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The occupied Landau levels of strange quark matter are investigated in the framework of the SU(3) NJL
model with a conventional coupling and a magnetic-field dependent coupling respectively. At lower
density, the Landau levels are mainly dominated by u and d quarks. Threshold values of the chemical
potential for the s quark onset are shown in the μ-B plane. The magnetic-field-dependent running coupling
can broaden the region of three-flavor matter by decreasing the dynamical masses of s quarks. Before the
onset of s quarks, the Landau level number of light quarks is directly dependent on the magnetic field
strength B by a simple inverse proportional relation ki;max ≈ B0

i =B with B0
d ¼ 5 × 1019 G, which is

approximately 2 times B0
u of u quarks at a common chemical potential. When the magnetic field increases

up to B0
d, almost all three flavors are lying in the lowest Landau level.
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I. INTRODUCTION

The study of Quantum Chromodynamics (QCD) matter
subject to a strong magnetic field has been a hot topic of
intense investigation [1]. The strange quark matter (SQM)
is regarded as a ground state composed of deconfined u, d,
and s quarks [2]. The new state is expected to be searched
in extreme conditions of high density and/or high temper-
ature. In addition to these environments, the SQM is argued
to be subject to strong magnetic fields. The extreme strong
magnetic field theoretically seems beyond the scope of
the conventional condensed matter, and its origin remains
not very clear until now. However, it has been recently
proposed to be produced in noncentral collision experi-
ments in the Relativistic Heavy Ion Collider and the Large
Hadron Collider on the one hand [3,4], or to be naturally
existing in the core of pulsars on the other hand. The large
magnetic fields in nature are normally associated with
astrophysical objects, where the density is much higher
than the nuclear saturation. The typical strength could be
the order of 1012 G on the surface of pulsars [5]. Some
magnetars can have even larger magnetic fields, reaching
the surface value as large as 1014–1015G [6]. By comparing
the magnetic and gravitational energies, the physical upper
limit to the total neutron star is of the order of 1018 G. For
self-bound quark stars, the limit could go higher [7].
Maximum strengths of 1018–1020 G in the interior of stars
are proposed by an application of the viral theorem [3,5]. In
the LHC/CERN energy, it is possible to produce a field as
large as 5 × 1019 G [4].
The special properties of QCDmatter are widely affected

by strong magnetic fields in many branches, such as the
(inverse) magnetic catalysis [8–12], the anisotropies

[13,14], the magnetic oscillations [15], the magnetization
[14], the phase diagram with a critical end point [16,17],
etc. The magnetic field larger than 1019 G can obviously
change the spherical symmetry [18]. All of these are
essentially resulted due to the Landau level arrangement
of charged particles in magnetic fields. In principle,
not only quark masses will change in the medium, but
also the coupling constant will run in the medium, such as
the magnetic-field-dependent coupling and magnetic-
temperature-dependent coupling [19]. It is well known
that the dressed masses of three flavors are very different,
which leads to a flavor-dependent fraction in quark matter
and strangelets [20]. Similarly, the threshold condition and
the quantum numbers of the Landau level of quarks are also
flavor dependent. Generally, u and d quarks dominate the
bulk matter at low densities. As the density increases,
strange flavor begins to take part in its Landau levels.
Therefore, the phase was argued to be divided into three
regions such as the chirally broken phase (B-phase), the
massive phase (C-phase), and the chirally restored phase
(A-phase) in previous work [21,22], where the detailed
locations of the two-flavor Landau levels were shown in the
μ-B phase panel. However, at a proper density, the s quark
cannot participate in the previous discussion because its
dressed mass is larger than the chemical potential, thus the s
quark could not occupy its lowest Landau level (LLL).
In this work, we will show the critical density for the
appearance of s quarks by considering the two kinds of
coupling interactions, the conventional coupling constant
and the magnetic-field-dependent running coupling respec-
tively. The main aim of this work is to perform a detailed
analysis of the Landau levels with and without the s quark
depending on the magnetic field strength.
This work is organized as follows. In Sec. II, a brief

review of the Nambu–Jona-Lasinio (NJL) model descrip-
tion of cold SQM in a strong magnetic field is provided.
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The magnetic-field-dependent running scalar coupling in
the SU(3) version is introduced as well as the model
parameters in the computation. In Sec. III, the numerical
results and discussion are given at common chemical
potential and under the β equilibrium respectively. A
detailed analysis of the occupied Landau levels with respect
to the magnetic field is given. The last section is a short
summary.

II. THERMODYNAMICS OF MAGNETIZED
SQM IN THE SU(3) NJL MODEL

The SU(3) NJL Lagrangian density includes both a
scalar-pseudoscalar interaction and the t’Hooft six-fermion
interaction [23] and can be written as [22]

LNJL ¼ ψ̄ðiD −mÞψ þG
X8

a¼0

½ðψ̄λaψÞ2 þ ðψ̄γ5λaψÞ2�

− Kfdet½ψ̄ð1þ γ5Þψ � þ det½ψ̄ð1 − γ5Þψ �g: ð1Þ

The field ψ ¼ ðu; d; sÞT represents a quark field with three
flavors. Correspondingly, m ¼ diagðmu;md;msÞ is the
current mass matrix with mu ¼ md ≠ ms. λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
I

where I is the unit matrix in the three-flavor space. λa
with 0 < a ≤ 8 denotes the Gell-Mann matrix. The gap
equations for three-flavor are coupled and should be solved
consistently,

Mi −mi þ 4Gϕi − 2Kϕjϕk ¼ 0; ð2Þ

where (i, j, k) is the permutation of (u, d, s). The
contribution from the quark flavor i is

ϕi ¼ ϕvac
i þ ϕmag

i þ ϕmed
i : ð3Þ

The terms ϕvac
i , ϕmag

i , and ϕmed
i representing the vacuum,

magnetic field, and medium contribution to the quark
condensation are respectively [24]

ϕvac
i ¼ −

MiNc

2π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

i

q
−M2

i ln

�
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

i

p

Mi

��
; ð4Þ

ϕmag
i ¼ −

MijqijBNc

2π2

�
ln½ΓðxiÞ� −

1

2
lnð2πÞ þ xi −

1

2
ð2xi − 1Þ lnðxiÞ

�
; ð5Þ

ϕmed
i ¼

Xki;max

ki¼0

aki
MijqijBNc

2π2
ln

�
μi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i − s2i

p

si

�
: ð6Þ

The effective quantity si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

i þ 2kijqijB
p

sensitively depends on the magnetic field. The dimensionless quantity is
xi ¼ M2

i =ð2jqijBÞ. The degeneracy label of the Landau energy level is aki ¼ 2 − δk0. The quark condensation is greatly
strengthened by the factor jqiBj together with the dimension reduction D − 2 [25,26]. The Landau quantum number ki and
its maximum ki;max are defined as

ki ≤ ki;max ¼ Int

�
μ2i −M2

i

2jqijB
�
; ð7Þ

where “Int” means the number before the decimal point.
The total thermodynamic potential density in the mean field approximation reads

Ω ¼
X

i¼u;d;s

ðΩvac
i þ Ωmag

i þΩmed
i þ 2Gϕ2

i Þ − 4Kϕuϕdϕs; ð8Þ

where the first term in the summation is the vacuum contribution to the thermodynamic potential, i.e.,

Ωvac
i ¼ Nc

8π2

�
M4

i ln

�
Λþ ϵΛ
Mi

�
− ϵΛΛðΛ2 þ ϵ2ΛÞ

�
; ð9Þ

where the quantity ϵΛ is defined as ϵΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

i

p
. The ultraviolet divergence in the vacuum part of the thermodynamic

potentialΩ is removed by the momentum cutoff. In the literature, a form factor is introduced in the diverging zero energy as
a smooth regularization procedure [27]. The magnetic field and medium contributions are respectively
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Ωmag
i ¼ −

NcðjqijBÞ2
2π2

�
ζ0ð−1; xiÞ −

1

2
ðx2i − xiÞ lnðxiÞ þ

x2i
4

�
; ð10Þ

Ωmed
i ¼ −

jqijBNc

4π2
Xkmax

k¼0

aki

�
μi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i − ðM2

i þ 2kijqijBÞ
q

− ðM2
i þ 2kijqijBÞ ln

�
μi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i − ðM2

i þ 2kijqijBÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

i þ 2kijqijB
p

��
; ð11Þ

where ζða; xÞ ¼ P∞
n¼0

1
ðaþnÞx is the Hurwitz zeta function.

From the thermodynamic potential (8), one can easily
obtain the quark density as

niðμ; BÞ ¼
Xki;max

k¼0

aki
jqijBNc

2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i − ðM2

i þ 2kijqijBÞ
q

: ð12Þ

The corresponding pressure from the flavor i contribution is

Piðμi; BÞ ¼ −Ωi ¼ −ðΩvac
i þΩmag

i þ Ωmed
i Þ: ð13Þ

Under strong magnetic fields, the system total pressure
should be a sum of the matter pressure and the field pressure
contribution [24,28]. So we have

Piðμi; BÞ ¼ −Ωi þ
B2

2
; ð14Þ

where the magnetic field term B2=2 is due to the
electromagnetic Maxwell contribution. It is well known to
us that the energy density and pressure should vanish in
vacuum. So the pressure and the thermodynamic potential
should be normalized by requiring the zero pressure at the
zero density as [24]

Peff
i ðμi; BÞ ¼ Piðμi; BÞ − Pið0; BÞ: ð15Þ

In the normalization result, the field term is automatically
absent. According to the fundamental thermodynamic
relation, the free energy density at zero temperature is

εi ¼ −Peff
i þ μini: ð16Þ

The system pressure and energy density are written as

P ¼
X

i

Peff
i ; ε ¼

X

i

εi; ð17Þ

where the summation goes over u, d quarks, and electrons.
In principle, the interaction coupling constant between

quarks should be solved by the RG equation, or can
be phenomenological expressed in an effective potential
[29–31]. In the infrared region at low energy, the dynamical
gluon mass represents the confinement feature of QCD
[32]. Furthermore, in the presence of a strong magnetic
field, the gluon mass becomes large together with a
decreasing of the interaction constant, which leads to a

damping of the chiral condensation. For sufficiently strong
magnetic fields eB ≫ Λ2

QCD, the coupling constant αs is
proposed to be related to the magnetic field [11,25].
Motivated by the work of Miransky and Shovkovy [25],
the similar ansatz of the magnetic-field-dependent coupling
constant is introduced in the SU(3) NJL models [11]. The
simple ansatz of the running coupling is probably suitable
for the SU(3) NJL model if we include the s quarks [11],

G0ðeBÞ ¼ G
lnðeþ jeBj=Λ2

QCDÞ
; ð18Þ

where the parameter ΛQCD ¼ 300 MeV. We can find the
running coupling constant versus the field B approaches
gradually to the constant value G0ðB → 0Þ ∼ G. In the
computation of the SU(3) NJL model, we adopt the
parameters Λ ¼ 602.3 MeV, mu ¼ md ¼ 5.5 MeV, ms ¼
140.7 MeV, G ¼ 1.835=Λ2, and K ¼ 12.36=Λ5 [33].

III. NUMERICAL RESULTS AND DISCUSSION

In a strong magnetic field with a certain direction, quarks
wrap around the magnetic field and the orbital motion will
be ruled by the Landau energy level. Because dressed
masses of quarks are different, the occupations of the
discretized Landau level are flavor dependent. At a proper
density, the dynamical masses of the u and d quarks are
smaller than their chemical potential and have a real
distribution in the Landau levels. But the dynamical mass
of the s quark is much heavier than that of the u=d quark,
and thus it cannot occur until the critical chemical potential
above its dynamical mass is reached. In Fig. 1, the critical
chemical potential is shown by the solid line for the
conventional constant coupling G, and by the dashed line
for the running coupling G0ðeBÞ respectively. When the
chemical potential is above the line, the s quarks have real
distributions in the Landau levels. In the region below the
line, there are only two-flavor quarks in their Landau levels,
and the s quark is excluded because of its dressed mass
larger than μ. It can be found that at much higher field
strengths, the regions of three quark matter in the μ-B plane
become wider. Furthermore, the region is much wider with
the running coupling G0ðeBÞ than the constant coupling G.
Therefore, it is concluded that the running coupling
interaction could broaden the region of three-flavor quark
matter. In other words, the strange quark can exist at lower
density with the running coupling than the constant
coupling case.
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It is well known that the chemical potential dominates
the energy spectrum of the particle without the magnetic
field. Now we study how large the magnetic field effect is
on the distribution of Landau levels at a fixed chemical
potential. In Table I, we adopt μ ¼ 350 MeV, and give the
maximum number of the Landau levels of the u, d, and s
quarks for several magnetic fields. It can be found that the
much higher magnetic field can accommodate quarks in
lower levels. Furthermore, the onset of the s quark can be
seen in its LLL until the field reaches 2 × 1019 G. While at
lower magnetic field, the quantum number of filled Landau
levels is larger and the quantization effects are washed out.
Before the onset of the s quark, the u and d quarks

dominate the quark matter. Because of the identity
qu ¼ −2qd, the level number of the d quarks is exactly
2 times the level number of the u quark in order to meet the
global charge neutrality. In Fig. 2, the Landau levels of the
u and d quarks with the same chemical potential μ are
shown in the range of the magnetic field (1016–1019 G). We

use the logarithm to label both the vertical axis and the
horizonal axis. Then the Landau level number as functions
of the magnetic field vary linearly, which is very near the
red dotted line (log k ¼ 19.7 − logB) for d quarks.
Consequently, we can easily find that the u=d quark
Landau level number ki;max and the magnetic field B nearly
satisfy a simple inverse proportional relation,

ki;max ≈ B0
i =B; ð19Þ

at the couplingG, where the scale is B0
d ¼ 5 × 1019 G for d

quarks, which is 2 times B0
u of u quarks. The experiential

formula indicates the constraint on the strong magnetic
field. In strong magnetic fields, charged fermions acquire
infrared phase space proportional to jeBj. As the magnetic
field strength increases, quarks are suppressed to the lower
levels. At the same time the degeneracy factor of each
energy level is enlarged to eB. When the magnetic field
increases up to the order of B0 or so, almost all three flavors
are concentrated on the LLL. The LLL would make the
QCD matter more interesting, where the quarks are
independent on the magnetic field with zero transverse
energy [26]. After taking into account the running coupling
G0ðeBÞ (marked by dashed lines) in Fig. 2, the line deviates
from the straight line at the field strength larger than
1018 G. Therefore the running coupling can move the
location of the LLL to a field strength slightly lower than
B0. It can be expected that at the same magnetic field, the
SQM can be more easily realized at the running coupling
than the conventional coupling.
The strong magnetic field drastically affects the struc-

tural properties and the thermodynamics. As far as we
know, the chemical potential increases together with the

TABLE I. The quantum number of Landau levels occupied by
quarks for the fixed chemical potential μ ¼ 350 MeV at several
magnetic fields. The number “0” means the LLL.

Magnetic field (G) ku;max kd;max ks;max

1.0 × 1017 115 230 No
1.0 × 1018 15 30 No
1.0 × 1019 1 3 No
2.0 × 1019 0 1 0

FIG. 2. The maximum Landau levels for u and d quarks change
with the strong magnetic field. The solid line and dashed line are,
respectively, for the constant coupling G and the running
coupling G0ðeBÞ.

FIG. 1. The lines [solid and dashed lines for couplings G and
G0ðeBÞ respectively] for the critical chemical potential μ separate
the panel into two regions. In the region above the line, there are
strange quark distributions in Landau levels. In the region below
the line, only two-flavor light quarks fill in their Landau levels,
where the s quark is excluded because of its dressed mass larger
than μ.
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number density. But for the SQM under a strong magnetic
field, the variation relation between the chemical potential
with the number density is not always monotonous. In
Fig. 3, the quark chemical potential changes with the
baryon number density at several values of the magnetic
fields. The curves from top to down denote the increasing
of the magnetic field. At a low density less than 0.35 fm−3,
the effect of the magnetic field strength is very important,
where the degeneracy contribution from the magnetic field
is much larger than the fermion momentum. So at the same
density, the chemical potentials are very different for
different magnetic fields. Furthermore, a small number
of quarks under the influence of the strong fields can easily
produce the oscillation behavior of the chemical potential.
While in the high density region, the fermion momentum
increases and the oscillation behavior cannot be easily
found anymore.
In realistic situations for neutron stars, the chemical

potentials for different flavors will be different and related
by the physical constraints in a neutron star. So we can do
the calculation by assuming the three-flavor quark matter is
in β equilibrium. Now there are three dynamical masses and
two independent chemical potentials, which can be deter-
mined by the three gap equations (2), the baryon number
conservation, and the neutral charge condition,

2nu − nd − ns − 3ne ¼ 0: ð20Þ

Under the β equilibrium condition μd ¼ μs ¼ μu þ μe
in Fig. 4, we can get the similar result as in Fig. 1, namely,
the critical potential μs for the onset of s quark is about
465 MeV with the coupling G. But at much higher
magnetic field, the value of μs has an apparent drop due
to the contribution of electrons.

Before the onset of the s quarks, the Landau level
number is approximately inverse proportional to the mag-
netic field. In Fig. 5, we can also find the similar inverse
proportional relation between the maximum Landau quan-
tum number and the magnetic field. Under the β equilib-
rium, it should be changed as

kβi;max ≈ Bβ
i =B: ð21Þ

We can see that the contribution of electrons can hardly
change the relation of d quarks. But the value of Bβ

u is
decreased to 1.7 × 1019 G because its chemical potential is
reduced to μs − μe. In fact, the charge neutral condition can
still be reached due to the reduction of the d quark density

FIG. 4. The critical chemical potential μs as the Fig. 1 is shown
under the β equilibrium condition.

FIG. 5. The maximum Landau levels for u and d quarks versus
the magnetic field as in Fig. 2 are shown under the β equilibrium.

FIG. 3. The chemical potential versus the baryon number
density at several values of the magnetic field.

LANDAU LEVELS OF COLD DENSE QUARK MATTER IN A … PHYSICAL REVIEW D 94, 014005 (2016)

014005-5



in addition to the contribution of electrons. In Fig. 6, the
corresponding contribution of the electron density is
shown on the left axis. The chemical potential μe is shown
on the right axis. We can see that the μe will decrease as
the magnetic field increases. On the contrary, due to the
degeneracy factor eB, the density will keep increasing
monotonously at the higher magnetic field.

IV. SUMMARY

In this paper we have studied the energy level of the
SQM in a strong magnetic field within the SU(3) NJL
model. The critical chemical potential was shown for the
onset of s quarks. We found that the running coupling
scheme can broaden the existing region of the three-flavor
quarks in the μ-B plane. As the density increases, the
quarks in the high level participate in the system. Just
before the onset of s quarks, we found that the maximum

quantum number of the u=d Landau level is directly
dependent on the field strength through a simple inverse
proportional relation ki;max ≈ B0

i =B. The value of B0 is
certainly flavor dependent. In particular, the value B0

d of d
quarks is approximately 2 times B0

u of u quarks. It should
be pointed out that the chemical potential does not
monotonously vary as the density increases. At high
densities, the chemical potential keeps increasing with
the density. But at low density, the chemical potential
could be a decreasing function of the baryon number
density, otherwise, the oscillation behavior becomes clear.
The corresponding work can be done under the β equilib-
rium. The running coupling can still broaden the window of
three-flavor matter. Because the common chemical poten-
tial relation is changed to μd ¼ μs ¼ μu þ μe, the inverse
proportional relation should be written as kβi;max ≈ Bβ

i =B,

where Bβ
u is no longer half of Bβ

d. These results will be
helpful in realistic situations for neutron stars. The magni-
tude of magnetic field in compact stars decreases from the
core to the surface of stars. The study of the relation of
magnetic field and Landau level is helpful to know the
components of stars for a given radius.
The quarks in the LLL make the QCD more interesting

and illustrate the nonperturbative effects, which is further
enhanced by the strong magnetic field. We give the
condition of the magnetic field larger than B0

i , under
which all three-flavor quarks are lying in the LLLs. We
expect that all of these considerations would be helpful to
the theoretical investigation and future experiments
searching for the SQM under an extremely strong
magnetic field.
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