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Warped extra dimensions can address both the Planck-weak and flavor hierarchies of the Standard
Model (SM). In this paper we discuss the SM neutrino mass generation in a scenario in which a SM singlet
bulk fermion—coupled to the Higgs and the lepton doublet near the IR brane—is given a Majorana mass of
order the Planck scale on the UV brane. Despite the resemblance to a type I seesaw mechanism, a careful
investigation based on the mass basis for the singlet four-dimensional modes reveals a very different
picture. Namely, the SM neutrino masses are generated dominantly by the exchange of the TeV-scale mass
eigenstates of the singlet, that are pseudo-Dirac and have a sizable Higgs-induced mixing with the SM
doublet neutrino; remarkably, in warped five-dimensional (5D) models the anticipated type I seesaw
morphs into a natural realization of the so-called “inverse” seesaw. This understanding uncovers an
intriguing and direct link between neutrino mass generation (and possibly leptogenesis) and TeV-scale
physics. We also perform estimates using the dual conformal field theory picture of our framework, which
back up our 5D calculation.
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I. MOTIVATION AND SUMMARY

The Randall-Sundrum model [1] with a warped extra
dimension [in particular, five-dimensional (5D) anti–
de Sitter space (AdS)], coupled with an appropriate
mechanism [2] to stabilize the size of the extra dimension,
provides an attractive solution to the Planck-weak hier-
archy problem of the Standard Model (SM). The basic
idea is that localizing the SM Higgs boson near the IR
brane results in the scale of its vacuum expectation
value (VEV) being warped down to the ∼TeV scale relative
to that of the four-dimensional (4D) graviton (i.e., the
Planck scale) which is localized near the UV brane. By
the correspondence between AdS space and conformal
field theories (CFTs) in lower space-time dimension [3],
this idea is dual to a purely 4D theory, where the SM
Higgs boson is a composite of some new strong
dynamics [4].
In addition, the warped framework with the SM fermions

arising as zero modes of fermion fields propagating in the
extra dimension can also account for the charged fermion
mass and mixing angle (flavor) hierarchies of the SM as
follows [5–7]. The effective 4D Yukawa couplings are
dictated by the overlap of fermion zero-mode profiles with
the Higgs boson, the latter being localized near/on the
TeV/IR brane. The crux of this idea is that small changes in

the 5D mass parameters can result in large variations in the
(extra-dimensional) profiles of the fermion zero modes at
the TeV brane, thus (easily) generating the desired hier-
archies in these Yukawa couplings, i.e., the SM fermion
masses. It is interesting that such a scenario for SM
fermions is dual to SM fermions being partially composite
also [8], to degrees determined by scaling dimensions of the
fermionic operators to which they couple (this scaling
dimension is dual to the 5D mass parameter). The point
then is that the coupling to the Higgs is dictated by the
amount of composite admixture in SM fermions, which can
be hierarchical even with small differences in the scaling
dimensions of the fermionic operators, provided there is a
large energy range for the associated renormalization group
evolution (RGE). Of course, 5D fermions necessitate 5D
gauge fields [9].
In such a “bulk” SM in warped extra dimensions (see

also Ref. [10]), there are also Kaluza-Klein (KK) excita-
tions of SM particles, which have masses starting at and
quantized in units of roughly the TeV scale and profiles
which are peaked near the TeV brane. These new particles
inherently contribute to various types of precision tests of
the SM. Thus, there are indirect constraints on the KKmass
scale in this model; the worry being that a KK scale much
larger than ∼TeV will jeopardize the solution to the Planck-
weak hierarchy problem. Those from electroweak tests can
be controlled by suitable custodial symmetries [11],
allowing for a few-TeV KK scale [12]. As far as flavor
violation is concerned, there is a built-in suppression of
such effects in this framework, roughly an analog of the
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Glashow-Iliopoulos-Maiani mechanism in the SM [6,7,13].
Still, a KK scale above ∼10 TeV might be required
(modulo the option of fine-tuning of flavor parameters)
in order to be consistent with flavor precision data [14]. Of
course, this situation can be mitigated by the use of
appropriate flavor symmetries [15] such that a few-TeV
KK mass scale can be once again allowed.1 For a review of
the framework and its phenomenology (and more refer-
ences), see, for example, Ref. [16].
In this paper, we study the SM neutrino masses in this

framework: clearly there are two options to begin with,
namely, Dirac or Majorana type mass. For Majorana
neutrinos, an incarnation of the standard type I seesaw
mechanism [17] has been incorporated in the warped extra-
dimensional framework [18–20]: we will focus only on this
model in this paper.2 In this model, SM singlet neutrinos
(denoted generically by N) are added in the bulk to the
above framework of SM-charged fermions, also known as
the “right-handed” (RH) neutrino in the 4D case, even
though it gives massive 4D modes with both chiralities in
the 5D version (a fact which will turn out to be crucial in
our work). This singlet neutrino field has a coupling to the
lepton doublet and Higgs on (or near) the IR brane, from
which the singlet neutrino 5D field acquires a Dirac
mass term with the doublet (or LH) neutrino field
once electroweak symmetry breaking (EWSB) occurs,
i.e., the Higgs develops a VEV (just like for charged
SM fermions). However, the difference from the charged
fermion case is that we assume that lepton number is
broken only on the UV brane (i.e., it is still a good
symmetry in the bulk and on the TeV brane). This choice
essentially manifests itself as a Majorana mass term for the
UV brane-localized value of the bulk singlet neutrino field.
(Obviously, no such mass terms are allowed for the charged
fermions.)
Note that adding a Majorana mass term (or lepton-

number violation) only on the UV brane is technically
natural by 5D locality. It is also quite generic in scenarios
where the bulk EW gauge group is extended to
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L in order to satisfy bounds
from EW precision tests [11]. Here SUð2ÞR ×Uð1ÞB−L is
spontaneously broken down to Uð1ÞY (hypercharge of the
SM) on the Planck brane, either by boundary conditions or
the Planckian VEV of a localized scalar (this is equivalent
to the former case in the large-VEV limit), whereas
SUð2ÞL ×Uð1ÞY → Uð1ÞEM occurs by the Higgs VEV
localized near the IR brane. In this setup N will be typically

charged under SUð2ÞR ×Uð1ÞB−L3 while remaining neutral
under the SM gauge group. Such a choice of the bulk gauge
symmetry (and breaking) implies that a Majorana mass
term for N, which would break SUð2ÞR ×Uð1ÞB−L, is only
allowed on the Planck brane, i.e., it is forbidden in the bulk
and on the TeV brane.
We contextualize our contribution by first recapitulating

the approaches used in previous studies. It turns out that
most of the earlier studies of this model [18,20] were
performed employing the “usual” (i.e., similarly to the
charged SM fermions) KK modes of the SM singlet field
as the basis, where the above-mentioned Planck-brane-
localized Majorana mass term is treated as a (not neces-
sarily small) “perturbation” or at the least an “add-on”: we
will call this simply the “KK” basis.4

In more detail, in these earlier papers the KK decom-
position for singlet field5 is performed neglecting the
Majorana mass on the UV brane, giving zero (chiral)
and massive, Dirac (KK) modes, just like for the doublet
lepton and, in general, SM charged fermion fields.
Afterwards, turning on the Planck-brane-localized
Majorana mass term results in the would-be zero mode
acquiring a large Majorana mass. Furthermore, it leads to
mixing (via Majorana mass terms) among the would-be
zero and (already massive) KK modes so that clearly the
would-be zero modes and KK modes are not the mass
eigenstates. Finally, including EWSB leads to mass terms
between the SM neutrino and the entire tower of singlet
modes; integrating out the latter then generates a mass for
the SM neutrino, which is thus purely Majorana in nature,
deriving from the above-mentioned Majorana mass terms
for the singlet modes.
The advantage of the KK basis is its familiarity (from the

numerous studies of charged fermion masses, where of
course such Majorana mass terms are absent). As we will
detail in what follows, it is perhaps the quickest/easiest way
to obtain the SM neutrino mass formula in the 5D model.
Indeed, the exchange of nonzero KK singlet modes with

1In addition, there are lower bounds on the KK scale from the
absence of any signal of direct production of these KK particles at
the LHC, but those from Run 1 are still below the few-TeV limit
that we get from precision tests.

2For other scenarios (for either the Dirac or Majorana case)
see, for example, Refs. [5,21,22]. We will comment on models
with a bulk Majorana mass for the singlet at the end of this
section.

3In fact, in the canonical case, this SM singlet simply
corresponds to the SUð2ÞR doublet partner of the charged
RH lepton, i.e., it is not added “by hand,” rather its presence
is required by the bulk gauge symmetry.

4An exception is Ref. [19], which employed the full mass
basis, i.e., for all modes (the entire tower) of neutrinos (i.e.,
diagonalizing also the effect of doublet and singlet mixing due to
EWSB, which we neglect here to begin with; rather it can be
genuinely treated as an insertion/perturbation). However, this
study focused only on the mass of the lightest (i.e., mostly SM)
neutrino state, i.e., it did not (at least explicitly) work out the
spectrum of heavier states. Hence, the “inner workings” of the
SM neutrino mass, whose exchange is responsible for its
generation, is not clear from such an analysis.

5At leading order in the Higgs VEV, the doublet lepton KK
modes will play no role in the generation of the SM neutrino
mass, no matter which basis we use. So, we will only keep the
doublet zero mode, i.e., (approximately) the SM doublet lepton,
from now on.
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Dirac mass terms quantized in units of the TeV scale
gives a negligible contribution to the SM neutrino mass (in
spite of these modes having Majorana mass terms also):
almost all of this effect then comes instead from the would-
be zero mode (i.e., no Dirac mass term), with a super-large
Majorana mass term. This “anatomy” of the SM neutrino
mass gives it the appearance of a type I high-scale
seesaw.
In addition, the “intermediate” seesaw scale which is

typically needed in type I high-scale seesaw models for
obtaining the right SM neutrino mass can be naturally
realized in the 5D model, i.e., even with input parameters
being Planckian, via a natural choice of the 5D mass of the
singlet. In contrast, in 4D models such a seesaw scale often
has to be introduced as a “new” scale.
In this paper, we reconsider the model using the mass

basis (instead of the above KK one) for the singlet 4D
modes, neglecting the mass mixing with the doublet due to
the Higgs VEV. The reason is that this is the basis necessary
to analyze processes involving on-shell singlet neutrinos,
such as direct collider signals of singlet neutrino states and
leptogenesis [23].
What we find is that the character of the seesaw is

“changed” when the mass basis is employed! Namely, even
though the SM neutrino mass is obtained by exchanging the
mass eigenstates of the singlet (similarly to exchanging
would-be zero and KK modes), we show that

(i) the TeV-scale mass eigenstates of the singlet actually
give a significant contribution to the SM neutrino
mass (the end result being of course the same as in
the KK basis); in fact, this is the dominant effect for
the natural versions of the model.

Also, given their unsuppressed Yukawa couplings to the
Higgs and the SM neutrino (following from their profile
leaning towards the TeV brane, where the Higgs is also
localized), at first sight, it seems somewhat counterintuitive
that the SM neutrino mass comes out very small; indeed,
this is due to these modes being mostly Dirac, i.e., with a
highly suppressed Majorana mass term.
A similar mechanism in four dimensions goes by the

name “inverse” seesaw [24], i.e., where the very small SM
neutrino mass arises from the exchange of a (possibly TeV-
mass) singlet mode which is pseudo-Dirac and has a sizable
EWSB mass term with the SM neutrino. Thus, we discover
that, in the mass basis, the dynamical picture of a seemingly
high-scale type I seesaw model in warped 5D is that of an
“inverse” seesaw. Actually, it is crucial that the Majorana
mass term for these TeV-mass modes in the 5D model is
naturally small, as opposed to generic 4D inverse seesaw
models, where such a smallness can be rather an ad hoc
assumption.
Phenomenologically, we then see that—for the purpose

of leptogenesis or probing directly the mechanism of the
SM neutrino mass generation in this 5D model by pro-
ducing the responsible singlet states at the LHC/future

colliders—the center of attention becomes TeV-mass sin-
glet modes, as in the usual/4D inverse seesaw models.
Furthermore, the CFT interpretation of this seesaw

model has not been discussed in the literature thus far,
even though the charged SM fermion case has been
thoroughly studied in this way, providing physical intuition
about the problem. Such a dual CFT description of the
warped seesaw for neutrino masses will be similarly
extremely useful, offering an alternative picture for SM
neutrino mass generation. In fact, we find that

(i) the CFT viewpoint allows us to quickly unveil
the true nature of the seesaw mechanism and
clarifies the naturalness of the small Majorana
component of the TeV-scale mass eigenstates.

We end this section with a comment on scenarios in
which the singlet is given a bulk Majorana mass. A major
difference compared to the models we analyze in this paper
is that in the former case a sizable bulk mass would
significantly distort the spectrum of the KK modes and
produce a tower of Majorana states, as opposed to pseudo-
Dirac states. Unfortunately, this is not a phenomenologi-
cally viable option because the SM neutrinos would acquire
a large mass as well. A realistic model can be obtained by
taking a very tiny bulk Majorana mass, which corresponds
to making a tuning roughly of order the UV/IR hierarchy.
Then one can safely treat the bulk Majorana mass as a
perturbation of the KK basis, whose leading effect is the
generation of a small Majorana mass splitting and lepton-
number-violating couplings for the 4D modes of the
singlet. From a dual CFT perspective, this is equivalent
to assuming that there exists a tiny violation of the lepton
number within the large-N dynamics. We thus see that
models with a bulk Majorana mass reproduce the SM
neutrino masses precisely as in the 4D inverse seesaw
mechanism, and still at the price of tuning. On the other
hand, 5D scenarios with a UV-localized Majorana mass
offer a theoretically compelling justification for the small-
ness of the SM neutrino masses.
Here is the outline for the rest of this paper. We begin

with a review of the above 5D model, setting up our
notation in Sec. II. In order to set the stage for our new
analysis, it is necessary to first give a more extensive review
of the various related results from earlier literature, namely,
that of the KK basis calculation done earlier. We do this in
Sec. III. We then move onto our findings.
Our mass basis calculation of the SM neutrino mass is

given in Sec. IV; this is a somewhat tedious procedure
and so we begin (Sec. IVA) with a qualitative summary of
the subsequent results, followed by setting up the mass
basis in Sec. IV B. The main results are summarized in
Sec. IV C. In Table I we give a snapshot of the features
in each of the three bases mentioned above (i.e., KK,
mass and CFT). Each entry will be clarified below. The
full details of the 5D calculation are relegated to the
Appendix.
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In Sec. V we scrutinize the 5D model from a 4D CFT
perspective. We finally present our conclusions in Sec. VI,
where we also discuss some directions for future work.

II. THE 5D MODEL

We consider a slice of AdS5 geometry described by the
following metric:

ds2 ¼
�
R
z

�
2

ηab dxadxb; ð1Þ

where ηab ¼ diagðþ;−;−;−;−Þ and xa ¼ ðxμ; zÞ, with
μ ¼ 0, 1, 2, 3 and the fifth coordinate confined within
the interval R ≤ z ≤ R0, where R is the AdS curvature
radius.6 At the boundary z ¼ RðR0Þ we locate a UV (IR)
brane. The SM fermions are in the bulk and, for simplicity,
the SM Higgs boson is taken to be localized on the IR

brane, although we think that the arguments presented here
can be straightforwardly generalized, giving similar results,
as long as the Higgs boson is peaked towards the IR brane.
In order to be consistent with bounds from EW precision

tests, we consider a minimally extended bulk gauge group
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L with SUð2ÞR ×Uð1ÞB−L
spontaneously broken down to Uð1ÞY on the UV brane.
Since the detailed dynamics responsible for such a sponta-
neous breaking is not of central interest here, we will not
discuss it for brevity. However, it is worth mentioning that
in this framework the SM singlet neutrino is charged under
SUð2ÞR ×Uð1ÞB−L. Since the Majorana mass term for the
singlet breaks this gauge symmetry it can appear only on
the UV brane.
The quadratic action for the SM singlet neutrino7 in the

background of Eq. (1), including a UV-localized Majorana
mass (SUV), is

S ¼
Z

d5x
ffiffiffi
g

p �
i
2
ðΨ̄eMa γaDMΨ −DMΨ̄eMa γaΨÞ −mDΨ̄Ψ

�
þ SUV

¼
Z

d5x

�
R
z

�
4
�
−iχ̄σ̄μ∂μχ − iψσμ∂μψ̄ þ 1

2
ðψ ∂↔5χ − χ̄∂↔5ψ̄Þ þ

cN
z
ðψχ þ χ̄ ψ̄Þ

�
þ SUV: ð2Þ

6As a reference it is useful to recall that much of the literature uses the equivalent line element ds2 ¼ e−2kyημνdxμdxν − dy2, with
0 ≤ y ≤ 1

k lnðkR0Þ which is related to ours by z ¼ eky
k and k ¼ 1=R.

7For simplicity, we describe one generation, but our analysis can be easily extended to more.

TABLE I. A comparison of the three bases used for studying this model. Note that the bulk mass for the singlet field in the 5D model
(cN) is dual (in the CFT picture) to ð2 − ½ON �Þ, where [ON] is the scaling dimension of the singlet operator in the CFT basis. However,
the Majorana mass on the Planck brane in the 5D model (MUV

N ) corresponds to the bare mass for the external singlet (Mbare
N ) in the CFT

interpretation.

Basis → KK mass CFT
Features ↓ (would-be mass modes neglecting

UV brane Majorana mass term)
(for singlet only, i.e.,
neglecting Higgs VEV)

[NR (external) and composites
(with 2 sectors mixing)]

Advantage/Use familiar from charged fermion
analysis; easy to obtain mν

needed for on-shell production
(LHC and/or leptogenesis)

elucidates seesaw structure easy
to obtain mν “bridge” between

mass and KK bases

Nature of seesaw
(details below)

Type I (high-scale) (for both
cN < −1=2 and > −1=2)

(Dominantly) inverse for cN > −1=2
“Combination” for cN < −1=2

(Significantly) inverse
(for both ½ON � > 5=2 and < 5=2)

fraction of (net) mν from
∼TeV-scale modes

0 (from each Dirac mode) ≈1 (∼1) for cN > ð<Þ − 1=2
(from pseudo-Dirac pair)

∼1 (for both ½ON � > 5=2 and < 5=2)
(from each Dirac composite)

heavy (Majorana) mode would-be zero-mode,
not mass eigenstate

“special/single” mode external NR

Mass for cN > −1=2 MUV
N × ðTeVMPl

Þ2cNþ1
MUV

N ×
�
MUV

N
MPl

� 1
−2cN

−1 Mbare
N ð μ

MPl
Þ5−2½ON �

Mass for cN < −1=2 MUV
N MUV

N Mbare
N

fraction of (net) mν 1 ≪1 for cN > −1=2 0
≫1 (“cancels” ≫1 below)

for cN < −1=2
fraction of (net) mν from
sum of intermediate
modes

0 ≪1 for cN > −1=2
≫ 1 for cN < −1=2

unknown (for both
cN < −1=2 and > −1=2)
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In the first line the fünfbein reads eaM ¼ ðR=zÞδaM, DM ¼
∂M þ ωM with the spin connection given byωM ¼ ðγμγ5

4z ; 0Þ.
For the gamma matrices we use the conventions of
Ref. [19]:

γμ¼
�

0 σμ

σ̄μ 0

�
; σ0¼−1; γ5¼

�
i1 0

0 −i1

�
: ð3Þ

In the second line we explicitly wrote the action in terms of
Weyl spinors:

Ψ ¼
�
χα

ψ̄ _α

�
;

and defined the real number cN ≡mDR, and ∂↔5 ≡ ~∂5 − ∂⃖5.
The UV-localized Majorana mass term is defined as a

quadratic term for ψ :

SUV ¼
Z

d5x
�
R
z

�
4 d
2
δðz − RÞψψ þ H:c:; ð4Þ

where d≡MUV
N R.

We also introduce a coupling between Ψ, a Higgs H
localized on the IR brane at z ¼ R0, and the electroweak
doublet 5D field ΨL:

δS ¼ −
Z

d4x
Z

dz

�
R
z

�
4

δðz − R0Þλ5HΨLΨ ð5Þ

where λ5 is the 5D Yukawa coupling with mass dimension
−1. In our notation cN;L denote the 5D mass parameters for
RH (singlet) and LH (doublet) neutrinos (which, in turn,
determine profiles for zero modes in the extra dimension).
We will follow the convention that cL ¼ 1=2 (cN ¼ −1=2)
is a constant profile for the LH (RH) zero mode, cL > 1=2
(cN < −1=2) being localized close to the Planck brane.
Values of cL ≳ 1=2 are expected to explain the smallness of
the charged lepton masses.8

All dimensionful parameters are taken to be Oð1Þ in
units of the AdS curvature scale (k≡ 1=R) and in turn, the
latter mass scale is set to be the 4D Planck mass scale
(denoted by MPl). In the following, by “TeV scale,” we
tacitly mean the scale 1=R0 which sets the size of the KK
masses.

III. SM NEUTRINO MASS USING
THE KK BASIS

In this section, we will first review previous results
obtained using what we call the KK basis and present our

new work in the following section. As outlined in the
Introduction, this KK basis is characterized by an
a posteriori consideration of the effects of the UV brane
Majorana mass term on the modes (both zero and massive
KK) which had been obtained without this UV brane mass
term: essentially this “addition” generates Majorana mass
terms for all these modes; see, for example, Ref. [18].9

To begin with, we provide a simple derivation—using
equations of motion (EOMs)—of the formula for the SM
neutrino mass. The result that we are about to derive was
already obtained and used in earlier works [18,20]; rather
than following the approach used in the literature we
present a different one, that makes the relevant physics
more transparent.
We use four-component Dirac spinor notation, with Nð0Þ

R

being the singlet chiral zero mode, Nðn≠0Þ
R being the singlet

nonzero KK modes (Dirac i.e. have both L and R

chiralities) and νð0ÞL being the (doublet) SM neutrino
(left-handed only). We have the following mass terms:

Lmass¼
X

n;m¼0;1;2…

1

2
Mðn;mÞ

N ½NðnÞc�LNðmÞ
R þ

X
n¼1;2…

mnN
ðnÞ
L NðnÞ

R

þ
X

m¼0;1…

mð0;mÞ
D νð0ÞL NðmÞ

R þH:c: ð6Þ

where mð0;mÞ
D is the (effective) Dirac mass for the two

different types of neutrino modes induced by the Higgs
VEV. These EWSB-induced mass terms are given simply
by the 5D Yukawa coupling (along with the Higgs VEV)
multiplied by the product of profiles of LH (zero) and RH
(zero or KK, labelled m) neutrino modes at the IR brane.

Similarly,Mðn;mÞ
N are Majorana mass terms between various

singlet modes, obtained by multiplying the Majorana mass
term on the UV brane by relevant profiles at the UV brane.
Finally, mn are the usual Dirac masses for the nonzero KK
modes.10

We simply use the equation of motion for Nðn≠0Þ
L which

implies Nðn≠0Þ
R ¼ 0, since the only term in Lagrangian

involving NðnÞ
L is the KK mass with NðnÞ

R . However, the

8There might be some leeway here, due to the profile of the RH
charged lepton. In any case, formulas below can be easily
generalized to cL < 1=2 by replacing ∼ðTeV=MPlÞcL−1=2 by
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 − cL

p
.

9Note that in the literature, there are usages of “KK” basis with
other meanings, for example, while dealing with charged fer-
mions (i.e., no Majorana mass!), some authors denote by it the
mass (i.e., physical) basis before taking into account EWSB
(Higgs VEV), i.e., doublet and singlet modes are separate,
whereas some others reserve it for the final, i.e., post-EWSB,
mass basis. Once again, our KK basis for the singlet is the one
without taking into account both the Majorana mass term on the
Planck brane and mass mixing with doublet leptons via EWSB.

10In Ref. [18] the Dirac masses are denoted by Dn (our mn).
The Majorana mass terms between singlet modes, which we
denoted as Mðn;mÞ

N , are denoted as Anm. Finally, the Dirac mass
between the LH zero mode and RH zero/KK modes, which we
called mð0;mÞ

D , is denoted as C0n in Ref. [18].
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EOM for Nð0Þ
R sets itself to νð0ÞL mð0;0Þ

D =Mð0;0Þ
N . Plugging these

expressions for NðnÞ
R ðn ¼ 0; 1…Þ back into the Lagrangian

we get

L∋ −
1

2

½mð0;0Þ
D �2

Mð0;0Þ
N

νð0ÞL ½νð0Þc�R: ð7Þ

Equivalently, we can represent the use of EOMs with
Feynman diagrams: see Fig. 1. In this KK basis, it is the
right chirality of the KK mode which couples to both the
Higgs VEVat one end and has a Majorana mass term on the
other side. Thus, we have to pick the “p ” piece of the
propagator, which does not contribute to the mass term
(again, despite the nonzero KK modes having Majorana

mass terms).11 This argument is not valid for Nð0Þ
R , so the

entire contribution comes from the would-be zero mode.
The formula for the SM neutrino mass from the would-

be zero-mode exchange looks like the usual, type I seesaw,
i.e.,

mν ≡meff 2
D

Meff
N

ð8Þ

where meff
D ¼ mð0;0Þ

D for the case of the would-be zero
mode, with

mð0;0Þ
D ≈

8<
:
a>−1=2Y5v

�
TeV
MPl

�
cL−1

2 for cN >−1
2

a<−1=2Y5v
�
TeV
MPl

�
cL−1

2×
�
TeV
MPl

�
−cN−1

2 for cN <−1
2

ð9Þ

where the superscript (0, 0) on mD indicates that this is the
mass term between two zero modes, obtained by combin-
ing their profiles at the TeV brane (we assumed cL > 1=2
for simplicity here). Also, Y5 ≡ λ5=R denotes the Yukawa
coupling of the brane-localized Higgs to bulk fermions in
units of the AdS curvature scale (k).

Here (and in what follows), we have kept track of
parametric effects, i.e., relegating the Oð1Þ factors to
separate formulas:

a>−1=2 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2cN þ 1Þð2cL − 1Þ

2

r
; ð10Þ

a<−1=2 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−2cN − 1Þð2cL − 1Þ

2

r
: ð11Þ

Similarly, the effective Majorana mass in Eq. (8) is given by
the Majorana mass term of the would-be zero mode with

itself, Meff
N ¼ Mð0;0Þ

N ,12 with

Mð0;0Þ
N ≈MUV

N ×

(
b>−1=2

�
TeV
MPl

�
1þ2cN for cN > − 1

2

b<−1=2 for cN < − 1
2

ð12Þ

namely, the size of Majorana mass term on the UV brane,
denoted byMUV

N , multiplied by (the square of) the profile of
the would-be zero mode for the RH neutrino at the UV
brane this time. Once again, the b’s above are Oð1Þ factors,
given by

b>−1=2 ≈ ð2cN þ 1Þ; ð13Þ

b<−1=2 ≈ −ð2cN þ 1Þ: ð14Þ

Plugging the singlet would-be zero-mode Majorana mass
from Eq. (12) and its Dirac mass with the doublet zero
mode from Eq. (9) into the “master” formula in Eq. (8), we
get (for both cN < and > −1=2)

mν ≈
�
cL −

1

2

�
Y2
5v

2

MUV
N

�
TeV
MPl

�
2ðcL−cN−1Þ

: ð15Þ

As promised, deriving the formula for the SM neutrino
mass is a very straightforward task in the KK basis!
It is remarkable that the strong dependence on cN is

similar whether we consider cN < −1=2 or cN > −1=2.
This requires more explanation. First of all, as can be seen
from Eq. (9), for cN < −1=2, the Dirac mass is exponen-
tially suppressed by the fact that the profile of the RH
singlet would-be zero mode is peaked at the UV brane and
highly suppressed at the IR brane. On the other hand, the
Dirac mass for cN > −1=2 does not show any strong
sensitivity to cN , which again comes from the fact that
the profile at the IR brane is unsuppressed and has very
little cN dependence in this case. In the case of the

FIG. 1. The (vanishing) SM neutrino mass contribution from
the exchange of massive/KK modes in the KK basis, where

Mðn;mÞ
N (n, m ≠ 0) denote Majorana mass terms.

11However, the exchange of the KK mode can correct the
kinetic term for the SM neutrino and this, after canonically
normalizing the kinetic term, will induce a mass correction of
orderOðv4Þ, which is of higher order than theOðv2Þ contribution
from the exchange of the would-be zero mode.

12We emphasize that (see also next section) these KK basis
modes are not the mass eigenstates; in order to make this point
explicit, we denote this mass term as above, instead of simply
Mð0Þ

N , which would give the impression that it is actually a
physical mass.
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Majorana mass, however, the situation is interestingly
reversed [see Eq. (12)]. Namely, it is now the cN >−1=2
case that acquires exponential suppression and only a mild
cN dependence for cN < −1=2 (arising from the profile on
the UV brane). After combining these two effects, one can
now, at least intuitively, see that in both the cN < and
> − 1=2 cases the SM neutrino mass gets a strong cN
dependence as explicitly shown in Eq. (15). What is really
remarkable is that everything works out just right such that
both cases reveal exactly the same cN dependence. In
Sec. V, we will come back to this point and provide another
way to understand it in a somewhat less coincidental
manner. The above-mentioned results in the KK basis
are summarized in the left column of Table I.
Before moving to a study of the mass basis, we stress that

in type I high-scale seesaw models (including the 5D
realization above) there appears to be a “new hierarchy” of
mass scales. This is because the (effective) seesaw scale
needed is ∼Oð1012Þ GeV, i.e., ∼6 orders of magnitude
smaller than the Planck scale.13 In order to achieve this in
the 4D models, one is usually forced to introduce new
dynamics for this purpose, often requiring its own explan-
ations. This is what would also happen in our model if we
tookMUV

N ≪ MPl. Importantly, in warped 5D models there
is an interesting alternative. In fact, the desired seesaw scale
can be obtained from a Planckian-size MUV

N naturally; it
suffices to choose jcN j a bit smaller than 1=2 forMeff

N to be
(much) smaller than the Planck scale. Specifically, in order
to get the observed size of the SM neutrino masses, given
that cL ∼ 0.6 is a “natural” choice14 for reproducing

charged lepton masses [i.e., mð0;0Þ
D ∼Oð10 GeVÞ],15 we

can choose cN ∼ −0.3 > −1=2 so that for a natural size of
MUV

N [namely ∼OðMPlÞ], we get Meff
N ∼Oð1012Þ GeV,

giving us mν ∼Oð0.1Þ eV as required.

IV. SM NEUTRINO MASS USING
THE MASS BASIS

The reader must be warned that the KK basis is not even
remotely close to the mass basis. Indeed, the Majorana
mass term for low-lying (TeV-scale) KK modes can be
much larger than the KK (Dirac) mass itself:

Mð1;1Þ
N ∼MUV

N ×

8<
:
ðcN þ 1

2
Þ2ðTeVMPl

Þ−2cN−1; for cN < −1=2

ðcN þ 1
2
Þ2ðTeVMPl

Þ2cNþ1; for cN > −1=2

ð16Þ

where we are interested in cN ∼ −1=2 and MUV
N ≲MPl so

that (typically) Mð1;1Þ
N ≫ TeV. This demonstrates that the

Majorana mass terms cannot really be treated as a
“perturbation” (i.e., that it should be included from the
beginning).
We therefore decide to analyze the warped seesaw model

using the mass basis directly. Such a step is necessary for
the study of direct production of singlet neutrino states at
colliders, and similarly for the consideration of their effects
in the early Universe (relevant perhaps for leptogenesis).
Namely, we include the effect of the Majorana mass on
the Planck brane a priori such that all modes are (from the
start) Majorana.16 The two approaches must of course agree
on the final result. Nonetheless, we will see that this change
of basis has some “surprises” in store for us that will
elucidate the nature of the seesaw mechanism itself! An
intuitive understanding of our results immediately follows
from the CFT interpretation in Sec. V.

A. Summary

We first give highlights of the mass basis analysis, before
exploring quantitative details in the next subsection.
It turns out that basically all the singlet mass eigenstates

(except one) are “pseudo-Dirac,” i.e., they form pairs with
(roughly) the “original” Dirac-like mass, but with very a
small mass splitting within each pair, induced by the
Majorana mass term on the UV brane. This spectrum
comes with a regular spacing between these pairs, given by
∼TeV (the usual KK scale): in other words, each ∼TeV
interval (starting at ∼TeV itself) in mass has two almost
degenerate Majorana modes. In addition to the mass
spectrum, we need to know the couplings to the Higgs
(and doublet lepton) of these singlet modes; they turn out to
be sizable, given the localization of these mass eigenstates
near the TeV brane. These two properties (which are
qualitatively similar for both cN< and > − 1=2) can then
be combined as done above in the KK basis in order to get
the SM neutrino mass.

13In other words, it is not enough to get a small mν, which is
accomplished by the basic seesaw mechanism for any high scale
for the singlet neutrino mass, but we need to get its correct size as
well, which requires the seesaw scale to be high, but not as much
as the Planck scale!

14I.e., it can account for charged lepton mass hierarchies and
suppress flavor violation without any significant structure in the
5D Yukawa couplings, in addition to being safer from EW
precision tests than cL < 1=2.

15Note that this (i.e., neutrino) Dirac mass is only suppressed
by one factor of the doublet lepton profile, cf. the charged lepton
mass involving two such factors; that is why we can take
Oð10 GeVÞ as the Dirac mass term for the neutrino, instead
of ∼OðGeVÞ for the charged lepton (say, τ) mass.

16Strictly speaking and as mentioned earlier, EWSB will
actually further mix the singlet modes in this “mass” basis with
doublet modes, but that effect can be genuinely treated as a
perturbation, just like it is often done for charged SM fermions:
we will neglect it—at this stage—for simplicity and so continue
to call it the mass basis, again for the singlet modes by
themselves. Of course, these EWSB-induced mass terms between
the singlet modes and the doublet zero mode (i.e., the SM
neutrino) are crucial later, i.e., in generating mass for the SM
neutrino.
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We find that using the mass basis points to a strikingly
different underlying mechanism of the generation of SM
neutrino mass, giving the same end result for the SM
neutrino mass itself. First of all, in the mass basis, the
contribution of ∼TeV mass singlet states to the SM
neutrino mass is similar in size (for both cN< and
> − 1=2) to the final result. Thus, even though it “started
out” trying to be type I, the same 5D model (again, in the
mass basis) is reminiscent of the so-called “inverse” seesaw
mechanism in the context of (purely) 4D models [24].
Namely, both this 5D model and the 4D models in Ref. [24]
(and follow-ups) are characterized by the SM neutrino mass
originating from the exchange of a singlet mode(s) with
very a small Majorana mass term combined with its
couplings to the Higgs not being small! In other words,
the mechanism for the generation of SM neutrino mass
might be “closer at hand” than would have been anticipated
in the KK basis: for example,

(i) the TeV mass singlet states, whose exchange gen-
erates the SM neutrino mass, can potentially be
probed at the LHC (or future colliders).

Furthermore,
(i) for leptogenesis, the focus might be on the decay of

these TeV singlet states, which does not require the
Universe to be reheated to temperatures (much)
above a TeV, thus avoiding the issue of the (too
slow) phase transition of the high-temperature
scenario.17

Overall, we thus see that the mass basis picture leads to a
dramatic shift in the expected phenomenology. Indeed,
from the KK basis one might erroneously be drawn to
conclude that the physics which generates the SM
Majorana neutrino mass cannot be probed directly at the
LHC (or foreseeable colliders), and that leptogenesis would
require the Universe to be reheated to temperatures (much)
above a TeV, which might then pose a problem in these
scenarios (as mentioned above). Our results show that none
of this is true.
Note that Ref. [22] actually added an extra (i.e., beyond

the N discussed above) singlet in the bulk to this model in
order to implement the inverse seesaw in 5D (which is the
way it is done in usual, 4D models), but our claim here is
that there is no “need” to do so.18

Next, we mention finer points about the mass basis
analysis. For example, consider the “fate” (in the mass
basis) of the would-be zero mode of the KK basis. We can
show that there is indeed one mode which is unpaired: it
seems to not conform to the “one pair per TeV bin” rule.
Hence, it is termed a “special” mode, with what one might
therefore call a “purely” Majorana mass. It is somewhat
tempting to “identify” it with the would-be zero mode of
the KK basis discussed earlier. However, we find that this
“mapping” is not quite accurate. After a careful calculation,
we discover the following.

(i) For cN > −1=2, the special mode in the mass basis is
not at the would-be zero mode mass, but instead is
parametrically higher (while still being smaller than
the Majorana mass term on the UV brane), with
however a coupling to the Higgs which is similar to
the would-be zero mode. Thus, its contribution to the
SM neutrino mass is negligible. Similarly, we can
show that the effect of the paired modes that are
(much) heavier than ∼TeV is small, i.e., the sum
over these mass eigenstates from the bottom up is
convergent. Hence, we can indeed say that the SM
neutrino mass is dominantly of inverse seesaw
nature, i.e., it basically arises from the exchange
of ∼TeV mass eigenstates mentioned above.19

(ii) cN < −1=2: The special mode is in fact (roughly) at
the would-be zero mode mass. Nevertheless its
coupling to the Higgs is actually unsuppressed,
giving too large a contribution to the SM neutrino
mass. However, we show that this contribution is
similar in size to the effect of the other, i.e., higher
than ∼TeV, paired modes (i.e., this sum is now
not dominated by the low-lying modes, cf. the
cN > −1=2 case above). We therefore conjecture
that these two contributions (again, those of the
single/special mode and the heavy, paired ones, with
each of them being too large) cancel one another,
leaving behind that of the ∼TeV modes mentioned
above (which on its own is the “correct” size); in this
sense, we have sort of a “hybrid” of the inverse and
type I seesaws here.

Finally, as far as the curious feature about the depend-
ence on cN of the final SM neutrino mass is concerned, we
can boil it down to

(i) the dependence on cN of the Majorana mass splitting
between the two (∼TeV) mass eigenstates in each
pair being similar for cN > −1=2 and < − 1=2 (as
mentioned above, this splitting is essentially what
generates the bottom-line SM neutrino mass for both
ranges of cN).

17It is known [25] that the transition from such a high-
temperature phase (i.e.,≫TeV) to the usual warped model below
a temperature of ∼TeV might proceed too slowly, which might
then become a bottleneck in implementing a standard (i.e., high-
scale) leptogenesis scenario.

18In more detail, in the 4D inverse seesaw model, we consider
two Weyl spinor singlets, which form a pseudo-Dirac state.
Reference [22] attempted to mimic this in the 5D model by
incorporating two (chiral) zero modes, i.e., one from each of
the two (singlet) bulk fields. However, we see that such a
“proliferation” of bulk singlets is actually not necessary since
a single bulk field does have two chiralities at the non-zero-mode
level: we find that these form the required pseudo-Dirac state.

19Again, it is more than one pair of modes which contribute
here, i.e., involving more like a “tower” (albeit rapidly con-
vergent) of inverse seesaws, but this is a minor variation with
respect to the usual 4D model of this type.
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The picture arising from our mass basis calculation is
summarized in the middle column of Table I.

B. Setting up the calculation

We now show the derivation of the above claims. Once
again, in this approach, we take into account the Majorana
mass term on the UV brane from the get-go so that all
singlet modes are strictly speaking Majorana. The calcu-
lation is rather straightforward, albeit tedious: see the
Appendix for details. It turns out that these Majorana mass
modes can be divided into two types: light modes and
special modes. The low-lying (TeV-mass) modes come in
pairs of pseudo-Dirac particles (a Weyl spinor with mass m
and another of mass ∼ −m) and similar couplings to the
SMHiggs and SM doublet neutrino.Wewill denote the two
modes within each pair (and the values of their masses and
couplings) by the subscripts �, respectively. Of course, we
have an infinite tower of such modes, counted by
n ¼ 1; 2;…, so each n actually stands for two, “�,”modes.
In addition, at a mass scale much larger than ∼TeV
(essentially dictated by the Majorana mass term on the
UV brane, but appropriately modulated by profiles), we
find an unpaired/single mode, which we dub “special.”
The single/special, Majorana mode (mass Mspecial

N ,
coupling yspecial with the Higgs and doublet neutrino zero
mode) gives the usual type I seesaw contribution to the SM
neutrino mass

mspecial
ν ¼ ðv yspecialÞ2

Mspecial
N

as in Fig. 2 [with ðmþ ΔmÞ → Mspecial
N ], where v yspecial is

the Dirac mass with the doublet neutrino zero mode
as usual.
Each mode of a pair of Majorana modes (mass mn�,

magnitude of coupling yn�) gives a contribution to the SM
neutrino mass which is similar to the above. However,
given the near degeneracy within each pair, it is convenient
to consider their combined effect:

mpair
ν ¼ v2

�
y2nþ
mnþ

−
y2n−
mn−

�

≈
y2nv2

mn

�
2
Δy
yn

−
Δm
mn

�
ð17Þ

again, as in Fig. 2.20 Here Δy ¼ ynþ − yn− and
Δm ¼ mnþ −mn−.
The procedure then is to determine the masses and

couplings from a detailed 5D calculation, plug these into

the above formulas, and finally sum over the pairs of
Majorana modes.

C. Results

In this section, we will simply summarize the results of
the above outlined procedure, referring the reader to the
Appendix for the actual calculation. As already mentioned
in the summary above, each of the two cases cN > and
< − 1=2 has to be treated on its own.
(i) cN > −1=2
We begin with the case of cN > −1=2, which is the

phenomenologically viable option, i.e., it can give the
known size of the SM neutrino masses with natural choices
of the bulk parameters.
The special mode
The first surprising element is that the mass of the special

mode [for a derivation, see Appendix A 221] is parametri-
cally different than the Majorana mass of the would-be zero
mode in the KK basis: namely, we find that

Mspecial
N ≈ f>−1=2MUV

N ×

�
MUV

N

MPl

�− 1
2cN

−1
ð18Þ

with the Oð1Þ factor given by

f>−1=2 ≈ 2

�
−π tanðcNπÞ

Γ2ð−cN þ 1=2Þ
� 1

2cN ð19Þ

i.e., it is smaller than the input of MUV
N (given that

cN > −1=2, the exponent is positive and we assume
MUV

N ≲MPl here), but it is larger than the would-be
zero-mode mass in the first line of Eq. (12). On the other
hand, the coupling of the special mode to the SM Higgs is
(roughly) similar to that of the would-be zero mode (apart
from the absence of the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þ cN

p
factor [which anyway

is ∼Oð1Þ]), i.e., the EWSB-induced Dirac mass with the
SM doublet neutrino, meff

D , is approximately22

FIG. 2. The SM neutrino mass from the exchange of one singlet
mode in the mass basis, labeled NðnÞ

mass and of mass ðmn þ ΔmÞ.

20Equivalently, we can treat the small Majorana splitting (Δm)
as a “mass insertion” in getting to the second term of the above
result.

21Following Ref. [18], MUV
N in units of MPl is denoted by d in

the Appendix also.
22The reason for this similarity is, in turn, due to the profiles,

i.e., they are both leaning towards the IR brane. Although it might
not be needed (given the expectation based on these profiles), for
an actual derivation of this coupling, see Appendix A 3.
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meff;special
D ∼mð0;0Þ

D ½wheremð0;0Þ
D is the first line of Eq: ð9Þ�:

ð20Þ

Thus it is clear that the special mode’s contribution to the
SM neutrino mass is too small to reproduce Eq. (15).
Low-lying modes
It is the TeV-mass physical modes which shoulder the

responsibility of generating the SM neutrino mass. Their
Yukawa coupling to the Higgs and the SM lepton doublet is
suppressed only by the latter’s profile at the TeV brane,
given that these singlet profiles are peaked near the TeV
brane, i.e., meff

D is again similar to mð0;0Þ
D in the first line

of Eq. (9).
Naively, one might then expect a too large SM neutrino

mass from the exchange of these modes, given the ∼TeV
mass for these modes. However, the crucial point is that the
fraction of (primordially) “Majorana natured” mass is
naturally very small. From the explicit 5D mass basis
calculation we find that the mass and coupling splitting are
given by (see Appendix A 2)

Δm
mn

≈ h>−1=2
TeV
mn

1

MUV
N =MPl

�
mn

MPl

�
−2cN

irrespective of cN

≈ h>−1=2
1

MUV
N =MPl

ðTeV=MPlÞ−2cN ; for mn∼TeV

ð21Þ

Δy
yn

¼ −cN
Δm
mn

ð22Þ

where the leading-order mass mn and coupling yn are
given by

mn ≈
�
nþ 1

2
ð1 − cNÞ

�
π; ðTeVÞ ð23Þ

yn ≈ Y5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cL − 1

p �
TeV
MPl

�
cL−1=2 ð24Þ

(assuming cL > 1=2 as before). The Oð1Þ factor h>−1=2 is
given by

h>−1=2 ≈
4cNπ

Γ2ð−cN þ 1=2Þ : ð25Þ

As is discussed in detail in Appendix A 2, the above
formula for the Oð1Þ factor [and similarly Eqs. (23) and
(24)] is valid for any low-lying modes with a not so small n
and a more precise expression that holds even for the first
few modes can be found there.
Notice that the mass (and similarly the coupling) split-

ting is clearly≪ 1, as long as cN < 0 andMUV
N ≲MPl, i.e.,

for a (very) wide range of the parameter space. (We would

like to again emphasize here that the above estimate for the
Majorana mass splitting holds both for cN> and < − 1=2.)
It should be clear from Eq. (21) and Eq. (22) that
the contribution from the mass splitting to the SM neutrino
mass is similar in size to that due to the coupling
splitting.
Plugging Eqs. (21), (22), (24) and (23) into the general

formula in Eq. (17) and summing over such modes, we find
that the SM neutrino mass formula becomes

mν ≈ h>−1=2ð2cN þ 1Þ
X
n

TeV
MUV

N =MPl

ðynvÞ2
m2

n

�
mn

MPl

�
−2 cN

:

ð26Þ

Approximating mn by ∼nTeV, we can see that this sum
goes as ∼ðn−2cN−1max − 1Þ, where nmax (≫1) denotes a naive
cutoff on the sum approaching from n ¼ 1. Thus this sum is
convergent for cN > −1=2, which implies that it is domi-
nated by the lightest, i.e., ∼TeV mass modes (this argument
is valid only for cN > −1=2). This is one of our main
results. As far as the quantitative aspect is concerned, as
indicated earlier, the expressions for masses and couplings
given above are a very good approximation for low-lying
modes with not so small n. However, since, as we just
learned, the contribution from the first few modes is
significant, a more careful treatment is needed to get a
more reliable final result. We do this in the Appendix, and,
as can be seen in Appendix A 4, the final answer for the SM
neutrino mass by performing a numerical sum with an
improved Oð1Þ factor shows excellent agreement with the
result obtained in the KK basis.
Having established the above quantitative result, we now

turn our attention to its qualitative features. For this
purpose, it is clear that we can simply focus on the
contribution from the lightest TeV mode. By setting
mn ∼ TeV in Eq. (26) and noticing that the Dirac mass

ynv is approximately mð0;0Þ
D [compare Eq. (24) with

Eq. (9)], we get for cN > −1=2

mν ∼
1

MUV
N =MPl

½mð0;0Þ
D �2
TeV

ðTeV=MPlÞ−2 cN : ð27Þ

Clearly it has the same form as Eq. (8), where the
“effective” Majorana mass in this case can be defined by

Meff
N ∼MUV

N ðTeV=MPlÞ1þ2 cN ð28Þ

which is identical to the would-be zero-mode mass in the
KK basis [see first line of Eq. (12)]. Thus, it is easy to see
that we reproduce the KK basis result already at this level of
estimation. However, it is important to realize that there is
no “special” physics at Meff

N in the mass basis; this scale is
just an “illusion.”
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Modes near the special mode
Based on the fact that sum over low-lying modes is

convergent, combined with the special mode (by itself, i.e.,
unpaired) giving too small an effect, we can anticipate that
the modes near the special mode will have a very small
contribution to the SM neutrino mass. Indeed a dedicated
analysis of the mass and coupling splittings of these modes
confirms this expectation. Similarly, we can estimate that
the modes much above the special one also contribute
negligibly.
(ii) cN < −1=2
Finally, for the sake of completeness we also briefly

comment on the case cN < −1=2, even though it does not
give the observed size of neutrino masses for natural values
of the bulk parameters.
Special mode
Here, a similar analysis (for a derivation, see

Appendix A 2) shows that the special mode (in the mass
basis) is indeed at the mass of the would-be zero mode:

Mspecial
N ≈ f<−1=2 MUV

N for cN < −
1

2
ð29Þ

with the Oð1Þ factor given by

f<−1=2 ≈ −ð2cN þ 1Þ ð30Þ

but there is more to it than meets the eye! Namely, not just
the mass, but also the coupling to the Higgs is a player in
this game of the generation of SM neutrino mass. It turns
out that the “analogy” between the special mode of the
mass basis and the would-be zero mode of the KK basis,
based on the similarity of their masses, does not extend to
their coupling to the Higgs: from the detailed 5D
calculation (see Appendix A 3), we find that the coupling
of the special mode to the Higgs is not suppressed by the
factor of the would-be zero mode profile at the TeV brane
simply because the special mode is peaked near the TeV
brane (instead of near the Planck brane for the would-be
zero mode). So, this is a rather unexpected result: see
Sec. V for some “understanding” of it in the CFT basis.
Thus, we have

mspecial;single
D ∼ v

�
TeV
MPl

�
cL−1

2

∼
�
MPl

TeV

�
−cN−1

2

mð0;0Þ
D

× ½second factor in second line of Eq: ð9Þ�
≫ mð0;0Þ

D ð31Þ

(where we have labeled it “single”—in addition to
special—since it is after all an unpaired mode: further
reasons will be made clear later). In other words, it is
actually similar to the Dirac mass term (with the SM

doublet neutrino) of the would-be zero mode in the KK
basis for the other value of cNð> − 1=2Þ [see first line of
Eq. (9), even though we have cN < −1=2 in this case].
Equivalently, it is (roughly) the same as the coupling of the
nonspecial or KK modes, irrespective of cN : again, the
point is that all these modes are peaked near the TeV brane.
Substituting Eqs. (29) and (31) as the effective masses into
Eq. (8), we see that

mspecial;single
ν ∼

v2

MUV
N

�
TeV
MPl

�
2ðcL−1

2
Þ

∼mν ½of Eq: ð15Þ� ×
�
MPl

TeV

�
−2 cN−1 ð32Þ

i.e., the contribution of the special mode by itself is too
large compared to the KK basis result of Eq. (15).
Nonetheless, there is no reason to “worry” here, since

only after summing all mass eigenstates would the result
for the SM neutrino mass agree with that obtained using the
KK basis. So, we now proceed to considering the con-
tribution of the other modes carefully.
Low-lying modes
Let us start with the low-lying modes, i.e., much below

the special (single) one. We can show that the Majorana
mass (and similarly coupling) splitting for these nonspecial
modes—for the case cN < −1=2 being considered here—is
also given by Eq. (21) that we used for cN > −1=2 earlier
(see Appendices A 2 and A 3). Also, the Dirac mass with
the SM doublet neutrino for these modes is similar to that of
the special mode in Eq. (31), or equivalently, to that for the
low-lying modes for the case cN > −1=2 (again, this is
expected based on all these profiles being peaked near the
TeV brane). Thus, we see that the lowest TeV-scale modes
(no sum yet!) give a contribution to the SM neutrino mass
that is similar in form to that discussed above for
cN > −1=2. In other words, it is clear that, even for
cN < −1=2, the first few mass eigenstates (by themselves)
contribute to the SM neutrino mass at order unity.
However, unlike for cN > −1=2 that we studied earlier,

for the case of cN < −1=2, as we include more and more
low-lying modes, the sum seems to actually “diverge” from
this bottom-up viewpoint: this is easy to see from the
second line of Eq. (26), where the sum is ∼ðn−2 cN−1max − 1Þ ∼
n−2 cN−1max for the case of cN < −1=2. Obviously, these modes
then also give too large a contribution to the SM neutrino
mass:

mnonspecial
ν ∼ n−2 cN−1max ×mν ½of Eq:ð15Þ�: ð33Þ

We can thus naturally hope that the above sum might (up
to the contribution of the lightest modes) cancel the special
(single) mode contribution [Eq. (32)]—both being overly
large. In order to check this possibility, let us estimate the
above sum ofmodes by cutting it off at (roughly) themass of
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the special mode itself, i.e., we set nmax ∼MUV
N =TeV: this

might be a reasonable way to proceed, since we do expect
properties of modes to change as we make the transition
across the special mode mass. This assumption gives

mnonspecial
ν ∼

�
MUV

N

TeV

�−2 cN−1
×mν ½of Eq:ð15Þ�

∼mspecial;single
ν ×

�
MUV

N

MPl

�−2 cN−1 ð34Þ

where in the second line above, we have used Eq. (32).
So, even though the collective effect of the light modes is
much larger than the “right” answer, mν, it is still para-
metrically much smaller than the special (single) mode
contribution.23 Another crucial contribution must come
from somewhere else.
Modes near the special mode
What remains to be considered for the resolution of the

above “discrepancy” is to take into account a “threshold”
effect at the scale of the special mode, i.e., include the
contribution to the SM neutrino mass from the pairedmodes
near the special one. Indeed, we find that the modes just
above and below the special mode are also “special” (even if
paired) in the sense that the naive extrapolation for their
properties from the formulas for low-lying modes is simply
invalid. For example, the first line of Eq. (21) would give a
mass splitting ∼ðMUV

N =MPlÞ−2cN−1 × TeV, i.e., ≪TeV, by
setting mn ∼MUV

N , but actually we find that it is ∼TeV (see
Appendices A 2 and A 3). And, the Dirac mass with the SM
doublet neutrino for these modes (at the leading order) is
similar to that of the special, single mode, i.e., Eq. (31)
(again, as dictated by all these profiles being peaked near
the TeV brane). Thus, for each such pair, the contribution to
the SM neutrino mass from the mass splitting by itself (i.e.,
setting couplings to be exactly degenerate: we will return to
the splitting in couplings momentarily!) is

mspecial;one-pair
ν ðmass splitting onlyÞ

∼ v2
�
TeV
MPl

�
2ðcL−1

2
ÞΔMspecial

M2
special

∼ v2
�
TeV
MPl

�
2ðcL−1

2
Þ TeV
MUV

N
2
: ð35Þ

Now, the number of such special, paired modes is approx-
imately given by (see Appendix A 2)

ηspecial;paired ∼
�
MPl

TeV

��
MUV

N

MPl

�−2 cN
: ð36Þ

Upon summing Eq. (35) over these special modes, we then
get

mspecial;all-pairs
ν ðmass splitting onlyÞ

∼
v2

MUV
N

�
TeV
MPl

�
2ðcL−1

2
Þ�MUV

N

MPl

�−2 cN−1 ð37Þ

i.e., the same size as the sum over nonspecial modes (cut off
as above) [see Eqs. (34) and (32)], so that this is still not
enough to cancel the excessive contribution of the special,
single mode.
However, what “saves the day” is that the effect of the

coupling splitting for these paired special modes is actually
larger, i.e., dominates over the mass splitting. In detail, the
relative splitting in the coupling (and hence in the Dirac
mass term with the SM doublet neutrino) is given by (see
Appendix A 3)

δspecialcoupling ∼
�
TeV
MPl

��
MUV

N

MPl

�
2 cN ð38Þ

so that the contribution to the SM neutrino mass from this
effect for each pair is

mspecial;one-pair
ν ðcoupling splittingÞ

∼ v2
�
TeV
MPl

�
2ðcL−1

2
Þ δspecialcoupling

MUV
N

∼ v2
�
TeV
MPl

�
2ðcL−1

2
Þ TeV
M2

Pl

�
MUV

N

MPl

�
2 cN−1 ð39Þ

clearly larger than the mass splitting effect of Eq. (35). And,
summing over special mode pairs, gives (we multiply the
previous result by ηspecial;paired)

mspecial;all-pairs
ν ðcoupling splittingÞ

∼
v2

MUV
N

�
TeV
MPl

�
2ðcL−1

2
Þ

ð40Þ

which is indeed larger than the sum of nonspecial modes
(cut off at the special mode mass) in Eq. (34). Importantly,
the above collective effect is parametrically comparable to
that of the special mode by itself in Eq. (32). So the two
“special” contributions—single and paired (again, with
mass ∼MUV

N )—can cancel each other to a large extent!
We thus conjecture that this is precisely what happens: it

is the sum over all modes—special (paired and single) and
the ordinary mode below it—which can reproduce the KK
basis result for cN < −1=2.
Modes (much) above the special mode
For the sake of completeness, especially given the

“divergence” in the bottom-up approach,we should carefully
estimate the effect from modes (much) above the special

23Note that we are assuming MUV
N ≪ MPl here, although the

hierarchy here need only be an order of magnitude or so for the
5D mass basis results (for the special mode) to be valid.
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one: we indeed find this to be convergent and negligible. In
more detail, an analysis similar to that performed for modes
below the special one shows that the mass splitting in each
pair for MPl ≫ mn ≫ MUV

N is given by

Δm formn ≫ MUV
N ∼ TeV

�
MUV

N

MPl

��
mn

MPl

�
−2 cN−2 ð41Þ

whereas the Dirac mass term with the SM doublet neutrino
is similar to the other mass eigenstates, i.e., Eq. (31). So, the
contribution of each such a pair to the SM neutrino mass is
given by (the coupling splitting contributes similarly)

mpair
ν ∼ ðmspecial;single

D Þ2
�
TeV
m2

n

��
MUV

N

MPl

��
mn

MPl

�
−2 cN−2

:

ð42Þ

Thus, we see that the sum over these modes (setting mn ∼
n × TeV as usual) is convergent (as long as cN > −3=2).
Their total contribution is much smaller than the (summed)
contribution of the low-lying modes [see Eq. (34)] by
∼TeV=MUV

N .

V. CFT INTERPRETATION

Let us start by recalling the CFT interpretation of bulk
charged SM fermions. In this case a massless chiral external
fermion (often called “elementary”) is coupled (at the UV
cutoff) to a CFT fermionic operator: the scaling dimension
of this operator (and hence the size of this coupling in the
IR, upon RGE from the UV cutoff) is related to the 5Dmass
parameter. The mass eigenstates, which correspond to the
zero and KK modes of the 5D model, are actually
admixtures of the external fermion and composite fermions
interpolated by the CFT operator.
For the case of the singlet neutrino at hand, there is an

additional feature: the external fermion (denoted by NR)
has a Majorana mass term whose size can be close to the
UV cutoff. Denoting by ON the CFT operator to which NR
couples, the UV Lagrangian contains

L ¼ LCFT þ λNRON þ 1

2
Mbare

N N2
R ð43Þ

where we are using the convention that the engineering
dimension ofON is 5=2 so that the coupling λ is dimension-
less. We take the natural size of the bare Majorana mass
Mbare

N ≲MPl. The composite operator ON actually interpo-
lates left-handed composite fermionic states. These compo-
sites formDirac states, with masses being quantized in units
of ∼TeV and with their RH partners originating from a
different operator (which will not concern us here). Due to
the above coupling, there is mixing between NR and CFT
composites so that the basis defined by the external NR and
the CFT composites is not quite the mass basis of the 5D
model that we discussed above, nor is it the KK basis of the

5D model. We dub it the “CFT” basis. This provides yet
another angle on the seesaw mechanism, allowing us to
obtain quick estimates as we discuss below.
(i) ½ON � < 5=2 or cN > −1=2
The coupling NRON is relevant when the scaling

dimension of the operator, denoted by [ON], is less than
5=2. In this scenario, the (CFTþ NR) theory flows to a new
fixed point and we assume it is reached rather rapidly, just
below the UV cutoff ∼MPl. At the fixed point, NR
effectively has a scaling dimension of (4 − ½ON �) so that
the net coupling NRON has a scaling dimension of four, as
is appropriate for a fixed-point behavior [8].
Mass of NR
The mass term for NR can be significantly renormalized

(actually reduced) compared to its bare value. The RG
running is dominantly dictated by the anomalous dimen-
sion of the operator N2

R and we find

MNðμÞ ∼Mbare
N

�
μ

MPl

�
5−2½ON �

; for ½ON � < 5=2 ð44Þ

where we assumed the large-N limit24 in taking the scaling
dimension of N2

R field to be twice that of NR (and we have
set the engineering dimension of NR to be 3=2).
It is natural to assume that the “physical mass” for NR

(denoted by Mphy
N ) is given by the value of μ where the

renormalized mass term becomes comparable to μ itself,

Mphy
N ∼Mbare

N

�
Mphy

N

MPl

�5−2½ON �
: ð45Þ

Solving for Mphy
N gives

Mphy
N ∼Mbare

N

�
Mbare

N

MPl

� 1
2½ON �−4−1

: ð46Þ

Note that the exponent on the rhs of the above equation is
indeed > 0 for ½ON � < 5=2 so that Mphy

N < Mbare
N . Of

course, NR mixes with CFT states (that is why we used
quotes when calling Mphy

N a mass), but it is clear that there
will be a resultant mass eigenstate with a significant
admixture of NR, which thus has a mass roughly given
by the renormalized NR mass term.
When matching to the 5D results, we use the standard

AdS/CFT “dictionary”: first, we can relate [ON] to the 5D
mass of N, namely, ½ON � ¼ 2 − cN . Thus, it is cN > −1=2
which corresponds to the relevantNRON coupling assumed
above. And, Mbare

N in the CFT picture is dual to the
Majorana mass term on the UV brane, MUV

N . Plugging

24Here, “N” denotes (roughly) the number of fundamental
degrees of freedom in the CFT, which is not to be confused with
the singlet fermion field N!
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the parameters into Eq. (46), we recover the mass of the
special mode in Eq. (18).
Low-lying modes
Effectively integrating outNR at the scaleMphy

N gives rise
to the composite operator O2

N, thus feeding lepton-number
violation into the CFT sector:

ΔLCFT ∼ λNRON þ 1

2
Mphy

N N2
R

→
λ2

Mphy
N

O2
N; renormalized atMphy

N ð47Þ

where ΔLCFT denotes a perturbation to the CFT
Lagrangian. RG evolving this to the ∼TeV scale (as before,
we use ½O2

N � ¼ 2 × ½ON �, similarly for the engineering
dimensions), where the composite Higgs is interpolated
by the product of ON and OL (the latter being the doublet
operator),25 we get

ΔLCFT ∼
λ2

Mphy
N

�
TeV

Mphy
N

�
2½ON �−5

O2
N; renormalized at TeV

∼
λ2

Mbare
N

�
TeV
MPl

�
2½ON �−5

O2
N

∼
λ2

TeV

�
TeV

Mphy
N

�
2ð½ON �−2Þ

O2
N ð48Þ

using Eq. (46) in the second line above.
Based on the above RG scaling and the requirement of

stability of the system, we find that there is a lower limit on
½ON � as follows. Suppose the dimensionless coefficient (λ)
appearing in the Lagrangian term of the second line of
Eq. (47) is ∼Oð1Þ, i.e., it starts to be a “borderline”
perturbation to the CFT. However, even with this
assumption about the initial condition, as can be seen
from the last line of Eq. (48), in the IR,26 it will always be a
genuine perturbation, i.e., the coefficient (in units of the
corresponding RGE scale)≪ 1, as long as ½ON � > 2 so that
O2

N is an irrelevant operator. In 5D we thus require cN < 0,
which is what we assumed in our calculations.27

SM neutrino mass
Interpreting Eq. (48) as the main source of lepton-

number violation, and introducing a factor of
∼ðTeV=MPlÞ2½OL�−5 for the (square of) the coupling of
the doublet lepton neutrino to the CFT in the IR [8]28 and
the Higgs VEV for EWSB, we estimate the SM neutrino
mass:

mν ∼
v2

Mbare
N

�
TeV
MPl

�
2ð½ON �þ½OL�−5Þ

: ð49Þ

Upon translating to the 5D parameters, we again get
agreement for another physical observable, namely, the
SM neutrino mass in Eq. (49) is similar to the result
obtained using the 5D calculation in Eq. (15).
In the CFT picture, we can also think in terms of

the SM neutrino mass actually arising from the exchange
of heavy SM singlet particles. The point is that the
above lepton-number-violating perturbation O2

N to the
CFT will induce small Majorana mass terms and lepton-
number-violating couplings to the Higgs for the entire
tower of CFT composites, which of course are SM singlets
and Dirac. In more detail, using Eq. (48), it is rather
straightforward to estimate this effect for the lightest TeV-
scale composites. For example, the mass splitting is of
order

ΔM fromO2
N ∼

TeV2

Mbare
N

�
TeV
MPl

�
2½ON �−5

: ð50Þ

After diagonalizing these mass terms it is clear that
we will obtain pairs of (almost) degenerate Majorana
modes with mass splitting as in Eq. (50), and this is what
we found in the 5D mass basis calculation. Speaking more
quantitatively, relating the scaling dimension of ON to cN
and identifying Mbare

N with MUV
N , we see that this Majorana

mass term has the same size as in Eq. (21) of the 5D
calculation.
Armed with these Majorana mass terms for the TeV-scale

composites, it is rather straightforward to show that the
contribution to the SM neutrino mass from the exchange of
the low-lying resonances provides an order-one contribu-
tion to the SM neutrino mass. Interestingly,

(i) the Majorana mass term is for the left-handed
composites (again, interpolated by ON), whereas
coupling to the Higgs is for the R chirality so that we
do not encounter any propagator suppression in the
exchange of TeV-scale composites (as opposed to
the KK basis); see Fig. 3.

25Note that had we taken the Higgs field to also be in the bulk
(but with the profile of its VEV/SM Higgs boson peaked near the
TeV brane), then we would have a single-trace, finite/
low-scaling-dimension CFT operator, OH which can also inter-
polate the composite Higgs. Instead, we assumed here—mostly
for simplicity—that the Higgs is strictly localized on the TeV
brane which implies that there is no such “Higgs” operator at
higher than ∼TeV energies.

26Note that, in general, TeV here should be replaced by
whatever the IR scale is.

27In other words, for the case ½ON � < 2, we see that O2
N is a

relevant operator. The “problem”with this scenario is that, even if
the coefficient in Eq. (47) is smaller than 1, it will become (again,
in appropriate units) larger than ∼Oð1Þ at an RG scale which is
(possibly much) above ∼TeV, i.e., there is a danger that scale
invariance is then broken at that scale.

28Recall that, as discussed in Sec. III, cL ∼ 0.6 reproduces
charged lepton masses and this corresponds to ½OL� > 5=2, i.e.
irrelevant coupling.
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We see from Eq. (50) that ΔM ≪ TeV, as long as
½ON � > 2 (as we assumed above for stability). Also, just to
make this point more explicit, for NRON coupling
being close to marginal (i.e., ½ON � ∼ 5=2),29 we get
ΔM ∼ TeV2=Mbare

N , i.e., the Majorana mass term for
CFT composites is naturally suppressed because it sort
of manifests a “seesaw,” with ∼TeV in the numerator
being (roughly) the Dirac mass term between NR and the
(TeV-scale) CFT composite and Mbare

N being the Majorana
mass for NR which is heavy and integrated out: of course,
the “difference” from the usual seesaw for the SM neutrino
mass is that here the CFT composite also has a Dirac mass
∼TeV (with another composite).
In addition, it is worth mentioning that the Majorana

mass term which is needed for obtaining the SM neutrino
mass [i.e., ∼Oð0.1Þ eV] from the exchange of these
TeV-mass modes is actually ∼keV, i.e., several orders of
magnitude larger than simply ∼TeV2=MPl ∼meV that we
would have gotten for the NR −ON coupling being
marginal (as indicated above) and Mbare

N ∼MPl. Yet, here
we have an interesting option.

(i) ½ON �≲ 5=2, i.e., a slightly relevant coupling of NR
to the CFToperator, naturally gives the requisite size
of the Majorana mass term for TeV-mass Dirac
composites [as seen from Eq. (50)], the crucial point
being that a small deviation from marginality for the
above coupling is “enhanced” by RGE over the large
energy range.

Finally, we have seen that the TeV-scale composites
provide an important contribution to the SM neutrino mass.
On the other hand, while NR is crucial in introducing the
seed of lepton-number violation in the CFT via O2

N , NR
itself does not directly couple to the Higgs. So, we learn
that

(i) there is no additional contribution to the SM
neutrino mass from NR exchange per se, even
though NR has a Majorana mass: what is missing
is the coupling to the Higgs.

(ii) ½ON � > 5=2 or cN < −1=2

The CFT picture for cN < −1=2 should then be easy to
go through; to begin with, the usual translation dictionary
implies ½ON � > 5=2 so that the coupling NRON is now
irrelevant. Thus, it is clear that the mass term for NR is
roughly the size of the Majorana mass term at the UV cutoff
itself, i.e., there is negligible renormalization for it.
Moreover, as before, we can argue that in spite of the
mixing of NR with CFT composites there will be an “NR
state” whose physical mass is not significantly modified
relative to the NR mass term above, i.e.,

Mphy
N ∼Mbare

N ; for ½ON � > 5=2 ð51Þ

which is of course in agreement with the 5D single-special
mode mass [see Eq. (29)] for this case.
We can integrate outNR as before, except that this is now

done atMbare
N . Then, RG flowing from this scale to ∼TeV, it

is easy to see that the cN < −1=2 (or ½ON � > 5=2) case
actually gives a similar form for the coefficient of the O2

N
operator as cN > −1=2 (or ½ON < 5=2�) that we discussed
earlier; this happens mainly because the only assumption
we made earlier for this purpose about ½ON � was that it is
larger than 2, which is certainly the case for cN < −1=2.
Hence, the SM neutrino mass for cN < −1=2 in the CFT
picture is also given by Eq. (49) and, in turn, agrees with the
5D result in Eq. (15). Again, the SM neutrino mass
originates only from CFT composite exchange [with
Majorana mass terms for ∼TeV-scale composites given
as before; see Eq. (50)], since the external NR does not
couple to the Higgs in this basis.
The above CFT picture discussion is summarized in the

right column of Table I.
Contribution to the SM neutrino mass from special

modes for cN < −1=2
Using the CFT picture, can we understand the unexpect-

edly large contribution to the SM neutrino mass of the
special mode in the mass basis found in the 5D calculation
for cN < −1=2? Note that this CFT basis is not exactly
the mass basis. Thus, first of all, there is no obvious
“contradiction” between NR exchange in the CFT picture
not (directly) contributing to the SM neutrino mass and the
fact that, in the mass basis, the special mode gives a large
contribution to the SM neutrino mass, in turn, from its
unsuppressed30 coupling to the Higgs. The point is that

(i) the special mode of the 5D model would in the CFT
picture correspond to an admixture of NR and CFT
composites and the latter component of it does
couple to another composite, i.e., the Higgs: first
of all, this implies that the special mode will couple
to the Higgs (as we found in the 5D calculation).
Note that this point applies to both the choices of
[OL] (equivalently cN).

FIG. 3. The SM neutrino mass generated by the exchange of
one composite state in the CFT basis, labeled ψcomp with the
Dirac mass Mcomp and Majorana mass term ΔMMaj

comp. The
chirality structure is to be contrasted to that in Fig. 1 for the
KK basis.

29Deviating from marginality does not really (at least quali-
tatively) change the point which follows.

30As usual, apart from being possibly small due to the choice
of cL or [OL].
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Thus, the “origin” of the special mode and how it
contributes to the SM neutrino mass is clear from the
CFT perspective.
But, the main question still remains, namely, why is the

special mode’s coupling to the Higgs so large, given that
the coupling between NR and the CFT is small for the case
½ON � > 5=2? The answer to this puzzle is the following.
There is a whole tower of CFT composites (from ∼TeV to
MPl) with which NR mixes. In particular there are many
composites which have mass ∼Mphy

N , with the spacing
between successive modes being ∼TeV. Therefore, even
the small off-diagonal mass terms between NR and these
CFT composite states (denoted by δmNR−CFT) can result in
large mixing angles.31 This mixing—even if it is close to
maximal—does not really change the physical mass of NR
from the mass term for NR. Conversely, the coupling can be
modified significantly. In particular, we see that the special
mode can acquire a large coupling to the Higgs by
“piggybacking” on the coupling of its sizable admixture
of (almost) degenerate CFT composites. Schematically, we
have

special mode constitution ∝ NR þ aψnear þ ϵψ far ð52Þ

where ψnear denotes (collectively) the CFT composites with
mass close to Mbare

N (with ψ far denoting the rest of the CFT
tower) and a is the ∼Oð1Þ mixing angle, whereas ϵ ≪ 1.
Thus, in the end, the special mode has a Oð1Þ coupling to
the Higgs.
Note that a similar argument applies to the case

cN > −1=2 or ½ON � < 5=2 studied earlier. However, there
the mixing mass term, i.e., δmNR−CFT, can be sizable to
begin with, given that the coupling between NR and the
CFT operator is relevant. Thus, the closeness in mass of
some CFT composites with NR has less of an additional
impact as compared to the case cN < −1=2 discussed
above, i.e., the issue of “resonant” enhancement of mixing
between NR and CFT composites close to it is not so
relevant here, as far as their contribution to the SM neutrino
mass is concerned. Also, the special mode—being too
heavy compared to the would-be zero mode—does not
contribute significantly to the SM neutrino mass, even if its
coupling to the Higgs is taken to be unsuppressed32 (and
similarly for modes around it). Overall, that is why this
issue of taking into account mixing between NR and CFT
composites is not really significant for cN > −1=2, i.e., we
do not expect to find (and indeed did not in the 5D
calculation) any “surprises” here.

“Universal” dependence on cN of the SM neutrino mass
Moreover, as should already be clear from the separate

discussions for the two cases of cN (or [O]) above, the CFT
picture leads to a simple “understanding” of why the
dependence on cN in the formula for the SM neutrino
mass obtained from the 5D calculation is the same for
cN < −1=2 and cN > −1=2 [see Eq. (15)]; as was dis-
cussed in Sec. III, this looked like somewhat of a
coincidence in the KK basis. Just to summarize, the SM
neutrino mass in the CFT picture is essentially dictated by
the lepton-number-violating effect in the CFT sector, i.e.,
the coefficient of the operator O2

N renormalized at the
∼TeV scale.33 In turn, this is determined by [ON], the
scaling dimension of ON (the scaling dimension of O2

N
being twice the scaling dimension of ON in the large-N
limit). The key observation is that, as long as ½O2

N � > 4 (and
thus ½ON � > 2) the RG flow of the coefficient ofO2

N (down
to the TeV scale) has a similar dependence on [ON]. This
range of [ON] corresponds to cN < 0, whether cN < −1=2
or cN > −1=2. Hence, we do not expect any qualitative
change in the formula for the SM neutrino mass as we cross
the cN ¼ −1=2 “threshold”: again, while this marks the
transition of the couplingNRON from relevant to irrelevant,
it is [O2

N] which matters for the bottom-line SM neutrino
mass and this operator stays irrelevant throughout this
range of cN .

VI. CONCLUSIONS AND OUTLOOK

We studied a simple warped 5D scenario that accom-
modates the SMneutrinomasses. Namely, a SMsinglet field
is added in the bulk and coupled to the Higgs and lepton
doublet fields on the IR brane. Furthermore, a Planck-size
Majorana mass term for the bulk singlet field is turned on
only at the UV brane. This is natural due to an extended bulk
EWgauge symmetry (in turn, invoked in order to satisfy EW
precision test bounds) under which the singlet is charged
and which is broken only on the UV brane.
Such a framework has all the makings of a type I high-

scale seesaw. Indeed the bottom-line formula for the SM
neutrino mass in this model,

mν ∝
v2

MUV
N

; ð53Þ

seems to conform to the above expectation (here, MUV
N is

the Majorana mass term for the singlet on the UV brane).
This result was derived in the earlier literature using the
basis of the “usual” zero and KK modes, in which the
Majorana mass term on the Planck brane is neglected in
the KK decomposition and subsequently taken into account

31Specifically, we can estimate that δmNR−CFT (the mass
mixing term) can be ≫TeV (the mass spacing) so that there
are actually many CFT composites with which NR can mix
significantly.

32Cf. for cN < −1=2, where the (unexpectedly) large coupling
to the Higgs changed the game drastically!

33In the anatomical language, this operator first leads to
Majorana mass terms for the CFT singlet composites, whose
exchange then generates the SM neutrino mass.
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in the form of Majorana mass terms for the zero and KK
modes. In that picture the SM neutrino mass arises entirely
from the exchange of the would-be zero mode, that in
practice has a super-large Majorana mass term of order
MUV

N . The latter is the scale that appears in the denominator
of Eq. (53), whereas the numerator corresponds to the Dirac
mass induced by the Higgs VEV, just like the usual 4D
seesaw. On the other hand, the KK modes contribute
negligibly (even though they also have very large Majorana
mass terms).
In this paper, we focused instead on the mass basis for

the singlet neutrino modes (as might be required for studies
involving on-shell production of the singlet neutrino states)
and analyzed in detail neutrino mass generation via a 5D
calculation. Such a change of basis actually turns out to
lead to a paradigm shift. Our results show that Eq. (53)
should be reinterpreted as

mν ∝
�

v2

TeV

��
TeV
MUV

N

�
: ð54Þ

Namely, it is the exchange of TeV mass singlet modes with
unsuppressed coupling to the Higgs which dominantly
contribute to the SM neutrino mass, as indicated by the first
factor above. The smallness of the SM neutrino mass
follows from these singlet modes being mostly Dirac with a
tiny fraction of their mass being Majorana-natured (which
accounts for the second factor). What is remarkable is
that these highly suppressed Majorana mass terms are
completely natural, being themselves the result of an
incarnation of a type I seesaw mechanism, albeit here it
is for the Majorana mass term for TeV-scale singlet modes
which already have a Dirac mass of a TeV! This picture
realizes a natural version of a scenario dubbed “inverse”
seesaw in the literature. The type I high-scale seesaw was
merely a mirage.
We also presented the first discussion of the CFT

interpretation of this warped seesaw model. The new
ingredient relative to the case of the charged SM fermions
is the Majorana mass for the external singlet field coupled
to the CFT. Taking it into account we confirmed that one
naturally ends up with an inverse seesaw mechanism. The
CFT picture also clarifies the universal dependence on the
5D singlet mass parameter cN in the neutrino mass formula
(15), whose origin was somewhat obscured in the KK basis.
Importantly, our finding leads to a radical shift in the

phenomenology of this scenario. Indeed, we realized that
the physical source of a dominant part of the SM neutrino
mass—which is the TeV-mass singlet states—can poten-
tially be directly probed at colliders. Similarly, leptogenesis
may occur at a temperature of order a TeV from decays
of these singlet modes. The attention is therefore on TeV-
scale physics.34
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APPENDIX A: DETAILS OF THE
5D MASS BASIS CALCULATION

1. The 5D model and KK decomposition

Varying the full action S in Eq. (2) with respect to χ̄ and
ψ we get

− iσ̄μ∂μχ − ∂5ψ̄ þ cN þ 2

z
ψ̄ ¼ 0; ðA1Þ

−iσμ∂μψ̄ þ ∂5χ þ
cN − 2

z
χ þ d

R
z
δðz − RÞψ ¼ 0: ðA2Þ

The boundary conditions in the absence of SUV are chosen
to be Dirichlet for χ (and consequently Neumann for ψ).
The UV-Majorana mass alters the boundary conditions
at z ¼ R.
Following Ref. [19], we slightly displace the

UV-localized mass to z ¼ Rþ ϵ and impose standard
Dirichlet boundary conditions for χ at z ¼ R. The effect
of the localized mass is then encoded in a jump of the field:
χjRþϵ ¼ −dψ jRþϵ. We can now send ϵ → 0. The corre-
sponding jump in ψ may be found by imposing the bulk
equations of motion: ∂5ψ jRþϵ ¼ id∂ψ̄ jRþϵ.
Overall, the boundary conditions turn out to be

χjR0− ¼ 0; χjRþ ¼ −dψ jRþ : ðA3Þ
For the sake of completeness, we also observe that the
remaining two (redundant conditions) are ∂5ψ jR0− ¼ 0,
∂5ψ jRþ ¼ id∂ ψ̄ jRþ .
Next, we perform a Kaluza-Klein reduction. Because the

UV-localized mass breaks the Uð1ÞΨ number, the reduced
4D theory will be a dynamics of Majorana fermions. It is
therefore convenient to decompose χ, ψ in terms of a single
tower of Weyl fermions:

χðx; zÞ ¼
X
n

gnðzÞξnðxÞ;

ψ̄ðx; zÞ ¼
X
n

fnðzÞξ̄nðxÞ; ðA4Þ

where ξn satisfy Majorana equations of motion
−iσ̄μ∂μξn þmnξ̄n ¼ 0. The bulk equations of motion
and the boundary conditions then become34We will detail these ideas in ongoing work [23].
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fn0 þmngn −
cN þ 2

z
fn ¼ 0;

gn0 −m�
nfn þ

cN − 2

z
gn ¼ 0;

gnðR0Þ ¼ 0; gnðRÞ ¼ −df�nðRÞ: ðA5Þ

The Dirac mass parameter cN is real by Hermiticity of the
action. In addition, by making a phase rotation of ψ we can
always eliminate the phase in d. Since ψ is one component
of Ψ, in order to not break 5D Lorentz invariance, we are
actually performing a phase rotation of the 5D fieldΨ itself.
We conventionally take d > 0 from now on. Finally,mn are
real because they are the eigenvalues of the Hermitian
differential operator defined by Eq. (A5) in the metric
determined by the kinetic term. Hermiticity also guarantees
that the Kaluza-Klein expansion (A4) is meaningful.
Consistently, we observe that inserting Eq. (A4) into

Eq. (2) gives

S ¼
Z

d4x
	Z

dz
X
n;m

�
R
z

�
4

ðf�nfm þ g�ngmÞ



×

�
−iξn∂ξ̄m þ 1

2
ðm�

nξnξm þmnξ̄n ξ̄mÞ
�
: ðA6Þ

The normalization is therefore defined by

Z
dz
�
R
z

�
4

ðf�nfm þ g�ngmÞ ¼ δnm: ðA7Þ

For clarity we stress our convention for cN, which we do
by solving the zero-mode equation for the right-handed
fermion gn, i.e. Eq. (A5) with mn ¼ 0. By plugging the
solution into the action, one can easily see that cN ¼ −1=2
(as opposed to 1=2) corresponds to a flat, cN > −1=2 a
IR-localized and cN < −1=2 a UV-localized profile.
We decide to carry out the Kaluza-Klein decomposition

with real eigenfunctions fn, gn (as in Ref. [26]), in which
mn are allowed to acquire any (real) positive or negative
value.35 Before proceeding with the actual calculation of
the spectrum, note that the eigenvalue problem is invariant
under the following spurious symmetry:

ðfn; gn; mn; dÞ → ðfn;−gn;−mn;−dÞ: ðA8Þ

This tells us that for d ¼ 0 the solution consists of
Dirac pairs: there exists an independent solution with
eigenvalue −mn for any eigenfunction with mass mn.

This is no longer true as soon as d ≠ 0, and no exact
pairing is observed.
The coupled system described by the bulk equations of

motion can be decoupled in a straightforward way, yielding
a Bessel equation. The result is given by

gnðzÞ ¼ −
1

Nn

mn

jmnj
z5=2½J−cN−1=2ðjmnjzÞ

þ bnY−cN−1=2ðjmnjzÞ�;

fnðzÞ ¼
1

Nn
z5=2½J−cNþ1=2ðjmnjzÞ þ bnY−cNþ1=2ðjmnjzÞ�:

ðA9Þ

The coefficient bn is constrained by the boundary con-
ditions36

−bn ¼
J−cN−1=2ðjxnjÞ
Y−cN−1=2ðjxnjÞ

¼
J−cN−1=2ðjxnj=ΩÞ−d xn

jxnjJ−cNþ1=2ðjxnj=ΩÞ
Y−cN−1=2ðjxnj=ΩÞ−d xn

jxnjY−cNþ1=2ðjxnj=ΩÞ
; ðA12Þ

where xn ¼ mnR0 and Ω≡ R0=R. This is the equation
constraining the eigenvalues xn. Defining ZνðyÞ≡
JνðyÞ þ bnYνðyÞ, the normalization is determined by

N2
n ¼ R4

Z
R0

R
dz z½Z2

νðjmnjzÞ þ Z2
νþ1ðjmnjzÞ�

¼ R4

2
ðInðR0Þ − InðRÞÞ; ðA13Þ

where ν ¼ −cN − 1=2 and InðzÞ ¼ z2½Z2
νðyÞ−

Zνþ1ðyÞZν−1ðyÞ þ Z2
νþ1ðyÞ − Zνþ2ðyÞZνðyÞ�, y ¼ jmnjz.

2. Masses

We can find approximate analytic solutions for the
modes satisfying jxnj ≪ Ω. Using a small argument
approximation of the Bessel functions for the UV boundary
condition, the spectrum equation (A12) is simplified to

35One may alternatively work with both real and imaginary
components of the wave functions, but with a constraint mn > 0
on the eigenvalues (we believe this is the convention implicitly
adopted in Ref. [18]). We checked that our results do not depend
on which convention is used.

36This is equivalent to the alternative solution

gnðzÞ ¼
mn

jmnj
z5=2½CnJcNþ1=2ðjmnjzÞ −DnJ−cN−1=2ðjmnjzÞ�;

fnðzÞ ¼ z5=2½CnJcN−1=2ðjmnjzÞ þDnJ−cNþ1=2ðjmnjzÞ�: ðA10Þ

Indeed, using YνðxÞ ¼ JνðxÞ cosðνπÞ−J−νðxÞ
sinðνπÞ we get

Cn ¼ −
1

Nn

bn
cosðcNπÞ

; Dn ¼
1

Nn
ð1þ bntanðcNπÞÞ: ðA11Þ

In particular, Dn=Cn ¼ − cosðcNπÞ=bn þ sinðcNπÞ. We inde-
pendently checked all results of the paper using both Eqs. (A10)
and (A9).
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−bn ¼
J−cN−1=2ðjxnjÞ
Y−cN−1=2ðjxnjÞ

≈
1

Γ2ð−cNþ1=2Þ
π

�
jxnj
2Ω

�
2cN

h
d xn

jxnj þ 1
ðcNþ1=2Þ

�
jxnj
2Ω

�i
þ tanðcNπÞ

: ðA14Þ

To derive this expression we assumed cN ≠ −1=2. From
now on wewill consider cN < 0. Wewill also assume that d
is smaller than one, but much larger than the TeV-Planck
hierarchy.
The ratio bn can also be approximated for large argu-

ments jxnj ≫ 1 by bn ≈ 1
tan ðjxnjþcN

2
πÞ. However, this approxi-

mation will break down for the first few KK modes.
Because, as we will show below, these give the most
important contribution to the SM neutrino mass, we keep
the general expression (A14) for now.
For cN < 0 and jxnj=Ω ≪ d (and far from the special

points discussed below), tanðcNπÞ can be neglected from
the right-hand side of Eq. (A14) and

−bn ¼
J−cN−1=2ðjxnjÞ
Y−cN−1=2ðjxnjÞ

≈
xn
jxnj

π

dΓ2ð−cN þ 1=2Þ
�jxnj
2Ω

�
−2cN

: ðA15Þ

As can be seen from jbnj ∝ ðjxnj=ΩÞ−2cN ≪ 1, the spec-
trum of light modes is approximately determined by
xn ¼ �x0n, where x0n are the zeros of J−cN−1=2. For n not
too small, using the large argument expansion, these are
approximately given by x0n ≈ ðnþ 1

2
ð1 − cNÞÞπ with

n ¼ 0; 1;…. Including the leading correction we get

xn ¼ �x0n þ δn;

δn ¼
Y−cN−1=2ðjx0njÞ
J0−cN−1=2ðjx0njÞ

π

dΓ2ð−cN þ 1=2Þ
�jx0nj
2Ω

�−2cN
: ðA16Þ

This result shows that the light modes are approximately
Dirac pairs37 up to a split δn, induced when the UV-
localized Majorana mass is turned on. In other words, there
are two towers of Weyl spinors, one with positive masses
(“positive tower”) and the other with negative masses
(“negative tower”); the modes with jxnj=Ω ≪ d
(“low-lying modes”) form pseudo-Dirac pairs.
In the vicinity of the zeros of the denominator of the

right-hand side of Eq. (A14), the function bn is no longer
much smaller than one and we need a separate analysis. In
this regime the mass eigenstates are identified by the fact
that the denominator of the right-hand side of Eq. (A14) is
much smaller than one (or very close to zero):

d
π
Γ2ð−cN þ 1=2Þ

�jxspecialn j
2Ω

�2cN

×

"
xspecialn

jxspecialn j þ
1

dðcN þ 1=2Þ
�jxspecialn j

2Ω

�#

þ tanðcNπÞ ≈ 0: ðA17Þ

As we will see shortly, the mode xspecialn that satisfies
Eq. (A17) is special in the sense that there is no analog
solution of mass ∼ − xspecialn , that is, it is unpaired (and so
pure Majorana), unlike the usual cases where there are two
modes in each TeV bin, making up a (pseudo) Dirac pair.
For this reason, we will call such a mode a “single-special”
mode. Later, we will introduce “paired-special” modes,
which, as the name indicates, consist of a pair of two Weyl
fermions of mass close to the single-special and a mass
splitting of order a TeV.
Now, let us discuss in detail when Eq. (A17) can be

satisfied. Consider first −1=2 < cN < 0, for which
tanðcNπÞ < 0. If jxspecialn j≳ dΩ the second term in the
squared parentheses dominates over the first term. In this
case since 2cN þ 1 > 0, ðjxnj=ΩÞ2cNþ1 ≪ 1 for ∀jxnj ≪ Ω
and yet, for a generic value of cN ∈ ð−1=2; 0Þ,
tanðcNπÞ ∼Oð1Þ. That is, for a generic value of cN
Eq. (A17) cannot be satisfied by modes below Ω. On
the other hand, when jxspecialn j ≪ dΩ the first term in the
squared parentheses dominates. Because tanðcNπÞ < 0, the
cancellation can occur only when the first term is positive,
i.e. the solution exists only for xspecialn > 0. The solution is
given by

xspecialn

2Ω
≈
�

−π tanðcNπÞ
dΓð−cN þ1=2Þ2

� 1
2cN ; −

1

2
<cN < 0: ðA18Þ

We stress again that xspecialn ≪ dΩ and, as anticipated, there
is no analog behavior at xn < 0. This is how we see that the
“single-special” mode is unpaired.
For cN ≲ −1=2, the second term of Eq. (A17) is negative

and tanðcNπÞ > 0. Again, when jxspecialn j ≳ dΩ the second
term in the squared parentheses dominates. However, as in
the previous case, no solution is found when dΩ≲
jxspecialn j < Ω for a generic choice of cN < −1=2.
Similarly, for jxspecialn j ≪ dΩ the first term dominates and

one would seem to find jxnj ∼Ωd−
1

2cN ; however, this value
is now much larger than d, and is therefore inconsistent
with the original hypothesis jxspecialn j ≪ dΩ. A solution is
only possible when the terms inside the squared37A Dirac fermion consists of two Weyl fermions of mass �m.
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parentheses approximately cancel each other. This is
possible only when xn > 0 and thus the mass of the special
mode is in the positive tower (i.e. xn > 0) and parametri-
cally close to the UV-localized Majorana mass:

xspecialn

2Ω
∼ −ðcN þ 1=2Þd; cN < −

1

2
: ðA19Þ

Again, there is no partner at −xspecialn .
In summary, with our convention d > 0 the single-

special mode is located in the positive tower for both
cN > or < −1=2 albeit with a parametrically different mass
for the single-special mode. No special behavior [i.e. no
singularity on the right-hand side of Eq. (A14)] is present in
the negative tower.
We conclude this section with a few more comments on

the spectrum. We start with −1=2 < cN < 0. In this case,
since jxspecialj ≪ dΩ, the analysis leading to Eq. (A16)
allows us to conclude that all states with mass jxnj ≪
jxspecialj are pseudo-Dirac with mass splitting of order δn.
The denominator of Eq. (A14) gets smaller as we approach
the special mode in the positive tower, whereas bn remains
very small for xn ∼ −jxspecialj. This suffices to argue that the
mass splitting for states close to the special mode is
generically of order a TeV (δn ∼ 1). These pseudo-Dirac
fermions have mass splittings (of order a TeV) much
smaller than their mass ∼jxspecialj but much larger than
that of low-lying modes. We call them “paired-special”
modes.
The states heavier than the special mode are again

pseudo-Dirac, with a mass splitting controlled by
jbnj ≪ 1 between xspecialn ≪ jxnj ≪ dΩ.
When cN < −1=2 the states with jxnj ≪ dΩ are pseudo-

Dirac with mass splitting δn. However, since xspecialn ∼ dΩ
our equation (A16) breaks down before we reach the
special mode; to precisely estimate the mass splitting for
jxspecialj≲ dΩ one may perform a completely analogous
analysis without dropping tanðcNπÞ. We do not quote the
result for brevity. The modes at xspecialn ∼ dΩ have bn ¼
Oð1Þ and typically a Majorana splitting of order a TeV,
which is the maximal value set by the IR brane. As above,
for jxnj≳ dΩ the states are pseudo-Dirac.
As we will discuss below, in order to make sense of the

SM neutrino mass calculation in the case of cN < −1=2 it is
useful to know the number of the paired-special modes. We
can address this question by determining the width of the
special point (A19), i.e. what condition on η ¼ xn − xspecialn

follows requiring the right-hand side of Eq. (A17) is
allowed to be of order unity [or more precisely, of
OðtanðcNπÞÞ]. This gives

η≲ tanðcNπÞ
2πð−1=2 − cNÞ1−2cN
Γ2ð−cN þ 1=2Þ Ωd−2cN : ðA20Þ

With realistic numbers (say, cN ¼ −0.7, d ¼ 10−3,
Ω ∼ 1015), one finds η ≫ 1 (5 × 108).

3. Couplings

We are interested in the couplings of ξn to the zero mode
LðxÞ of ΨL, which we identify with the Standard Model
lepton doublet:

ΨL → Ψð0Þ
L ðzÞL;

Ψð0Þ
L ¼ 1ffiffiffiffi

R
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cL − 1

1 − Ω1−2cL

r �
z
R

�
2−cL

; ðA21Þ

where ML ¼ cL=R is the 5D mass of ΨL. Introducing the
canonically normalized 4D field H ¼ R0=RH, Eq. (5)
becomes

δS ¼ −
Z

d4x ynHLξ̄n; ðA22Þ

where

yn ¼ Ω−3λ5Ψ
ð0Þ
L ðR0ÞfnðR0Þ: ðA23Þ

The wave function Ψð0Þ
L ðR0Þ can be read from above

equation. The profile of the singlet can be written as
fnðR0Þ ¼ R05=2Zνþ1ðjmnjR0Þ=Nn, where Zν ¼ Jν þ bnYν

with ν ¼ −cN − 1=2. We will now carefully determine
fnðR0Þ for the low-lying (pseudo-Dirac) modes
jxnj ≪ xspecialn . The coupling for modes around xspecialn will
be analyzed subsequently.
The normalization (A13) receives a contribution

from z ¼ R0 and one from z ¼ R. To analyze the former
we observe that the boundary condition for gnðzÞ in
the IR implies ZνðjmnjR0Þ ¼ 0 [see Eq. (A5)]. Then,
from the definition (A13), and using the identity
Zνþ1ðjxnjÞþZν−1ðjxnjÞ ¼ 2ν

jxnjZνðjxnjÞ ¼ 0, we get InðR0Þ ¼
R02½−Zνþ1Zν−1 þ Z2

νþ1�ðjxnjÞ ¼ 2R02Z2
νþ1ðjxnjÞ.

In the UV the boundary condition reads Zνðjxnj=ΩÞ ¼
dðxn=jxnjÞZνþ1ðjxnj=ΩÞ. We are interested in InðRÞ, the
UV contribution to the normalization Nn. For jxnj ≪
jxspecialn j we can use the small argument approximation of
the Bessel functions. At leading order, when cN ≠ −1=2
(and cN < 1=2), the relevant expressions are

Zνðjxnj=ΩÞ ∼
�jxnj
2Ω

�
ν 1

Γðνþ 1Þ ½1þOðδ; jxnj=ΩÞ�;

Zν−1ðjxnj=ΩÞ ∼
�jxnj
2Ω

�
ν−1 1

ΓðνÞ ½1þOðδ; ðjxnj=ΩÞ3Þ�;

Zνþ2ðjxnj=ΩÞ ∼ −bn
�
2Ω
jxnj

�
νþ2 Γðνþ 2Þ

π
½1þOðjxnj=ΩÞ3�:

ðA24Þ
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In order to understand whether the subleadingOðδ; jxnj=ΩÞ
terms must be kept in our analysis we have to compare the
leading-order estimate of InðRÞ with InðR0Þ ∼ R02=jxnj.
The leading contributions of Z2

ν and Z2
νþ1 to InðRÞ are

suppressed by jxnj=Ω compared to the other two and
can be neglected. The dominant terms give InðRÞ∼
R2ðjxnj=ΩÞ2ν−1 ∼ R2δnðjxnj=ΩÞ−2 ∼ R02δn=jxnj2, which is
itself a correction of order δn=jxnj of Nn. Being interested
in corrections at most of order δ in the normalization Nn,
we can safely neglect OðδÞ terms in Eq. (A24), since they
lead to Oðδ2nÞ corrections in Nn. A more accurate calcu-
lation gives

InðRÞR−2¼
�
−

xn
jxnj

1

d
ZνZν−1−ZνZνþ2

�
½1þOðjxnj=ΩÞ�

¼−
xn
jxnj

�jxnj
2Ω

�
2ν−1 2νþ1

dΓ2ðνþ1Þ½1þOðδ; jxnj=ΩÞ�

¼−
x0n
jx0nj

δn
J0νðjx0njÞ
Yνðjx0njÞ

�jx0nj
2Ω

�−2 2νþ1

π
½1þOðδÞ�:

ðA25Þ

In the second step we replaced Eq. (A24) and used the
definition of bn given in Eq. (A14). In the third step we
neglected the correction arising from the replacement
xn → x0n, since in our final estimate of Nn it would appear
as a Oðδ2Þ effect, which we drop.
Summing the UV and IR contributions we find

N2
n ¼ R4R02Z2

νþ1ðjxnjÞ

×

	
1 − 2

x0n
jx0nj

cN
δn
jx0nj

�
2

πjx0nj
J0νðjx0njÞ=Yνðjx0njÞ

Z2
νþ1ðjx0njÞ

�

:

ðA26Þ

For later convenience we factored out Z2
νþ1ðjxnjÞ because it

automatically cancels out in the expression fn=Nn entering
yn. This results in a 1=Z2

νþ1ðjxnjÞ factor in the δn correction.
Despite the fact that jxnj ¼ jx0njð1þ x0δn=jx0nj2 þ � � �Þ,
because we content ourselves with OðδnÞ effects, we can
safely replace xn → x0n in the squared parentheses. On the
other hand, the overall Z2

νþ1ðjxnjÞ contributes an additional
OðδnÞ term to Nn, but—as anticipated—this effect cancels
out from Eq. (A23). More precisely, putting everything
together we get

yn ¼
λ5
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cL − 1

1 −Ω1−2cL

r
Ω1=2−cLsignðZνþ1Þ

×

	
1þ xn

jxnj
cN

δn
jxnj

�
2

πjx0nj
1

J2νþ1ðjx0njÞ
J0νðjx0njÞ
Yνðjx0njÞ

�

:

ðA27Þ

This result holds for jxnj ≪ xspecialn up to terms of order δ2n.
We now turn to a discussion of the couplings of the

modes of mass near xspecialn , which correspond to the special
mode and the paired special modes. States in the negative
tower always have jbnj ≪ 1 and may be analyzed in a way
completely analogous to what we have done for the light
modes. The result is

yn ¼
λ5
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cL − 1

1 −Ω1−2cL

r
Ω1=2−cLsignðZνþ1Þ½1þOðbnÞ�:

ðA28Þ

In the positive tower the crucial difference is that bn is
unsuppressed. This implies that our estimate of the UV
contribution to the normalization Nn must take this into
account. In particular, Eq. (A24) is no longer accurate.
Instead, assuming bn ¼ Oð1Þ we find that InðRÞ∼
R2ZνZνþ2∼R2ðjxnj=ΩÞ−2ν−2∼InðR0Þjxnj2cNΩ−2cN−1. The
subleading terms are of order ðjxnj=ΩÞ−2cN and ðjxnj=ΩÞ.
Neglecting them, we conclude that

yn ¼
λ5
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cL − 1

1 − Ω1−2cL

r
Ω1=2−cLsignðZνþ1Þ

× ½1þ ajxnj2cNΩ−2cN−1�; ðA29Þ

where a is some number of order one. Finally, for the
special mode it is not possible to determine bn analytically
(it may well be that jbnj ≫ 1, so the previous derivation
does not apply). Yet, for any bn we expect

yspecialn ∼
λ5
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cL − 1

1 −Ω1−2cL

r
Ω1=2−cL : ðA30Þ

This estimate is correct up to a number of order unity.

4. SM neutrino mass for −1=2 < cN < 0

The relevant part of the Lagrangian is

L ¼ mn

2
ξ̄nξ̄n − ynHLξ̄n þ H:c: ðA31Þ

Integrating out the heavy fermions ξn, and keeping only the
leading terms in a derivative expansion gives

Lon-shell ¼ −
1

2
ðHLÞ2

X
mn≶0

y2n
mn

þ H:c: ðA32Þ

Let us consider the contribution from the low-lying modes
first. In this case the sum includes both the positive and
negative towers up to mmax < xspecial. After some algebra
we find
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Lon-shell ¼ −
1

2
ðHLÞ2

Xmmax y2n
mn

þ H:c:

¼ −
1

2
ðHLÞ2 λ25

dR

�
2cL − 1

1 −Ω1−2cL

�
Ω2þ2cN−2cLFðcNÞ þ H:c:; ðA33Þ

with

FðcNÞ≡ 4cNπ

Γ2ðνþ 1Þ
Xnmax

n

1

jx0nj2þ2cN

	
4cN

�
2

πjx0nj
1

J2νþ1ðjx0njÞ
�
− 2

Yνðjx0njÞ
J0νðjx0njÞ



: ðA34Þ

In this expression, the Bessel functions are all evaluated at the zeros x0n of Jν¼−cN−1=2. Rather than presenting the details of
this computation, it is more instructive to reproduce an approximate expression valid for n ≫ 1:

Xmmax y2n
mn

→
λ25
R2

�
2cL − 1

1 −Ω1−2cL

�
Ω1−2cLR0Xnmax

n¼0

1

jxnj
�
1 − 2cN

δn
jxnj

1þ δn
jxnj

þ
1þ 2cN

δn
jxnj

−1þ δn
jxnj

�

¼ λ25
R2

�
2cL − 1

1 −Ω1−2cL

�
Ω1−2cLR0Xnmax

n¼0

ð4cN þ 2Þ
�
−

δn
jxnj2

��
1þO

�
δn
jxnj

��

¼ λ25
dR

�
2cL − 1

1 − Ω1−2cL

�
Ω2þ2cN−2cL

	
4cNπ

Γ2ð−cN þ 1=2Þ
Xnmax

n¼0

ð4cN þ 2Þ
j½nþ 1

2
ð1 − cNÞ�πj2þ2cN


�
1þO

�
δn
jxnj

��
: ðA35Þ

One can verify that FðcNÞ consistently reduces to the quantity in the square brackets in this limit. FðcNÞ is solely a function
of cN . It is plotted in Fig. 4 for various values of nmax.
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