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We study the weak interaction axial form factors of the octet baryons, within the covariant spectator
quark model, focusing on the dependence of four-momentum transfer squared, Q2. In our model the axial
form factors GAðQ2Þ (axial-vector form factor) and GPðQ2Þ (induced pseudoscalar form factor) are
calculated based on the constituent quark axial form factors and the octet baryon wave functions. The quark
axial current is parametrized by the two constituent quark form factors, the axial-vector form factor gqAðQ2Þ,
and the induced pseudoscalar form factor gqPðQ2Þ. The baryon wave functions are composed of a dominant
S-state and a P-state mixture for the relative angular momentum of the quarks. First, we study in detail the
nucleon case. We assume that the quark axial-vector form factor gqAðQ2Þ has the same function form as that
of the quark electromagnetic isovector form factor. The remaining parameters of the model, the P-state
mixture and the Q2 dependence of gqPðQ2Þ, are determined by a fit to the nucleon axial form factor data
obtained by lattice QCD simulations with large pion masses. In this lattice QCD regime the meson cloud
effects are small, and the physics associated with the valence quarks can be better calibrated. Once the
valence quark model is calibrated, we extend the model to the physical regime and use the low Q2

experimental data to estimate the meson cloud contributions for GAðQ2Þ and GPðQ2Þ. Using the calibrated
quark axial form factors and the generalization of the nucleon wave function for the other octet baryon
members, we make predictions for all the possible weak interaction axial form factorsGAðQ2Þ andGPðQ2Þ
of the octet baryons. The results are compared with the corresponding experimental data for GAð0Þ and
with the estimates of baryon-meson models based on SUð6Þ symmetry.
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I. INTRODUCTION

The electromagnetic and the weak structure of the
hadrons can nowadays be accessed by electroweak probes
and characterized in terms of the corresponding structure
form factors. There is presently considerable information
about the vector electroweak form factors, including the
electromagnetic form factors of several baryons andmesons,
where these form factors characterize the spatial distribution
of the charge andmagnetism [1]. As for theweak interaction
axial form factors, from now on mentioned simply as axial
form factors, the information is much more scarce. Only for
the nucleon are there some data available for finiteQ2, where
Q2 ¼ −q2, and q is the four-momentum transfer of the
corresponding weak-axial transition. See Refs. [2–5] for a
review of the nucleon axial form factors and Ref. [6] for the
octet baryon axial form factors.
A better knowledge of the axial form factors of a baryon

is very important because it provides complementary
information to the electromagnetic structure and also
because it involves both the strong and weak interactions.
The form factors associated with the weak interaction axial
current for the transitions B0 → Blν̄l, with B, B0 being spin
1=2 baryons, l ¼ e, μ, τ, and ν̄l is a antineutrino, can be
decomposed into the axial-vector GA and induced

pseudoscalar GP form factors [6,7]. In the limit Q2 ¼ 0
the octet baryon form factors GA can be related with the
polarized deep inelastic scattering data and used to estimate
the spin fraction of the baryon carried by the quarks
(valence and sea) [3,8–13].
The nucleon axial-vector form factor can be accessed by

(quasi)elastic (anti)neutrino scattering and by charged pion
electroproduction experiments. The value for Q2 ¼ 0 is
determined accurately by the neutron β decay [2,3,5]. The
induced pseudoscalar form factor can be determined at very
low Q2 by pion production experiments and muon capture
by a proton. In general, the accuracy is worse compared
with the electromagnetic form factors and limited to the
region Q2 < 1 GeV2 [2,4]. A review of experimental data
can be found in Refs. [2,3,5]. To improve our knowledge of
the weak interaction axial structure of the nucleon, more
precise data for GA are necessary for Q2 < 1 GeV2 as well
as higher Q2. In progress are several experiments for quasi-
elastic (anti)neutrino scattering with proton targets
(MINERνA [14]) and nucleus targets (T2K [15] and
ArgoNeuT [16]). Models for neutrino/antineutrino scatter-
ing based on baryon-meson coupled channels can be found
in Refs. [17–19].
The GP data are very scarce since they cannot be

obtained by neutrino or antineutrino scattering [20]. The
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available data were obtained by pion electroproduction
and also by interaction with muons [2,4]. The relevant
data can be found in Refs. [21–23]. As for the axial-vector
form factors of the octet baryons, the available information
is limited to the values of GAð0Þ for a few allowed
transitions [6,24].
The axial form factors of the octet baryons, including the

nucleon, have been studied using constituent and chiral
quark models [13,25–37], based on the Dyson-Schwinger
equations [38–41], models with meson cloud dressing
[42–54], large-Nc and chiral perturbation theory [5,55–
65], and QCD sum rules [66–68]. Recently, lattice QCD
simulations for the nucleon became available for Q2 ¼ 0
[69–76], for finite Q2 [77–83], and also for the octet
baryons [84–87]. These studies are very important to
understand the role of the valence quarks and of the meson
cloud dressing. The role of the meson cloud dressing in the
deep inelastic scattering, namely, in the nucleon parton
distribution functions, was studied in Refs. [88–91]. Of
interest is also models based on the SUð3Þ flavor symmetry
of the baryon-meson reactions, like the heavy baryon
SUð3Þ chiral perturbation theory and others, which here-
after are simply referred to as SUð3Þ baryon-meson models
[6,7,56,57]. Furthermore, modifications in the nuclear
medium are also studied in Refs. [92–97].
In the present work we study the axial form factors of the

nucleon and octet baryons using the covariant spectator
quark model. The model has successfully been applied in
studies of the electromagnetic structure of nucleon
[98–100], several nucleon resonances [1,101–105], and
other baryons [106–114]. The covariant spectator quark
model is based on the assumption that the constituent
quarks have their own internal structure, which can be
parametrized by individual quark (electromagnetic) form
factors.
In this work we extend the formalism of the covariant

spectator quark model for the weak interaction axial
structure of baryons by introducing the axial-vector gqA
and induced pseudoscalar gqP form factors at the quark
level.1 Based on our construction of the quark axial current,
we calculate the contribution of the valence quarks for the
macroscopic octet baryon form factors GA and GP. The
quark axial-vector form factor gqA can be defined naturally
based on its isovector character, but gqP has to be calibrated
through a vector meson dominance form by the lattice QCD
data for the nucleon.
Once the model is calibrated by the lattice QCD data for

the nucleon, we extrapolate the model from the lattice QCD
regime to the physical regime, which allows us to estimate

the magnitude of the meson cloud contribution for the
nucleon axial form factors.
In the present model the wave functions of the nucleon

and the octet baryons are defined as in previous works
[98,106] using an S-state structure, but we include addi-
tionally a P-state component with an admixture coefficient
nP. The motivation to include the higher angular momen-
tum states and the P-state, in particular, comes from the
cloudy bag model (CBM) and nonrelativistic quark models
[25,27,35,39,42]. The magnitude of the P-state component
will be fixed by the comparison with the lattice QCD data
for the nucleon with large pion masses, where the meson
cloud contamination is very small.
After the calibration of the model by the nucleon data

(lattice and physical), we extend the model parametrization
to the octet baryons and make predictions for the valence
and valence plus meson cloud contributions for the form
factors GA and GP. The results for the octet baryons are
compared with the lattice QCD results as well as the SUð3Þ
baryon-meson models.
To summarize, in this work we derive a successful

parametrization for the nucleon axial form factors, valid
both in the physical regime and lattice QCD regime.
Finally, we make predictions for the octet baryon axial
form factors.
This article is organized as follows. In Sec. II we

introduce definitions of axial current and axial form factors,
both for the nucleon and the octet baryons. In Sec. III we
explain briefly the method used to calibrate the quark axial
current and the P-state mixture in the nucleon wave
function, based on the available data for the nucleon.
The formalism of the covariant spectator quark model,
including the definition of the quark axial current and the
octet baryon wave functions, are presented in Sec. IV. In
Secs. V and VI we present expressions obtained for the
valence quark components for the axial form factors (bare
or core form factors). In Sec. VII we explain how the effects
of the meson cloud component can be taken into account
for the physical regime. Predictions of the SUð3Þ baryon-
meson model are discussed in Sec. VIII. Results for the
nucleon and octet baryon axial form factors are presented,
respectively, in Secs. IX and X. Finally, the summary and
conclusions are presented in Sec. XI.

II. AXIAL-VECTOR AND INDUCED
PSEUDOSCALAR FORM FACTORS

We define below the axial form factors of the nucleon
and their extensions for the other octet baryon members.

A. Nucleon

The weak-axial transition between the nucleon states
with an initial momentum P− with a final momentum Pþ,
where q ¼ Pþ − P−, can be defined by the weak-axial
current as [2–6]

1We include the upper index q to emphasize that the functions
are related with quarks and also to avoid the confusion with the
well-established notation at the baryon level, gA ¼ GAð0Þ and
gP ¼ mμ

2MGPð−0.88m2
μÞ, where mμ is the muon mass.
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ðJμ5Þa ¼ ūðPþÞ
�
GAðQ2Þγμ þGPðQ2Þ qμ

2M

�
γ5uðP−Þ

τa
2
;

ð2:1Þ

where M is the nucleon mass, τa (a ¼ 1, 2, 3) are the
isospin operators (Pauli matrices), uðP�Þ are the nucleon
Dirac spinors, and GA and GP are, respectively, the axial-
vector and induced pseudoscalar form factors. The
“axial-tensor” form factor is ignored since it is associated
with the second-class current and consistent with zero
within experimental uncertainty [3–6]. The current ðJμ5Þa
can be projected on the nucleon initial and final isospin
states, using the isospin matrices, responsible for the SUð2Þ
flavor (isospin) symmetry [SUFð2Þ space], acting on the
isospin states of the nucleon.
The discussion of the form factors defined by Eq. (2.1)

becomes simpler when we use a spherical representation
(a ¼ 0;�). Then we have neutral transitions when a ¼ 0
(n → n and p → p) and the transitions n ↔ p for τ�. The
weak neutral current (a ¼ 0), (ΔI ¼ 0) corresponds to the
Z-boson emission or absorption. The charged currents
(a ¼ �) are associated with the ΔI ¼ �1 transitions
mediated by the W-bosons emission or absorption for
the p ↔ n transitions. In this work we simply assume that
the function GAðQ2Þ is defined by the isovector transition
form factor that corresponds to the transition between the u
and d quarks at the tree level.
Note that experimentally the situation is more complex,

and in practice, there are corrections to the pure W- and
Z-exchanges [3,96]. From the theoretical point of view, the
important issues are whether or not we can ignore the
effects of the s-quark and sea quarks for the axial form
factors of the nucleon GA and GP [2,3].
Since the nucleon axial current is related with the quarks

u and d, we can perform a flavor decomposition defining
the isovector combination of the form factors [75,81,86]

Gu−d
A ≡Gu

A −Gd
A: ð2:2Þ

The isoscalar combination can also be defined as

Guþd
A ≡Gu

A þ Gd
A: ð2:3Þ

Note, however, that the isoscalar axial-vector form factors
cannot be obtained by a simple current operator, but they
can be calculated in lattice QCD simulations using gener-
alized form factors [80,81].
If we assume charge symmetry using Gd

A ¼ − 1
2
Gu

A
according to the relation between the two quark charges,
we obtain Gu−d

A ¼ 3
2
Gu

A and Guþd
A ¼ 1

2
Gu

A. Equivalently,
Gu−d

A ¼ 3Guþd
A .

At Q2 ¼ 0, the values of Gu
Að0Þ ¼ ΔΣu and Gd

Að0Þ ¼
ΔΣd are related with the intrinsic spin of the valence quark
q in the proton, ΔΣq. These quantities are very important

for the estimate of the valence quark spin content of the
proton [8–10,13,48,81].
It is important to mention that in the lattice QCD

simulations, contrarily to the isovector axial form factors,
the isoscalar axial-vector form factor has contributions
from the so-called disconnected diagrams, which are, in
general, neglected in the simulations [75,83]. The first
calculation indicated that the disconnected diagrams can
contribute about 10% for GA and 20% for GP [83]. In the
present work we can ignore these corrections since our
axial current is identified with the isovector axial form
factors.
The estimates of ΔΣu and ΔΣd based on deep inelastic

scattering data, combined with the SUð3Þ symmetry, are
consistent with the charge symmetry (ΔΣu=2þ ΔΣd ¼
−0.006� 0.015) [8]. The estimates from lattice QCD
available at the moment are in agreement with the estimates
based on deep inelastic scattering for ΔΣu but under-
estimate ΔΣd, even when the disconnected contributions
are taken into account [75,83]. As a consequence, the
results from lattice QCD violate charge symmetry
(ΔΣu=2þ ΔΣd ¼ 0.097� 0; 012) [83]. It is worth men-
tioning, however, that the lattice QCD calculations for the
disconnected diagrams contributions are at the moment
restricted to the pion masses around 370 MeV and the
statistics are poor [75].

B. Octet baryons

The axial form factors for the transition between the octet
baryon members B and B0 can be generalized taking into
account the quark axial current ūγμγ5d (d → u) and ūγμγ5s
(s → u) in the SUð3Þ flavor quark model [SUFð3Þ sym-
metry]. They are defined in terms of the weak-axial current
as [55]

Jμ5 ¼
1

2
ūB0 ðPþÞ

�
GAðQ2Þγμ þ GPðQ2Þ qμ

2MBB0

�
γ5uBðP−Þ;

ð2:4Þ

where uB0 and uB are the corresponding Dirac spinors, and
MBB0 is the average mass of the final (massMB0 ) and initial
(massMB) baryons:MBB0 ¼ 1

2
ðMB0 þMBÞ. The factor 1=2

in Eq. (2.4) is included to be consistent with the nucleon
case (2.1).
The form factors GAðQ2Þ and GPðQ2Þ defined by

Eq. (2.1) are dependent on the octet baryon indices B
and B0, similar to the nucleon case (p → p, n → n, and
n ↔ p). However, for simplicity, we omit the baryon
indices in the paper.
As in the case of the nucleon, weak transitions between

the octet baryons can occur by the neutral current (Z-boson)
and by the charged current (W� boson). The neutral
transitions that do not change their charges or isospin
states are N → N, Σ → Σ, Ξ → Ξ, Σ → Σ, and Ξ → Ξ. The
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charged current transitions can be divided in two kinds, the
cases withΔI ¼ 1 and the cases withΔS¼ 1. Here,ΔI ¼ 1
and ΔS ¼ 1 represent variations of �1 (variation of 1 in
absolute value) of the isospin and strangeness, respectively.
The transitions ΔI ¼ 1 are associated with the u ↔ d
transitions. Examples of those transitions are n → p,
Σþ → Λ, Σ− → Λ, Σ− → Σ0, and Ξ− → Ξ0. The transitions
ΔS ¼ 1 are associated with the u ↔ s transitions. In this
case one has Λ → p, Σ− → n, Σ0 → p, Ξ− → Λ, Ξ− → Σ0,
and Ξ0 → Σþ.
It is important to note that the form factors associated

with the ΔI ¼ 1 and ΔS ¼ 1 transitions contribute differ-
ently for the transition crossed sections [6]. The ΔI ¼ 1
form factors are multiplied by the factor cos θC ≃ 0.97,
while the ΔS ¼ 1 form factors are multiplied by the factor
sin θC ≃ 0.23. In the neutral current transitions the factor
is 1.
The transition current between the octet baryon members

can also be represented by an SUFð3Þ extension of SUFð2Þ
using the Gell-Mann matrices λa (a ¼ 1;…; 8) instead of
the Pauli matrices τa (a ¼ 1, 2, 3) [115]. In this case the
transition currents are expressed in terms of the octet
baryon states or by the 3 × 3 baryon matrix and flavor-
transition operators in the corresponding octet vector space
[7,57,59,116].

III. METHODOLOGY

We discuss now the method used to calculate the axial
form factors of the nucleon and the other members of octet
baryons within the framework of the covariant spectator
quark model. We start with the nucleon case. Later, we
extend the framework for the other octet baryons. The
formalism of the covariant spectator quark model is
reviewed briefly in the next section.
In the covariant spectator quark model the electromag-

netic structure of the baryons is described based on the
valence quark structure of the baryon wave functions and
the electromagnetic structure of the constituent quarks. The
electromagnetic structure of the baryons is parametrized by
the quark electromagnetic form factors which simulate
effectively the internal structure of the constituent quarks
resulting from the interactions with quark-antiquark pairs
and from the gluon dressing [98,107]. Of particular
relevance for the present work is the quark isovector form
factors f1− and f2− associated, respectively, with the Dirac
and Pauli components of the constituent quark current (see
Sec. IVA for details). In the present study we define two
new quark form factors, gqA and gqP, respectively, the quark
axial-vector and quark-induced pseudoscalar form factors.
The details are discussed in Sec. IV B.
In order to calculate the axial form factors of the nucleon,

we need a model for the wave function of the nucleon. We
start assuming that we can describe the nucleon as a quark-
diquark system with an S-state configuration following
Ref. [98]. Previous works have shown that an S-state

quark-diquark system is a good approximation for the
nucleon [117–119].
Since the structure based only on an S-state is quite poor,

as we show in Sec. V, we consider a possibility of adding a
P-state mixture to the nucleon wave function. The moti-
vation to include this new component comes from non-
relativistic quark models, QCD sum rules, and also from
CBM [39,42,67]. In some models the P-state mixture
corresponds to the lower component of the nucleon
Dirac spinor, which becomes very important for the axial
form factors in a relativistic treatment [27,39,42]. In the
covariant spectator quark model the P-state quark-diquark
wave function is generated by the integration on the quark-
pair internal degrees of freedom in the three-quark wave
function. The quark-diquark wave function contains all the
information originally included in the three-quark wave
function, as discussed in Ref. [99]. This P-state quark-
diquark wave function appears as the consequence of
relativity and vanishes in the nonrelativistic limit [99].
We consider then a nucleon wave function composed

of a combination of the S- and P-state components,
parametrized by the P-state mixing coefficient nP (n2P
gives the P-state probability in the nucleon wave
function). The coefficient of the S-state, nS, is expressed
by nS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2P

p
. When nP ¼ 0 (nS ¼ 1), we recover the

S-state wave function.
The discussion about how the P-state can be built within

the covariant spectator quark model is presented in
Ref. [99]. The radial wave function associated with the
S-state was already determined by the study of the
electromagnetic structure of nucleon. For the P-state
component, the corresponding radial wave function can
be defined in terms of the radial wave function of the
S-state, without introducing any extra parameter [9,98].
As a consequence of the underlying internal structure

of the nucleon based on the valence quark degrees of
freedom, we decompose the nucleon axial form factors,
admitting the possibility of meson excitations of the
core, as

GAðQ2Þ ¼ GB
AðQ2Þ þ GMC

A ðQ2Þ; ð3:1Þ

GPðQ2Þ ¼ Gpole
P ðQ2Þ þ GB

PðQ2Þ þGMC
P ðQ2Þ; ð3:2Þ

where GB
A and GB

P are the contributions from the bare core
(valence quark contribution), whileGMC

A andGMC
P are those

from the meson cloud. The meson pole term Gpole
P is an

additional contribution that is the result of a meson creation
by the baryon transition that decays by the weak interaction
into a lepton-neutrino pair [2,4,5,55].
For the nucleon and other nonstrangeness changing

transitions (ΔI ¼ 1), the pion (mass mπ) is expected to
give a dominant contribution in the meson pole contribu-
tions, which is determined by the partial conservation of the
axial current (PCAC) [2,4,5,42,43,55,78],
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Gpole
P ðQ2Þ ¼ 4M2

m2
π þQ2

GB
AðQ2Þ: ð3:3Þ

In the study of the Q2 dependence of the form factors GP,
the pole term is very important, especially in the timelike
region (Q2 < 0) [2]. Note that contrarily to most of the
works in literature in the rhs of Eq. (3.3) we use GB

AðQ2Þ,
the bare contribution, instead of the function GAðQ2Þ, the
total result for the axial-vector form factor, which includes
also the meson cloud contribution. We replace GA by GB

A
because we want to use the relation (3.3) also in the lattice
QCD regime in the limit where the meson cloud effects are
small. In the cases where meson cloud effects are signifi-
cant forGA, as in the physical limit, the term 4M2

m2
πþQ2 GMC

A can

be interpreted as a meson cloud contribution for GP. In the
literature GA is often replaced by parametrizations of the
experimental data labeled here as Gexp

A ðQ2Þ [2,22].
The factor Gpole

P can be connected with the strong pion-
nucleon coupling at Q2 ¼ 0 in the chiral limit via the
Goldberger-Treiman relation [120]. For a more complete
discussion, see Refs. [2,4,5,42,43].
Note that since we have contribution from the valence

quark core forGP we are including atQ2 ¼ 0 corrections to
the Goldberger-Treiman relation according to (3.2). This is
not a problem since the relation is strictly valid only in the
chiral limit, and some corrections are expected, according
to chiral perturbation theory and other frameworks
[2,4,35,38,43,55]. Calculations of GP can be found in
Refs. [30,31,34,38,43,44,61,67,68]. For a review of the
theory and experimental data associated with GP, see
Ref. [4].
In the limit where the meson cloud effects are small, we

can drop the meson cloud contributions GMC
A and GMC

P and
consider only the contributions from the bare core and the
pole term in the case of GP. This situation occurs when we
deal with lattice QCD simulations with large pion masses
(large mπ). Along this work, we use the expression “the
large pion masses” to indicate the range mπ > 350 MeV.
If the covariant spectator quark model is successful in the

description of the bare core contribution of the nucleon
axial form factors, it should also be able to reproduce the
lattice QCD data for large mπ since in the lattice QCD
regime the model is dominated by the valence quark effects.
Therefore, in this work, we use the lattice QCD data with
large mπ to calibrate the valence quark contributions of the
model for the axial form factors. At the end, the model
is extrapolated to the physical regime (mπ ¼ mphys

π ≃
138 MeV) and is used to estimate the contributions of
the meson cloud to the nucleon form factors.
An important step is the extension of the covariant

spectator quark model to the lattice QCD regime. This is
done taking advantage of our parametrization for the quark
form factors, both electromagnetic and axial currents,
which are defined based on vector meson dominance

(VMD) parametrizations. The extension of the model to
the lattice QCD regime is discussed in Sec. IV E.
A model based exclusively on the valence quark degrees

of freedom is particularly convenient to compare with the
lattice QCD data with largemπ . In this case we have a more
clean parametrization (free of meson cloud effects) for the
valence quark effects. The same method was used pre-
viously and successfully in the studies of the electromag-
netic proprieties of the nucleon, the Roper, and the
γ�N → Δ reaction, as well as in the studies of the octet
and decuplet baryon properties [102–104,106–109].
The methodology used in the present study can be

summarized as follows:
(i) First, we calibrate our model by a fit to the lattice

QCD data for GAðQ2Þ. The calculation of GAðQ2Þ
depends on the quark axial-vector form factor
gqAðQ2Þ and the amount of the P-state mixture
(nP). Since gqAðQ2Þ is associated with an isovector
structure, we simply assume that the Q2 dependence
of gqAðQ2Þ can be approximated by the quark Dirac
isovector form factor f1−. Under this assumption, we
try to find if there are proper values for nP that can
describe the nucleon lattice QCD data for GA. We
conclude that the answer is positive, and nP is
determined by the best fit to the data. Up to this
stage, we neglect the induced pseudoscalar form
factor of the quark by setting gqP ≡ 0.

(ii) Next, we check whether or not the lattice data for
GPðQ2Þ, associated with several values of mπ , can
be described by a simple model for the quark-
induced pseudoscalar form factor gPðQ2Þ, parame-
trized by a VMD form. Again, the answer turns out
to be positive, and we use the lattice QCD data to
estimate the shape of gqP, fixing the two parameters
of the VMD expression. With the determination of
nP and gqPðQ2Þ by the fit to the lattice data, we finish
the calibration of the valence quark component of
our model.

(iii) The next step is to extrapolate the model to the
physical regime (mπ → mphys

π ). The extrapolation is
performed in two steps. First, we extrapolate our
parametrization of the valence quark contributions
(obtained from the lattice QCD data) to the physical
regime to get GB

AðQ2Þ and GB
PðQ2Þ. Next, we correct

the result for the form factors including the nor-
malization factor of the wave function,

ffiffiffiffiffiffi
ZN

p
, cor-

responding to the fraction of the three-quark valence
quark system in the physical nucleon wave function,
redefining the effective contribution of the valence
quarks by effectively taking into account the meson
cloud effects. With this procedure, GB

A is modified
according to

GB
AðQ2Þ → ZNGB

AðQ2Þ: ð3:4Þ
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We estimate ZN by comparing our valence quark
model result with a parametrization extracted from
the physical data Gexp

A ðQ2Þ in the region
Q2 ≳ 1 GeV2, where the meson cloud effects are
expected to be small. With this procedure, we
determine a parametrization for the valence
quark contribution for the nucleon axial-vector form
factor in the physical regime. After this, the meson
cloud effects can be estimated using Gexp

A ðQ2Þ−
ZNGB

AðQ2Þ. Also, for the induced pseudoscalar form
factor GP, the contribution of the valence quarks GB

P
is corrected by the factor ZN in the physical limit.
Details of the procedure are discussed in Sec. VII.

(iv) With the model calibrated for the nucleon axial form
factors (n → p transition), we use SUFð3Þ symmetry
at the quark level to extrapolate the results of the
nucleon to make predictions for the other octet
baryon axial form factors. In Sec. VI we discuss
our extrapolation from SUFð2Þ to SUFð3Þ. To obtain
the final result for the octet baryon axial form
factors, we need also to take into account the meson
cloud effects for the other octet baryon members,
which can be done making some assumptions about
the amount of the meson cloud contribution based
on SUð3Þ and/or SUð6Þ symmetries. Finally, we
compare the results with those of the SUð6Þ baryon-
meson model discussed in Sec. VIII.

IV. COVARIANT SPECTATOR QUARK MODEL

We discuss now the covariant spectator quark model.
The covariant spectator quark model was first developed
for the study of the electromagnetic properties of the
nucleon [98–100] and subsequently extended for the
studies of the electromagnetic properties of several reso-
nances and electromagnetic transitions between baryon
states [105,113,114], including the octet and decuplet
baryons [106,107,109–112].
In the following we review the formalism of the

covariant spectator quark model related to the electromag-
netic structure of the quarks and baryons. Next, we
introduce the quark axial form factors and explain how
the axial current between the baryon states is calculated.
Later, we describe the structure of the nucleon wave
function in terms of the valence quark structure and explain
how it can be extended for the octet baryons. Finally, we
show how the model can be generalized to the lattice QCD
regime.

A. Electromagnetic form factors

In the covariant spectator quark model the electromag-
netic transition current is calculated in a relativistic impulse
approximation using the nucleon wave function ΨN
expressed in terms of the states of the quark-3 and the
quark current jμq [98,99,107]:

Jμ ¼ 3
X
Γ

Z
k
Ψ̄NðPþ; kÞjμqΨNðP−; kÞ: ð4:1Þ

In the above the integral symbol represents the covariant
integration associated with the diquark three-momentum, Γ
represents the diquark polarizations (scalar and axial-
vector), and k the diquark momentum. As before, Pþ
and P− are, respectively, the final and initial nucleon
momenta.
The quark electromagnetic form factors are defined by

the quark electromagnetic current jμq as [98,101]

jμq ¼
�
1

6
f1þ þ 1

2
f1−τ3

�
γμ þ

�
1

6
f2þ þ 1

2
f2−τ3

�
iσμνqν
2M

:

ð4:2Þ

The functions f1� define the Dirac isoscalar/isovector form
factor, and f2� defines the Pauli isoscalar/isovector form
factor.
For the present discussion, it is sufficient to mention the

isovector form factors, f1− and f2−. These form factors
were defined in previous works using a parametrization
motivated by vector meson dominance [98,101],

f1− ¼ λþ ð1 − λÞ m2
ρ

m2
ρ þQ2

þ c−
Q2M2

h

ðM2
h þQ2Þ2 ; ð4:3Þ

f2− ¼ κ−

�
d−

m2
ρ

m2
ρ þQ2

þ ð1 − d−Þ
M2

h

M2
h þQ2

�
; ð4:4Þ

where mρ is the ρ meson mass andMh represents a mass of
an effective heavy meson that simulates the structure of all
the high mass resonances. The parameters λ, κ−, c−, and d−
are coefficients calibrated by the nucleon form factor data
and deep inelastic scattering (for λ) [98]. We choose, in
particular, the model II in Ref. [98], where λ ¼ 1.21,
κ− ¼ 1.823, c− ¼ 1.16, and d− ¼ −0.686. As for Mh,
we use Mh ¼ 2M (twice the nucleon mass) in order to
simulate the short range structure of the current.

B. Axial form factors

Similarly to the electromagnetic form factors, the
nucleon axial current can be written as

Jμ5 ¼ 3
X
Γ

Z
k
Ψ̄NðPþ; kÞðjμAqÞΨNðP−; kÞ: ð4:5Þ

The constituent quark axial current, jμAq, is defined in terms
of the quark axial form factors gAðQ2Þ and gPðQ2Þ as

jμAq ¼
�
gqAγ

μ þ gqP
qμ

2M

�
γ5

τa
2
: ð4:6Þ
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As for the nucleon, we can add an isospin label a to the
quark form factors gqA and gqP, but only one function is
relevant due to the isospin symmetry. The form factor gqA is
associated with the u ↔ d quark transitions (W-boson
emission or absorption) responsible by the ΔI ¼ 1
transitions.
As for gqA, we assume that it is the same as the isovector

component of the Dirac form factor defined by Eq. (4.2)
due to its isovector character,

gqAðQ2Þ≡ f1−ðQ2Þ: ð4:7Þ

Note that then gqAð0Þ ¼ 1 [42,121].
As for gqP, we may be tempted to relate it with f2−

because we expect a falloff, gqP ∝ 1=Q2. However, since the
structure of the Pauli term and the term associated with the
induced pseudoscalar current are very different, we choose
instead only a form inspired by f2−, given by

gqPðQ2Þ ¼ α
m2

ρ

m2
ρ þQ2

þ β
M2

h

M2
h þQ2

; ð4:8Þ

where the coefficients α and β are determined by a fit to the
lattice QCD data obtained with large mπ (small meson
cloud contamination).
To summarize, we choose parametrizations for the quark

axial form factors gqA and qqP, motivated by VMD, similarly
to what was done previously for the quark electromagnetic
form factors, fi� (i ¼ 1, 2).

C. Nucleon wave function

For the nucleon wave function, we consider a mixture of
the S- and P-states as suggested by Ref. [99],

ΨNðP; kÞ ¼ nSΨSðP; kÞ þ nPΨPðP; kÞ; ð4:9Þ

where nP is the P-state mixture coefficient, and
nS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2P

p
, as discussed already.

For the S-state, ΨSðP; kÞ, we use [98]

ΨSðP; kÞ ¼
1ffiffiffi
2

p ½ϕ0uðPÞ − ϕ1ðε�PÞαUαðPÞ�ψSðP; kÞ;

ð4:10Þ

where ϕ0;1 are the isospin wave functions, εαP is the diquark
polarization vector, UαðPÞ is a spin 1=2 state to be defined
next, and ψS is the radial wave function.
The isospin wave functions, ϕ0;1, can be represented in

terms of the isospin-0 and isospin-1 components that are
also function of the nucleon isospin projection Iz that labels
the proton (Iz ¼ þ 1

2
) and the neutron (Iz ¼ − 1

2
) states.

More specifically, we can write [98]

ϕ0ðIzÞ ¼ ξ0�χðIzÞ; ð4:11Þ

ϕ1ðIzÞ ¼ −
1ffiffiffi
3

p ðτ · ξ1�ÞχðIzÞ; ð4:12Þ

where χðIzÞ are the nucleon isospin states that correspond
also to the isospin states of the quark-3 (u or d), τ� ¼
τx � iτy are the isospin raising and lowering operators, and
τ0 ¼ τz. The operators ξ0;1 are represented as [98]

ξ0 ¼ 1ffiffiffi
2

p ðud − duÞ; ð4:13Þ

ξ10 ¼
1ffiffiffi
2

p ðudþ duÞ ¼ ξz; ð4:14Þ

ξ1þ ¼ uu ¼ −
1ffiffiffi
2

p ðξx þ iξyÞ; ð4:15Þ

ξ1− ¼ dd ¼ 1ffiffiffi
2

p ðξx − iξyÞ: ð4:16Þ

In the next section, we use an alternative notation to
represent the flavor states of the remaining octet baryon
members.
The spin-1 diquark component of the wave function

(4.10) includes the spin state [101]

UαðPÞ ¼ 1ffiffiffi
3

p γ5

�
γα −

Pα

M

�
uðPÞ: ð4:17Þ

The spin states are ruled by the SUð2Þ-spin symmetry
[SUSð2Þ symmetry]. The spin 1=2 state UαðPÞ is combined
with the diquark polarization vector, εαPðλÞ (λ ¼ 0;�)
defined in a fixed-axis base, for a three-momentum P
along the z-axis [100],

εαPð�Þ ¼ ∓ 1ffiffiffi
2

p ð0; 1;�1; 0Þ; ð4:18Þ

εαPð0Þ ¼
1

M
ðP; 0; 0; EÞ; ð4:19Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

p
.

In order to write the expression for the P-state conven-
iently, we define

~k ¼ k −
P · k
M2

P: ð4:20Þ

Note that at the nucleon rest frame, P ¼ ðM; 0; 0; 0Þ,
~k ¼ ð0;kÞ is reduced to the diquark three-momentum,
and ~k2 ¼ −k2. Following Ref. [99], we define the P-state
wave function as
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ΨPðP; kÞ ¼
1ffiffiffi
2

p ~k½ϕ0uðPÞ − ϕ1ðε�PÞαUαðPÞ�ψPðP; kÞ;

ð4:21Þ

where ψPðP; kÞ is the P-state radial wave function. Since
the wave function (4.21) is reduced to two upper compo-
nents that vanish in the nucleon rest frame, the state
corresponds to a positive parity state (the negative parity
of the P-state is cancelled by the negative sign from the
Dirac parity operator γ0) [99].
The normalization conditions of the S- and P-states

components require that

Z
k
½ψSðP̄; kÞ�2 ¼ 1; ð4:22Þ

Z
k
ð−~k2Þ½ψPðP̄; kÞ�2 ¼ 1; ð4:23Þ

where P̄ ¼ ðM; 0; 0; 0Þ is the nucleon momentum in its rest
frame. The above conditions, derived from the Q2 ¼ 0
limit, ensures that the charge of the nucleon state is
eN ¼ 1

2
ð1þ τ3Þ. (The operator eN acts on the isospin states

of the nucleon.)
The radial wave function for the S-state, ψSðP; kÞ, can be

defined in terms of the dimensionless variable [98,107]

χ ¼ ðM −mDÞ2 − ðP − kÞ2
MmD

: ð4:24Þ

As in previous works, we consider the form [98,106]

ψSðP; kÞ ¼
NS

mDðβ1 þ χÞðβ2 þ χÞ ; ð4:25Þ

where NS is a normalization constant, and β1, β2 are
momentum scale parameters in units of MmD. In the

present work we use the values β1 ¼ 0.049 and β2 ¼
0.717 [98].
As for the P-state, we define ψPðP; kÞ as

ψPðP; kÞ ¼
ψSðP; kÞffiffiffiffiffiffiffiffi

−~k2
p : ð4:26Þ

In this case both the S- and P-states components of the
nucleon wave function are defined by the S-state para-
metrization established in previous works [98,101].

D. Extension of the valence quark model
for the octet baryons

We discuss now the extension of the model for the other
members of the octet baryons. For this, we need to consider
the modifications of the quark axial current (4.6) as well as
the modifications in the wave functions of the baryons.
We can extend the description of the nucleon wave

function for the S- and P-states given by Eqs. (4.10) and
(4.21) to the octet baryons replacing the isospin wave
functions of the nucleon ϕ0 and ϕ1 by the mixed anti-
symmetric and mixed symmetric SUð3Þ flavor wave
functions, respectively, jMAiB and jMSiB associated with
the baryon B. The flavor wave functions, jMAiB, jMSiB, are
presented in Table I.
As for the radial wave functions, we follow the study of

the electromagnetic proprieties of the octet baryons Λ, Σ,
and Ξ based on the S-state [109],

ψΛ;SðP; kÞ ¼
NΛ

mDðβ1 þ χΛÞðβ3 þ χΛÞ
; ð4:27Þ

ψΣ;SðP; kÞ ¼
NΣ

mDðβ1 þ χΣÞðβ3 þ χΣÞ
; ð4:28Þ

ψΞ;SðP; kÞ ¼
NΞ

mDðβ1 þ χΞÞðβ4 þ χΞÞ
; ð4:29Þ

TABLE I. Representations of the flavor wave functions of the octet baryons.

B jMAi jMSi
p 1ffiffi

2
p ðud − duÞu 1ffiffi

6
p ½ðudþ duÞu − 2uud�

n 1ffiffi
2

p ðud − duÞd − 1ffiffi
6

p ½ðudþ duÞd − 2ddu�

Λ0 1ffiffiffiffi
12

p ½sðdu − udÞ − ðdsu − usdÞ þ 2ðud − duÞs� 1
2
½ðdsu − usdÞ − sðud − duÞ�

Σþ 1ffiffi
2

p ðus − suÞu 1ffiffi
6

p ½ðusþ suÞu − 2uus�
Σ0 1

2
½ðdsuþ usdÞ − sðudþ duÞ� 1ffiffiffiffi

12
p ½sðudþ duÞ þ ðdsuþ usdÞ − 2ðudþ duÞs�

Σ− 1ffiffi
2

p ðds − sdÞd 1ffiffi
6

p ½ðsdþ dsÞd − 2dds�

Ξ0 1ffiffi
2

p ðus − suÞs − 1ffiffi
6

p ½ðusþ suÞs − 2ssu�
Ξ− 1ffiffi

2
p ðds − sdÞs − 1ffiffi

6
p ½ðdsþ sdÞs − 2ssd�
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where χB is defined by Eq. (4.24) with M replaced by MB,
NB are normalization constants, and β3 and β4 are new
momentum range parameters (in units of MBmD). The
motivation for the above expressions is to modulate the
short range behavior β2, defined in the nucleon radial wave
function by a different parameter (smaller value for β3 and
β4) according to the number of strange quarks. We take the
values from Ref. [109]: β3 ¼ 0.603 and β4 ¼ 0.381.
Similarly to the nucleon, we can also define the P-state

radial wave functions as ψB;P ¼ ψB;S=
ffiffiffiffiffiffiffiffi
−~k2

p
, where ~k is

defined by Eq. (4.20) in terms of the baryon momentum P.
The quark axial current (4.6) defined so far in the

SUFð2Þ sector is extended to the SUFð3Þ sector for
transitions between the other octet baryons replacing the
Pauli matrices τa (a ¼ 1, 2, 3) by the Gell-Mann matrices
λa (a ¼ 1;…; 8).
Using the Gell-Mann matrices, we can describe the

neutral current transitions (B → B) when the operator is
I0 ¼ λ3 and also the transitions with ΔI ¼ 1 or ΔS ¼ 1.
The transitions with ΔI ¼ 1 are associated with the
operator I� ¼ 1

2
ðλ1 � iλ2Þ which correspond to the d →

u (Iþ) and u → d (I−) transitions. The transitions with
ΔS ¼ 1 are associated with the operator V� ¼ 1

2
ðλ4 � iλ5Þ

which correspond to the s → u (Vþ) and u → s (V−)
transitions.
According to the SUFð3Þ symmetry, the quark form

factors gqA and gqP are the same as in the SUFð2Þ sector.
Therefore, once the model is fixed in the SUFð2Þ sector, the
results for the SUFð3Þ sector represent predictions of
the model.

E. Lattice QCD regime

We discuss here how we can perform the extension of the
covariant spectator quark model to the lattice QCD regime.
This extension was already done in the past for electro-
magnetic transitions [102,103,106,109].
In the previous sections we have shown that the wave

functions of the baryons, including the radial part ψS and
ψP, can be written in terms of the baryon mass MB. In
Eq. (4.24) we have presented the parametrization for the
nucleon, but the generalization for other baryons can be
done by replacing M by the corresponding baryon mass
MB. We have also discussed how the quark axial current jμAq
given by Eq. (4.6) can be defined in terms of the axial form
factors gqA and gqP and the nucleon mass M. We have also
concluded that the quark axial form factors can be
represented by a VMD parametrization in terms of the
mass of the vector meson mass (ρ meson) and an effective
heavy meson with mass Mh ¼ 2M.
Since the bare contribution for the electromagnetic and

the axial form factors can be completely determined by the
masses of the baryon (MB), the ρ mass (mρ), and the
nucleon mass (M), we extend the model for the lattice QCD
regime replacing these masses by the corresponding masses

in the lattice QCD simulations. The remaining parameters
in the quark current and in radial wave functions are the
same as those used in the physical limit. As for mρ, since
the value is not always provided in the lattice QCD
simulations, we use the following expression based on
the lattice studies made in Ref. [122]:

mρ ¼ a0 þ a2m2
π; ð4:30Þ

where mπ is the value of the pion mass used in the lattice
QCD simulation, a0¼0.766GeV, and a2 ¼ 0.427 GeV−1.
With the procedure explained above, we can associate

our model with a lattice QCD simulation with the same mπ

(lattice QCD regime).

V. VALENCE QUARK CONTRIBUTIONS
FOR THE NUCLEON

We present in this section the expressions for the nucleon
axial-vector and induced pseudoscalar form factors asso-
ciated with the different valence quark contributions of the
nucleon wave function. Since the nucleon wave function
(4.9) is a combination of the S- and P-states, the contri-
butions for the axial current (4.5) can be decomposed into
an S-state term (∝ n2S), an S → P term (∝ nSnP), and a
P-state term (∝ n2P), as presented in the next sections. The
individual contributions for the form factors associated
with the transitions between the S- and P-states, S → S,
S ↔ P, and P → P are be represented by the upper indices
SS, SP, and PP, respectively. Note that the transition
between the S- and P-states is possible due to the structure
of the axial current, γμγ5. However, in the limit Q2 ¼ 0 the
SP contribution vanishes (the same happens for the current
given by a Dirac term γμ).
In order to present the results in a covariant form, we

introduce some useful notation below. For the average
momentum between the initial and final momenta we use

P0 ¼ 1

2
ðPþ þ P−Þ: ð5:1Þ

Then, ðP0Þ2 can be written as ðP0Þ2 ¼ M2ð1þ τÞ, with

τ ¼ Q2

4M2. It is also convenient to define

~k0 ¼ k −
P0 · k
ðP0Þ2 P

0: ð5:2Þ

In the Breit frame ~k0 is reduced to the spacial component
~k0 ¼ ð0;kÞ and ð~k0Þ2 ¼ −k2.
The analytic expressions for the transition form factors,

to be given next, can be expressed in terms of a few
invariant integrals defined by the factors

a ¼ P0 · k
M

; ð5:3Þ
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c0 ¼
ðP0 · kÞ2
ðP0Þ2 ; ð5:4Þ

c1 ¼ −ð~k0Þ2; ð5:5Þ

c2 ¼ −
ðq · kÞ2
q2

: ð5:6Þ

In the Breit frame one has a ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
ED, c0 ¼ E2

D,
c1 ¼ k2, and c2 ¼ k2z , where ED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
p

and kz is
the z-component of the three-momentum k.

A. S-state

The S-state contribution for the form factors can be
expressed as

GSS
A ðQ2Þ ¼ 5

3
n2Sg

q
AðQ2ÞB0ðQ2Þ; ð5:7Þ

GSS
P ðQ2Þ ¼ 5

3
n2Sg

q
PðQ2ÞB0ðQ2Þ; ð5:8Þ

where n2S ¼ 1 − n2P, and

B0ðQ2Þ ¼
Z
k
ψSðPþ; kÞψSðP−; kÞ ð5:9Þ

is the nucleon Body form factor. This calculation can be
done using the S-state model from Ref. [98].
In the limit n2S ¼ 1 and gqAð0Þ ¼ 1 we obtain the result of

the static quark model (or naive quark model) GAð0Þ ¼ 5
3

[12,13,27,39,42,50,57,123]. The inclusion of relativistic
corrections on nonrelativistic models reduces the value of
GAð0Þ ¼ 5

3
to a value closer to the experimental value

GAð0Þ≃ 1.27 [12,31,39,123].
The result GAð0Þ ¼ 5

3
gqAð0Þ implies that if we want to

explain the experimental value within a simplified model
we need to admit that the axial charge of the quark is
smaller than the unit, gqAð0Þ < 1, breaking the connection
with the electromagnetic isovector current [gqAð0Þ≠f1−ð0Þ].
Similar effects were already observed in other frameworks
[13,35,38,39,41,52,123]. Calculations based on the Dyson-
Schwinger formalism suggest that the quark axial-vector
coupling gqAð0Þ is reduced relatively to gqAð0Þ ¼ 1 due to the
gluon dressing of the quarks [38,39,41].

B. Transition between S- and P-states

For the S- to P-states and the P- to S-states transitions,
we obtain, using nSP ¼ nSnP,

GSP
A ðQ2Þ ¼ −

10

3
nSP

τ

1þ τ
gqAðQ2ÞB1ðQ2Þ; ð5:10Þ

GSP
P ðQ2Þ ¼ −

10

3
nSP

�
1

1þ τ
gqAðQ2Þ þ gPðQ2Þ

�
B1ðQ2Þ;

ð5:11Þ

where

B1ðQ2Þ ¼
Z
k

P0 · k
M

ψPðPþ; kÞψSðP−; kÞ: ð5:12Þ

Note that in the Breit frame P0·k
M ¼ ED

EN
M with EN ¼

M
ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
being the nucleon energy (initial or final state).

C. P-state

The results for the P- to P-state transition is given by

GPP
A ðQ2Þ ¼ 4

3
n2Pg

q
AðQ2Þ½τB2ðQ2Þ − ð1þ τÞB4ðQ2Þ�;

ð5:13Þ

GPP
P ðQ2Þ ¼ 5

3
n2Pg

q
AðQ2Þ

�
B5ðQ2Þ

τ
þ 2B2ðQ2Þ − 2B4ðQ2Þ

�

þ 5

3
n2PgPðQ2Þ½τB2ðQ2Þ þ B3ðQ2Þ

− ð2þ τÞB4ðQ2Þ�; ð5:14Þ

where

B2ðQ2Þ ¼
Z
k

ðP0 · kÞ2
ðP0Þ2 ψPðPþ; kÞψPðP−; kÞ; ð5:15Þ

B3ðQ2Þ ¼
Z
k
ð−~k02ÞψPðPþ; kÞψPðP−; kÞ; ð5:16Þ

B4ðQ2Þ ¼
Z
k

ðq · kÞ2
Q2

ψPðPþ; kÞψPðP−; kÞ; ð5:17Þ

B5ðQ2Þ ¼
Z
k
ð2S3ÞψPðPþ; kÞψPðP−; kÞ: ð5:18Þ

In the last equation, 2S3 ¼ q2 ~k02−3ðq·kÞ2
q2 . Note that the

integrals (5.15)–(5.18) can be reduced to simpler forms
in the Breit frame, according to Eqs. (5.3)–(5.6).
The function B5 can also be represented as

B5 ¼ B3 − 3B4. However, it is convenient to define B5

as an independent function since B5 ∝ τ for small τ, which
implies that B5

τ → constant when Q2 → 0. This property is

the consequence of the result, S3 ¼ jkj
ffiffiffiffiffiffi
16π
5

q
Y20ðk̂Þ when

Q2 → 0. Note that the factor Y20ðk̂Þ is associated with
L ¼ 2 transitions between the two P-state components in
the nucleon wave function.

D. Summary of the valence quark contributions

We discuss now the total contribution from the baryon
core (bare) given by the sum of the components presented
below:

G. RAMALHO and K. TSUSHIMA PHYSICAL REVIEW D 94, 014001 (2016)

014001-10



GB
AðQ2Þ ¼ GSS

A ðQ2Þ þGSP
A ðQ2Þ þ GPP

A ðQ2Þ; ð5:19Þ

GB
PðQ2Þ ¼ GSS

P ðQ2Þ þGSP
P ðQ2Þ þ GPP

P ðQ2Þ: ð5:20Þ

Using the result for GB
A, we can estimate the amount of

the P-state mixture nP in terms of the value ofGB
Að0Þ, in the

case where there are no meson cloud contributions. From
the normalization of the radial wave functions, we can
conclude that B1ð0Þ ¼ B3ð0Þ ¼ 3B4ð0Þ. Since at Q2 ¼ 0
the SP term vanishes, one has

GB
Að0Þ ¼

15 − 19n2P
9

gqAð0Þ: ð5:21Þ

Then, if gqAð0Þ ¼ 1 as already discussed, we may
estimate the P-state mixture in terms of the valence quark
contribution GB

Að0Þ as nP ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½15 − 9GB
Að0Þ�=19

p
. When

GB
Að0Þ ¼ 1.1;…; 1.2, we obtain nP ¼ �0.47;…;�0.52.
The improvement of the agreement with the data due to

the inclusion of angular momentum components beyond
the S-state approximation was observed long time ago
in the context of nonrelativistic quark models [123] and in
CBM [42]. In CBM the reduction of GAð0Þ from the value
5=3 is also a consequence of the P-state, associated with the
lower components of the quark Dirac spinors [42].
It is important to recall at this point that in lattice QCD

simulations with large mπ the contribution of the meson
cloud effects to the form factors are expected to be small;
therefore, GA ≃GB

A. It can be then very interesting to
compare the results of the extended model for the lattice
QCD regime (without meson cloud) as discussed in
Sec. IV E, directly with the lattice QCD data.
In Fig. 1 we compare the results of our model extended

for the lattice QCD regime with the lattice QCD simulation
for mπ ¼ 465 MeV from Ref. [82]. We can see that the
pure S-state (nP ¼ 0; short-dashed line) fails to describe
the data for the small Q2 region, although it approaches the
lattice data for large Q2. The result for nP ¼ 0.1 (long dash

line) overestimates the data in the smallQ2 region, while in
the large Q2 region it underestimates. Finally, the result for
nP ¼ −0.5 (solid line) gives an excellent description of the
lattice QCD data. This suggests that a mixture between the
S- and P-states of about 25% with a negative coefficient
(nP ≃ −0.5) is adequate to describe the lattice QCD data
for GA obtained with large mπ .
The result of the systematic study of the lattice QCD data

for the range mπ ¼ 350–500 MeV, for both form factors,
GA and GP, is presented in Sec. IX. In the next section
we extend the formalism developed here for the nucleon
to the octet baryons using the SUFð3Þ symmetry at the
quark level.
Since in the physical regime, contrarily to the lattice

QCD regime with large mπ , the effect of the meson cloud
(in particular, the pion cloud) cannot be ignored for the
nucleon as well as for the other octet baryon members; in
Sec. VII we discuss how the results for the physical case
can be corrected by the effect of the meson cloud on the
octet baryon wave functions.

VI. VALENCE QUARK CONTRIBUTIONS
FOR THE OCTET BARYONS

As in the case of the nucleon, we can calculate the axial
form factors involving the other octet baryon members
using the wave functions given in Sec. IV D. There are four
main differences relatively to the nucleon case:

(i) We have now the u ↔ s transitions.
(ii) The nucleon isospin wave functions, ϕ0

I and ϕ1
I , are

replaced by the antisymmetric jMAiB and symmetric
jMSiB flavor wave functions in SUð3ÞF, as dis-
played in Table I.

(ii) The radial wave functions, ψS and ψP, are replaced
by functions with different momentum range
parameters.

(iii) There are, in general, a mass difference between the
initial (MB) and the final (MB0 ) baryon states (for the
nucleon the difference between the proton and
neutron mass is negligible).

Contrarily to the nucleon case (n → p transition), the
difference in masses between the initial and final states can
originate, in principle, additional terms to the structure of
transition axial current (2.4) besides corrections dependent
on the mass difference to the form factors GA and GP. In
this work as a first approximation we consider the limit
MB0 ¼ MB and replace those masses by the average MBB0 .
Except for the value of the mass (M or MBB0 ), we can

calculate the results of the axial form factors for the octet,
using the results for the nucleon modified by the flavor
wave functions. Since the results for the nucleon can be
divided into the diquark spin-0 contribution that goes with
the mixed antisymmetric flavor wave function jMAiB, the
diquark spin-1 contribution goes with the mixed symmetric
flavor wave function jMSiB. We define the symmetric (S)
and antisymmetric (A) transition coefficients,

0 0.5 1 1.5 2

Q
2
 (GeV

2
)

0

0.5

1

1.5

G
A

 (
Q

2 )

mπ = 465 MeV
Model: n

P
 = + 0.00
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P
 = + 0.10

Model: n
P
 =  - 0.50

FIG. 1. Model result of GB
A in the lattice QCD regime

(mπ ¼ 465 MeV) for values of nP ¼ 0.0, 0.1 and −0.5. Lattice
data are from Ref. [82].
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fAX ¼ B0 hMAjXjMAiB; ð6:1Þ

fSX ¼ B0 hMSjXjMSiB; ð6:2Þ

where the operator X can be either I0, I�, or V�. The results
of the octet transition coefficients are presented in Table II.
The results for the neutral transitions B → B defined by
X ¼ I0 ≡ λ3 are presented in Table III for B ¼ N;Σ, and Ξ.
For Λ and Σ0, the coefficients are both zero; therefore,
GAðQ2Þ ¼ 0. As explained in caption of Table III, the
values are redefined to be independent of the charges of the
baryons as in the nucleon case.
Using the new notation, we can rewrite the results for the

nucleon in terms of the factor

3

2

�
fAX −

1

3
fSX

�
¼ 5

3
; ð6:3Þ

since in the nucleon case we have fAIþ ¼ 1 and fSIþ ¼ − 1
3
.

The difference in the calculation relative to the nucleon
case, apart from the mass, is that the factor due to the spin
structure in the nucleon case given by fAIþ − 1

3
fSIþ ¼ 10

9

should be replaced by the factor fAX − 1
3
fSX in the general

case. Therefore, we can obtain the results of the axial form
factors for the octet baryons multiplying the nucleon results
by 9

10
ðfAX − 1

3
fSXÞ.

Then, assuming that the baryon wave functions of B and
B0 are also defined with the mixture coefficients nS and nP,
we can write the transition form factors with nS, nSP, and
nP, in general,

GB
AðQ2Þ ¼ gqAF

�
3

2
n2SB0 − 3nSP

τ

1þ τ
B1

þ 6

5
n2P½τB2 − ð1þ τÞB4�

�
; ð6:4Þ

GB
PðQ2Þ ¼ gqAF

�
−3nSP

1

1þ τ
B1þ

3

2
n2P

�
B5

τ
þ 2ðB2−B4Þ

��

þMBB0

M
gqPF

�
3

2
n2SB0− 3nSPB1

þ 3

2
n2P½τB2þB3− ð2þ τÞB4�

�
; ð6:5Þ

where one has now τ ¼ Q2

4M2

BB0
and

F ¼
�
fAX −

1

3
fSX

�
: ð6:6Þ

The effect of the mass (M orMBB0 ) appears in the functions
Bi (i ¼ 0;…; 5).
Note, in particular, in Eq. (6.5) the factor MBB0

M , which
corrects the quark form factor gqP relative to the nucleon
case. This factor is the consequence of the definition of the
quark axial current given by Eq. (4.6), in terms of the

TABLE II. Coefficients fS;AI and fS;AV for the octet baryon transitions.

B → B0 fAX fSX ½GB
Að0Þ�nP¼0 GB

AðQ2Þ
ΔI ¼ 1 (Iþ) n → p 1 − 1

3
5
3

GB
A;N

ðI∓Þ Σ� → Λ � 1ffiffi
6

p ∓ 1ffiffi
6

p �
ffiffi
6

p
3

�
ffiffi
6

p
5
GB

A;N

ðIþÞ Σ− → Σ0 1ffiffi
2

p 1

3
ffiffi
2

p 2
ffiffi
2

p
3

2
ffiffi
2

p
5
GB

A;N

ðIþÞ Ξ− → Ξ0 0 2
3

− 1
3

− 1
5
GB

A;N

ΔS ¼ 1 (Vþ) Λ → p − 2ffiffi
6

p 0 −
ffiffi
3
2

q
− 3

ffiffi
3

p
5
ffiffi
2

p GB
A;N

ðVþÞ Σ− → n 0 − 2
3

1
3

1
5
GB

A;N

ðVþÞ Σ0 → p 0 −
ffiffi
2

p
3

1

3
ffiffi
2

p 1

5
ffiffi
2

p GB
A;N

ðVþÞ Ξ− → Λ − 1ffiffi
6

p − 1ffiffi
6

p − 1ffiffi
6

p −
ffiffi
3

p
5
ffiffi
2

p GB
A;N

(Vþ) Ξ− → Σ0 1ffiffi
2

p − 1

3
ffiffi
2

p 5

3
ffiffi
2

p 1ffiffi
2

p GB
A;N

(Vþ) Ξ0 → Σþ 1 − 1
3

5
3

GB
A;N

TABLE III. Coefficients fS;AI0
for the neutral transitions. In order

to compare with the literature we correct the results for fS;AI0
by an

isospin factor. In the case of the nucleon and Ξ the factor is the
isospin projection of the baryon (þ for p, Ξ0, and − for n, Ξ−).
For the Σ case, the factor is taken as the Σ charge (þ; 0;−).

B fAX fSX ½GB
Að0Þ�nP¼0 GB

AðQ2Þ
N 1 − 1

3
5
3

GB
A;N

Σ 1 1
3

4
3

4
5
GB

A;N

Ξ 0 2
3

− 1
3

− 1
3
GB

A;N
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nucleon mass M for all the baryons, in contrast to the
baryonic transition currents (2.4) that depend on MBB0 .
For a future discussion, it is important to note that the

second term in the rhs in Eq. (6.5) for GB
P, the term

proportional to gqAn
2
P, has a dependence on Q2 that is

similar to the first term of the rhs in Eq. (6.4) for GB
A for

large Q2. Both terms scale as 1=Q4 for very large Q2. This
behavior is a consequence of the choice made for the
radial wave functions that enter in the definitions of the
functions BiðQ2Þði ¼ 0;…; 5Þ and also from the result
gqAðQ2Þ≃ constant in the large Q2 limit. Recall that the
radial wave functions are chosen with the form of the
nucleon radial wave function and that the nucleon radial
wave function is parametrized in order to describe the
nucleon electromagnetic form factors for large Q2. The
consequence of this choice is that one has B0ðQ2Þ ∝ 1=Q4

for large Q2, apart from some logarithmic correc-
tions [101].
In the third columns of Tables II and III we present the

result forGB
Að0Þ for nP ¼ 0. It is interesting to look to those

values because they agree with the results of the static
quark model (naive quark model) obtained also in the
S-state limit. As already discussed, the covariant spectator
quark model improves the result for the nucleon at
Q2 ¼ 0 when we include a P-state mixture with the value
nP ≃ −0.5.
In the last columns of Tables II and III we write the

expressions obtained for the form factorGB
AðQ2Þ in terms of

the result for the nucleon (n → p transition) in the limit
M ¼ MBB0 , represented by the function GB

A;NðQ2Þ. Since
the results for the octet baryons for finite Q2 are calculated
under the SUFð3Þ symmetry, the symmetry is broken by the
mass MB (dependent on the isospin of the baryon); it will
be interesting to see if the relations from Tables II and III
expressed in terms of the result for the nucleon, GB

A;N , are a
good approximation for the octet baryons or not. (The
parametrizations of the radial wave functions are also
different for the octet baryons.) These issues are discussed
in Sec. X.
Note about the function GB

AðQ2Þ that the results are no
longer related with the static quark model limit since we
now include a P-state mixture. In order to better understand
the difference between the two models, the static quark
model and a model with the P-state, we compare the
results for the case where nP ≃ −0.5. In the static quark
model we obtain for the nucleon GB

Að0Þ ¼ 5
3
≃ 1.67. In this

case the expected result for the Ξ− → Ξ0 form factor is
GB

Að0Þ ¼ −0.33. If we consider instead the model with the
P-state discussed in Sec. V, assuming GB

Að0Þ≃ 1.1 (lattice
case), we obtain GB

Að0Þ ¼ −0.22 for the same transition.
There is therefore a significant deviation from the
SUð6Þ value.
In Sec. VIII we compare the results of our valence quark

model with those of the SUð3Þ baryon-meson model.

VII. MESON CLOUD EFFECTS FOR THE OCTET
BARYON AXIAL FORM FACTORS

We discuss in this section how the meson cloud effects
can be taken into account in the octet baryon axial form
factors. We start by the nucleon case. Next, we explain how
the method can be extended for the other octet baryon
members.

A. Meson cloud dressing of the nucleon

Since the pion cloud is expected to be the dominant
contribution in the meson cloud, we could, in principle,
replace meson cloud by pion cloud. We keep, however, the
discussions general, aiming for the generalization for the
octet baryons.
The meson cloud contribution can be included in the

nucleon wave function using the nucleon state expanded as

jNi ¼
ffiffiffiffiffiffi
ZN

p
½j3qi þ cN jMCi�; ð7:1Þ

where
ffiffiffiffiffiffi
ZN

p
is the normalization constant, j3qi gives the

nucleon bare (three valence quark) wave function part, and
cN jMCi represents the meson cloud component associated
with baryon-meson states. The coefficient cN is determined
by the normalization of the state [ZNð1þ c2NÞ ¼ 1, if the
meson cloud component is normalized to the unit]. The
component j3qi has already been discussed in the previous
section.
Since the nucleon wave function associated with the state

(7.1) includes states beyond the valence quark core, we
simply refer the state jNi as the physical nucleon state [42].
Note, however, that although the higher order states such as
baryon-meson-meson states may also be included in the
nucleon wave function by including the corresponding
states in Eq. (7.1), we assume that the baryon-meson states
give the more relevant corrections to the valence quark core
and ignore the higher states in this work.
We discuss now how the results obtained for the form

factors due to the valence quark component are modified by
the existence of the component jMCi. In a framework
where the baryon-meson interactions are defined by an
underlying theory, we can calculate the normalization
constant ZN using the derivative of the nucleon self-energy
(nucleon dressed by the meson cloud) [106,109,111].
Once we determine ZN , we can calculate the effective

contribution of the valence quark component for a given
process, including the factor

ffiffiffiffiffiffi
ZN

p
associated with the

component j3qi. Since the valence quark component itself
is normalized to unity and there is a meson cloud
component, we need to correct the bare contribution when
we compute the effect of the valence quarks by the
probability of finding a bare nucleon state (three valence
quark) in the physical nucleon state jNi, which will reduce
the bare contribution by the factor ð ffiffiffiffiffiffi

ZN
p Þ2 due to the

presence of the meson cloud.
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For an easier understanding of this normalization pro-
cedure, we discuss the calculation of the proton charge e,
defined by the proton Dirac form factor in the limitQ2 ¼ 0,
F1ð0Þ. Since the determination of the nucleon elastic form
factors depends on the two nucleon wave functions
associated with the initial and the final states, the valence
quark contribution for F1ð0Þ, which is unity, should be
modified by ZN ¼ ffiffiffiffiffiffi

ZN
p ffiffiffiffiffiffi

ZN
p

due to the normalization of
the valence quark component of the wave function.
Therefore, only the fraction ZN contributes to the proton
charge. The remaining contribution ð1 − ZNÞe is due to the
meson cloud. Considering as an example the model that we
present in Sec. IX with ZN ¼ 0.73, we can conclude that
only about 73% of the proton’s charge is due to the valence
quarks (27% of meson cloud).
To summarize, the contribution of the valence quarks for

the axial form factor GA can be determined from the result
obtained by the bare contribution GB

A, multiplied by ZN,

GB
AðQ2Þ → ZNGB

AðQ2Þ: ð7:2Þ

See Refs [106,109,111] for more details.
To avoid confusion between the result forGA obtained in

the case where only the valence quarks are relevant (so far
represented as GB

A) and the case with the meson cloud as in
the physical case, we define

~GB
AðQ2Þ ¼ ZNGB

AðQ2Þ ð7:3Þ

as the effective contribution of the bare core for the axial-
vector form factor. Using this notation, we can rewrite
Eq. (3.1) as

GAðQ2Þ ¼ ~GB
AðQ2Þ þ GMC

A ðQ2Þ; ð7:4Þ

where GMC
A represents, as before, the contribution of the

meson cloud. Note that, as mentioned earlier, if we have a
model for ~GB

A, we can estimate GMC
A phenomenologically

replacing GA by some parametrization of the experimen-
tal data.
In this work, instead of calculating ZN from an under-

lying theory, we chose to use the experimental data for GA
to estimate the amount of the meson cloud in the nucleon
system.
Our method to estimate ZN is the following: (i) First, we

calibrate our valence quark model by the lattice QCD data
with large mπ . (ii) Next, we extrapolate the result for the
physical limit to obtain GB

A. (iii) Finally, we use Eq. (7.3)
with ~GB replaced by a phenomenological parametrization
of the data for Q2 > 1 GeV2, a region where the meson
cloud effects are small to calculate ZN .
Note that the estimate of the factor ZN by the nucleonGA

form factor data, instead of just by the nucleon electro-
magnetic form factor data, provides, in principle, a more

consistent estimate of the meson cloud component in the
physical nucleon state jNi.

B. Meson cloud dressing of octet baryons

We assume that for the other octet baryon members we
can write also an equation similar to Eq. (7.1) that includes
a coefficient cB that is related with the normalization
constant

ffiffiffiffiffiffi
ZB

p
. For the other octet baryon members,

however, it is not possible to estimate ZB directly from
the data since there are no data for finite Q2. Thus, we
cannot use the method based on Eq. (7.2) to estimate ZB.
Therefore, we rely on an alternative method to estimate

the normalization factor ZB for the other octet baryon
members. The method is based on the similarity between
the contribution of the meson cloud for the nucleon in our
model and CBM [11].
In the formalism of the covariant spectator quark model,

we can represent [106,109,111,112]

ZB ¼ 1

1þ aBb1
; ð7:5Þ

where b1 is a parameter that establishes the magnitude of
the meson cloud in the nucleon system, and aB is a factor
dependent on the baryon flavor, constrained by aN ¼ 1.
The coefficient aB is defined by c2B ¼ aBb1, according to
Eq. (7.1). Since aN ¼ 1, in the case of the nucleon, ZN is
determined directly by b1 and vice versa.
We compare our result for ZN with the result of CBM

[11]. Our result for ZN, presented in Sec. IX, is
ZN ¼ 0.7343. The results from CBM is ZN ¼ 0.7114.
We conclude therefore that the effect of the meson cloud
in the nucleon wave function is very similar in both models.
Assuming that the meson cloud contribution for the octet

baryon members keep the same proportion for the nucleon
as in CBM, we can determine aB, and consequently
calculate ZB. Since in the weak transitions between octet
baryon members may involve different isospin multiplets in
the initial and final states, it is more convenient to present
the results for

ffiffiffiffiffiffi
ZB

p
. The values of

ffiffiffiffiffiffi
ZB

p
determined by the

method described above are presented in Table IV.

VIII. SUð3Þ BARYON-MESON MODEL

In Secs. IV, V, and VI we have discussed the covariant
spectator quark model which is based on the wave
functions in flavor-spin space determined by the

TABLE IV. Normalization factors
ffiffiffiffiffiffi
ZB

p
of the octet baryon

wave functions as the result of the meson cloud dressing.
ffiffiffiffiffiffi
ZN

p ¼ 0.8569ffiffiffiffiffiffi
ZΛ

p ¼ 0.8822ffiffiffiffiffiffi
ZΣ

p ¼ 0.8751ffiffiffiffiffiffi
ZΞ

p ¼ 0.9019
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SUFð3Þ ⊗ SUSð2Þ symmetries. In the following for sim-
plicity we use SUð6Þ to represent SUFð3Þ ⊗ SUSð2Þ.
We discuss here the results obtained by the SUFð3Þ

symmetry model for the hadronic weak-axial current
modified by the strong interaction according to PCAC.
Using the SUFð3Þ symmetry, we can represent the baryon-
meson interactions in terms of an SUð3Þ chiral perturbation
theory Lagrangian parametrized by three quantities,
namely, the Cabibbo angle (θC), the antisymmetric F,
and the symmetric D couplings [6,7]. Some of those
models may also be referred to as the Cabibbo theory
[6,56] or the heavy baryon chiral perturbation theory
[7,57–60].
In the SUð3Þ baryon-meson approach, the properties of

the beta decays of the octet baryons can be characterized by
the couplings F and D. In particular, the results for GAð0Þ
associated with the ΔI ¼ 1 and ΔS ¼ 1 octet baryon
decays can be expressed in terms of F and D. The
expressions for GAð0Þ are presented in the column labeled
as SUð3Þ in Table V. The expressions for the neutral axial-
vector form factors are presented in Table VI. In Table V
the signs are adjusted according to our results for GB

Að0Þ
from Table II. For the discussions about the sign con-
ventions, see Refs. [4,6,24,124,125]. Also in Table V one
can see, for instance, that GAð0Þ ¼ F þD for the n → p
transition and GAð0Þ ¼

ffiffiffi
2

p
F for the Σ− → Σ0 transition.

If we resort furthermore on the SUSð2Þ symmetry, we
obtain the SUð6Þ flavor-spin symmetry. In this case F ¼
0.4ðF þDÞ and D ¼ 0.6ðF þDÞ. Then, all the values of
GAð0Þ can be determined by the value of F þD that can be
fixed by the value of GAð0Þ for the n → p transition.

The results for the SUð6Þ case are also presented in
Tables V and VI [see column labeled as SUð6Þ].
Note that in the SUð3Þ and SUð6Þ approaches the

dependence on the baryon masses is not reflected directly
on the coupling constants D and F, which should be valid
for all the weak transitions between the octet baryons
(N, Λ, Σ, Ξ). It is important to mention that although the
many successful SUð3Þ baryon-meson models are close to
the SUð6Þ limit of α ¼ F=ðF þDÞ ¼ 0.6, the two para-
metrizations can differ up to about 17%–25%. The SUð3Þ
baryon-meson models generally have a better agreement
with the data.
It is interesting to compare the results of the SUð3Þ

baryon-meson model in the SUð6Þ limit (last column in
Table V) with the results ofGB

A in Table II (last column). We
can conclude that the function G in Table V and the
function GB

A in Table II are multiplied by the same
(constant) factor for a given transition. This result means
that the covariant spectator quark model is equivalent to an
SUð6Þ baryon-meson model in the limit Q2 ¼ 0. For the
convenience of future discussions, we define the relative
proportion factor, ηBB0 , for the axial-vector form factor for
the B → B0, relative to that of the nucleon (n → p).
If we estimate the contribution of the quarks u and d for

the proton spin using the static quark model, we obtain
ΔΣu ¼ 4=3 and ΔΣd ¼ −1=3, which correspond to the
total spin of the proton (ΔΣ ¼ 1). However, the exper-
imental value is ΔΣ≃ 0.33 [8,9], which raised the well-
known proton spin crises [8–11]. The above values of ΔΣq

correspond to F ¼ 2
3
and D ¼ 1 [12,13,50,57,123]. In this

case one has an SUð6Þ model (F ¼ 2
3
D) where D ¼ 1. As

F þD ¼ 5
3
, we recover the results ½GB

Að0Þ�nP¼0 discussed
in Sec. VI.
The SUð3Þ baryon-meson model gives a good descrip-

tion of the data when the parameters D and F are fitted to
the available GAð0Þ data for the octet baryons. It is
important to note, however, that the results of the SUð3Þ
baryon-meson model are expected to be only an approxi-
mation since the SUFð3Þ symmetry is broken due to the
large s-quark mass compared to the u and d quarks. The
symmetry breaking due to the s-quark is indeed reflected
on the variation of the octet baryon physical masses.
Thus, due to the symmetry breaking, a deviation of about
20%–30% from the data can be expected [6,59,60].

TABLE V. Octet baryon axial-vector form factors GAðQ2Þ,
expressed in terms of F andD of SUð3Þ scheme and in the case of
SUð6Þ symmetry [6,54]. Here, F and D are functions depending
on Q2. In the last column G ¼ F þD is also a function
dependent on Q2.

Process SUð3Þ SUð6Þ
ΔI ¼ 1 n → p F þD G

Σ� → Λ �
ffiffi
2
3

q
D �

ffiffi
6

p
5
G

Σ− → Σ0
ffiffiffi
2

p
F 2

ffiffi
2

p
5
G

Ξ− → Ξ0 F −D − 1
5
G

ΔS ¼ 1 Λ → p −
ffiffi
3
2

q
ðF þ 1

3
DÞ − 3

ffiffi
3

p
5
ffiffi
2

p G

Σ− → n −F þD 1
5
G

Σ0 → p − 1ffiffi
2

p ðF −DÞ 1

5
ffiffi
2

p G

Ξ− → Λ −
ffiffi
3
2

q
ðF − 1

3
DÞ −

ffiffi
3

p
5
ffiffi
2

p G

Ξ− → Σ0 1ffiffi
2

p ðF þDÞ 1ffiffi
2

p G

Ξ0 → Σþ F þD G

TABLE VI. Neutral current axial-vector form factors. As in
Table V, G ¼ F þD.

SUð3Þ SUð6Þ
N F þD G

Σ −
ffiffiffi
2

p
F − 2

ffiffi
2

p
5
G

Ξ −ðF −DÞ − 1
5
G
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We can extend the results of the SUð3Þ baryon-meson
model for finiteQ2 replacing the constants F and D by two
form factors dependent on Q2, FðQ2Þ, and DðQ2Þ, as
suggested in Ref. [6]. If we demand also SUð6Þ symmetry,
one gets α≡Dð0Þ=ðFð0Þ þDð0ÞÞ ¼ 0.6. The results
based on this are presented in the last column of
Table V in terms of GðQ2Þ≡ FðQ2Þ þDðQ2Þ that is now
a function of Q2.
Note that the difference between the calculation in

Sec. VI and the SUð3Þ baryon-meson model extended
for finite Q2 is that the functions GB

AðQ2Þ only take into
account the effect of the valence quark contributions, and
the calculations of GðQ2Þ ¼ FðQ2Þ þDðQ2Þ are parame-
trized by the octet baryon beta decay data for Q2 ¼ 0 and
the nucleon data, including finite Q2 data. Therefore, the
SUð3Þ baryon-meson model takes into account effectively
all possible physical effects including the meson cloud
effects.
Thus, if we consider the SUð3Þ baryon-meson model

with aQ2 dependence extracted from nucleon experimental
data for GA, one can estimate all the axial-vector octet
baryon form factors, based on the SUð3Þ symmetry.
However, since the baryon-meson models based on the
SUð3Þ symmetry generally ignore the effects of the octet
baryons masses in the transitions, the estimates of the Q2

dependence, except for the nucleon case, have to be taken
with caution. In Sec. X we discuss the expected falloff with
Q2 according to the SUð6Þ baryon-meson model and
compare it with the results of the covariant spectator quark
model.
Recall that since the SUð3Þ and the SUð6Þ baryon-meson

models are based on the SUFð3Þ symmetry we obtain
results only in a first order (equal mass limit of the octet
baryons), and a deviation from the data can be expected,
even with an effective inclusion of the meson cloud effects.
Corrections due to the SUð3Þ symmetry breaking, as the
result of the large s-quark mass as well as the corrections
from meson loops, can be calculated using the formalism of
chiral perturbation theory [57–59,85]. It is known that
meson loop corrections do not satisfy the SUð3Þ symmetry
[57,58]. The explicit calculation of the next leading order
corrections of the SUð6Þ baryon-meson model are, how-
ever, beyond the scope of the present work.
Here, we emphasize that, in general, the inclusion of the

meson cloud contributions breaks the SUð6Þ symmetry
observed for the valence quark component of GA (in the
equal mass limit). However, as far as the valence quark
contribution is dominant and the coefficients F and D are
fitted to the GAð0Þ data, it is expected that an SUð3Þ or an
SUð6Þ baryon-meson model gives a good description of the
data for small Q2. As for finite Q2, in particular, for large
Q2, it is still necessary to check if the SUð3Þ or SUð6Þ
description is good or if the effect of the octet baryon
masses (symmetry breaking) is important.

For simplicity and consistency with the approximate
structure of the SUð6Þ symmetry in the covariant spectator
quark model, we start by analyzing the meson cloud
contribution with an SUð6Þ parametrization. This para-
metrization has no adjustable parameters once the contri-
bution of the meson cloud in the nucleon axial-vector form
factors are fixed. Later, we discuss an SUð3Þ parametriza-
tion where we adjust one parameter by the GAð0Þ data of
the octet baryons. Our results for GAðQ2Þ are presented
in Sec. X.
All the discussions in this section have been centered on

the functions GA. As for the induced pseudoscalar form
factorsGP, there are no predictions from the SUð3Þ baryon-
meson model [6,43].

IX. RESULTS FOR THE NUCLEON AXIAL
FORM FACTORS

In this section we present our results for the nucleon axial
form factors. We divide the presentation in three steps:

(i) Determination of the P-state mixture parameter (nP)
in the nucleon wave function by a direct fit to the
lattice QCD data for GA.

(ii) Determination of the quark form factor gP by a fit to
the lattice QCD data for GP.

(iii) Extrapolation of the model from the lattice QCD
regime to the physical regime in order to obtain the
valence quark contribution for the nucleon axial-
vector form factor (GB

A). The normalization constant
ZN is determined by the fit of the ~GB

A to the nucleon
physical data Gexp

A according to Eq. (7.3).
In this section the masses mπ , mρ, and mN refer to the

pion, ρ, and nucleon masses obtained in lattice QCD
simulations, respectively. In particular, for the nucleon,
we usemN to avoid the confusion with the physical mass of
the nucleon M.

A. Axial-vector form factor (GA)

The calculation of GA is done using the expressions
discussed in Sec. V, summarized in Eq. (5.19), where all the
terms are function of the P-state mixing parameter nP
(since nS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n2P

p
). In Sec. V D we have already shown

that some lattice QCD data are well described by a P-state
mixture with nP ≃ −0.5.
Lattice QCD simulations of the axial-vector form factor of

the nucleon for Q2 ¼ 0 can be found in Refs. [69–77]. The
results fromRefs. [74–76] areobtainednear the physical point
or at thephysicalpoint.RecentcalculationsofGA asa function
of Q2 can be found in Refs. [78–82,84]. Concerning the
calculations ofGA for smallQ2, it is important tomention that
lattice simulations performed with small volumes under-
estimates the value of GA [73,78,79]. Therefore, in our study
we select data sets with large volumes.
The lattice QCD data included in our fit correspond

to those from Refs. [81,82] in the pion mass range
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mπ ¼ 350–500 MeV (large mπ), where only the valence
quark degrees of freedom are relevant. The parameters used
in the lattice simulations, the lattice space (a) and the length
L that defines the volume, are listed in Table VII. In
addition to the large volumes the chosen data sets have
values of GAðQ2Þ up toQ2 ¼ 2 GeV2, which is convenient
if we want to study the large Q2 region.
In Table VIII we also present the results for mN given by

the respective lattice QCD simulations and the values ofmρ

determined by Eq. (4.30). These mass values are necessary
to calculate the quark axial current (4.6) based on the VMD
parametrizations discussed in Sec. IV B for the model in the
lattice regime. Furthermore, mN is also necessary to obtain
the nucleon radial wave functions in the lattice regime. In
the fits, to avoid the contamination of lattice QCD artifacts
that may appear for large Q2, we use only the data with
Q2 < 1.6 GeV2. Above thisQ2 range, the lattice QCD data
are often affected by large error bars and may show
unexpected oscillations.
The results of our χ2 per data point are presented in

Table VIII in the column indicated χ2ðGAÞ. The last row
indicates the global χ2 per data point. By the fit, we obtain
the value

nP ¼ −0.5067: ð9:1Þ

The results of the fit are presented in Fig. 2. In the bottom
panel we show the results for the heavier pion cases mπ ¼ 465, 468, 470 MeV, while the results for mπ¼403,

432 MeV are in the middle panel, and the results for
the lightest cases mπ ¼ 373, 377 MeV are in the top
panel.
In Fig. 2 one can confirm that the model in the lattice

QCD regime gives a very good description of the lattice
data [see also the χ2ðGAÞ results in Table VIII]. In the case
mπ ¼ 432 MeV, however, we can notice that the lattice
data falloff is faster than the model (fit), and this is reflected
in the large partial χ2 value. Nevertheless, the data are still
consistent with the model.

B. Induced pseudoscalar form factor (GP)

With the value of nP fixed by the lattice GA data, we can
test now if the lattice GP data can be described by a

TABLE VII. Parameters associated with the lattice QCD data
used in the fits. Here, a is the lattice space, and L is the lattice
length that defines the lattice volume L3.

mπðMeVÞ aðfmÞ LðfmÞ Refs.

373.0 0.082 2.60 [81]
377.0 0.089 2.10 [82]
403.5 0.070 2.13 [82]
431.9 0.089 2.10 [82]
465.3 0.070 2.13 [82]
467.5 0.089 2.10 [82]
469.8 0.056 2.39 [82]

TABLE VIII. Masses associatedwith the latticeQCDdataused in
the fits.Here,χ2ðGAÞ is thepartialχ squared in the fit ofnP (GA data);
χ2ðGPÞ is the partial χ squared in the fit of α and β to the GP data.

mπðGeVÞ mNðGeVÞ mρðGeVÞ χ2ðGAÞ χ2ðGPÞ
0.3730 1.2100 0.8355 1.699 2.138
0.3770 1.2225 0.8367 0.475 0.489
0.4035 1.2527 0.8456 1.038 2.164
0.4319 1.2828 0.8557 1.943 2.277
0.4653 1.3289 0.8685 1.447 0.888
0.4675 1.3343 0.8694 1.650 1.158
0.4698 1.3390 0.8703 0.402 0.318

1.285 1.444
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FIG. 2. Results of the fit to the lattice QCD data for GA with
nP ≃ −0.5067.
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parametrization of gP based on the VMD mechanism. We
decomposeGP as GP ¼ GB

A þ Gpole
P , where the pole term is

defined by Eq. (3.3), and fit the coefficients α and β in the
function gP given by Eq. (4.8) to the lattice QCD data for
GP. The values obtained from the best fit are α ¼ −3.901
and β ¼ 0.3297. The quality of the fit for each lattice data
set is presented in the column χ2ðGPÞ in Table VIII. The
last row indicates the global χ2 per data point.
In Fig. 3 we show the results of the fit for three groups of

pion masses discussed previously. In any case we have a
good description of the data. (The data point for Q2 ¼ 0,
and mπ ¼ 373 MeV is the result of an extrapolation and is
not included in the fit).

C. Extrapolation to the physical regime

The experiments related with the form factor GA show
that the value for Q2 ¼ 0 is very well determined [24],

Gexp
A ð0Þ ¼ 1.2723� 0.0023: ð9:2Þ

TheQ2 dependence ofGA is well approximated by a dipole
form GAðQ2Þ ¼ GAð0Þ=ð1þQ2=M2

AÞ2, where the values
ofMA varies fromMA ≃ 1.03 GeV (neutrino scattering) to
MA ≃ 1.07 GeV (electroproduction) [2].
To represent the experimental data in a general form, we

consider the interval between the two functions, Gexp−
A and

Gexpþ
A , given by

Gexp�
A ðQ2Þ ¼ G0

Að1� δÞ	
1þ Q2

M2
A�



2
; ð9:3Þ

where δ is a parameter that expresses the precision of
the data, and MA− ¼ 1.0 GeV and MAþ ¼ 1.1 GeV are,
respectively, the lower and upper limits for MA extracted
experimentally. To avoid a strong impact from the result for
Q2 ¼ 0 and flexibilize the fit, we choose δ≃ 0.03, a typical
relative error (error of about 3% and 10 times the relative
error for Q2 ¼ 0).
As mentioned already, the prediction of the model for the

valence quark contribution is given by ZNGB
AðQ2Þ, where

GAðQ2Þ is the extrapolation for the casemπ ¼ 138 MeV of
the model determined by the fit to the lattice QCD data (see
previous section). Since the valence quark model extrapo-
lated to the physical regime is expected to be a good
approximation to the data only for large Q2 (small meson
cloud effects), we varied the value of ZN to see if it is
possible to obtain a good description of the data in the
interval Q2 ¼ 1.0;…; 2.0 GeV2. From the best fit to the
data, we obtain the value of ZN ¼ 0.7343. This result
means that the meson cloud contribution for the proton
charge is about 27%.
In Fig. 4 we present the bare contribution for the form

factor GA (dashed line) determined by the value
ZN ¼ 0.7343. The deviation from the empirical data
Gexp�

A ðQ2Þ, represented by the red band, from the result
~GB
AðQ2Þ can be interpreted as the result of the meson cloud

effect. Since it is expected that the meson cloud effects are
suppressed by the factor 1=Q4 relative to that of the valence
quark contributions for large Q2 according to perturbative
QCD arguments [126], we parametrize the meson cloud
contribution as

GMC
A ðQ2Þ ¼ ZN

GMC0
A	

1þ Q2

Λ2



4
; ð9:4Þ

where Λ is a cutoff parameter and GMC0
A is the relative

magnitude of the meson cloud contribution forGAð0Þ. Note
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FIG. 3. Results of the fit to the lattice QCD data for GP. The
result of GPð0Þ for mπ ¼ 373 MeV [81] is an extrapolation from
the data.
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that according to the normalization of the nucleon wave
function Eq. (7.1) both the valence and the meson cloud
components are multiplied by the normalization factor ZN.
Therefore, for convenience, the normalization factor ZN is
included in the definition of GMC

A .
We have also tried some variations of the quadrupole

expression (9.4), e.g., such as a product of dipoles;
however, the quadrupole expression with Λ ¼ 1

2
ðMAþ þ

MA−Þ ¼ 1.05 GeV gives a description of the data with a
quality equivalent to a product of dipoles with two
adjustable cutoff parameters. We can interpret then
Eq. (9.4) as one of the best parametrizations for the meson
cloud, with the value of Λ fixed by the average cutoff from
the global parametrizations of GA, given in Eq. (9.3). The
best fit from Eq. (9.4) for the data fixes GMC0

A ¼ 0.6077,
leading to GMC

A ð0Þ ¼ 0.4462 (35% of meson cloud for GA

at Q2 ¼ 0). The result of the combination for the bare
and meson cloud contributions is presented in Fig. 4
(solid line).
To finalize the study of the nucleon axial form factors in

the physical regime, we represent in Fig. 5 the results for
the form factor GP in comparison with the available data
(Q2 < 0.2 GeV2). Since there are no physical data for
Q2 > 0.2 GeV2, we compare the model also with the lattice
QCD data with small pion masses mπ ¼ 213, 260,
262 MeV. Lattice QCD data for GP can also be found
in Refs. [76,78,80,84].
For the following discussion we recall that GP can be

decomposed in the physical regime into

GPðQ2Þ ¼ Gpole
P ðQ2Þ þ ~GB

PðQ2Þ þGMC
P ðQ2Þ; ð9:5Þ

where Gpole
P is the contribution from the pion pole defined

by Eq. (3.3) in terms of the bare axial-vector form factor,

~GB
A, in the physical limit, and GMC

P is a possible contribu-
tion from the meson cloud. For convenience, we redefine
the bare contribution GB

P as ~GB
P ¼ ZNGB

P in the physical
limit.
In Fig. 5 we represent the bare contribution by the

short-dashed line. The magnitude is small and negative.
The sum of the pion pole term and the bare contribution
is indicated by the solid line. We can see in Fig. 5
that the line “bareþ pole” (solid line) is very close to
physical data. In addition we show the full result,
labeled as “bareþ poleþmeson cloud” (long-dashed
line), where we define the meson cloud contribution as
GMC

P ¼ 4M2

m2
πþQ2 GMC

A . This procedure is equivalent to

redefine the contribution from the pole contribution by
the replacement ~GB

A → GA when no GMC
P term contribution

is included. In the figure we can also see that the sum of all
terms “bareþ poleþmeson cloud” has a better agreement
with the data than “bareþ pole”. Note also that the final
result (sum of all terms) agrees with both the physical data
(Q2 < 0.2 GeV2) and the lattice QCD data for larger Q2.
Overall, we conclude that the covariant spectator quark

model, once fitted to the lattice QCD data and the
experimental nucleon data for GA, gives a consistent
description of the lattice and physical data for the nucleon.
The fit for the GAðQ2Þ data fixes the amount of the meson
cloud contribution for the physical nucleon state as 27%
(ZN ¼ 0.7324), resulting in the meson cloud contribution
for the axial-vector form factor at Q2 ¼ 0 as 0.4462 (35%
of the total) and the falloff of the meson cloud component
as a quadrupole with a cutoff Λ ¼ 1.05 GeV.

X. RESULTS FOR THE OCTET BARYON
AXIAL FORM FACTORS

We present now the results for the octet baryon axial
form factors. First, we discuss the results for the valence
quark contributions and compare the results with those of
the lattice QCD. Next, we combine the valence quark

0 0.5 1 1.5 2

Q
2
 (GeV

2
)

0

0.4

0.8

1.2
G

A
 (

Q
2 )

Bare + Meson cloud
Bare

FIG. 4. Result forGAðQ2Þ in the physical limit. The dashed line
(Bare) is the result from the extrapolation of the lattice data for
the physical regime with ZN ¼ 0.7434. The solid line
(BareþMeson cloud) is the sum of the bare contribution with
GMC

A ðQ2Þ given by Eq. (9.4), with Λ ¼ 1.05 GeV. The bands are
a representation of the experimental data.

0 0.2 0.4 0.6 0.8 1

Q
2
(GeV

2
)

0

50

100

150

200

G
P (

Q
2 )

Data
Bare
Bare + Pole
Bare + Pole + Meson cloud
Lattice (mπ = 213 MeV)
Lattice (mπ = 260 MeV)
Lattice (mπ = 262 MeV)

FIG. 5. Physical result for GPðQ2Þ. The data are from
Refs. [2,22]. Lattice QCD data are from Ref. [81].

AXIAL FORM FACTORS OF THE OCTET BARYONS IN A … PHYSICAL REVIEW D 94, 014001 (2016)

014001-19



contributions with the meson cloud contribution estimated
based on an SUð6Þ baryon-meson model and an SUð3Þ
baryon-meson model defined by a fit to the data.
Combining the two contributions, we obtain our final
predictions for the octet baryon axial-vector form factors.
We finish with our predictions for the octet baryonGP form
factors, based on these two models.
A note of caution is in order concerning the following

results. Since the predictions of the model for the octet
baryon axial form factors GA and GP are based on the
calibration of the radial wave functions developed in
Ref. [109], for the study of the octet electromagnetic form
factors the quality of the results is also limited by the
numerical results in that study. Therefore, we expect the
results for the reactions with the nucleon, Λ and Σ, to be
more reliable than that with Ξ.

A. Contribution of valence quarks for GA

We start the presentation of our results for the octet
baryons discussing the effect of the valence quark contri-
butions for the form factor GA. Since we have not included
the meson cloud contribution, it can be interesting to
compare the results with the lattice QCD simulations first.
The comparison of our results with the lattice QCD

simulations [85,86] for the neutral current transitions (N, Σ,
Ξ) are presented in Table IX. The results for theΔI ¼ 1 and
ΔS ¼ 1 transitions compared with Ref. [86] are presented
in Table X. To avoid any contamination from meson
cloud effects, we use lattice QCD simulations with

mπ ≈ 500 MeV from Refs. [85,86] for the comparison.
From Tables IX and X, one can see that the results of our
model are close to the estimates of the lattice QCD.
The results of our model presented in Tables IX and X

are not calculated in the lattice QCD regime, as in the case
of the nucleon (see Secs. IX A and IX B). However, this is
not an approximation since, due to the constraints of the
model, the transition form factorsGA are independent of the
masses for Q2 ¼ 0 (but for GP, we have a correction). This
interesting propriety is a consequence of the definition of
the quark current at Q2 ¼ 0, independent of the hadron
masses (mρ andmN), and also a consequence of the fact that
the normalization of the radial wave functions is indepen-
dent of the masses of the baryons (normalization defined by
the wave functions at the rest frame).
We can consider a more sophisticated model where

gqAð0Þ and gqPð0Þ depend on the constituent quark mass as in
Ref. [102] at the expenses of an extra parameter. In that case
we expect, however, only a small correction, as in the case
of the electromagnetic transitions [102]. For the purpose of
the present study, the approximation that gqAð0Þ and gqPð0Þ
are independent of the constituent quark mass is sufficient.
In the calculation we use the octet baryon physical

masses, MN ¼ 0.939 GeV, MΛ ¼ 1.116 GeV, MΣ ¼
1.192 GeV, and MΞ ¼ 1.318 GeV. The values of MBB0

are determined using these values.
Back to the discussion of the results in Table X, our

calculations are compatible with the lattice results within a
�20% deviation, with two main exceptions, the Σ− → n
and Ξ− → Ξ0 transitions. In the Σ− → n transition, the
lattice value deviates also from the estimate of SUð3Þ
baryon-meson model for the other transitions. In the case of
the Ξ− → Ξ0 transition the model and the lattice QCD
result are both small in comparison with the other tran-
sitions. Since we compare the core effects with lattice
simulations withmπ ≈ 500 MeV, one can regard the agree-
ment as reasonable. Looking in more detail for the result of
the nucleon, we note that the model underestimates the
lattice result. However, the lattice results from Ref. [86] are
larger compared with similar lattice QCD simulations, like
for instance, the results of Ref. [85] presented in Table IX.
When the pion mass decreases, the value ofGAð0Þ becomes
almost constant and close to the physical value, as long as
the lattice volume is not too small [73,79]. If the lattice
volume becomes smaller, the lattice result for GAð0Þ starts
to deviate from the continuous limit and strongly under-
estimates the physical result [73].
The results for the neutral transitions and ΔS ¼ 1

transitions are presented, respectively, in Figs. 6 and 7.
The results are normalized by the value of GB

Að0Þ for the
nucleon in order to better observe the differences of falloffs.
The factor ζ that multiplied to GB

AðQ2Þ is defined by
ζ ¼ GB

A;Nð0Þ=GB
Að0Þ. We do not present a figure for the

ΔI ¼ 1 transitions since those, with the exception of the
Σ� → Λ case, are proportional to the results for the neutral

TABLE IX. Comparison of the results for the neutral current
GB

Að0Þ in the covariant spectator quark model and the lattice QCD
results with mπ ≈ 500 MeV from Refs. [85,86].

Model Ref. [85] Ref. [86]

N 1.125 1.210(05) 1.314(24)
Σ 0.900 0.900(30) 0.970(21)
Ξ −0.225 −0.270ð10Þ −0.300ð10Þ

TABLE X. Comparison of the results for GB
Að0Þ in the

covariant spectator quark model and the lattice QCD results
with mπ ≈ 500 MeV from Ref. [86].

Model Ref. [86]

n → p 1.125 1.314(24)
Σþ → Λ 0.551 0.655(14)
Σ− → Σ0 0.636 0.686(15)
Ξ− → Ξ0 −0.225 −0.300ð10Þ
Λ → p −0.827 −0.632ð14Þ
Σ− → n 0.225 0.339(12)
Ξ− → Λ −0.276 −0.274ð08Þ
Ξ− → Σ0 0.795 0.908(19)
Ξ0 → Σþ 1.125 1.284(28)
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transitions (see Tables IX and X). The result for Σþ → Λ is
very close to the Ξ → Ξ and Σ → Σ. The result for Σ− → Λ
has the opposite sign to that of Σþ → Λ.
In Fig. 6 one can see that the results for Σ and Ξ are very

similar. In Fig. 7 for simplicity we do not include the line
associated with Σ0 → p because it is almost on the top of
the line for Λ → p since the mass difference between Σ and
Λ is small (about 80 MeV).
It is clear from Figs. 6 and 7 that the reactions with

heavier baryons have slower falloffs with increasing Q2

compared to the nucleon case. That is a consequence of
using the physical masses of the baryons in the calculation
instead of using the one common value of the octet baryon
mass suggested by the exact SUð3Þ symmetry, as well as a
consequence of the difference in parametrizations of the
radial wave functions (see Sec. VI).
It is also interesting to note that the form factors

associated with heavy baryons (excluding the nucleon)
have very similar falloffs for large Q2, although they differ
in the behavior in the range Q2 ¼ 0;…; 0.5 GeV2.

B. Results for the axial-vector form factor (GA)

We present now our predictions for the octet baryon GA
form factors as functions of Q2 based on the model
calibrated in the previous sections by the nucleon data.
For the later discussions, it is important to mention that

the results obtained up to now within the covariant
spectator quark model (valence quark contribution) for
GB

Að0Þ correspond to an SUð6Þ model with parameters
F ¼ 0.675 and D ¼ 0.450. The model fails to describe the
data because F þD is too small and also because the model
breaks the SUð6Þ symmetry for finite Q2, as already
discussed.
As in the case of the nucleon, one has to correct the result

from the valence quark contribution by the normalization
factor due to the meson cloud. We use then

~GB
AðQ2Þ ¼

ffiffiffiffiffiffiffi
ZB0

p ffiffiffiffiffiffi
ZB

p
GB

AðQ2Þ; ð10:1Þ
where ZB0 and ZB are the normalization factors associated
with the initial and final baryons, respectively.
As for the meson cloud contribution, we consider two

possible parametrizations that we label as SUð6Þ and
SU0ð3Þ hereafter.
We first explain the SUð6Þmodel for the meson cloud. In

the SUð6Þ model we assume that SUð6Þ symmetry holds
for the valence quark component of the form factors as well
as the meson cloud contribution. In this case we can write
the meson cloud contribution in the form

GMC
A ðQ2Þ ¼ ηBB0

ffiffiffiffiffiffiffiffiffiffiffiffi
ZB0ZB

p
ZN

GMC
A;NðQ2Þ; ð10:2Þ

where GMC
A;N represents the parametrization of the nucleon

meson cloud contribution given by Eq. (9.4) with
Λ ¼ 1.05 GeV. The coefficient ηBB0 is the factor associated
with the SUð6Þ symmetry, the coefficient that is multiplied
to G in the last column of Table V. Note that as for the
nucleon we include the normalization factors associated
with the octet baryon wave functions. The factor 1=ZN is
introduced to remove the dependence on the nucleon’s
normalization in the definition of GMC

A;N .
Contrarily to the contribution from the valence quarks

(10.1), the meson cloud contribution is independent of the
baryons masses in the SUð6Þ model. We ignore here minor
differences due to the normalization constants ZB and ZB0

since the corrections are of about 2%–10%. This is a
consequence of the SUð6Þ assumption that the octet
baryons have all the same mass.
Since SUð6Þ symmetry is not expected to work well, in

general, for the meson cloud component of the form factors
as discussed in Sec. VIII, we consider the possibility of
improving the meson cloud model given by Eq. (10.2) by a
direct fit to the data at Q2 ¼ 0. To achieve this goal, we use
an alternative parametrization for the meson cloud, where
the octet baryon data for GAð0Þ are fitted by an SUð3Þ
model for the meson cloud component. In this model the
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SUð6Þ structure for the quark model is preserved, but the
meson cloud contribution is determined by an SUð3Þ
parametrization in terms of the two coefficients denoted
by F0 and D0 that replace the coefficients F and D in the
SUð3Þ baryon-meson model discussed in Sec. VIII. We
break then the SUð6Þ symmetry in the meson cloud
component. To avoid misinterpretations, we label this
model as the SU0ð3Þ model for the meson cloud.
In the SU0ð3Þ model we write the meson cloud con-

tribution as

GMC
A ðQ2Þ ¼ η0BB0

ffiffiffiffiffiffiffiffiffiffiffiffi
ZB0ZB

p
ZN

GMC
A;NðQ2Þ; ð10:3Þ

where η0BB0 represents the expressions in the column labeled
as SUð3Þ in Table V, with the replacements F → F0 and
D → D0, normalized by F0 þD0. From the fit to the data,
we obtain F0 ¼ 0.1784 and D0 ¼ 0.4273. The results
obtained for the n → p, Ξ− → Σ0, and Ξ− → Σ0 transi-
tions, where the meson cloud contributions are proportional
to F0 þD0, are indistinguishable from the SUð6Þ model.
This happens because the fit is strongly constrained by the
result of GAð0Þ for the n → p transition due to the high
accuracy of the data point. Since in practice F0 þD0 is
fixed, we fit only the relative size of the coefficients F0 and
D0. Therefore, the SU0ð3Þ model is the result of a fit with
one parameter only.
It is worth mentioning that models based on the SUð3Þ

symmetry fit to subsets of the data were used already in the
past in attempts to interpret the impact of the SUð3Þ
symmetry breaking effect [6,43,63].
The results for the octet baryon axial-vector form factors

for ΔI ¼ 1, with the exception of the nucleon discussed
earlier, are presented in Fig. 8. The results for ΔS ¼ 1 are
presented in Figs. 9 and 10.
In Figs. 8, 9, and 10 we include the contribution from the

valence quark component (long-dashed line), the contri-
bution from the SU0ð3Þ model for the meson cloud (dotted-
dashed line), and the final result for the model with the
SU0ð3Þ meson cloud (solid line). In addition we present the
final result (bare + meson cloud) for the SUð6Þ meson
cloud model (short-dashed line). The meson cloud con-
tribution of the SUð6Þ meson cloud model is not presented
to avoid the superposition of lines. The difference between
the meson cloud components between the SU0ð3Þ and the
SUð6Þmodels can, however, be estimated by the difference
between the result “bareþmeson cloud” in the two mod-
els. For the transitions Ξ− → Σ0 and Ξ0 → Σþ, we omit the
indication of the SUð6Þ model since it is equivalent to the
SU0ð3Þ model, as discussed already.
In order to compare our results with the estimates of the

SUð6Þ baryon-meson model discussed in Sec. VIII, which
are independent of the baryon masses, we present a band
(at red) given by the parametrization inspired by the fit to
the nucleon data,

GSUð6Þ
A ðQ2Þ ¼ ηBB0

G0
A	

1þ Q2

M2
A



2
; ð10:4Þ

where MA is cutoff parameter. The band indicates a �10%
variation from Eq. (10.4).
It was suggested by Gaillard and Sauvage [6] that MA ¼

1.05 GeV for ΔI ¼ 1 and MA ¼ 1.25 GeV for ΔS ¼ 1.
Using the two different parametrizations for ΔI ¼ 1 and
ΔS ¼ 1, we take into account in an effective way the
modification due to the octet baryon mass difference in the
SUð6Þ baryon-meson model. We realize, however, that our
model cannot be compared with the results of MA ¼
1.05 GeV for both cases, ΔS ¼ 1 and ΔI ¼ 1, except
for the case of the nucleon, discussed in Sec. IX A.
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Therefore, we compare all ours estimates with
MA ¼ 1.25 GeV. At Q2 ¼ 0, we compare also the results
with the data from the Particle Data Group (PDG) [24].
We recall that, although we present different paramet-

rizations for the meson cloud that differ at low Q2, our
results may be considered true predictions in the high Q2

region since the result is extrapolated from the model
calibrated by the lattice QCD data as well as the high Q2

data for the nucleon. In the largeQ2 region the meson cloud
contributions are very small and the valence quark effects
dominate.
The results of both models are close to the data, but the

model SU0ð3Þ gives a better description of the Σ− → n data.
A larger difference between the SUð6Þ and SU0ð3Þ para-
metrizations is also observed for the reactions with small
magnitude for GAð0Þ (Ξ− → Ξ0, Σ− → n, and Σ0 → p).

This is a consequence of the large meson cloud contribu-
tions compared to those of the valence quarks. In any case,
we should not expect an excellent agreement with the
GAð0Þ data since the SUð3Þ symmetry at the quark level is
already broken (based on the octet baryon masses the
violation is about 20%).
In the comparison with the data at Q2 ¼ 0 the deviation

is less than five standard deviations and better than 24% for
the model SUð6Þ. As for the model SU0ð3Þ, the deviations
is less than three standard deviations and better than 17%.
It is also interesting to note that the estimate of the meson

cloud effects based on the SUð6Þ parametrization is, in
general, larger than the estimate of the SUð6Þ baryon-
meson model (given by the central value of the red band for
Q2 ¼ 0), particularly for the transitions involving Ξ [see
Fig. 10]. This happens because our model corrects the
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estimate made for the nucleon with the normalizations of
the octet baryon wave functions according to Table IV.
Therefore, the contributions of the valence quark core and

the meson cloud are enhanced by the factor
ffiffiffiffiffi
ZB0
ZN

q ffiffiffiffiffi
ZB
ZN

q
> 1.

As mentioned above, the falloffs of the form factors from
Figs. 8,9, and 10 are slower than the falloff estimated for
the nucleon (MA ≃ 1.05 GeV). The estimate of the falloff
based on a dipole form near Q2 ¼ 1 GeV2 gives values of
MA in the range of 1.2–1.4 GeV. We conclude that the
falloffs for the octet baryon GA form factors, except for the
nucleon, are consistent with the conjecture made by
Gaillard and Sauvage (MA ¼ 1.25 GeV) for the ΔS ¼ 1
transitions [6].

C. Results for the induced pseudoscalar
form factor (GP)

We discuss now the results for the induced pseudoscalar
form factors of the octet baryons. The case of the nucleon
has already been discussed in Sec. IX B. We recall that GP
has a contribution from a pseudoscalar meson pole (pion or
kaon) that subsequently decays into a lepton-neutrino pair.
The reaction associated with ΔI ¼ 1 transitions have a

contribution of the pion pole (3.3) related with the u ↔ d
transitions. Then, similarly to the case for the nucleon,
recalling that MB0 þMB ¼ 2MBB0 , we use

Gpole
P ðQ2Þ ¼ ðMB0 þMBÞ2

m2
π þQ2

GB
AðQ2Þ: ð10:5Þ

In the above GP and GB
A represent now the form factors

associated with the B → B0 transition. The pole term
dominates, in general, the ΔI ¼ 1 transition as we show
next. In addition to the pole term, there is also the
contribution from the quark core due the nonzero values
of the quark form factors gqA and gqP. As in the case of the
nucleon, we take into account the meson cloud effect for
GP replacing the contribution from GB

A (core contribution)
by the dressed GA, given by the replacement

GB
A → ~GB

A þ GMC
A . The expressions for the contributions

~GB
A and GMC

A have already been discussed in the previous
section. Also, the expressions derived for GB

P, presented in
Sec. VI, have to be corrected in the physical limit by the
factor

ffiffiffiffiffiffiffiffiffiffiffiffi
ZB0ZB

p
.

The ΔS ¼ 1 transitions, including the transitions
between the quarks u and s, are associated with a kaon
pole. Therefore, in the ΔS ¼ 1 case, we replace the pion
pole on the ΔI ¼ 1 case by the kaon pole. Replacing
m2

π → m2
K in Eq. (10.5), we obtain

Gpole
P ðQ2Þ ¼ ðMB0 þMBÞ2

m2
K þQ2

GB
AðQ2Þ: ð10:6Þ

Although it may be questionable that the pole contribution
for GP obtained for the ΔI ¼ 1 transition (and for the
nucleon) using PCAC in the chiral limit (mπ negligible)
may be generalized for the ΔS ¼ 1 transition, as suggested
in Ref. [43], there are arguments that support this gener-
alization. The first argument is based on the fact that lattice
QCD simulations for the octet axial-vector couplings
follow the generalization of the Goldberger-Treiman rela-
tion [86], which is related with Eq. (10.6) nearQ2 ¼ 0. The
second argument is that the overall description given by our
model for the GA and GP lattice data in a wide range of the
pion masses (mπ ¼ 350;…; 500 MeV) motivate also the
use of Eq. (10.6) for ΔS ¼ 1.
To obtain the “bare”, “bareþ pole”, and total result

“bareþ poleþmeson cloud” for ΔS ¼ 1, we use the same
procedure already discussed for ΔI ¼ 1.
The results for the caseQ2 ¼ 0 are presented in Table XI

for the models SUð6Þ and SU0ð3Þ. The results for the
nucleon, discussed in Sec. IX B, are also included for the
sake of the discussion. The differences between the two
models are the consequence of the difference in the meson
cloud for GAð0Þ. Note the difference of results for Gpole

P ð0Þ
and consequently GPð0Þ in the cases Ξ− → Ξ0 and Λ → p.
The effect of the kaon pole for the Λ → p transition

TABLE XI. Contributions for GP at Q2 ¼ 0 for the meson cloud models SUð6Þ and SU0ð3Þ. Here, Gpole�
P ð0Þ represents the

contribution of the meson pole term with the replacement GB
A → GA.

Model SUð6Þ Model SU0ð3Þ
GB

Pð0Þ Gpole
P ð0Þ Gpole�

P ð0Þ GPð0Þ Gpole�
P ð0Þ GPð0Þ

n → p −5.532 152.160 234.339 228.806 234.339 228.806
Σþ → Λ −5.186 118.365 182.292 177.107 193.283 188.098
Σ− → Σ0 −6.444 144.635 118.365 216.308 202.289 195.845
Ξ− → Ξ0 2.946 −66.420 −102.294 −99.346 −139.590 −136.643

Λ → p 5.567 −10.771 −16.591 −11.023 −10.771 −5.203
Σ− → n −1.675 4.816 3.141 3.126 6.572 4.897
Σ0 → p −1.185 2.211 4.816 3.140 4.647 3.462
Ξ− → Λ 2.964 −5.282 −8.144 −5.180 −6.153 −3.189
Ξ− → Σ0 −9.158 16.084 24.783 15.625 24.783 15.625
Ξ0 → Σþ −12.951 22.747 35.049 22.097 35.049 22.097
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(ΔS ¼ 1) is much smaller than the pion pole for the
Ξ− → Ξ0 transition (ΔI ¼ 1). The physical pion is closer
to the chiral limit than the kaon.
Results for GP by the SU0ð3Þmeson cloud model related

with ΔI ¼ 1 transitions are presented in Fig. 11, while
those related with ΔS ¼ 1 transitions are presented in
Figs. 12 and 13. The results associated with the SUð6Þ
meson cloud model are similar in shape but differ in values
for small Q2.
In Fig. 11 we can observe the dominance of the pole term

for the ΔI ¼ 1 transitions since the values of “bareþ pole”
are much larger in absolute value than the values of “bare”.
All the results are very similar although the magnitude of
the pole contribution is small for the Ξ− → Ξ0 case because
the magnitude of GA is also small in this transition. The

similarity is a consequence of the approximated SUð6Þ
structure of GB

A and GB
P that results from the quark model

and the small SUð6Þ violation from the meson cloud
component.
In Figs. 12 and 13 we can notice that the magnitude of

GP for the transitions ΔS ¼ 1 is smaller than that for the
case of theΔI ¼ 1 transitions. In this case the contributions
from the pole are reduced by about an order of magnitude,
due to the difference in the meson masses, that contributes

with a reduction of about m2
K

m2
π
≃ 12.9, corrected by the

factors M2
BB0 depending on the transition [see Eqs. (10.5)

and (10.6)].
Thus, in the ΔS ¼ 1 transitions the bare and pole

contributions are comparable in magnitude, and the domi-
nance of the pole term does not happen as in the case
ΔI ¼ 1. In Fig. 12 for the transitions Λ → p, Σ− → n, and
Σ0 → p, we can observe a significant cancellation between
the bare and pole contributions. The evidence of the
cancellation can be observed due to the small values of
“bareþ pole” when compared with “bare” in absolute
values. The cancellation is more significant for the
Σ0 → p transition. One can see, however, that when Q2

increases the pole contribution dominates (positive values
for GP or −GP according to the transition). This happens
because although the bare contributions goes with 1=Q4 as
discussed in Sec. VI, while the pole goes with 1=Q6 for
very large Q2, the factor 1=ðm2

K þQ2Þ in the pole term
dominates over the other terms in the region observed
(Q2 < 2 GeV2). Since m2

K ≃ 0.25 GeV2, the factor
1=ðm2

K þQ2Þ has a strong impact for the small and
intermediate Q2 regions. For much larger Q2, the bare
contribution will dominate.
The results for the transitions involving Ξ presented in

Fig. 13 are very similar, apart from the scale. In the case of
the Ξ− → Σ0 and Ξ0 → Σþ transitions the similarity is a
consequence of SUð3Þ symmetry for GA since they differ
only by the factor 1=

ffiffiffi
2

p
, and the masses are the same in

both transitions. As for Ξ− → Λ, this is a consequence of
the approximated SUð6Þ structure which implies a reduc-
tion of the pole contribution of the factor 5ffiffi

3
p ≃ 3 compared

to Ξ− → Σ0, neglecting the effect of the (small) mass
difference between the Σ and Λ.
Our result for the GP (full result) associated with

Ξ0 → Σþ transition has a magnitude similar to that of
the lattice QCD results in Ref. [78].
To finalize, it is interesting to discuss the breaking of

SUð3Þ symmetry due to the difference in the transitions
between ΔI ¼ 1 and ΔS ¼ 1. This can be observed by
comparing the transitions n → p and Ξ0 → Σþ, which,
according to the SUð3Þ baryon-meson model, have the
same results for the axial-vector form factor at Q2 ¼ 0,
GAð0Þ ¼ F þD. However, since the value of GPð0Þ for the
pole is determined by the pion mass (squared) for the
reaction with ΔI ¼ 1 and by the kaon mass (squared) for
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the reaction with ΔS ¼ 1, the magnitude of the Gpole
P ð0Þ

changes drastically from the ΔI ¼ 1 to ΔS ¼ 1 cases.
From Table XI, we can conclude that the ratio between the
pole terms for the nucleon and Ξ0 → Σþ is about 6.7, which
is essentially the result of the combination of the baryon

and meson masses, M2

M2

BB0
m2

π

m2
K
≃ 7.2, where MBB0 is the

average mass of the initial and final baryons in the Ξ
transitions. The value 7.2 has to be corrected by a factor 7%
due to the difference in the values of GAð0Þ, which
correspond to the deviation from the SUð6Þ baryon-meson
model. We can conclude then that the pole term (pion or
kaon) breaks the SUð3Þ symmetry for GP, but that the
magnitude of the breaking is mainly a consequence of the

ratio m2
π

m2
K
.

XI. SUMMARY AND CONCLUSIONS

Weak interaction axial form factors of the octet baryons
have been studied extensively based on a large number of
theoretical frameworks. However, such studies have mostly
been restricted to the axial charges and proprieties at
Q2 ¼ 0. In this work we use the covariant spectator quark
model to probe the weak interaction axial structure of the
octet baryons and take advantage of the covariance to make
predictions on the Q2 dependence of the axial form factors
GAðQ2Þ and GPðQ2Þ for all the octet baryon weak
interaction axial transitions.
In the covariant spectator quark model the quarks have

their own structure characterized by the electromagnetic
and axial form factors that can be used to calculate
electromagnetic and weak interaction transition form
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factors between baryons. The model has been successfully
used in the past for the studies of several electromagnetic
transitions between baryons, including, in particular, the
electromagnetic structure of the nucleon, the octet and
decuplet baryons, and other reactions. In the future the
present approach can be applied for the weak interaction
vector transition form factors, replacing the quark axial
current jμAq by the quark electromagnetic-vector current.
Similar calculations were already performed for the octet
baryon electromagnetic form factors using an S-state model
[106,109,111,112], except that it is necessary now to
consider also charged currents.
To study the weak interaction axial structure of the octet

baryons, the covariant spectator quark model is first
calibrated by the lattice QCD and the physical data for
nucleon. After that, the model is extended for the octet
baryons using the SUFð3Þ (flavor) symmetry. The SUFð3Þ
symmetry breaking effects are taken into account by the
octet baryon masses and the shape of the radial wave
functions, determined in previous works by the study of the
electromagnetic properties in the context of the covariant
spectator quark model. For simplicity, we neglected the
difference in the masses of the initial and the final baryons.
The axial form factors are then calculated in the relativistic
impulse approximation in terms of the covariant wave
functions of the octet baryons and the quark axial current,
defined by the quark axial form factors gqAðQ2Þ and
gqPðQ2Þ. The wave functions of the octet baryons are
determined by a dominant S-state component defined in
previous works, and a P-state is introduced in this work in
order to better describe the axial-vector form factors of the
octet baryons. The addition of the extra P-state was
suggested by some studies based on the quark degrees
of freedom.
The calibration of the present model is done as follows:

The quark form factor gqAðQ2Þ is assumed to have the same
form as that of the quark electromagnetic isovector form
factor f1−ðQ2Þ, and the quark form factor gqPðQ2Þ has a
form analogous to the Pauli form factors of the quarks,
motivated by vector meson dominance with two adjustable
parameters. The unknown parameters of the model are
the P-state mixture coefficient and the parameters of the
gqPðQ2Þ function, and they are determined by a fit to the
nucleon axial form factor data in the lattice QCD regime. In
this regime the contamination of the form factors due to the
meson cloud is significantly suppressed, and the physics
associated with the valence quarks can be estimated more
accurately.
The results obtained for the octet baryonGA form factors

are consistent with the nonrelativistic SUð6Þ quark models
in the equal mass case (MB ¼ M) when the P-state
component is dropped (nP ¼ 0). In addition the model at
Q2 ¼ 0 has the same structure of an SUð6Þ quark model or
an SUð6Þ baryon-meson model, even when the P-state is
included.

We conclude that the axial form factors of the nucleon,
both GA and GP, can be very well explained in the lattice
regime of our constituent quark model with a P-state
mixture of about 26%. Once the parameters of the model
are fixed, the results can be extrapolated to the physical
regime and used to calculate the contributions of the
valence quarks for the nucleon axial form factors. As in
previous works on the nucleon axial-vector form factor, we
conclude also that only the effects of the valence quarks
underestimate theGA data in the physical regime. Under the
assumption that the missing part is due to the meson cloud
component in the physical nucleon state, we used the
model, which is well calibrated in the high Q2 region, to
estimate the size of the meson cloud contribution in the
physical nucleon state. The results obtained for the nucleon
are in agreement with the experimental data for GA and GP
when the fraction of the meson cloud in the nucleon wave
function is about 27%. With the use of the lattice QCD and
physical data for the axial form factors, we obtain, in
principle, a better constraint for the magnitude of the meson
cloud than when we use only the constraint of the nucleon
electromagnetic form factor data.
Using the SUFð3Þ symmetry at the quark level, we

generalize the model for the octet baryons and predict all
the axial form factors of the octet baryons. It is expected
that the present estimates are accurate for Q2 > 1 GeV2

(large Q2 regime) except for a small correction due to the
normalization factor of baryon the wave functions that
results from the meson cloud component. The corrections
are estimated based on the relation for the meson cloud in
the nucleon wave function and the other members of the
octet baryon wave functions. As for the low Q2 regime
(Q2 < 1 GeV2), the estimates based exclusively on the
valence quark degrees of freedom are expected to fail. We
provide, however, effective descriptions for the region
Q2 < 1 GeV2 based on simple parametrizations for the
meson cloud contributions constrained by SUð3Þ and/or
SUð6Þ symmetries. Those parametrizations can be useful in
the future for the studies associated with the properties of
octet baryons. The meson cloud model labeled as SU0ð3Þ
gives the best description of the data within an deviation of
three standard deviations.
We conclude, in general, that the naive SUð6Þ baryon-

meson model is expected to fail at large Q2 for the ΔI ¼ 1
transitions. In this case the falloff observed for the nucleon
given by the cutoff parameterMA ≃ 1.05 GeV in the dipole
parametrization should be replaced by a value near
1.25 GeV. As for the transitions ΔS ¼ 1, although depen-
dent on the transitions, they are consistent with the estimate
MA ≃ 1.25 GeV proposed long time ago [6]. Predictions
for the induced pseudoscalar form factors are also pre-
sented in this work based on the contribution of the meson
pole (pion for ΔI ¼ 1 and kaon for ΔS ¼ 1 transitions)
complemented by a contribution from the bare core. The
bare contribution used in this work is derived from the
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quark substructure of the baryons, and it is calibrated using
lattice QCD data. As far as the authors are aware, this is the
first time that the GP form factors with finite Q2 are
estimated using the results from lattice QCD as input.
To summarize, we present the result of a phenomeno-

logical fit with some constraints based on a constituent
quark model combined with a parametrization of meson
cloud effects for the octet baryon weak interaction form
factors GAðQ2Þ and GPðQ2Þ. The model presented is
covariant and can therefore be used for the studies of
the reactions at large Q2. The predictions of the model, in
particular, the falloff of the GAðQ2Þ, can be tested in the
near future by lattice QCD simulations or, hopefully, by
upcoming experiments.
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APPENDIX: CALCULATION OF THE
TRANSITION CURRENTS

We discuss here how we calculate the factors associated
with radial wave functions using the symmetries of the
functions.
First, we present identities that can be used in the

calculation of transitions between the states of the same
mass. Next, we discuss the angular integration that can be
used to simplify the calculations for the nucleon, including
the terms associated with the same state (S or P) as well as
the terms associated with the S and P mixtures (different
states). Finally, we explain how the procedure can be
extended for transitions between the different baryon states,
which requires also different parametrizations between the
initial and the final states. The variables c1 and c2 are
defined by Eqs. (5.5) and (5.6).

1. Integral identities

The following relations are valid under the integration
symbol when the radial wave functions of the initial and
final state are defined for the states with the same mass:

kα ¼ P0 · k
ðP0Þ2 ðP

0Þα; ðA1Þ

kαkβ ¼ S1gαβ þ
m2

D þ S2
ðP0Þ2 ðP0ÞαðP0Þβ þ S3

Q2
qαqβ; ðA2Þ

ðk · qÞkα ¼ −c2qα; ðA3Þ

where
ffiffiffiffiffiffi
P02p

¼ Mð1þ τÞ and S1 ¼ 1
2
ðc2 − c1Þ, S2 ¼

− 1
2
ðc2 − 3c1Þ, and S3 ¼ 1

2
ð3c2 − c1Þ.

2. Angular integration—Nucleon case

The expression for the transition currents depends on a
few covariant integrals. The integrals are by definition
frame independent; however, the symmetries of the radial
wave functions are better understood by fixing a frame. We
consider in particular the Breit frame. In the Breit frame
P0 ¼ ðM ffiffiffiffiffiffiffiffiffiffiffi

1þ τ
p

; 0; 0; 0Þ and q ¼ ð0; 0; 0; QÞ. In this refer-
ence frame we can represent the initial radial wave function
ψ iðP−; kÞ as a function of ω− ¼ Pþ·k

M ¼ aþ bkz and the
final radial wave function ψfðPþ; kÞ as a function of

ωþ ¼ Pþ·k
M ¼ a − bkz. Here, a and b are functions of k

and independent of the angles.2 When the initial and the
final states are the same (i ¼ f) as in the case of the
transition between the S-state and P-state, we can conclude
right away that the product of the wave functions becomes

ψ iðPþ; kÞψ iðP−; kÞ ¼ FðzÞ; ðA4Þ

where F is an implicit function of jkj, and z ¼ kz=jkj
represents cos θ (θ, the angle between k and the z-axis).
Since the integration range in z is bounded by the −1
and þ1, one can conclude that

Z
k
kzψ iðPþ; kÞψ iðP−; kÞ ¼ 0: ðA5Þ

Therefore, the terms proportional to kz vanishes in the
integration. The same happens trivially for the terms
proportional to kx or ky.
In the case of the transition between the S- and P-states

one can have terms in ψPðPþ; kÞψSðP−; kÞ ¼ FðzÞ and
ψSðPþ; kÞψPðP−; kÞ ¼ Fð−zÞ, where the argument z
changes sign from the S → P to the P → S cases. In this
case we have to combine the contributions from the both
processes which can take the form t1FðzÞ þ t2Fð−zÞ,
where t1 and t2 are independent of z. We note that one
can change −z → z in the second term, under the integra-
tion symbol, since

Z
1

−1
FðzÞdz ¼

Z
1

−1
Fð−zÞdz: ðA6Þ

2The explicit expressions are

a ¼ P0 · k
M

; bkz ¼ −
q · k
M

:

In the Breit frame, a ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
ED and b ¼ Q

2M.
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Using the same argument, one can conclude also that

Z
1

−1
zFðzÞdz ¼ 0: ðA7Þ

Therefore, the terms in kz vanishes also in the integral
appearing in the S − P transition,

Z
k
kzψfðPþ; kÞψ iðP−; kÞ ¼ 0; ðA8Þ

and the same holds for the change of the initial and final
state interchange, i ↔ f.

3. Angular integration—Octet case

The calculation of integrals associated with the transi-
tions between the different states, which involves different
parametrizations of the radial wave functions, can be
reduced to the case discussed in the previous section for
the nucleon, provided that the radial wave functions are
associated with the same mass.
In the equal mass case the discussion associated with the

S- and P-states can be generalized for radial wave functions
with different parametrizations for the initial and final
states. The key point again is that we can rewrite the factors
associated with the radial wave functions in terms of the ωþ
and ω− as already discussed.
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