695 165\ ,
N K 2048 8C3>CF+ (384+ st ‘:5>C +< 4608 128 55>C €
30863 147 165 3 dgbed gabed
et 3 4 A
+ (36864 285~ C5> CrCat < 16 +4C3 g Cs) dg
13 5 danCdd?;de .
+ (E‘FC%—E%)TW dys, (12)
3 349 5 155 9
Ci(ay) = ECFas + [ (@‘bﬁfs) (96 +7 C Cs) CFCA:| as
997 481 145 85801 169 365 105
*K@ 25T §>CF+<_M_ﬁ§3+RCS+ 3 C>C Ca
931 955 895 105 >
i tully SN 1
+ <768 19253 % {s — 16 —& >CFC :|aw (13)
B 151 261 3151 43 3., 15 5
C2(as) - < 24>CFas+ |:<64 §3> <256 +16C3+2§3 4 CS)CFCA:| as, (14)
605
C3(as) = %CFas- (15)

The singlet (si) corrections to the Adler function and to
the Bjorken sum rule should be considered separately (see
[9,10]). In the Adler function they appear first in O(a?})
[11-13] and are known up to a? [14]. For the Bjorken sum
rule they start to contribute at O(a?) [15,16]. For ny = 3,6
the si contributions to both quantities are equal to zero. For
the cases of ny = 4, 5 they are significantly smaller then the
ns-effects.

We explain how the results (8)—(11) and (12)—(15) were
obtained. The coefficients f3, f;, #, of the RG p-function

on the rhs of (4) and (5) are known in terms of powers of
Cr, C4 and Tpny. The fy-term was evaluated in [17,18], ;

in [19-21], ﬁ2 in MS in [22,23]. To determine the

coefficients D[k, m], C;[k,m] in (6) and (7) the lhs of
Egs. (4) and (5) is expressed as

D" (ay) =1+d a,+dya? +dsal + dyat + O(a3),  (16)

Bjp
Cn s

(a,) =1+cia,+cra5 + c3a3 + cuai + 0(a3),  (17)
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and the MS-coefficients expanded in color structures of the
SU(N,) group. The coefficients d,—d, are known from the
works [24,25], [11] and [4], correspondingly, while ¢;—c,4
were evaluated in [26,27], [28] and [4], respectively.
Following the logic of [7], we used in Eq. (4) on the lhs
the expansion (16), and on the rhs the expansions (6) for
D, (a,) and the expansions in terms of Cf, C4 and Tgn of
the RG f-function coefficients. Equating the expressions at
all monomials in Cr, C4 and Tpn; at each power of a, on
both sides of Eq. (4) leads to a complete system of 22
linear equations, analogous to the (smaller) system in [7].
Its unique solution determines the polynomials D, (a;)
(0 <n <3)in Egs. (8)—(11). To get the results (12)—(15),
the analogous procedure is applied to lorcd (ay). As a Cross-
check we reproduced the results of [7] for Eq. 3).!

In the CS limit, i.e., when p—0 in Egs. (4) and (5), we
get (cf. an analogous identity in [10]):

(14 Do(a,(Q%)) x (1 + Co(a,(Q%) = 1. (18)

where Dg(ay) and Cy(ay) are given in (8) and (12). The
terms proportional to d$*°d3>*? /dy and n;d$<d<d | d,
|

3 3
alol=3¢r = (-5Ch 4

32 CFCA)

6

@M—(ﬁ—%QQM aHN—LégC (gé

8 128
[ 111 83
;1] = <_6—4_12C3+15C5>C2 <32+4§3——Cs

1
d30.1] = (2—3@)@, 2] = (3— I%)CF,

8 6

2048
B (30863 147

1536 128

165 s, (3
36864 128 ¢5>ch (—

16 4

PHYSICAL REVIEW D 94, 014006 (2016)

in (8) and (12), cancel out in Eq. (18). This identity is an
extension of the Crewther relation, derived in [2] in the
Born approximation.

We can now fix the {f}-expansion structure (proposed in
[29]) of the coefficients d; of D",

dy = Pods[1] + (0], (19)

dy = Bid5[2] + p1d;3]0, 1] + Pods[1] + d5]0], (20)

dy = fda[3] + P1Pods[1. 1] + prd4[0.0. 1]
+ B5ds[2] + P1d4[0,1] + Poda[1] 4 d4[0]. (21)

In [29], this was performed up to O(a3}) level only, with the
SU(N.) model supplemented by a multiplet of gluino
degrees of freedom of SUSY QCD.

Applying the two-fold expansion (4) and the SU(N,)
results (8)—(11), we obtain all {}-expanded terms in d,, d;
and even d; MS-scheme coefficients:

53
(%) 2CA—<192‘|' C3>CF }

Jercd)

4157 3509 73 165 9181 299 165
< Cs) (+C Cs>C3CA <+C3+ C>C2C2

4608 128 64

dabcddabcd 13 dabcddabcd
—53—ZC5)A+ (——_53 Cﬁ)inf,

dg dg

785 9 165 315 3737 3433 99 615 315
dy[1] = (————¢3+—45 ——47)6%— (———c3+—4%+—cs—?47>C%CA

128 16 2 4

144

64 4 16

2695 1987 99, 175 105
<384 e I R 47)ch ,
———IZC + 15¢ C2 83+ g ——C CrC
3 5 3 " 43 5 1CrCay,

_ 415 2997 2 L 375 2 14615 39 9., 135
= < YR {3 +2783 + Cs)c ( 256 T 16(:3 —25.: Cs CrCy,

3 151 6131 203

0 0, 1 (@ 353) Cr, d4[11 1} = (T—38§3)CF» d4[3] = (Y_TQ —45€5> Cr. (22)

Note that Eq. (15) in [7] contains a misprint. The C. C2 a? contribution to P (a,), defined in Eq. (3), should contain an extra 3/4 factor.
*The validity of the O(a3) of the {}-expansion results of [29] was confirmed recently in [30].
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The {f}-expanded coefficients of Chi” have the same
structure as Eqgs. (19)-(21):
cp = ¢ [0], ¢2 = Poca[l] + ¢2[0], (23)

3 = f§es[2] + Pies[0. 1] + Bocs[1] + ¢5[0],  (24)
|

3 21 1
01[0] =——Cp, 02[0] = <3_2C% _ECFCA>7

3 3 125 33
1]=-2cp, 0= |—C3 4 (222
elll==3Cr  alll= |~ 356+ (o - 1o
349 5 155 9 5
c3[l] = <192+4C3) (¥+ {3 — §>CFCA,
3 115
03[071]:__CF’ C3[2]:_ﬁCF9

-2%3)C

2048 8 384 128

-

4823 3 605 469 165
+ {3 +3—255

)C}CA + (
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¢y = Bica[3] + PiPocall. 1] + Bacy0,0, 1]
+ BFea2] + Breal0. 1] + oca[1] + cal0].  (25)

Using the two-fold series (5) and Egs.
we get

(12)-(15),

53 33
2 2
CiC, + (192+ & )CFC }

11071 695 165
—CS> C2 C2

4608 128

30863 147 16 3 3 5 dc;?bcddxhcd 13 5 d%hcdd%hcd
+ <36864+128§3_ Cs)CFCA‘f' < 16+4§3+ Cs) dr + +C3— 55 dr ngl,
997 481 145 85801 169 365 105
1] = - 3 e T 2
al1] K TRV RS ¢5>C (4608 T T §7>C Ca

768 192°° 96

349 5
4]0, 1] = (@ 153)

931 955, 895 105
- <— 9,53 " o9c 65— C7>CF A}

96

261 87 3151 43 3
04[2]_K— —a) <—+—c3+—c%—

64 256 16 2
3 115
64[0’0’ I]Z_ECFv C4[1,1]:—ECF’
605
64[3] - _gcls‘

Note that specific contributions to d5 and c; differ from
those given in [7,10,29]. The results for the {/}-expansion
of d, and ¢, are new.

As mentioned, formally it is possible to rewrite the
a$8,0(de?dsb<d /dg)n; contribution to Egs. (6) and (7),

4 dabcddabcd
at6,0DV[F. F]FT”J‘
R
1C, 3
>at (5,,0 i DY [F. F] +5n1T—FD§ [F, F])
dubcddabcd
F dRF ’ (27)

where Dé4) [F,F] = D(l4) [F,F]. This leads to rearrange-
ments of the af(d%’?d ¢ /dy) terms in (8) between the a}

155 9
( 15~ Cs)CFCA,

15

_€5> CFCA:|

(26)

|
terms of Egs. (8) and (9), and to the redefinitions of the
terms d4[0] and d4[1] in the {fB}-expansion of the coef-
ficient d,

4 dahcddabcd
dj*4[0] = dy[0) = D" [F. F]=—-—n;
R
11 @) CA d%bcdd%bwl
+—D\'|F,F|——————, 28
4 0 [ ] TFdR ( )
dabcddabcd
djoi[1] = dy[1] = 3D\ [F. F] =~ (29)

TF dR '

where D{V[F, F] = D\ [F.F] = (=13/16 — ¢ + 5¢5/2).
This gives the n -independent term d4'?[0]. However, this
rearrangement is not supported by the QED limit, which
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should be valid in the case of theoretically self-consistent
definition of the new resummed representations of
Eq. (4) and of the related {f}-expanded expressions
for the coefficients d;. This QED limit is realized by
fixing Cy =0, Tp =1, di?*dd®*/dr =1 and n; = N,
where N is the number of leptons. In QED the remaining
Df) )[F Fl-contribution arises from the five-loop
Feynman diagram with light-by-light scattering internal
subgraph, contributing to the photon vacuum polarization
function. However, this subgraph is convergent and does
not give extra fj-dependent (or N-dependent) contribu-
tion to the coefficient dy. Therefore, we prefer the
definitions of Eqgs. (6) and (7) without applying to them
the rearrangements of Eq. (27). Note also that d?¢dd4bed
structure is contributing the n} part of the four-loop
coefficient of the RG f-function in SU(N,.) theory [8,31],
which is manifesting itself in Eqgs. (6) and (7) only
starting from the unknown a3 corrections. This is an
extra argument which disfavors the a? rearrangements
(28) and (29).

We now discuss common features and differences
between the results for the {f}-expanded coefficients d;
and c;, obtained with various perturbative approaches for
D" (ay) and Ch” (ay). Consider the {}-expansion results
obtained with (I) the {3}-expansion formalism [29] (cf. also
[7,10]), (I) the {f}-expansion formalism based on the
resummed Egs. (4) and (5) proposed here, (III) skeleton-
motivated expansion [32] (Sec. IV there), and (IV) Rjs-
scheme motivated expansion of the Principle of Maximal
Conformality [9,33,34].

In all four approaches the leading f3y-terms d,,[n — 1]p3!
(and ¢, [n — 1]2~") coincide. They coincide also with the
leading f,-terms in the fj-expansion of [35], and with the
corresponding terms of the large f-extension [36] of
Brodsky-Lepage-Mackenzie (BLM) approach [37]. This
feature is a consequence of a direct relation of these terms
with the renormalon contributions [1] to the expressions for
D" (a,) and CH" (ay).

Further, the approaches I-IV generate the same
structure of {f}-expansion of the coefficients d; and c;,
cf. Egs. (19)—(21) and Egs. (23)-(25).

However, specific coefficients in the {f}-expanded
expressions of d; and c; obtained here do not coincide
with those obtained in [7,10,29]. Only the C%-terms
coincide. The latter is a consequence of realization of
the CS and therefore of the Crewther relation of Eq. (18) in
the perturbative quenched QED approximation (cf. dis-
cussions in [38,39]). The analytical expressions for the
C%C,, CpC3 contributions to f-independent d3[0] and
¢3[0] components of d3 and c¢3 in (20) and (24), and for
the terms d5]0, 1], d5[1], and ¢3[0, 1], ¢53[1], differ from the
expressions obtained in [29] [cf. Egs. (22) and (26) with the
corresponding results in [7,10,29]]. This difference arises
because the {f}-expansion formalism in [10,29] was
performed in a gauge model which, in addition to

PHYSICAL REVIEW D 94, 014006 (2016)

SU(N.), contains a gluino multiplet, while the QCD results
obtained here, including the identities

ol = auf0.1] = ai0.0.1] = (T30}, G0

02[1]

— e3[0, 1] = ¢4]0,0,1] = <—%CF>, (31)

use special resummation approach of Eqgs. (4) and (5). This
approach is unambiguously defined up to O(a}) within the
SU(N.) gauge model, while the approach of [7,10,29] is at
the moment defined only up to O(a}). We note that the
identities (30) and (31) hold in the resummation approaches
(IIT) and (IV) as well. Moreover, it turns out that at O(a?)
level the {f}-expansions of perturbation coefficients in the
approaches (II1) and (IV), i.e., in the skeleton method [32],
and Rjs-scheme method [9,33] are similar to each other.?
The relations between these methods III and IV and the
method developed here reside in a careful application of the
RG method (for the stages of its development see [40]).
Note that in this work the concept of CS and the effects
of CSB were essential to obtain new analytical results of
Egs. (22) and (26). These concepts allowed us to derive in
[7,10] the number of relations from formulated in [7]
Eq. (3). Therefore, the results obtained above satisfy them:

9 3
C3[O] + d3[0] = 2d1d2[0] - d? 16C3 + = C2 CA’
c4[0] + du[0] = 2d,d5[0] — 3d7d,[0] + d5[0)* + df
333, 363 99\
= rooaCrt ( 52732 €3> CrCa
105 99\ , ,
(256 T C%) CrCa, (32)

(1] + da[1] = ¢3]0, 1] + 5[0, 1] = ¢4[0,0, 1] + d,4[0,0, 1]

21
= (g - 3Cs> Cr,

c3[1] + ds3[1] + d; (e3[1] = dy[1])

=4[O, 1]+ df0.1] + d (0. 1] — [0, 1]
397 17

- <96 LUy 15@)

4 (ﬂ—@) CrCy. (33)

We note, that these relations and expressions are model-
independent and scheme-independent. They are also valid
in the approaches III and IV. These expressions may be

’The details of these formulations and comparisons will be
considered elsewhere.
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used as a check if the {f}-expansion formalism in QCD
with additional degrees of freedom [29], also considered in
[7,10], is extended to d, and cy.

The results obtained in this work may be used in future
phenomenologically oriented studies of various resumma-
tion procedures and of their relations to generalizations of
the BLM approach, related to Principle of Maximal
Conformality [9,34], i.e. the ones considered recently in
[10,30], and to the skeleton-motivated approach [32].
Here, we comment on a link of our studies with a specific
result of the generalized BLM method, written in the form
of commensurate scale relations [41], namely with the
expression [42]

(14 ag™(Qpus)) (1 + ai™(Qp,)) = 1. (34)

This expression follows from the generalized Crewther
relation of [1] after defining the effective charges of the
nonsinglet contributions to the Adler function and to the
Bjorken polarized sum rule using the effective-charge
approach [43] and absorbing the f-function dependent
terms into the effective scales of the running effective
charges a?"s and a®"*. The expression (34) is similar in its
form to the QCD relation (18) derived here in the conformal
invariant limit. The CSB effects are manifested in Eq. (34)

PHYSICAL REVIEW D 94, 014006 (2016)

in the (different) values of the effective scales Qj,,, and
Qp,s- The empirical, experimentally motivated, consider-
ation for the importance of these CSB effects at sufficiently
high energies was presented in [42].

We hope that the representation for the Adler function
obtained here can be used in a more detailed comparison
with the expression for the Adler function obtained in [44]
from the available data for the e™ e~ -annihilation to hadrons
total cross section. Analogous comparison can be per-
formed for the obtained Bjorken sum rule representation
with the Bjorken sum rule most recent data, determined in
[45] for the Q? < 4.8 GeV? region.
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