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We study the impact of including the baryonic decay Λb → Λð→ pπ−Þμþμ− in a Bayesian analysis of
jΔBj ¼ jΔSj ¼ 1 transitions. We perform fits of the Wilson coefficients C9, C90 , C10 and C100 , in addition to
the relevant nuisance parameters. Our analysis combines data for the differential branching fraction and
three angular observables of Λb → Λð→ pπ−Þμþμ− with data for the branching ratios of Bs → μþμ− and
inclusive b → slþl− decays. Newly available precise lattice QCD results for the full set of Λb → Λ form
factors are used to evaluate the observables of the baryonic decay. Our fits prefer shifts to C9 that are
opposite in sign compared to those found in global fits of only mesonic decays, and the posterior odds show
no evidence of physics beyond the Standard Model. We investigate a possible hadronic origin of the
observed tensions between theory and experiment.
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I. INTRODUCTION

The tensions between theory and experiment for P0
5

[1,2], one of the angular observables in the kinematical
distribution of the decay B̄ → K̄�ð→ K̄πÞμþμ− [3], have
sparked much interest in the determination of the short-
distance couplings in flavor-changing neutral currents of
the form b → slþl−. Several competing global analyses
have been published [4–14] that use the available data on
such rare decays of B̄ mesons to various degrees, and most
of these analyses find that a negative shift in the Wilson
coefficient C9 improves the agreement with the data.
However, it remains unclear whether this effect is caused
by physics beyond the Standard Model, or merely by
uncontrolled hadronic contributions.
None of the published analyses include the first mea-

surements of angular observables of the baryonic rare decay
Λb → Λð→ pπ−Þμþμ− [15], which offers complementary
constraints compared to the commonly used mesonic
channels. A recent lattice QCD calculation of the relevant
Λb → Λ form factors [16] enables us to evaluate the Λb →
Λð→pπ−Þμþμ− observables with high precision. The pur-
pose of this work is thus to study the constraining power of
the b-baryon decay in a global analysis of jΔBj ¼ jΔSj ¼ 1
decays.
Our article is structured as follows: first, we briefly

describe our framework, define our fit models and review
the observations that enter our likelihood function in
Sec. II. We then present our results for each of the fit
models in Sec. III, and further discuss the implications in

Sec. IV. Appendix A describes the subleading corrections
to the operator product expansion (OPE) at low hadronic
recoil; Appendix B gives posterior-predictive distributions
for the full set of Λb → Λð→ pπ−Þμþμ− angular observ-
ables, and Appendix C contains additional fit results using
only the data for the baryonic decay.

II. FRAMEWORK

We work in the usual effective field theory for flavor-
changing neutral b → sfγ;lþl−g transitions; see, e.g.,
[17]. Its Hamiltonian reads

Heff ¼ −
4GFffiffiffi

2
p VtbV�

ts
αe
4π

X
i

CiðμÞOi þOðVubV�
usÞ þ H:c:;

ð1Þ

where CiðμÞ denotes the Wilson coefficients at the renorm-
alization scale μ, and Oi denotes a basis of field operators.
The most relevant operators are

O7ð70Þ ¼
mb

e
½s̄σμνPRðLÞb�Fμν;

O9ð90Þ ¼ ½s̄γμPLðRÞb�½l̄γμl�;
O10ð100Þ ¼ ½s̄γμPLðRÞb�½l̄γμγ5l�; ð2Þ

where a primed index indicates a flip of the quarks’
chiralities with respect to the unprimed, Standard
Model (SM)-like operator. Further four-quark operators
Oi ∼ ½s̄Γib�½q̄Γ0

iq�, i ¼ 1;…; 6 as well as the chromomag-
netic operatorO8 contribute to the transition amplitudes via
hadronic matrix elements of two-point correlators with the
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quark electromagnetic current. These contributions are
taken into account in the numerical evaluation of the b →
slþl− observables via process- and q2-dependent shifts of
the effective Wilson coefficients C9;λ and C7;λ that enter into
the various transversity amplitudes. The expressions rel-
evant to this work can be taken from Refs. [18,19] (for
Λb → Λlþl− at high q2) and Ref. [20] (for B → Xslþl−

at low q2). For definiteness, we fix μ ¼ 4.2 GeV in our fits.

A. Fit models

For the purpose of our analysis we define three
fit scenarios, labeled “SMðν-onlyÞ,” “(9,10),” and
“ð9; 90; 10; 100Þ,” respectively:

SMðν-onlyÞ∶

8><
>:

C7;9;10 SM values

C70;90;100 SM values

~ν free floating

;

ð9; 10Þ∶

8>>>><
>>>>:

C9 ∈ ½−4;þ9�
C10 ∈ ½−6;−2�
C7;70;90;100 SM values

~ν free floating

;

ð9; 90; 10; 100Þ∶

8><
>:

C9;90;10;100 ∈ ½−8;þ8�
C7;70 SM values

~ν free floating

; ð3Þ

where the parameters of interest are ~ϑ ¼ ðC9; C10Þ or
~ϑ ¼ ðC9; C90 ; C10; C100 Þ, and where the nuisance parameters
~ν account for theoretical uncertainties in the computation
of the observables.1 We obtain the posterior density for a
given model M, Pð~xjM; dataÞ, using Bayes' theorem,

Pð~xjM; dataÞ ¼ Pðdataj~x;MÞP0ð~xjMÞ
PðdatajMÞ : ð4Þ

In the above, ~x≡ ð~ϑ; ~νÞ, P0ð~x;MÞ is the prior density, and
Pðdataj~x;MÞ denotes the product of the experimental like-
lihoods. The prior density factorizes,

P0ð~xjMÞ≡ P0ð~ϑjMÞP0ð~νjMÞ; ð5Þ
into the prior for the parameters of interest, which is
multivariate uniform [see Eq. (3)], and the informative
(i.e., nonuniform) priors for the nuisance parameters. The
normalization on the right-hand side of Eq. (4),

PðdatajMÞ≡
Z
VðMÞ

d~xPðdataj~x;MÞP0ð~xjMÞ; ð6Þ

is the total evidence of the data given the modelM. We will
refer to it as the local evidence whenever we restrict the
integration hypervolume VðMÞ to a subset of the support of
P0ð~x;MÞ. The parameter point ~x� ≡ ð~ϑ�; ~ν�Þ maximizes the
posterior,

~x� ¼ argmax
x

Pð~xjM; dataÞ; ð7Þ

and is referred to as the best-fit point. For the purpose of
calculating the goodness of fit, we then compute

χ2 ≡ −2 lnPðdataj~x�;MÞ: ð8Þ

Since all measurements enter the likelihood as univariate
Gaussians, we define their individual pull values as

pulli ≡O −Oð~x�Þ
σ

; ð9Þ

in whichO� σ corresponds to the experimental results, and
Oð~x�Þ denotes the theory prediction at the best-fit point.
In order to compare pairs of fit models, we employ the

notion of posterior odds. The odds of modelM1 over model
M2 are defined as

PðM1jdataÞ
PðM2jdataÞ

¼ PðdatajM1Þ
PðdatajM2Þ

P0ðM1Þ
P0ðM2Þ

: ð10Þ

In the above, P0ðMÞ denotes a model prior. The latter can
be obtained from, e.g., independent fits. In the absence
of such results and following standard practice, we use
identical priors for all our models: P0ðMÞ≡ 1 ∀ M.
Our statistical approach closely follows the one used in

Refs. [6,22]. The calculation of all observables (listed
in the following subsection), and the statistical procedures
are carried out through use of the EOS software [23],
which implements a Monte Carlo algorithm as described
in Ref. [24].

B. Inputs

Our fits take into account the following observables.
(1) The main task is the inclusion of the branching ratio

of Λb → Λð→ pπ−Þμþμ− decays, as well as three
further observables that arise from the angular
distribution [19]: F0, the rate of longitudinally
polarized lepton pairs, as well as the leptonic and
the hadronic forward-backward asymmetries Al

FB

and AΛ
FB. The theory of QCD factorization at low

q2 [25] is not yet fully developed for the baryonic
decay (see Ref. [26] for a recent discussion), and we
therefore restrict our analysis to the high-q2 region,
where the usual low-recoil OPE [18,27] is appli-
cable. This restricts our use to observables that
are integrated over the entire low-recoil region,

1Note that our fit models are lepton-flavor universal, and
therefore cannot account for the present measurement of RK [21].
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15 GeV2 ≤ q2 ≤ 20 GeV2 ≃ q2max. We denote the
binning in this range as h·i15;20.
The LHCb Collaboration has published an analy-

sis of both the branching ratio and the three afore-
mentioned angular observables [15], which are all
included in our likelihood. The CDF Collaboration
had previously reported [28] the first observation of
this decay, and performed a measurement of its
branching ratio. However, the CDF analysis is based
on only a small number of 24� 5 signal candidates
in the entire phase space; the uncertainty of the
branching ratio in the low-recoil region is accord-
ingly large. The CDF result is compatible with the
LHCb result, but with approximately 3 times larger
uncertainty. We therefore do not include the CDF
measurement in our fits.

(2) We denote the time-integrated branching ratio of the
decay Bs → μþμ− as

R
dτBðτÞ [29]. Our likelihood

includes the recent results from a combined analysis
of the CMS and LHCb collaborations [30].
All of our fit models, as specified in Eq. (3), imply
Aμμ
ΔΓs

¼ 1 [29].
(3) From the inclusive decay B → Xslþl− we use the

branching ratio, integrated over the range of dilepton
mass square 1 GeV2 ≤ q2 ≤ 6 GeV2, denoted as
hBi1;6. The likelihood includes the measurements
by the BABAR [31] and Belle [32]2 collaborations.

A summary of nuisance parameters, their association with
specific observables, and their respective priors that enter
our analyses is shown in Table I.
The ten Λb → Λ form factors in the helicity basis are

parametrized using simplified z expansions [40] of the form

fðq2Þ ¼ 1

1 − q2=m2
pole;f

Xkmax

k¼0

af;k½zðq2Þ�k: ð11Þ

The prior distribution of the parameters faf;kg is a
multivariate Gaussian given by the lattice QCD calculation
of Ref. [16] (the definition of z and the values of the pole
masses, mpole;f, are also given in Ref. [16]). Note that
Ref. [16] provides two sets of form factor parameters: the
“nominal parameters” with kmax ¼ 1, which are used to
evaluate central values and statistical uncertainties, and the
“higher-order parameters” with kmax ¼ 2, which are used
in combination with the nominal parameters to evaluate
systematic uncertainties according to Eqs. (50)–(56) of
Ref. [16]. Since a Bayesian fit requires a single fit model,
we follow a simplified approach in this work. We use
kmax ¼ 2 throughout, but set the central values of af;0 and
af;1 equal to the nominal values and set the central values of

af;2 to zero. We then compute the total (statistical
plus systematic) covariance matrix of the parameters
faf;0; af;1; af;2g according to Eq. (56) of Ref. [16], and
use this total covariance matrix in our prior distribution. In
the high-q2 region considered here, this simplified pro-
cedure accurately reproduces the total covariances of all
form factors and observables as computed using the
original method [16].3

III. RESULTS

In the following subsections we will summarize our
findings for each of the fit scenarios through

(i) the value of ~ϑ�, the best-fit point for the parameters
of interest (if applicable);

(ii) a summary of ~ν�, the nuisance parameters at
the best-fit point, as well as a summary of the

TABLE I. Prior distributions of selected nuisance parameters:
Cabibbo-Kobayashi-Maskawa (CKM) parameters, quark masses,
hadronic matrix elements entering the inclusive and the exclusive
leptonic decays, and Λ → pπ− parity-violating decay parameter.
For the CKM parameters, we use the results of a Bayesian
analysis of only tree-level decays, which was performed by the
UTfit Collaboration in 2013 [33]. All distributions are Gaussian,
with the exception of μ2Gð1 GeVÞ. The latter follows a Log-
Gamma distribution whose additional parameter allows us to
faithfully reproduce the asymmetric uncertainty interval as given
in [34]. The prior distribution for the Λb → Λ form factors is a
multivariate Gaussian with inputs directly taken from the lattice
QCD calculation in Ref. [16]; see the text for details.

Quantity Prior Unit Reference

CKM Wolfenstein parameters
A 0.806� 0.020 � � � [33]
λ 0.2253� 0.0006 � � � [33]
ρ̄ 0.132� 0.049 � � � [33]
A 0.369� 0.050 � � � [33]

Quark masses
m̄cðmcÞ 1.275� 0.025 GeV [35]
m̄bðmbÞ 4.18� 0.03 GeV [35]

Heavy-quark expansion parameters
μ2πð1 GeVÞ 0.45� 0.10 GeV2 [34]
μ2Gð1 GeVÞ 0.35þ0.03

−0.02 GeV2 [34]

Bs decay constant
fBs

227.7� 4.5 MeV [36–39]

Λ → pπ− decay parameter
α 0.642� 0.013 � � � [35]

2In the absence of a measurement for the μþμ− final state, we
use the Belle result for a mixture of the μþμ− and eþe− final
states, assuming lepton universality.

3This is not the case in the low-q2 region (which is not used
here). At low q2, the statistical and systematic uncertainties in the
form factors are larger due to the absence of lattice data points in
that region. Consequently, deviations from the quadratic approxi-
mation in Gaussian error propagation are larger, and the resulting
estimates depend on the order of the steps taken.
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1D-marginalized densities of the posterior for all
components of ~ν;

(iii) a χ2 value and its associated p value: our a priori
threshold for an acceptable fit is p ≥ 0.03;

(iv) a description of a hypercube that includes the global
mode of the posterior, and its associated local
evidence;

(v) and a summary of the 1D-marginalized posteriors of
the parameters of interest for the local solution with
the largest local evidence.

A short summary of the goodness-of-fit quantities for each
of the scenarios is shown in Table II.

A. Scenario SMðν-onlyÞ
This scenario does not feature any parameters of interest,

and thus only probes the goodness of fit between the theory
predictions in the SM and the data. We find that both
the best-fit point ~ν� and the 1D-marginalized posterior
densities correspond excellently to the prior density for
each of the 35 nuisance parameters. Overall, we find
χ2 ¼ 13.40 for 7 degrees of freedom (d.o.f.). This translates
to a p value of 0.06, assuming a Gaussian likelihood. Since
this value is larger than our a priori threshold for the
p value, we accept this fit. We obtain the global evidence
as PðdatajSMðν-onlyÞÞ¼ ð1.1469�0.0003Þ×1018, where
the error is only statistical in nature.4 The individual pull

values for this scenario are listed in the left column of
Table II. We draw attention to the observable hAl

FBi15;20,
whose pull is the only pull to exceed 3σ; all other pulls are
smaller than 2σ.

B. Scenario (9,10)

In this scenario we fit two parameters of interest in
addition to the parameters of SMðν-onlyÞ. The ϑ compo-
nents of the best-fit point read

~ϑ�∶ ðC9; C10Þ ¼ ð5.92;−3.50Þ: ð12Þ
The 2D marginalization onto these two parameters is
shown in Fig. 1. As before for the model SMðν-onlyÞ,
we find that also in this fit model the nuisance parameters
~ν� and their 1D-marginalized posterior densities correspond
excellently to the priors densities. We further obtain
χ2 ¼ 9.60, which is a reduction compared to SMðν-onlyÞ
by 3.80. Given the now 5 d.o.f., we find a p value of
0.09; the fit is therefore acceptable. The evidence is
Pðdatajð9;10ÞÞ¼ ð2.253�0.008Þ×1017. The most promi-
nent local mode lies within the rectangle

þ3 ≤ C9 ≤ þ9 − 6 ≤ C10 ≤ −2; ð13Þ
which contributes ð1.738� 0.008Þ × 1017 or roughly 77%
to the evidence. The 1D marginal posteriors for both C9
and C10 are non-Gaussian, and we find for their respective
modes and 1σ intervals

FIG. 1. The 2D-marginalized posterior in the C9-C10 plane. To
demonstrate the impact of including the baryonic decay in the
analysis, we show the results from a fit to the B̄ → Xslþl− and
B̄s → μþμ− branching ratios only (blue lines) and from the full fit
including also the Λb → Λð→ pπ−Þμþμ− observables (orange-
red areas). The SM point is marked with a diamond shape, while
the best-fit point from the full fit is marked with a black cross.
The contours correspond to 68% (inner contours) and 95% (outer
contours) of probability for the respective 2D-marginalized
posteriors.

TABLE II. Pull values for the individual experimental con-
straints within each of the fit scenarios at the respective best-fit
point. The last line gives the total χ2 value at the respective
best-fit point.

Pull value [σ]

Constraint SMðν-onlyÞ (9,10) ð9; 90; 10; 100Þ
Λb → Λμþμ−

hBi15;20 þ0.86 −0.17 −0.08
hF0i15;20 þ1.41 þ1.41 þ1.41
hAl

FBi15;20 þ3.13 þ2.60 þ0.72

hAΛ
FBi15;20 −0.26 −0.24 −1.08

B̄s → μþμ−R
dτBðτÞ −0.72 þ0.75 þ0.37

B̄ → Xslþl−

hBi1;6 (BABAR) þ0.47 −0.26 −0.10
hBi1;6 (Belle) þ0.17 −0.35 −0.24

χ2 at best-fit point
13.40 9.60 3.87

4Large numbers for the evidence are not worrisome. They are
driven by the integration of the likelihood as a function of the
model parameters over the model parameters. As such, they are
meaningful for comparison of fits as long as the fits share the
same likelihood. Providing the evidence as part of our analysis
allows other researchers to make their own conclusions, and to
produce their own Bayes factors for model comparisons.
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FIG. 2. The 2D-marginalized posteriors for all pairs of Wilson coefficients in the ð9; 10; 90; 100Þ scenario. The SM point is marked with
a diamond shape, while the best-fit point from the full fit is marked with a black cross. The contours correspond to 68% (inner contours)
and 95% (outer contours) of probability for the respective 2D-marginalized posteriors.
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C9 ¼ þ5.9þ0.7
−0.9 ; Δ9 ¼ þ1.6þ0.7

−0.9 ;

C10 ¼ −3.5þ0.5
−0.8 ; Δ10 ¼ þ0.7þ0.5

−0.8 : ð14Þ

In the above, we also state the ranges for Δi ≡ Ci − CSMi for
i ¼ 9, 10. A comparison of our results with other findings in
the literature is difficult, due to the different methodologies.
Naively, one finds that the maximum distance between our
results and the ones from Refs. [6,9,13] are

−3.1σ for Δ9 and − 1.1σ for Δ10; ð15Þ

where we have expressed the distance in terms of the width
of our results for 68% probability intervals.
In conclusion, we find that, while the (9,10) scenario can

locally explain the data better by a Δχ2 ¼ 3.80, on average
the SMðν-onlyÞ scenario is more efficient in explaining the
data with posterior odds

Pðð9; 10ÞjdataÞ
PðSMðν-onlyÞjdataÞ ¼ 1∶6.6: ð16Þ

Following Jeffreys’ scale [41] these odds are substantially
in favor of SMðν-onlyÞ.

C. Scenario (9;10;90;100)

For this scenario we fit four parameters of interest in
addition to the nuisance parameters, yielding 39 fit param-
eters. The ϑ components of the best-fit point are

~ϑ�∶ ðC9; C90 ; C10; C100 Þ ¼ ð6.20; 0.50;−1.13;þ2.54Þ:
ð17Þ

We show all 2D marginalizations of the posterior in Fig. 2.
As in Ref. [24], we find four local solutions. However,
opposed to the results of Ref. [24], the local solutions in our
posterior are not well separated in the 2D marginalizations.
We interpret this as an effect of a “shallow” posterior,
which is due to the still considerable uncertainties on the
experimental results for the Λb → Λ observables, and also
the small number of observations: a full angular analysis of
the decayΛb → Λð→ pπ−Þμþμ− is therefore desirable. As a
further consequence, the posterior of the nuisance param-
eters is very close to our prior. At the best-fit point we find
χ2 ¼ 3.87, which is a reduction compared to the (9,10)
scenario by 5.73, and compared to SMðν-onlyÞ by 9.53.
Given the only 3 degrees of freedom in this exploratory
scenario, we obtain a p value of 0.28, which is a good
fit. We obtain for the evidence Pðdatajð9; 90; 10; 100ÞÞ ¼
ð2.188� 0.003Þ × 1016, with the uncertainty only due to
statistics.
We proceed to investigate one of the four solutions that is

contained within the hyper-rectangle,

þ3 ≤ C9 ≤ þ8; −4 ≤ C90 ≤ þ4;

−4 ≤ C10 ≤ þ1; 0 ≤ C100 ≤ þ5: ð18Þ

Its local evidence is found to be ð1.152� 0.001Þ × 1016,
which corresponds to ∼53% of the total evidence. We
obtain the 1D marginalizations within the above bounda-
ries, which are non-Gaussian. The modes and 1σ intervals
read

C9 ¼ þ6.0þ0.8
−0.8 ; Δ9 ¼ þ1.7þ0.8

−0.8 ;

C90 ¼ þ0.5þ1.3
−1.8 ;

C10 ¼ −1.3þ1.3
−1.1 ; Δ10 ¼ þ2.9þ1.3

−1.1 ;

C100 ¼ þ2.3þ0.8
−1.3 ; ð19Þ

where, as before, Δi ≡ Ci − CiSM.
Our findings can be summarized as follows: the posterior

odds relative to the previous two fit scenarios are

Pðð9; 90; 10; 100ÞjdataÞ
PðSMðν-onlyÞjdataÞ ¼ 1∶100; ð20Þ

as well as

Pðð9; 90; 10; 100ÞjdataÞ
Pðð9; 10ÞjdataÞ ¼ 1∶15: ð21Þ

Thus, again, SMðν-onlyÞ is more efficient in its description
of the data than a new-physics interpretation involving C9
through C100 .

IV. DISCUSSION

The newly available lattice QCD results for the Λb → Λ
form factors [16] have considerably decreased the theo-
retical uncertainties in the Λb → Λð→ pπ−Þμþμ− observ-
ables at low hadronic recoil, and the strengths of the
constraints on the jΔBj ¼ jΔSj ¼ 1 Wilson coefficients
are currently limited by the experimental uncertainties.
Nevertheless, already with the current experimental data
[15], we find that this decay has now reached a similar level
of constraining power as the decay B̄ → K̄�μþμ− exhibited
after the first LHCb measurement [42].
Within our nominal fit in the (9,10) scenario, we find

C9 ¼ þ5.9þ0.7
−0.9 ; Δ9 ¼ þ1.6þ0.7

−0.9 ;

C10 ¼ −3.5þ0.5
−0.8 ; Δ10 ¼ þ0.7þ0.5

−0.8 : ð22Þ

Our fits in both the (9,10) and ð9; 90; 10; 100Þ scenarios were
surprisingly well behaved, given the small number of
observables included. We look forward to including the
Λb → Λð→ pπ−Þμþμ− data in a larger analysis together
with all mesonic decays.
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Even though our fits of the Wilson coefficients yield
noticeable reductions in χ2 compared to the SM, neither
the scenario (9,10), nor the scenario ð9; 90; 10; 100Þ, is as
efficient as the Standard Model in describing the combined
present data on inclusive B → Xslþl− decays, the leptonic
decay Bs → μþμ−, and the branching ratio and angular
observables of Λb → Λð→ pπ−Þμþμ−. As a consequence,
we find no evidence for effects of physics beyond the
Standard Model.
When comparing our results for the Wilson coefficient

C9 with analyses excluding the baryonic decay but includ-
ing the decays B̄ → K̄ð�Þμþμ−, we find poor agreement
with the findings in the literature. The maximal distance
emerges for the most recent result of Ref. [13], and reads
−3.1σ in terms of the standard deviation of our result.
In our opinion, the observed discrepancy can be caused

by two different mechanisms.
(1) The discrepancy might arise from our incomplete

understanding of the hadronic matrix elements of the
two-point correlators of O1;…;6;8 with the quark
electromagnetic current, which effectively shift the
Wilson coefficients C7 and C9. The main difficulty
arises from the operators O1 and O2, whose con-
tributions are enhanced by charmonium resonances
(see, e.g., Ref. [43], where these contributions are
discussed within a hadronic dispersion relation). A
drastically different shift to C9 in the baryonic decay
compared to the mesonic transitions, e.g., through
different phases, would yield the different results
that we currently face. This would constitute a
breakdown of the universal structure of the trans-
versity amplitudes at low recoil [19,44] that is
predicted by the OPE. We explicitly show in
Appendix C that such effects can only partially
explain the presently observed shift to C9.

(2) Given the large experimental uncertainties for the
Λb → Λð→ pπ−Þμþμ− observables, statistical fluc-
tuations could conspire to mimic a large positive
shift to C9. The best candidate for such an influence
in the fit is the measurement of the branching ratio
hBi15;20. We note that the experimental uncertainty

of hBi15;20 [15] is currently dominated by the
uncertainty of the branching ratio of the normaliza-
tion mode Λb → J=ψΛ [35].

One must also consider that the results of Ref. [13] are
driven, amongst other effects, by the low value of RK [21],
which cannot be explained by hadronic effects, and the
consistent picture of the mesonic decays B̄ → K̄ð�Þμþμ−
both below and above the narrow charmonium resonances.
Ultimately, to settle the questions regarding C9, we need

both a reduction in the experimental uncertainties for
Λb → Λð→ pπ−Þμþμ− (and an analysis of the full angular
distribution, e.g., using a principal moment analysis as
proposed in [45]) and breakthroughs in our understanding
of the nonlocal hadronic matrix elements of the operators
O1;…;6;8.
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APPENDIX A: PARAMETRIZATION
OF SUBLEADING TERMS IN THE

LOW-RECOIL OPE

The decay Λb → Λlþl− can be described through eight
transversity amplitudes: AL⊥0

, AL
∥0 , AL⊥1

, AL
∥1 , and their

counterparts with L↔R. At low recoil, the OPE predicts
a universal structure, see [19]. Following Ref. [18], this
structure is broken only by hadronic matrix elements ri
(where i ∈ f⊥0; ∥0;⊥1; ∥1g) at the level of dimension-5
operators in the OPE. We therefore write the transversity
amplitudes as

ALðRÞ
⊥0

¼ þ
ffiffiffi
2

p
N

ffiffiffiffiffi
s−

p mΛb
þmΛffiffiffiffiffi
q2

p
�
CLðRÞ
9;10;þf

V
0 þ 2mbðC7 þ C70 Þ

mΛb
þmΛ

fT0 þ
�
4

3
C1 þ C2

�
r⊥0

�
;

ALðRÞ
∥0 ¼ −

ffiffiffi
2

p
N

ffiffiffiffiffi
sþ

p mΛb
−mΛffiffiffiffiffi
q2

p
�
CLðRÞ
9;10;−f

A
0 þ 2mbðC7 − C70 Þ

mΛb
−mΛ

fT50 þ
�
4

3
C1 þ C2

�
r∥0

�
;

ALðRÞ
⊥1

¼ −2N
ffiffiffiffiffi
s−

p �
CLðRÞ
9;10;þf

V⊥ þ 2mbðmΛb
þmΛÞðC7 þ C70 Þ

q2
fT⊥ þ

�
4

3
C1 þ C2

�
r⊥1

�
;

ALðRÞ
∥1 ¼ þ2N

ffiffiffiffiffi
sþ

p �
CLðRÞ
9;10;þf

A⊥ þ 2mbðmΛb
−mΛÞðC7 − C70 Þ
q2

fT5⊥ þ
�
4

3
C1 þ C2

�
r∥1

�
; ðA1Þ
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where the kinematics quantities s�, the effective Wilson

coefficients CLðRÞ
9;10;�, the normalization N, and the form

factors fJλ are defined as in Ref. [19].
In general, the matrix elements ri are complex-valued,

q2-dependent functions. These matrix elements arise only
with a suppression of orderΛ2

had=Q
2, whereQ2 ∼ fm2

b; q
2g.

(We note that a similar parametrization is used in Ref. [46].
However, there the OPE is used in terms of heavy-quark
effective theory operators [27]. As a consequence, the
leading corrections to the OPE arise from dimension-4
operators, which enter suppressed by one power of the
strong coupling αs. As such, their effect is virtually the
same as here.)
Since in our fits we only use a single q2 bin that covers

the entire phase space above q2 ¼ 15 GeV2, we can
parametrize the unknown hadronic matrix elements as
q2-constant quantities. Within the fits, we take the ri to
be real valued,5 with uncorrelated Gaussian priors centered
around zero and with a standard deviation of 0.03:
ri ∼N ð0; 0.03Þ. We emphasize that this is a conservative
estimate for the size of these hadronic matrix elements,
since Λ2

had=Q
2 ≲ 0.9%.

APPENDIX B: POSTERIOR-PREDICTIVE
DISTRIBUTIONS FOR THE Λb → Λð→ pπ−Þμþμ−

ANGULAR OBSERVABLES

In this section, we compute posterior-predictive distri-
butions for the normalized angular observables

K̂n ≡ hKni15;20
hΓi15;20

; ðB1Þ

from the (9,10) fit scenario. Summaries in the form of the
mode and the 68% probability interval for the observables
with n ∈ f1ss; 1cc; 1c; 2ss; 2cc; 2c; 4sc; 4sg are shown in
Table III. We abstain from providing predictions for the
observables with n ∈ f3sc; 3sg, since for real-valued
Wilson coefficients these observables are only sensitive
to small interference effects introduced by the imaginary
parts of the hadronic matrix elements ofO1;…;6;8, and by the
contributions proportional to Vub.

APPENDIX C: FITS OF Λb → Λð→ pπ−Þμþμ−
DATA ONLY

In order to further investigate a possible hadronic origin
for the tensions between theory and experiment, we carry
out fits to only the Λb → Λð→ pπ−Þμþμ− observables
listed in Table II. Beside the scenario SMðν-onlyÞ, we
also employ a new scenario (9):

ð9Þ∶

8><
>:

C9 ∈ ½−4;þ9�
C7;70;90;10;100 SMvalues

~ν free floating

: ðC1Þ

Using the very same priors as described in Sec. II, we find
poor fits: when only fitting the nuisance parameters, the p
value is 1.3 × 10−2, while the fit with freely floating C9
only slightly improves the p value to 1.5 × 10−2. The
reason for this behavior is that the current experimental
results for the observables hBi15;20 and hAl

FBi15;20 pull C9 in
opposite directions (the branching ratio hBi15;20, which
more strongly depends on C9, favors a positive shift).
We thus investigate the possibility that hadronic effects

break the universal nature of the OPE for the transversity
amplitudes in Λb → Λμþμ− transitions. This corresponds
to a breakdown of the semilocal quark-hadron duality.
We can simulate such effects by dramatically increasing
the allowed ranges of the power corrections ri as defined
in Appendix A. We let ri ∼N ð0; 3Þ, on a support
−5 ≤ ri ≤ þ5. Using these priors, we repeat our fits to
only the Λb → Λð→ pπ−Þμþμ− observables.
For the SMðν-onlyÞ scenario with the wide priors for ri

we obtain χ2 ¼ 4.27, and a p value of 0.37. All 1D
posteriors of the form factor parameters, CKM parameters,
and quark masses are in agreement with their priors. The
posteriors for the power correction parameters can be
summarized as follows:

r⊥;0 ¼ þ2.1þ2.4
−2.2 ;

r∥;0 ¼ þ3.6þ1.4
−1.8 ;

r⊥;1 ¼ −3.2þ2.1
−1.8 ;

r∥;1 ¼ −1.5þ2.2
−2.5 : ðC2Þ

TABLE III. Summary of the 1D-marginalized posterior-pre-
dictive distributions for the normalized angular observables
K̂n ¼ hKni15;20=hΓi15;20. We present the distributions obtained
from the posteriors of the (9,10) scenario. The statistical
uncertainty from the Monte Carlo integration is estimated to
be 10−3.

Observable (9,10)

K̂1ss þ0.352þ0.003
−0.003

K̂1cc þ0.296þ0.006
−0.006

K̂1c −0.233þ0.008
−0.008

K̂2ss −0.195þ0.005
−0.005

K̂2cc −0.153þ0.006
−0.006

K̂2c þ0.186þ0.004
−0.004

K̂4sc −0.022þ0.005
−0.005

K̂4s −0.102þ0.007
−0.009

5Only the observables K3sc and K3s, or combinations thereof,
are sensitive to the phases of the matrix elements ri. As these
observables are presently unconstrained, our use of real-valued
quantities therefore suffices. A similar observation has been made
in [6] for power corrections at large q2 in B → Kð�Þμþμ− decays.
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The total evidence is PðonlyΛb→Λμþμ−jSMðν-onlyÞÞ¼
1.8×105.
For the scenario (9) with the wide priors for ri we obtain

χ2 ¼ 4.59, and a p value of 0.20. This is surprising at first
glance, since it means that adding one parameter has lead
to an increase in χ2. However, − logPð~x�jð9Þ; onlyΛb →
Λμþμ−Þ has in fact decreased by 4.35 on the log scale.
With respect to SMðν-onlyÞ, the ri components of the
best-fit point have moved closer to 0, thereby increasing
the posterior. At the same time, a shift of Δ9 ¼ 0.7þ1.5

−1.3
compensates for the smaller values of the parameters ri.
The 1D posteriors of the power corrections read

r⊥;0 ¼ þ1.8þ2.4
−2.5 ;

r∥;0 ¼ þ2.9þ1.9
−1.9 ;

r⊥;1 ¼ −3.4þ2.4
−1.6 ;

r∥;1 ¼ −2.5þ2.3
−2.0 : ðC3Þ

Compared to the shift Δ9jð9;10Þ ¼ 1.6þ0.7
−0.9 , we see a

marked reduction in the need to modify C9. We conclude
that symmetry-breaking shifts to all four transversity
amplitudes in Λb → Λμþμ− can only partially explain
our results in the (9,10) scenario.
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