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It is by now established that neutrino oscillations occur due to nonzero masses and parameters in the
leptonic mixing matrix. The extraction of oscillation parameters may be complicated due to subleading
effects such as nonstandard neutrino interactions and one needs to have a fresh look how a particular
parameter value is inferred from experimental data. In the present work, we focus on an important
parameter entering the oscillation framework–the leptonic CP-violating phase δ, about which we know
very little. We demonstrate that the sensitivity to CP violation gets significantly impacted due to
nonstandard neutrino interaction effects for the upcoming long baseline experiment, Deep Underground
Neutrino Experiment. We also draw a comparison with the sensitivities of other ongoing neutrino beam
experiments such as NOνA and T2K as well as a future generation experiment, T2HK.
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I. INTRODUCTION

The discovery of neutrino oscillations implies that
neutrinos have masses and mix among three active flavors.
If neutrinos have masses then the leptonic charged current
interactions exhibit mixing and CP1 violation in much the
same way as in the quark sector [1,2]. Within the Standard
Model (SM), CP violation arises naturally via the Dirac
phase, δ in the three flavor case as concocted by Kobayashi
and Maskawa [3]. It was suggested [4,5], that a measure-
ment of δ was possible through neutrino oscillations. The
value of δ could very well be zero, maximal (δ ∼�π=2) or
nonmaximal (δ ≠ �π=2) [6]. The extraction of the value of
the CP phase is plagued with the matter-induced fake CP-
violating effects which makes its measurement very chal-
lenging even in the case of SM [7,8]. Additionally, we need
to know the ordering of the neutrino masses and also the
octant of θ23 in order to have a clear understanding of the
mixing phenomena.
The Deep Underground Neutrino Experiment (DUNE) is

one of the most promising upcoming long baseline experi-
ments that is planned to offer maximal sensitivity to uncover
the value of δ [9–13]. The baseline of 1300 km is expected to
deliver optimal sensitivity to CP violation and is well suited
to address the question of neutrino mass hierarchy [14].
Sensitivity studies leading to optimal configurations have
been carried out for DUNE stand alone as well as in
conjunction with other long baseline experiments and atmos-
pheric neutrinos and it was shown that the CP violation can
be established for ∼80% of the CP phase values [15,16] (see

also [17]) under favorable conditions (δ around �π=2). Of
course, all these studies assume the SM where the only
source of CP violation is the Dirac CP phase. Other
interesting proposals to look for leptonic CP violation
include the proposed Tokai to HyperKamiokande (T2HK)
experiment [18] and the MuOn-decay MEdium baseline
NeuTrino beam (MOMENT) experiment which exploits
neutrinos from muon decay [19].
Since there are clear hints of existence of new physics

beyond the SM, it is likely that the SM does not provide a
complete description of CP violation in nature. A particular
new physics scenario would introduce additional sources of
CP-violating effects in addition to the lone CP-violating
source (δ) of the SM (see [20,21] for models giving rise to
NSI) and this could change the relationship of measured
quantities to theCP-violatingparameter of theSM[22]. In the
presence of new physics, we need to reassess the conclusions
drawn in connection to CP violation. This was discussed in
the context of the Neutrino Factory in [23] (see also [24] in
context of atmospheric neutrinos) which led to the conclusion
that a new physics effect might be misinterpreted as the
canonical Dirac CP violation or vice-versa. Concerning the
value of theCP phase δ, therewas amild hint of its value from
the global analyses of neutrino data [25] and in recent years,
the T2K [26], NOνA (NuMI off-axis νe Appearance) [27], as
well as Super-Kamiokande atmospheric events [28] indicate
nearly maximal value (δ ∼ −π=2) for the CP phase although
presently the significance of this result is below 3σ. If the
significance improves in the future, it is very important to rule
out alternative mechanisms such as NSI [29] (also see
Refs. [30,31] for reviews and references therein) or CPT
violation [32,33] or additional sterile neutrinos (see [34,35])
that could very well be consistent with data.
In a recent work [36] (see also [29,37–42]), we studied

the impact of flavor diagonal and flavor changing neutral
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current (NC) nonstandard interactions (NSIs) during propa-
gation on CP measurements at long baselines using DUNE
as an example. We discussed the role of individual and
collective NSI parameters on the CP measurements. We
restricted ourselves to a discussion of CP asymmetries
using solely the probability for the electron appearance
channel Pμe and showed how NSI effects translate at the
level of event rates. Since then there has been a lot of
activity [29,38–42] in this direction exploring effects due to
propagation NSI at long baselines. In [38], the goal was to
discuss possible improvement of bounds on the NSI
parameters using different channels at long baseline experi-
ments. In [39] the correlation between different SI and NSI
parameters and ways to distinguish scenarios of new
physics (sterile neutrinos versus NSI) compared to the
standard case was discussed. In [40], it was shown that new
degeneracies in presence of NSI at long baselines can arise
which complicate the determination of mass hierarchy, CP
violation and octant of θ23. Reference [41] deals with
constraining NSI parameters using long baseline experi-
ments. Very recently, it has been suggested that the
proposed MOMENT experiment due to its much smaller
baseline may prove helpful in solving the degeneracies due
to NSIs leading to unambiguous determination of CP
violation [42].
While sensitivity studies have been carried out in the

presence of NSIs in the context of DUNE, we would like to
stress that none of them deal with the precise impact of
NSIs on the sensitivity to CP violation at long baseline
experiments. We consider NSI terms whose strengths lie in
the presently allowed limits (along with the phases asso-
ciated with these terms which are presently unconstrained)
and study the impact of individual and collective NSI terms
on the the CP violation sensitivity using different channels.
We assess in a comprehensive manner the sensitivity to CP
violation offered by present and future generation long
baseline experiments: T2K, NOνA, DUNE, and T2HK
when the NSI effects are turned on.
The paper is organized as follows. Section II gives the

framework for the present work. Section II A consists of a
brief introduction to NSIs in propagation and how the
genuine and fake CP-violating effects can arise due to NC
NSI terms which are constrained. We then discuss the CP
dependence of the probabilities Pμe and Pμμ in Sec. II B. In
Sec. II C, we give our analysis procedure using the CP
dependence of probabilities in Sec. II B. We then go on to
describe our results in Sec. III where we show how CP
sensitivity at DUNE gets affected due to individual and
collective NSI terms (Sec. III A). We also show dependence
on true values of standard oscillation parameters in Sec. III
B and compare the results obtained at DUNE with other
long baseline experiments in Sec. III C. The impact of NSIs
on the CP fraction is shown as a function of exposure and
baseline in Secs. III D and III E. A discussion of CP
violation sensitivity when the source of CP violation is

known is given in Sec. III F. Finally, the ability of long
baseline experiments to measure the CP phases is dis-
cussed in Sec. III G. We conclude with a discussion
in Sec. IV.

II. FRAMEWORK

A. Genuine and fake CP violation due to Earth
matter effects: SI and NSI

It is well known that the three neutrino flavor states can
be mapped to a three-level quantum system with distinct
energy eigenvalues, Ei ¼ pþm2

i =2p in the ultrarelativistic
limit in vacuum along with the assumption of equal fixed
momenta (or energy). In the presence of matter, the
relativistic dispersion relation Ei ¼ fðp;miÞ gets modified
due to the neutrino matter interactions during propagation.
The effective Lagrangian describing the NC-type neutrino
NSI of the type ðV − AÞðV � AÞ is given by

LNSI ¼ −2
ffiffiffi
2

p
GFε

fC
αβ ½ν̄αγμPLνβ�½f̄γμPCf�; ð1Þ

where GF is the Fermi constant, να, νβ are neutrinos of
different flavors, and f is a first generation SM fermion
(e, u, d).2 The chiral projection operators are given by PL ¼
ð1 − γ5Þ=2 and PC ¼ ð1� γ5Þ=2. In general, NSI terms can
be complex. It should be noted that charged current (CC)
NSIs would only affect neutrino production and detection
as opposed to NC NSIs and hence as far as propagation of
neutrinos is concerned, only the NC NSI is relevant. In the
effective Schrödinger equation for neutrino propagation,
the effective Hamiltonian in flavor basis is given by

Hf ¼ Hv þHSI þHNSI

¼ λ

8<
:U

0
B@

0

rλ
1

1
CAU† þ rA

0
B@

1 0 0

0 0 0

0 0 0

1
CA

þ rA

0
B@

εee εeμ εeτ

εeμ
⋆ εμμ εμτ

εeτ
⋆ εμτ

⋆ εττ

1
CA
9=
;; ð2Þ

where we have used the following ratios:

λ≡ δm2
31

2E
; rλ ≡ δm2

21

δm2
31

; rA ≡ AðxÞ
δm2

31

ð3Þ

and the standard CC potential due to the coherent forward
scattering of neutrinos is given by AðxÞ ¼ 2

ffiffiffi
2

p
EGFneðxÞ

where ne is the electron number density. U is the three

2Coherence requires that the flavor of the background
fermion (f) is preserved in the interaction. Second or third
generation fermions do not affect oscillation experiments since
matter does not contain them.
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flavor neutrino mixing matrix and is responsible for
diagonalizing the vacuum part of the Hamiltonian. It is
parametrized by three angles θ12, θ23, θ13 and one phase δ

Uðfθijg; δÞ≡ U23ðθ23Þ ·W13ðθ13; δÞ · U12ðθ12Þ ð4Þ

with W13 ¼ UδU13U
†
δ and Uδ ¼ diagf1; 1; exp ðiδÞg].3 In

the commonly used Pontecorvo-Maki-Nakagawa-Sakata
parametrization [43], U is given by

U ¼

0
B@

1 0 0

0 c23 s23
0 −s23 c23

1
CA
0
B@

c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

1
CA

×

0
B@

c12 s12 0

−s12 c12 0

0 0 1

1
CA; ð5Þ

where sij ¼ sin θij, cij ¼ cos θij. If neutrinos are Majorana
particles, there can be two additional Majorana-type phases
in the three flavor case but they are of no consequence in
neutrino oscillations. For the SI case, we note that there is
only one parameter, the Dirac CP phase δ that is respon-
sible for genuine CP violation while the SI with Earth
matter introduces additional fake CP effects due to the fact
that matter is CP asymmetric. This makes it challenging to
isolate the value of genuine CP-violating phase δ in the SI
case from the fake effects and there are several suggestions
to tackle the problem [7,8]. The geometric visualization of
CP conservation and CP violation for the two flavor
neutrino case was demonstrated in [44,45].
For the NSI case, the εαβð≡jεαβjeiϕαβÞ are complex NSI

parameters which appear in HNSI. The diagonal NSI
parameters are real due to the Hermiticity of the
Hamiltonian. In total, there are four phases appearing in
the Hf—one is δ and the other three are φeμ, φeτ, φμτ. The
total number of phases is four due to the fact that once we
have redefined the phases of the lepton and neutrino wave
functions to get U in form equation (5), the basis of neutrino
flavor states is defined fully. The matrix that diagonalizes
the NSI part of the Hamiltonian then would require three
angles and six phases out of which three are Majorana-type
and appear as diagonal matrix. So, we are left with three
additional phases that are relevant for us. It may be further
possible to reduce the number of phases in the limiting
cases such as when δm2

21 → 0 or θ12 → 0 as a consequence
of the phase reduction theorem of Kikuchi et al. [46].
For long baseline neutrino experiments, sin2ðλL=2Þ≃

Oð1Þ which gives

λL
2
≃1.57

�
δm2

31

2.5×10−3 eV2

2.5GeV
E

L
1300km

�
forDUNE;

ð6Þ

for the first oscillation maximum (minimum) in
the appearance (disappearance) channel. We note that
E ¼ 1.5 GeV, L ¼ 810 km for NOνA and E ¼ 0.6 GeV,
L ¼ 295 km for T2K (and also T2HK) also lead to λL ∼ π.
Also, rAL ∼Oð1Þ for the range of the E and L values
considered here.
It is interesting to note that matter (or propagation) NSIs

obey unitarity (while source and detector NSIs do not) so
effectively we still have an overall unitary matrix that
diagonalizes the effective Hamiltonian in the presence of
matter NSIs and obeysX

i

ÛαiÛ
⋆
βi ¼ δαβ ð7Þ

where Û is the unitary matrix that diagonalizes the
Hamiltonian in Eq. (2).

Hd ¼ Û†HfÛ; ð8Þ
where the elements Hd ii are the eigenvalues of Hf .
As far as the constraints on NC NSI parameters are

concerned, we refer the reader to Refs. [24,30] for more
details. After taking the constraints from neutrino experi-
ments into account, the NSI parameters are constrained as
follows:

jεαβj <

0
B@

4.2 0.3 0.5

0.3 0.068 0.04

0.5 0.04 0.15

1
CA: ð9Þ

The NSI phases are unconstrained and can lie the allowed
range, φαβ ∈ ð−π; πÞ (see Table I).
All the plots presented in this paper are obtained by using

the General Long baseline Experiment Simulator and
related software [48–51] which numerically solve the full
three flavor neutrino propagation equations using the
Preliminary Reference Earth Model [52] density profile
of the Earth,4 and the latest values of the neutrino
parameters as obtained from global fits [25,55,56].
Unless stated otherwise, we assume normal hierarchy
(NH) as the true hierarchy in all the plots.

B. CP phase dependence in Pμe and Pμμ

We consider appearance (νμ → νe) and disappearance
(νμ → νμ) channels that are relevant in the context of
accelerator-based neutrino oscillation experiments

3In the general case of n flavors the leptonic mixing matrixUαi
depends on ðn − 1Þðn − 2Þ=2 Dirac-type CP-violating phases. If
the neutrinos are Majorana particles, there are (n − 1) additional,
so-called Majorana-type CP-violating phases.

4We use the matter density as given by the Preliminary
Reference Earth Model. In principle, we can allow for uncertainty
in the Earth matter density in our calculations but it would not
impact our results drastically [53,54].
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considered in the present work. Rather than delving into the
detailed expressions, we note that [8,57,58] the oscillation
probabilities for different channels can be expressed in
terms of the CP-even and CP-odd terms both in case of
vacuum and matter with SI5 as
(1) νμ → νe and ν̄μ → ν̄e:

Pμe ¼ aμe þ bμe sin δþ cμe cos δ

Pμ̄ ē ¼ āμe − b̄μe sin δþ c̄μe cos δ ð10Þ
δ → −δ for antineutrinos and the coefficients can be
found in Ref. [58]. Thus, Pμe contains linear poly-
nomials of sin δ and cos δ.

(2) νμ → νμ and ν̄μ → ν̄μ:

Pμμ ≃ aμμ þ cμμ cos δ

Pμ̄ μ̄ ≃ āμμ þ c̄μμ cos δ ð11Þ
where the sin δ term is absent in this case. In addition
to the linear polynomials of cos δ in this case, there
are quadratic terms such as cos 2δ (and sin 2δ) in Pμμ

for the case of constant or symmetric (asymmetric)
matter density profile, but the coefficient of such
terms are small in comparison to aμμ and cμμ which
is why we do not explicitly mention those here. For
antineutrinos, δ → −δ and the coefficients

in vacuum and normal matter can be found
in Ref. [58].

It is interesting to note that in the presence of matter with
SIs, the form of Eqs. (10) and (11) remain intact with the
coefficients suitably redefined to account for their depend-
ence on the density of Earth matter. The CP-odd and CP-
even terms in Eqs. (10) and (11) serve as useful guide to
measure effects due to CP violation.
Let us now discuss the case of NSIs which is different

from SIs in the sense that it not only introduces SI
matterlike fake CP-violating effects arising from the
moduli of the NSI terms but also additional genuine CP
phases over and above the SI phase (δ). Of course, the
genuine and fake CP-violating effects are interrelated.
The argument of Kimura et al. [57,58] was generalized
to the case of NSIs [59,60]. In [59] (for nonzero values of
εeτ, εee, εττ), it was shown that the CP dependence of
probability given by Eqs. (10) and (11) remains intact
even in the presence of NSIs as long as we make
appropriate replacement for the effective CP-violating
phase, δ → δ̂.
In Fig. 1, the impact of individual NSI terms on Pμe and

Pμμ is shown for the baseline corresponding to DUNE
(L ¼ 1300 km) at a fixed value of energy E ¼ 2.5 GeV. A
striking feature can be clearly seen if we compare the nature
of the plots on left side versus the right side. We can
simplify Eq. (10) to

Pμe ¼ aμe − x0μe sin λL=2 sin δþ x0μe cos λL=2 cos δ

¼ aμe þ x0μe cosðλL=2þ δÞ ð12Þ
where x0μe can be found in Ref. [61] for SIs. We note that the
(first) peak condition for Pμe is given by λL=2≃ π=2 and
therefore for a given δ, the peak (dip) of Pμe is shifted by an
amount π=2 with respect to Pμμ [see Eqs. (11) and (12)].
For SIs, Eq. (10) leads to Pμeð0Þ ¼ aμe þ cμe and
Pμeð�πÞ ¼ aμe − cμe. From the plot, we see that Pμeð0Þ ∼
Pμeð�πÞ and this implies that cμe ≃ 0. Note also that the
maxima/minima will be at δ ¼ �π=2 from Eq. (10). If we
keep the relevant NSI phases to zero, the dashed (dotted)
curves corresponding to NSIs can go on either side of the
solid curve for SIs. For SIs, Eq. (11) leads to Pμμð0Þ ¼
aμμ þ cμμ and Pμμð�πÞ ¼ aμμ − cμμ. Note also that the
maxima/minima will be at δ ¼ 0 or π from Eq. (11).
For the diagonal parameter εee, for both Pμe and Pμμ, the
effect is like a uniform enhancement (reduction) of the
probability values from the SI case depending upon the sign
of εee.
In Fig. 2, the collective impact of NSI terms is shown for

three different experiments at different fixed energies
relevant to those experiments. The largest effect of NSI
terms can be seen for Pμe and for DUNE and it diminishes
as we go to T2K. For Pμμ, the effect is similar for all the
three experiments so the baseline does not seem to play
much role here.

TABLE I. SI and NSI parameters used in our study. For the
latest global fit to neutrino data see [47].

Parameter True Value Marginalization Range

SI

θ12 [deg] 33.5 � � �
θ13 [deg] 8.5 � � �
θ23 [deg] 45 � � �
δm2

21 [eV2] 7.5 × 10−5 � � �
δm2

31 (NH) [eV2] þ2.45 × 10−3 � � �
δm2

31 (IH) [eV2] −2.46 × 10−3 � � �
δ ½−π∶π� 0; π

NSI

εee 0.1,0.4,0.7 ½0∶1.00�
εμμ 0.05 ½0∶0.06�
εττ 0.04,0.08,0.12 ½0∶0.15�
jεeμj 0.01,0.04,0.07 ½0∶0.10�
jεeτj 0.01,0.04,0.07 ½0∶0.10�
jεμτj 0.01,0.04 ½0∶0.04�
φeμ ½−π∶π� 0; π

φeτ ½−π∶π� 0; π

φμτ ½−π∶π� 0; π

5No extra phase, with a suitable redefinition of coefficients.
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FIG. 1. Effect of individual NSI terms in the Pμe and Pμμ as a function of δ for E ¼ 2.5 GeV and L ¼ 1300 km. The solid black curve
represents the SI case while the dashed (dotted) curves represent the case of off-diagonal (diagonal) NSI parameters. The NSI phases ϕeμ

and ϕeτ are set to zero.

FIG. 2. Combined effect of three NSI terms (εeμ, εeτ, εee) in the electron appearance and muon disappearance probability as a function
of δ (for fixed E and L for DUNE, NOνA and T2K). The solid black curve represents SIs while the dashed black curve represents NSIs
for the particular choice of absolute value of NSI parameters as mentioned in the legend. The grey band shows the spread when, in
addition, the NSI phases are varied in the allowed range, i.e., ϕeμ, ϕeτ ∈ ½−π; π�.
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C. Analysis procedure

In order to obtain the sensitivity to CP violation we need
to ask the following question: what is the sensitivity with
which a particular experiment can discriminate between
CP-conserving (0; π) and CP-violating values (≠ 0, π) of
the Dirac CP phase δ. In the standard scenario, there is only
one CP phase in the neutrino oscillation formalism.

However, when we consider NSIs, naturally more param-
eters in the form of moduli and phases of NSI parameters
enter the oscillation formalism which lead to genuine and
fake CP-violating effects as described above.
For the purpose of understanding the gross features in the

plots, we give below the statistical definition of χ2 for CP
violation sensitivity,

χ2 ≡ min
δ;jεj;φ

Xx
i¼1

X2
j

½Ni;j
trueðδ; jεj;φÞ − Ni;j

testðδ ¼ 0; π; jεjrange;φ ¼ 0; πÞ�2
Ni;j

trueðδ; jεj;φÞ
; ð13Þ

where Ni;j
true and N

i;j
test are the number of true and test events

in the fi; jgth bin, respectively.6 The NSI parameters are
expressed in terms of moduli, jεj≡ fjεαβj; α; β ¼ e; μ; τg
and phases, φ≡ fφαβ; α; β ¼ e; μ; τg. The marginalization
range of NSI parameters (jεjrange and φ) and SI parameters
(δ) is given in Table I. To determine the χ2 that represents a
particular experiment’s sensitivity to the presence of
CP-violating effects, the test value of phases (δ, φeμ,
φeτ) is assumed to be 0 or π and the χ2 for any true value
of phase (δ, φeμ, φeτ) in the full range of ½−π; π� is
computed.7 While the variation corresponding to the true
value of δ is depicted along the x axis, the variation of the
true values of φeμ, φeτ (with in the allowed range) lead to
the vertical width of the grey bands which show the
maximum variation in the χ2 for each value of δ (true).8

We do not marginalize over the standard oscillation
parameters except δ whose true value is unknown. As we
are investigating the role of NSI in the present study, we
marginalize over the allowed range of moduli and phases of
the relevant NSI parameters. Our choice of range of NSI
parameters is consistent with the existing constraints
[Eq. (9)].
The indices i, j correspond to energy bins (i ¼ 1 → x,

the number of bins depends upon the particular experiment
—for DUNE, there are x ¼ 39 bins of width 250 MeV in
0.5–10 GeV, for T2K and T2HK, there are x ¼ 20 bins of
width 40 MeV in 0.4–1.2 GeV, for NOνA, there are x ¼ 28
bins of width 125 MeV in 0.5–4 GeV) and the type of
neutrinos, i.e., neutrino or antineutrino (j ¼ 1 → 2). As one
would expect, the discovery potential of a given experiment
vanishes for the CP-conserving case (δ, φ ¼ 0 or π). At the
values of δ corresponding to maximum CP violation, i.e.,
δ ¼ �π=2, the discovery potential reaches a maximum. So,

there is a double peak structure in the sensitivity plot. This
can also be understood from the probability curves for the
SIs in Figs. 1–2. The appearance probability has a maxima
and minima at δ ¼ �π=2.
For the sake of clarity, we have retained only statistical

effects and ignored systematic uncertainties and priors in
the above expression (see [16] for the full expression of χ2

including systematics and priors). However, in our analysis,
we have marginalized over systematic uncertainties (see
Table II) but assumed that the standard oscillation param-
eters are known with infinite precision; i.e., we have not
included any priors.
The theoretically expected differential event rate is given

by [10]

dNapp
νe ðE; LÞ
dE

¼ Ntarget × ΦνμðE; LÞ × PμeðE; LÞ × σνeðEÞ;
ð14Þ

where Ntarget is the number of target nucleons per kiloton of
detector fiducial volume, Ntarget ¼ 6.022 × 1032N=kt.
PμeðE;LÞ is the appearance probability for νμ → νe in
matter, ΦνμðE;LÞ is the flux of νμ, σνeðEÞ is the CC cross
section of νe given by

σνe ¼0.67×10−42ðm2=GeV=NÞ×E; forE>0.5GeV:

ð15Þ

For the disappearance channel, Pμe is to be replaced by Pμμ

and σνe → σνμ . Note that σνμ ∼ σνe for the considered
energy range. For antineutrinos, νμ → ν̄μ and νe → ν̄e
and Pμe → P̄μe.
The χ2 for the appearance channel is obtained by adding

the neutrino (νμ → νe) and antineutrino (ν̄μ → ν̄e) contri-
butions,9 which gives

6Nσ ¼
ffiffiffiffiffiffiffiffi
Δχ2

p
. Δχ2 ¼ χ2 as we have not included any fluctu-

ations in simulated data. This is the Pearson’s definition of χ2
[62]. For a large sample size, the other definition using log-
likelihood also yields similar results.

7δ, φeμ, φeτ can take 0, π and there there are eight possibilities
for CP conservation in NSI case as opposed to two in the SI case.

8The true values of φeμ and φeτ that lead to maximum and
minimum χ2 are, in general, not the same for each δ (true).

9Note that the factors such as Ntarget, Φνμ (Φ̄νμ ), and σνμ=νe
(σν̄μ=ν̄e ) will also be present, but they are independent of the
CP phase and hence omitted in the discussion that follows.
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χ2app ¼ χ2νμ→νe þ χ2ν̄μ→ν̄e ;

∝ min
0;π

f½Ptrue
μe − Ptest

μe �2 þ ½P̄true
μe − P̄test

μe �2g;

¼ min
0;π

f½bμe sin δtrue þ cμe cos δtrue − cμe cos δj0;π�2

þ ½−b̄μe sin δtrue þ c̄μe cos δtrue − c̄μe cos δj0;π�2g:
ð16Þ

Here the sin δtest term vanishes while cos δtest does not for
the two CP-conserving values δ ¼ 0, π. Similarly, the χ2

for the disappearance channel is obtained by adding
the neutrino (νμ → νμ) and antineutrino (ν̄μ → ν̄μ)
contributions,

χ2dis ¼ χ2νμ→νμ þ χ2ν̄μ→ν̄μ ;

∝ ½Ptrue
μμ − Ptest

μμ �2 − ½Ptrue
μ̄ μ̄ − Ptest

μ̄ μ̄ �2;
¼ min

0;π
f½cμμ cos δtrue − cμμ cos δj0;π�2

þ ½c̄μμ cos δtrue − c̄μμ cos δj0;π�2g: ð17Þ

Note that both χ2app and χ2dis depend on cos δtrue while χ2app
also depends on sin δtrue. The presence of the sin δtrue term
in the χ2app ensures that the appearance channel contributes
dominantly to the CP violation sensitivity. The total χ2

when appearance and disappearance channels are com-
bined is given by

χ2tot ∝ min
0;π

f½bμe sin δtrue þ cμe cos δtrue − cμe cos δj0;π�2

þ ½−b̄μe sin δtrue þ c̄μe cos δtrue − c̄μe cos δj0;π�2
þ ½cμμ cos δtrue − cμμ cos δj0;π�2
þ ½c̄μμ cos δtrue − c̄μμ cos δj0;π�2g: ð18Þ

In order to quantify the effects due to CP violation, another
quantity called a CP fraction fðσ > 3Þ is often used. This
refers to the fraction of δ values for which CP violation can
be determined above a particular value of significance
(here, 3σ). Being a fraction, fðσ > 3Þ naturally lies
between 0 and 1.

III. RESULTS

A. CP sensitivity: Impact of individual
and collective NSI terms at DUNE

In order to clearly understand the impact of the NSI
terms, we first take only one parameter nonzero at a time.
We show the effect of that particular parameter on CP
sensitivity in the appearance (νμ → νe) as well as the
disappearance (νμ → νμ) channels. We also show the case
with the two channels combined.
Before we describe the impact of a particular NSI

parameter (i.e., εeμ) we would like to point out that there
are two effects responsible for altering the value of the χ2

which compete with each other. In general, we first note
that the NSI introduces more numbers of parameters (in the

TABLE II. Detector configuration, efficiencies, resolutions and systematic uncertainties for DUNE, NOνA, T2K, and T2HK.

Normalization Error Energy Calibration Error

Detector Details Signal Background Signal Background

DUNE
Runtime ðyrÞ ¼ 5νþ 5ν̄
35 kton, LArTPC

νe∶5% νe∶10% νe∶2% νe∶10%

εapp ¼ 80%, εdis ¼ 85%
Rμ ¼ 0.20=

ffiffiffiffi
E

p
, Re ¼ 0.15=

ffiffiffiffi
E

p νμ∶5% νμ∶10% νμ∶5% νμ∶10%

NOνA

Runtime ðyrÞ ¼ 3νþ 3ν̄
14 kton, TASD

νe∶5% νe∶10% νe∶0.01% νe∶0.01%

εapp ¼ 55%, εdis ¼ 85%
Rμ ¼ 0.06=

ffiffiffiffi
E

p
, Re ¼ 0.085=

ffiffiffiffi
E

p νμ∶2.5% νμ∶10% νμ∶0.01% νμ∶0.01%

T2K
Runtime ðyrÞ ¼ 3νþ 3ν̄
22.5 kton, WC

νe∶5% νe∶5% νe∶0.01% νe∶0.01%

εapp ¼ 50%, εdis ¼ 90%
Rμ ¼ 0.085=

ffiffiffiffi
E

p
,

Re ¼ 0.085=
ffiffiffiffi
E

p
νμ∶2.5% νμ∶20% νμ∶0.01% νμ∶0.01%

T2HK
Runtime ðyrÞ ¼ 1νþ 3ν̄
560 kton, WC

νe∶5% νe∶5% νe∶0.01% νe∶0.01%

εapp ¼ 50%, εdis ¼ 90%
Rμ ¼ 0.085=

ffiffiffiffi
E

p
, Re ¼ 0.085=

ffiffiffiffi
E

p νμ∶2.5% νμ∶20% νμ∶0.01% νμ∶0.01%
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form of moduli of NSI terms and the associated CP phases)
in the sensitivity analysis and also introduces more sources
of CP violation. One can have the following possibilities:
(a) Decrease in χ2 due to additional test values: If

marginalization is carried out over more numbers of
test parameters, it naturally results in a decreased value
of χ2. This is purely a statistical effect.

(b) Increase in χ2 due to the larger strength of true values:
In addition to more parameters in the test data set [as
mentioned in effect (a) above], one has to deal with a
larger set of parameters in the true data set as well. The
variation over the values of the true NSI phases (φeμ or
φeτ) tends to broaden the grey band provided the true
value of the moduli (jεeμj or jεeτj) of the relevant NSI
term is large.

In Fig. 3, we show the sensitivity to CP violation by
exploiting appearance and disappearance channels (in
isolation and combined) for the off-diagonal NSI param-
eter, εeμ and compare it with the sensitivity obtained in case
of SIs as a benchmark. The 3σ (5σ) value is shown as a
horizontal green dashed (solid) line to serve as a reference.
Let us first describe the SI case (shown as solid black
curves). The Pμe channel dominates the sensitivity of CP
violation which can be understood from the presence of the
CP-odd term. The mildCP sensitivity of thePμμ (due to the
presence ofCP-even terms and absence of CP-odd terms in
Pμμ) is not useful when considered in isolation but
improves the χ2 in the combined case. The maximum
(minimum) sensitivity in the case of SIs is attained when
δ≃�π=2 (δ ¼ 0, �π). In presence of NSIs, in general, the

maximum χ2 is shifted from the SI maximum, δ ¼ �π=2.
This is due to the shift in the position of peaks and dips
from the SI curve at the level of probability as mentioned in
Sec. II B.
In Pμe, the presence of additional CP-odd (sin δ-like)

terms in the presence of NSIs makes it possible for effect
(b) to overtake (a) if the value of the NSI parameter is large
enough. If we see the top row of Fig. 3, the value of NSI
parameter is small (true jεeμj ¼ 0.01) and the black dashed
curve (true jεeμj ≠ 0) and the grey band (true jεeμj ≠ 0,
φeμ ∈ ½π∶π�) are always below the SI case due to dominant
(a) above. But for true jεeμj ¼ 0.07, effect (b) becomes
larger than effect (a) and we note that the NSI (with
jεeμj ≠ 0) overtakes the SI. Also, the grey band spreads
around the SI curve. The most surprising outcome is that
there can be ≥ 3σ sensitivity to CP violation even when
δ ¼ 0, �π (SI, CP conservation) for some (un)favorable
choice of NSI moduli and phases. We can see this in the
bottom panel of the left and right plots of Fig. 3. As can be
seen from the middle plots in the top and bottom rows of
Fig. 3 corresponding to Pμμ, such an overtaking is not
possible due to the absence of CP-odd terms (unless CPT
is violated) which forbids (b) to overtake (a) and there is
always a net reduction in χ2 due to (a) even if the NSI
parameter is large.
In Fig. 4, the combined (appearanceþ disappearance)

sensitivity to CP violation is shown both for SI and when
the NSI parameter εeτ is incorporated. The effects are
comparable in strength and similar in nature to that of εeμ
described above. The impact of the off-diagonal NSI

FIG. 3. The impact of εeμ on the significance with which the CP violation can be determined as a function of the value of δ at DUNE
for an exposure of 350 kt. MW. yr assuming NH. The solid black curve represents the sensitivity for our reference design. Both the
moduli and phases are varied as mentioned in the legend. The appearance and disappearance channels are shown separately and the
sensitivity obtained by combining both the channels is also shown in the last column.
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parameter εμτ on the CP sensitivity is found to be negligible
even if we choose values close to the upper limit mentioned
in Eq. (9) and hence, is not shown here.
Having described the effect of off-diagonal NSI terms,

we now address the impact of the diagonal ones: εee, εμμ,
εττ. We show the impact of the three diagonal NSI
parameters (εee, εμμ, and εττ) in Fig. 5. The effect of εμμ
is very small as it is the most constrained parameter
[Eq. (9)]. For the choice of values of the NSI parameters,
the CP sensitivity sees a drop most likely due to the
statistical effect (a) dominating in these cases.
After understanding the impact of individual diagonal as

well as off-diagonal NSI terms, we now address the
collective effect of the most influential NSI terms as far
as CP sensitivity is concerned. In Fig. 6, we show the
collective impact of the three terms (jεeej, jεeμj, jεeτj) which
show the largest impact when considered in isolation. We
note that when the NSI terms are small, the associated
phases of the NSI terms (even if taken collectively) do not
contribute in an observable manner to (b) and (a) dominates.
However, when we take somewhat larger values, we see the

interplay of the two effects (a) and (b) with the possibility
of the second effect (b) overtaking the first (a) as we go
from small to large values keeping the marginalization
range intact.
We summarize the impact of NSI on the CP violation

sensitivity at long baselines as shown in Fig. 6 for DUNE.
If we compare the solid and dashed black curves, we note
that for small values of parameters (0.01,0.01,0.1) NSI
brings down the χ2 from ∼5σ to ∼3σ at δ ∼�π=2 for the
case of zero NSI phases. The impact of true nonzero NSI
phases can be seen in the form of grey bands for the choice
of moduli of the NSI terms. For larger values of parameters
(0.07,0.07,0.7) NSI can drastically alter the χ2 not only at
δ≃�π=2 (SI, maximum) but at almost all values of δ
including at δ ¼ 0, �π if we allow for phase variation. For
some particular choice of the NSI moduli and phases, we
note that in this case, the χ2 decreases from ∼5σ to ∼2.5σ or
increases to ≳5.5σ not only at δ≃�π=2 but for most
values of δ. This can lead to a misleading inference that CP
is violated even when we have CP conservation in the SI
case (δ ¼ 0, �π). Here the phases have a bigger impact

FIG. 4. The impact of εeτ on the significance with which the CP violation can be determined as a function of the value of δ at DUNE
for an exposure of 350 kt. MW. yr assuming NH. The solid black curve represents the sensitivity for reference design. Both the moduli
and phases are varied as mentioned in the legend. The combined sensitivity of appearance and disappearance channels is shown in
the plot.

FIG. 5. The impact of jεeej, jεμμj and jεττj on the significance with which the CP violation can be determined as a function of the true
value of δ at DUNE for an exposure of 350 kt. MW. yr assuming NH. The solid black curve represents the SI sensitivity for our reference
design. The sensitivity obtained by combining the appearance and disappearance channels is shown.
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which can be seen as a widening of the grey bands as we go
from smaller to larger moduli of NSI terms.

B. Dependence on θ23 and δm2
31

The variation in CP sensitivity due to different values of
θ23 and δm2

31 in the allowed range is shown in Fig. 7 for SI
and NSI cases (zero NSI phases). For θ23, as can be seen
from the solid curves for SI, the significance (the in
presence of diagonal and off-diagonal NSI) decreases
almost uniformly for all values of δ as θ23 becomes larger.
This can be understood from Eqs. (10) [58] and (13). The
Pμe increases with θ23 and therefore the χ2 decreases. For
no extra phases, we expect the sensitivity in the presence of
NSI to be lower than the SI case due to the statistical effect.
For δm2

31, the solid curves for SI show that the signifi-
cance does not change significantly for all values of δCP as
δm2

31 is varied. Once again this can be understood from

Eqs. (10) [58] and (13). The true value of δm2
31 does not

impact Pμe and therefore the χ2 remains almost the same.

C. Comparison with other experiments

We now discuss how various currently running and future
experiments will aid in determining the CP violation
sensitivity in conjunction with DUNE or in isolation.
Before we go on, we give a brief description of the experi-
ments that are sensitive to the appearance (νμ → νe) channel
as well as the disappearance (νμ → νμ) channel.
T2K: The T2K experiment has a baseline of 295 km and

the detector is placed at an off-axis (2.5 degrees)
location. An intense beam of neutrinos (mainly
νμ or ν̄μ) produced in the J-PARC accelerator
facility in Tokai are directed towards the Super-
Kamiokande detector (22.5 kton fiducial mass)
situated in Kamioka. The near detectors located

FIG. 6. CP sensitivity for collective NSI terms at DUNE.

FIG. 7. The dependence ofCP sensitivity on the value of θ23 and δm2
31 varied in the allowed range. The black curve is for θ23 ¼ 45 deg

and for our reference setup (provides a significance of at least 3σ for ∼55% of δ values).
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280 m away from the point of neutrino production
are used to monitor the neutrino flux. The νμ beam
peaks at E ∼ 0.6 GeV which is close to the first
oscillation maximum of Pμe. The proton beam
power is 770 kW with proton energy of 50 GeV
for 3 yr (in ν mode) þ3 yr (in ν̄ mode) which
corresponds to a total exposure of 8.3 × 1020

protons on target (p.o.t) per year.
NOνA: The NOνA experiment has a baseline of 810 km

and the detector is placed at an off-axis (0.8 de-
grees) location. An intense beam of neutrinos
(mainly νμ or ν̄μ) produced by firing protons from
the FermiLab Main Injector on a graphite target. A
νμðν̄μÞ beam line is directed towards a Totally
Active Scintillator Detector (TASD) of fiducial
mass 14 kton placed in Ash River, Minnesota. This
off-axis narrow-width beam peaks at ∼1.6 GeV
which is the energy at which νμ → νe oscillation
sees a maximum. A 0.3 kton near detector is
located at the FermiLab site to monitor the
unoscillated neutrino flux. The experiment will
be running in ν mode for 3 years and ν̄ mode for
3 years with a NuMI beam power of 0.7 MW and
120 GeV proton energy, corresponding to 6.0 ×
1020 p.o.t per year.

DUNE: The DUNE experiment has a baseline of 1300 km
and the detector is placed at an on-axis location. A
new, high intensity, neutrino beam will be directed
towards a LArTPC located at Homestake at a
distance of 1300 km. The νμ beam peaks at E ∼
2.5 GeV which is close to the first oscillation

maximum of Pμe. This facility is designed for
operation at a proton beam power of 1.0 MW, with
the proton energy of 120 GeV that will deliver
1021 p.o.t. in ∼200 days per calendar year. To have
the LArTPC cross sections, we have scaled the
inclusive charged current cross sections of water
by 1.06(0.94) for the νðν̄Þ case.

T2HK: The T2HK experiment has a baseline of 295 km
and the detector is placed at the same off-axis
(0.8 degrees) location as in T2K. The idea is to
upgrade the T2K experiment, with a much larger
detector (560 kton fiducial mass) located in
Kamioka so that much larger statistics is ensured.
T2HK will run for 1 yr (in ν mode) þ3 yr
(in ν̄ mode). The proton beam power is
7.5 MW with proton energy of 30 GeV that will
deliver 1.6 × 1022 p.o.t. per year.

The detailed detector characteristics and systematic
errors are listed in Table II. In Table III, we list the energy
integrated events10 for the four experiments (using appear-
ance and disappearance channels) for neutrinos as well as
antineutrinos for NH. One striking feature to note is that the
events in the disappearance channel are much larger than in
the appearance channel. This is due to the fact that the
maximum value that Pμμ takes is close to 1 whilePμe at best
goes up to ∼0.1. The larger detector size of T2K compen-
sates for the shorter baseline when compared to the smaller
detector of NOνA with a longer baseline and the event rates

TABLE III. Total number of signal events (SI/NSI) summed over all energy bins for each experiment using the
oscillation parameters given in Table I. For NSI, we show the collective case when the NSI parameters jεeμj ¼ 0.07,
jεeτj ¼ 0.07, jεeej ¼ 0.7, φeμ ¼ 0 and φeτ ¼ 0 are considered.

Appearance Channel Disappearance Channel

Experiment νμ → νe ν̄μ → ν̄e νμ → νμ ν̄μ → ν̄μ

DUNE
δ ¼ −π=2 1610=1779 229=214 11431=11418 7841=7840
δ ¼ 0 1350=1803 292=257 11401=11313 7805=7826
δ ¼ π=2 1028=1182 309=279 11431=11417 7841=7840

NOνA
δ ¼ −π=2 90=95 17=15 142=143 46=47
δ ¼ 0 78=93 25=20 141=140 45=46
δ ¼ π=2 57=62 30=27 142=143 46=47

T2K
δ ¼ −π=2 127=130 20=19 372=371 130=129
δ ¼ 0 111=119 29=27 367=365 127=128
δ ¼ π=2 80=82 33=32 372=371 130=129

T2HK
δ ¼ −π=2 10231=10490 4882=4708 30048=30041 31321=31334
δ ¼ 0 8979=9631 6989=6474 29641=29515 30920=31059
δ ¼ π=2 6431=6643 7962=7737 30048=30041 31321=31334

10The energy range for the various experiments is mentioned in
Sec. II C.
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for the two experiments are comparable. The event rates are
somewhat larger for DUNE as it has a bigger detector in
comparison to NOνA. But, T2HK with its massive detector
overcomes the limitation of baseline being short and gives
the maximum number of events.
The expected sensitivity offered by different experiments

(singly or combined) is illustrated in Figs. 6, 8, and 9.
Figure 6 shows the CP violation sensitivity for DUNE. In
Fig. 8, we show the CP sensitivity for T2K, NOνA, and a
combination of T2K, NOνA, and DUNE. Finally, we show
the CP violation sensitivity for T2HK in Fig. 9 which is
competitive with DUNE.
We have shown the CP violation sensitivity at DUNE in

Fig. 6 and discussed the features in Sec. III A. In Fig. 8, we
show the CP sensitivity for T2K (top row), NOνA (middle
row) as well as a combination of T2K, NOνA, and DUNE

(bottom row). As in Fig. 6, the characteristic double peak is
seen for all the three cases in Fig. 8. If we now look at T2K
and NOνA individually, we note that the CP violation
sensitivity almost never reaches 3σ [it barely touches ∼1.6σ
(for T2K) and ∼1.8σ (for NOνA)]. This means that these
two current experiments considered in isolation are not so
interesting as far as CP violation sensitivity is concerned.
This does not come as a surprise as these are not optimized
for CP sensitivity. However, if we combine data from these
two experiments with DUNE, we note that CP violation
sensitivity improves slightly (from ∼5.1σ to ∼5.6σ in the SI
case near the peak). For NSI (zero NSI phases, dashed
black curve) it improves marginally from ∼3σ to ≳3σ. In
general, we note that if the phases are taken into account,
the grey bands expand and even out as we go from small to
large NSI, the peaks at δ ∼�π=2 smoothen out which

FIG. 8. CP violation sensitivity at T2K, NOνA, and T2Kþ NOνAþ DUNE for the collective NSI case and SI as a function of true δ.
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means that there is no clear demarcation of CP-conserving
(δ ¼ 0, �π) and CP-violating values of δ.
In Fig. 9, we show the CP violation sensitivity for

T2HK. We note that T2HK offers CP sensitivity that is
competitive with DUNE individually as well as T2K,
NOνA, and DUNE combined (SI and NSI both). This
can be ascribed to the high statistics offered by the HK.
Near the peak, we note that it can go up to ∼8σ for SI and
≳5σ for NSI (zero phases). Another intriguing feature from
the T2HK panel is that the NSI phases do not have as
dramatic effect as seen for DUNE when the NSI terms are
large—this can be seen as shrinking of the grey regions in
Fig. 9 (top panel, rightmost plot). This is due to the fact that
the baseline of 295 km is way too short for matter effects
(SI and NSI both) to develop and play a significant role.11

This demonstrates the complementarity of bigger detectors
(T2HK) vis-a-vis the long baselines involved (DUNE)
where no clear demarcation of CP-conserving (δ ¼ 0,
�π) and CP-violating values of δ was noticed.

D. Optimal exposure for CP violation discovery

The previous set of plots was obtained by keeping the
total exposure fixed for a given experimental configuration.
The maximum value of fðσ > 3Þ guides the choice of

optimal exposure for CP violation discovery. Let us see
how the choice of optimal exposure in the case of SIs is
arrived at. We have already noted that the CP violation
sensitivity as a function of δ has a double peak structure for
SIs due to the vanishing of the sensitivity at CP-conserving
values of δ (¼ 0,�π). Therefore, it is expected that none of
the experiments considered in the present work can lead to
a 100% coverage in δ in the SI case. This no longer holds in
the presence of NSI.
In Fig. 10, we show the CP fraction for which the

sensitivity to CP violation exceeds 3σ as a function of
exposure, labeled as fðσ > 3Þ. Let us first understand the SI
case;we note that fðσ > 3Þ rises from0 to∼0.4 as a function
of exposure initially as we go from 50–150 kt. MW. yr but
saturates to a value fðσ > 3Þ≃ 0.5–0.55 as we go to
exposures beyond ∼350 ktMWyr. Increasing the exposure
further does not change this value drastically beyond
fðσ > 3Þ≃ 0.5. This is not unexpected as we have already
noticed that it is challenging to exclude those values of the
CP phasewhich lie close to theCP-conserving values (i.e., 0
and π). So, in the case of SIs, the choice of optimal exposure
is expected to be ≃350 ktMWyr.
Let us now discuss the impact of NSI on the choice of the

optimal exposure. For the NSI case, the three panels in
Fig. 10 correspond to the three different NSI terms (taken in
isolation). There are three colored regions (blue, green, red)
for the off-diagonal NSI terms which correspond to the
three values of moduli of NSI parameters along with their

FIG. 9. CP violation sensitivity at T2HK and T2HKþ DUNE for collective the NSI case and SI as a function of true δ.

11Similar features can also be seen from the T2K panel in
Fig. 8.
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respective phase variation (analogous to the grey bands
seen in Figs. 3 and 4). For the diagonal NSI terms, there are
three dashed lines (blue, green, red) corresponding to three
different values of the diagonal NSI parameter εee (see
Fig. 5). The plot on the left shows the impact of εeμ. Even
with the phase variation, fðσ > 3Þ (shown as red band)
remains below the SI curve for the small value of εeμ
(jεeμj ¼ 0.01). This is due to the dominating statistical
effect (a) mentioned in Sec. III A. fðσ > 3Þ stays at zero
and does not rise until an exposure of ≃150 ktMWyr is
reached. Finally, it attains a value in the range ≃0.35–0.45
as we reach exposures ∼400 ktMWyr. For intermediate
and large values of εeμ (jεeμj ¼ 0.04, 0.07) on the other
hand, fðσ > 3Þ gets distributed over a larger range of
values for some favorable choice of parameters [due to the
interplay of (a) and (b) mentioned in Sec. III A] as can be
seen from the green and blue bands. Incorporating the
phase variation of the NSI parameter leads to an increase in
the value of fðσ > 3Þ and it can reach ∼1 when the
exposure is barely 200 kt. MW. yr (for some choice of
phases, some part of the grey band is above the 3σ line in
Figs. 3 and 4 for all true values of δ). Similar effects are
seen for the other off-diagonal parameter, εeτ which is
shown in the middle panel. However, for the diagonal NSI
parameter εee (which is real), we note that the fðσ > 3Þ
(blue, green, and red dashed lines) is always smaller than in
the SI case for a given choice of systematics (see also
Fig. 5). This is again due to the statistical effect.
We have checked that if we take the true hierarchy as

inverted hierarchy (IH) instead of NH, the impact of NSI
shown in Fig. 10 is grossly the same (see Table IV). The
impact of individual NSI terms on the value of fðσ > 3Þ at
an exposure of 350 kt. MW. yr (which is the optimal choice
for SI) at DUNE is listed in Table IV for NH and IH.

E. Role of systematics

The impact of different assumptions on systematics can
be seen in Fig. 11. The nominal set of systematics is

mentioned in Table II. The black solid curve represents our
nominal choice of systematics given in Table II while the
blue solid curve is for an optimal choice mentioned in the
legend [10]. The green (magenta) band corresponds to NSI
case for off-diagonal parameters εeμ, εeτ with full phase
variation for a nominal (optimal) choice of systematics. The
green (magenta) dashed curve is for εee for a nominal
(optimal) choice of systematics.
It can be seen that fðσ > 3Þ nearly reaches its

maximum (∼0.55) possible value at around 1300 km
for SI (see Fig. 11). This implies that for the given
configuration of the far detector planned for DUNE (see
Table II), the optimal distance to be able to infer the
highest fraction of the values of the CP phase is
∼1300 km. Clearly, even in case of SI, better systematics
is expected to lead to a larger fðσ > 3Þ for a given
baseline, say at 1300 km—it changes from ∼0.55 to
∼0.71. For the SI case, better systematics ensures better
detectability of CP violation quantified in terms of
fraction fðσ > 3Þ and at the same time, does not alter
the optimal baseline choice for the CP violation

FIG. 10. The CP fraction fðσ > 3Þ for which the sensitivity to CP violation is greater than 3σ as a function of exposure for the SI and
NSI cases assuming NH. The three plots correspond to three different NSI parameters taken one at a time with full phase variation. The
red, green, and blue shaded regions correspond to different values of εeμ and εeτ.

TABLE IV. fðσ > 3Þ at an exposure of 350 kt. MW. yr for
DUNE using nominal systematics (see Fig. 10).

NH IH

NSI term
fðσ > 3Þ
(NSI)

fðσ > 3Þ
(SI)

fðσ > 3Þ
(NSI)

fðσ > 3Þ
(SI)

jεeμj ¼ 0.01 0.32–0.40 0.52 0.35–0.42 0.58
jεeμj ¼ 0.04 0.30–0.69 0.52 0.33–0.78 0.58
jεeμj ¼ 0.07 0.27–1.00 0.52 0.32–1.00 0.58

jεeτj ¼ 0.01 0.26–0.32 0.52 0.23–0.32 0.58
jεeτj ¼ 0.04 0.24–0.53 0.52 0.22–0.84 0.58
jεeτj ¼ 0.07 0.23–1.00 0.52 0.21–1.00 0.58

εee ¼ 0.01 0.40 0.52 0.36 0.58
εee ¼ 0.04 0.36 0.52 0.30 0.58
εee ¼ 0.07 0.31 0.52 0.27 0.58
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sensitivity. In the case of NSI, the green (magenta) band
show the effect of two choices of systematics and there
is an overlap between them as well as with the SI values.
These aspects play a crucial role in altering the choice of
the best baseline for CP violation sensitivity. However,
in the presence of NSI, for the choice of NSI phases
representing the top (bottom) edge of the green or
magenta band (we have used the dashed green or
magenta lines to depict the diagonal NSI terms), the
optimal choice of baseline (Lopt) that maximizes the CP
fraction changes as a function of systematics (see
Table V).

F. CP violation sensitivity assuming known source

In the preceding discussion, we assumed that the
source of CP violation (i.e., whether it arises due to
the SI CP-violating parameter δ or due to NSI CP-
violating parameters φeμ, φeτ) cannot be traced or, in
other words, is unknown. If one knows which parameter
is responsible for CP violation, the results are drastically

modified. In order to illustrate this, let us assume that
out of the possible sources of CP violation, i.e., δ, φeμ or
φeτ, only one of these is responsible at a time for
generating CP-violating effects. The results for the case
of the known source of CP violation are depicted in
Fig. 12. The three rows correspond to the case when the
known source is δ (top), φeμ (middle), and φeτ (bottom).
From the top row, we note that the presence of the NSI
spoils the CP violation sensitivity irrespective of the
strength of the NSI terms as compared to the standard
case (black solid curves). Also, since δ is the only source
of CP violation, in the first row, the CP violation
sensitivity drops nearly to zero at δ ¼ 0, �π for all
the three cases shown. This is in sharp contrast with
Fig. 6 where all of the phases would have contributed to
the CP violation sensitivity. The middle and the bottom
row correspond to the case when φeμ and φeτ are the
only sources of CP violation. Again the characteristic
double peak structure is visible but the CP violation
sensitivity is not as large as for the top row simply

FIG. 11. The CP fraction for which the sensitivity to CP violation is greater than 3σ as a function of the baseline for SI and NSI cases.
The black and blue solid curves correspond to the different systematics assumed for SIs. The three plots correspond to three NSI
parameters taken one at a time. The green (magenta) band corresponds to the choice of nominal (optimal) systematics with full phase
variation for the off-diagonal NSI parameters while the green (magenta) dashed line corresponds to εee for nominal (optimal)
systematics.

TABLE V. Maximum fðσ > 3Þ and optimal baseline range (Lopt) for the two different choices of systematics (see
Fig. 11) for NH. The values with larger (smaller) fðσ > 3Þ correspond to upper (lower) edge of the respective bands.

Nominal Systematics (Green) Optimal Systematics (Magenta)

NSI SI NSI SI

fðσ > 3Þ Lopt fðσ > 3Þ Lopt fðσ > 3Þ Lopt fðσ > 3Þ Lopt
NSI Term km km km km

jεeμj ¼ 0.04 0.85 (1800–2500) 0.52 (1300) 0.97 (1500–3000) 0.71 (1300)
0.49 (800–1300) 0.59 (800–1300)

jεeτj ¼ 0.04 0.65 (2000–3000) 0.52 (1300) 0.77 (1300–1500) 0.71 (1300)
0.37 (1800–2000) 0.40 (1800–2000)

εee ¼ 0.04 0.43 (1900–2100) 0.52 (1300) 0.52 (1900–2100) 0.71 (1300)
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because NSI effects are subdominant. For Fig. 12, in the
χ2 evaluation, we marginalize over the full allowed
range12 of the remaining phases (for the case of top
row, φeμ, φeτ) in Eq. (13).

G. Measuring the phases that may be responsible
for CP violation

Independent of the question of the CP violation
sensitivity that we have addressed in the present article,

one can ask if it is possible to measure the CP phases
at long baseline experiments. For the sake of simpli-
city, we assume that only one NSI parameter contributes
at a time (let us assume that this is given by φeμ).

13

Let us now take some representative values of the true
CP phases and discuss how well we are able to
reconstruct those values among the allowed test ranges.
In Fig. 13, for two possible choices of the pair of
phases, fδtrue;φtrue

eμ g ¼ fπ=2; π=2g (maximal CP viola-
tion) and fδtrue;φtrue

eμ g ¼ f0; 0g (CP conservation), we
show the ability of DUNE to reconstruct those phases
assuming NH. For a comparison, we also show the
results for the combined case of DUNEþ T2HK where

FIG. 12. CP violation sensitivity if the source of CP violation is known. The three rows correspond to one known source (shown along
the x axis) at a time.

12The full allowed range is ½−π; π� in contrast to the CP-
conserving values ð0; πÞ considered in the previous section when
the source of CP violation was assumed to be unknown. The
statistical effect is expected to dominate in this scenario due to the
wider ranges considered for the marginalization over the test
values of the CP-violating parameters. 13For the other NSI parameter φeτ, the results are similar.

MEHEDI MASUD and POONAM MEHTA PHYSICAL REVIEW D 94, 013014 (2016)

013014-16



we see that the regions enclosed by the contours become
narrower.
The region outside the 3σ contour represents those

values of the pair of test CP phases which can be safely

discarded above 3σ while reconstructing their values
for the specific choice of the true pair of CP phases.
Smaller enclosed regions by the contours (see Fig. 13,
right panel) imply better measurement ability. Let us
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FIG. 13. Regions in the φtest
eμ –δ

test plane. The black dot represents the pair of true values fφtrue
eμ ; δtrueg which are taken to be fπ=2; π=2g

(CP violating) in the top row or f0; 0g (CP conserving) in the bottom row. The value of the NSI parameter is taken to be jεeμj ¼ 0.04.
The plots on the left are for DUNE and those on the right are for DUNEþ T2HK.

FIG. 14. Oscillograms of the generalized CP fraction in φtrue
eμ –δtrue plane.
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define a generalized CP fraction at a given confidence
level14 as the ratio of the area outside the contours to the
full area. This quantity allows us to have an idea of
how well a pair of CP phases can be reconstructed at
any given confidence level. The large CP fraction
implies better identification of the CP pair among the
test values.
To take into account all possible choices of the true pair

of CP phases, we show in Fig. 14 oscillograms of the
generalized CP fraction in the φtrue

eμ − δtrue and φtrue
eτ − δtrue

planes. The colors represent values of the generalized CP
fraction in the range 0.6–1. For the case of DUNE, the
range of the generalized CP fraction is ≃0.6–0.8 while if
we add T2HK to DUNE, the range of CP fraction becomes
≃0.85–1. This means that T2HK when combined with
DUNE allows us to measure the CP phases much better.

IV. DISCUSSION AND CONCLUSION

With tremendous progress on both theoretical and
experimental fronts in neutrino oscillation physics, we
have a fairly good idea of the neutrino masses and mixing
pattern. The proposed long baseline experiment, DUNE,
aims to hunt for the most sought after parameter, the CP-
violating phase δ. In the era of precision, the subdominant
effects due to new physics, such as NSIs, need to be
incorporated carefully. We have discussed the impact of
propagation NSIs on the standard procedure to determine
the CP violation sensitivity at long baseline experiments.
The impact of NSIs (including new CP phases) on the CP
measurements at DUNE using only the appearance channel
was studied analytically as well as numerically at the level
of probability and event rates in Ref. [36]. In the present
article, we perform a full-fledged sensitivity analysis using
appearance and disappearance channels and quantify the
effects at the level of χ2 and the CP fraction fðσ > 3Þ. We
considered the NSI terms individually first and then a
combination of the dominant ones. We also compare the
CP sensitivities with other ongoing experiments—T2K,
NOνA and a future generation experiment—T2HK.
We have found a general rule (in Sec. III A) that allows

us to comprehend the results very nicely. There are two
opposing effects at work—one is purely statistical which
tends to decrease the CP sensitivity while the other one is
due to the variation of the true values of the additional CP
phases which tends to broaden the sensitivity bands
provided the true value of the modulus of the relevant
NSI parameter is large. For diagonal NSI terms, only the
first effect dominates while for the off-diagonal NSI terms,
the additional CP phases may enhance or lower the
sensitivity to CP violation thereby broadening the grey
bands as well as increasing the value of the CP fraction

depending on the strength of the NSI term. We would like
to stress that although the value of χ2 in the presence of
NSI may sometimes be greater than the SI case [due to
effect (b)], this is not to be interpreted in a positive sense,
i.e., this does not mean that the sensitivity to the violation of
the Dirac CP phase has necessarily increased. Rather it
illustrates that in the presence of new sources of CP
violation (NSI moduli and phases), the sensitivity to the
standard Dirac CP violation has been compromised in a
very significant way.
It is shown that DUNE is sensitive not only to CP

violation effects due to the genuine SI CP phase [10] but
also to additional (fake and genuine) CP-violating effects
arising due to moduli and phases of the NSI parameters.
Finally, we can infer the following:

(i) The NSI parameters εeμ, εeτ, and εee show the largest
effect in the Pμe channel. While the NSI parameters
εμτ, εμμ, and εττ are expected to contribute to the Pμμ

channel, we do not consider them here because the
disappearance channel by itself contributes very
little to the CP sensitivity owing to the absence
of CP-odd terms in the probability. Even if we
consider these parameters, we find that the εμμ is
constrained very strongly [Eq. (9)]. We have
checked the impact of εμτ on the CP violation
sensitivity using both appearance and disappearance
channels and it is found to be negligible for DUNE.
The effect of εττ is shown in Fig. 5 and is smaller in
comparison to εee. For these reasons, we consider
εeμ, εeτ, and εee as the dominant NSI parameters
affecting CP sensitivity.

(ii) The dependence of CP sensitivity on the true values
of θ23 and δm2

31 is depicted in Fig. 7. While θ23
changes the sensitivity both for SIs and NSIs, the
δm2

31 has minuscule effect. Since θ13 is measured
very precisely [47], we do not expect any change due
to the effect of variation of the true value of θ13.

(iii) We also compared the expected sensitivity of DUNE
with current long baseline experiments T2K, NOνA
and a future experiment, T2HK. The long baseline
experiments—T2K and NOνA are not useful from
the point of view of CP sensitivity both in SIs and
NSIs when considered in isolation but adding data to
DUNE can lead to an increase in sensitivity. In spite
of the short baseline of the future T2HK experiment,
the high statistics leads to sensitivity that is com-
parable to that obtained with the longer baseline
experiment, DUNE. It is suggested [38] that a
combination of DUNE and T2HK may be able to
improve constraints on some of the NSI parameters
and may also be able to resolve degeneracies.

(iv) The impact of NSI on the CP fraction for which
sensitivity toCPviolation is greater than 3σ atDUNE
as a function of exposure is shown in Fig. 10. For
smaller values of the off-diagonal NSI terms, we note

14This is different from the CP fraction that we have
introduced earlier which involves only the Dirac CP phase (δ).
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that the bands are always below the black solid curve
for SIs. As we increase the value, the bands spread on
either side of the black curve. For the diagonal NSI
parameter εee the curve due to NSI is always below
the black curve for the values considered here.
Table IV summarizes the change in thevalue of
fðσ > 3Þ compared to the SI case for nominal
systematics at an optimal exposure of 350 kt. MW. yr
in case of DUNE for both NH and IH.

(v) The impact of change in systematics as a function of
baseline is shown in Fig. 11 and Table V. It is shown
that the choice of optimal baseline changes when we
include effects due to NSI.

(vi) If the source of CP violation is exactly known then
the CP violation sensitivity in the presence of NSI is
always dominated by effect (a) as discussed in
Sec. III F. The results are shown in Fig. 12 as a
function of the three different phases involved.

(vii) The ability of long baseline experiments to measure
the value of standard or nonstandard CP phases is
discussed in Sec. III G and shown in Figs. 13 and 14.
Adding T2HK to DUNE helps in increasing the
value of the generalized CP fraction which in turn
implies that measurement of the CP phases will be
far better.

We therefore conclude that new physics effects such as
propagation NSI spoil the CP sensitivity at long baseline
neutrino experiments, in general, and specifically in the
context of DUNE. This spoiling can be in either direction
depending upon the strength of the NSI terms involved. The
problem then reduces to disentangling standard CP viola-
tion from the nonstandard CP violation.
Another observation that can be made from this study is

that if fðσ > 3Þ such that fðσ > 3Þ ∼ 1 (for shorter
exposures) and significantly larger than its value for the
given systematics, then it unequivocally implies that there
is new physics giving rise to it. Then the task is to find the
new physics scenario uniquely that could give rise to such a
large value. However if fðσ > 3Þ stays far from unity

for reasonable exposures then we can constrain the NSI
terms very well using long baseline experiments such
as DUNE.
If we look at different experiments, naturally the impact

of NSI will be less for the relatively shorter baselines since
the amount of matter traversed will be less. So, T2K and
T2HK experience a lesser impact than NOνA and DUNE.
For shorter baselines such as 295 km, the characteristic
double peak structure of the CP sensitivity curve as a
function of true δ survives and there is clear distinction
between the CP-conserving and CP-violating cases. T2HK
due to the shorter baseline and high statistics does better in
demarcating the CP-conserving and CP-violating values as
the grey bands are not so broad. However, for longer
baselines such as for NOνA and DUNE, the CP sensitivity
as a function of δ flattens out for some choice of phases of
the relevant NSI parameters (upper edge of the grey band).
This poses a problem in differentiating the CP-conserving
andCP-violating cases. In effect, this can mask/obscure the
measurement of the SI CP phase, if the nature had it to be
CP conserving. For favorable values of the CP phase (near
�π=2), DUNE will be competitive with T2HK. But, if CP
phases were in the unfavorable region (near ∼0, π), then the
future T2HK experiment will be very promising.
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