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As the pion mass approaches a critical value m⋆
π from below, an S-wave resonance crosses the pion-

baryon threshold and becomes a bound state with arbitrarily small binding energy, thus driving the
scattering length to diverge. I explore the consequences of chiral symmetry for the values ofmπ close tom⋆

π .
It turns out that chiral symmetry is crucial for an S-wave resonance to be able to stand very near the
threshold and in the meantime to remain narrow, provided that the mass splitting is reasonably small. The
effective range of pion-baryon scattering is unexpectedly large, proportional to 4πf2π=m3

π when mπ is
aroundm⋆

π . As a result, this unexpected large length scale causes universality relations to break down much
sooner than naively expected.

DOI: 10.1103/PhysRevD.94.011503

From the viewpoint of nonrelativistic potential models,
S-wave hadronic resonances are less common than higher-
wave (l > 0) resonances because S waves do not have
centrifugal barriers to prevent a component particle from
leaving the other. Therefore, hadronic S-wave resonances
possess special merits because they are less amenable
to simple model potentials, and hence understanding
them gives a glimpse of the underlying theory—quantum
chromodynamics (QCD). If the S-wave resonance arises
from an excited baryon coupled to a low-lying baryon and a
pion, chiral perturbation theory (ChPT), which is a low-
energy effective field theory of QCD, can be a viable tool to
investigate the system, for pion-baryon interactions are
restricted by chiral symmetry.
The present manuscript is concerned with even more

special cases where the S-wave resonance is near the pion-
baryon threshold. Near-threshold higher-wave (l > 0) res-
onances are less surprising because it can be quite generally
shown that a single-parameter fine-tuning of the two-body
interaction gets the resonance arbitrarily close to threshold,
eventually turning it into a bound state [1]. But it usually
takes a two-parameter fine-tuning to move an S-wave
resonance close to threshold, as indicated by the scattering
length and effective range [2] in the effective range
expansion or by two independent parameters of a model
potential [3]. I show that with the assistance of chiral
symmetry, such extreme fine-tunings are no longer needed
for an S-wave resonance to be near pion-baryon threshold.
Remarkably, there is a real-world example of near-

threshold S-wave baryon resonance: charmed baryon
Λþ
c ð2595Þ coupled to the πΣcð2455Þ channel, with Δ≃

mphy
π ¼ 138 MeV, where Δ is the Λþ

c ð2595Þ − Σcð2455Þ
mass splitting. Therefore, Λþ

c ð2595Þ is considered as
the example in the manuscript. Other ChPT-based,

phenomenological, or lattice investigations on charmed
baryons can be found in Refs. [4–12] and references therein.
But the relevance of near-threshold S-wave resonances is

not necessarily confined to Λþ
c ð2595Þ. With variable quark

masses, lattice QCD can create other hadronic worlds,
labeled by various values of the pion mass mπ . At low
energies, the “otherworldly” nuclear physics has started to
attract interest [13,14]. Near-threshold S-wave resonances
may emerge when mπ approaches a certain critical value
m⋆

π , at which the scattering length a diverges.
Such emergences may be seemingly inevitable because

Δ as a nonchiral quantity is expected to vary slower than
mπ , so the resonance should become stable when mπ

crosses Δ from below. Therefore, m⋆
π is just Δ plus

subleading corrections: m⋆
π ≃ Δ. a diverges because the

binding energy can be made arbitrarily small by tuning
mπ − Δ.
However, the above simple argument applies only to

higher-wave resonances. In S waves, the transition from a
resonance to a bound state is more complicated. The
general theory of two-body scattering tells us that the
S-wave resonance normally broadens out near threshold
and turns into a pair of virtual states before becoming stable
(see, for example, Refs. [2,3]). In the complex plane of
the magnitude of the center-of-mass (CM) momentum k,
the transition is illustrated as the pair of resonance poles
coalescing on the lower half imaginary axis before splitting
into two virtual poles, and then heading respectively
upward and downward. The virtual pole on the top
eventually moves above the real axis and becomes a bound
state pole. For the S-wave resonance to remain narrow right
before it turns virtual, the coalescing point must be rather
close to threshold, implying the existence of another
infrared mass scale in addition to the vanishing mπ − Δ,
which echoes the aforementioned two-parameter fine-
tuning.
It is the main message of the present paper that thanks

to chiral symmetry, the extra fine-tuning is waived for*bingwei@scu.edu.cn
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near-threshold S-wave pion-baryon resonances, as long as
Δ ≪

ffiffiffiffiffiffi
4π

p
fπ ≃ 328 MeV. The mechanism is that chiral

symmetry requires that a rather large (but not diverging)
value be taken by the effective range r by constraining how
the excited baryon is coupled in the S wave to the pion-
baryon continuum. For mπ close to m⋆

π ≃ Δ, the leading-
order (LO) value of r is found to be

r ¼ −
4πf2π
h2m3

π
; ð1Þ

where the pion decay constant fπ ¼ 92.4 MeV; h is the
dimensionless coupling constant of the resonance to the
pion-baryon system and it is assumed to be of the order
of unity.
But there is still one fine-tuning remaining: mπ close to

m⋆
π , ðm⋆

π −mπÞ → 0. A second motivation for this line of
research is to study how this fine-tuning is propagated
through hadronic systems. (A precedent of such inves-
tigations is the real-world nucleon-nucleon system, whose
large values of scattering lengths are suspected to result
from the physical pion mass being in close proximity to a
critical value [15].) In the immediate neighborhood of m⋆

π ,
many dimensionful quantities scale only with ðmπ −m⋆

πÞ, a
rule known as universality [16]. However, the simultaneous
emergence of two large length scales, a and r, by a single
fine-tuning ðm⋆

π −mπÞ → 0 invalidates the universality
relations that account for only the large value of a. I use
the binding energy to demonstrate how r affects the
threshold physics.
Two-flavor chiral symmetry suffices to demonstrate the

points I make. Regardless of the isospin of the S-wave
resonance, the lowest-order coupling of the resonance to
the pion baryon must involve one time derivative on the
pion field. Ensured by chiral symmetry and parity con-
servation, this is the single most important feature of an
S-wave baryon resonance, and it is the foundation of what
is developed here. The heavy-baryon Lagrangian terms
with Weinberg’s chiral index [17,18] ν ¼ 0 are

Lð0Þ ¼ Σa†
�
i∂0δab þ

i
f2π

ðπa _πb − πb _πaÞ
�
Σb

þΨ†ði∂0 − ΔÞΨþ i
gΣ
fπ

ϵabcΣa†~σ · ~∇πbΣc

þ hffiffiffi
3

p
fπ

ðΣa† _πaΨþ H:c:Þ þ � � � ð2Þ

Here Ψ (Σ) is the field that annihilates Λþ
c ð2595Þ

[Σcð2455Þ] and gΣ the axial coupling of Σcð2455Þ.1

Now we turn to construction of the S-wave amplitude for
πΣc elastic scattering. When mπ is near m⋆

π, either below or
above, Λþ

c ð2595Þ remains a near-threshold phenomenon
and the pion is nonrelativistic. Therefore, k and the energy
shift of the resonance from threshold δ≡ Δ −mπ are both
much smaller than mπ: k=mπ ≪ 1 and jδj=mπ ≪ 1. The
recoil effects of the pion are systematically included,
whereas those of the baryon are considered here, due to
its much larger mass.
While more formal treatments of heavy pions can be

found in Refs. [19–21], I choose to use the usual ChPT
framework in which the pions are created and/or annihi-
lated by a relativistic field.
With the incoming (outgoing) 4-momentum of π denoted

by kμ (k0μ) and that of Σc by pμ (p0
μ), I write the isoscalar

S-wave πΣc potentials as the following two pieces: The
s-channel exchange of Ψ is

vs ¼
h2

f2π

k0k00
k0 þ p0 − Δ

¼ h2m2
π

f2πðE − δÞ
�
1þO

�
Q2

m2
π

��
; ð3Þ

where E is the CM energy, and the Weinberg-Tomozawa
(WT) term

vWT ¼ 3ðk0 þ k00Þ
2f2π

¼ 3mπ

f2π

�
1þO

�
Q2

m2
π

��
: ð4Þ

The u-channel exchanges of Σ or Ψ are not considered
because they involve two powers ofQ, and are thus smaller
than vWT by OðQ2=m2

πÞ, where Q denotes generically
external momenta.
Resummation of vs gives rise to the desired nonpertur-

bative physics, but an argument for its necessity in the
power-counting language helps us understand theoretical
uncertainties of theEFT-based conclusions [22–24]. Figure 1
shows two insertions of vs, connected by a pion-baryon
loop. When E − δ in the denominator of vs is as small as the
Ψ self-energy, all diagrams with serial insertions of vs are
equally important, hence the resummation.
Let us first power count the nonrelativistic pion-baryon

loop, shown as part of Fig. 1. The fact that the pion is
nonrelativistic modifies in several respects the standard
power counting [17]. The 3-momentum of the pion internal
line is of Q and the energy mπ þQ2=mπ; therefore, the
pion propagator is counted as 1=Q2. The baryon propagator
is static, and the energy flowing through it is of the same
order as the kinetic energy of the pion. So the baryon
propagator is counted as mπ=Q2. With the internal pion

FIG. 1. Once iterated s-channel exchange of Ψ in πΣc scatter-
ing. The solid, dashed, and double lines represent Σc, π, and Ψ,
respectively.

1The D-meson-nucleon system can be integrated out here
because DN has to be quite off shell to be relevant, with the CM
momentum around

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μΔDN

p ≃ 510 MeV, where μ is the reduced
mass of DN and ΔDN is the CM energy difference between
Λþ
c ð2595Þ and the DN threshold.
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4-momentum denoted by l, the integration volume
R
d4l

contributes a factor ∼Q5=mπ, in which
R
dl0 ∼Q2=mπ andR

d3l ∼Q3. In addition, the numerical factor coming out of
a nonrelativistic loop is normally 1=4π, compared with that
of a relativistic loop, 1=16π2. In conclusion, a nonrelativ-
istic pion-baryon loop contributes a factor of Q=4π.
Together with the coupling of Ψ to πΣc, the LO self-

energy of Ψ will be ∼m2
πQ=ð ffiffiffiffiffiffi

4π
p

fπÞ2, in contrast with
∼Q3=ð4πfπÞ2 in the case of a relativistic pion. The
appearance of the intermediate mass scale

ffiffiffiffiffiffi
4π

p
fπ ¼

328 MeV is worth taking note of. It suggests that even
though Q is small for nonrelativistic pions, the self energy
of Ψ is less suppressed than expected from the standard
ChPT counting.
The criterion for resummation is when vs and a pion-

baryon loop combine to contribute a factor of Oð1Þ,
m2

π

f2πðE − δÞ
Q
4π

¼ ϵQ
E − δ

≳ 1; ð5Þ

where ϵ is a function of mπ and it is by our choice a small
parameter,

ϵðmπÞ≡
�

mπffiffiffiffiffiffi
4π

p
fπ

�
2

: ð6Þ

This defines the so-called resonance region, a kinematic
window in terms of E inside of which it is necessary to
dress the bareΨ propagator. In the resonance region, vWT is
smaller than vs by OðϵQ=mπÞ. In addition, vWT in itself is
perturbative in the sense that two insertions of vWT bring
suppression to the tree-level vWT by OðϵQ=mπÞ.
It is straightforward to sum up the geometric series of

connected vs’s. Not surprisingly, the LO amplitude Tð0Þ has
the form of the effective range expansion,

Tð0ÞðkÞ ¼ 4π

−γ0 þ r0
2
k2 − ik

; ð7Þ

with

γ0 ¼ −
δ

h2ϵ
; r0 ¼ −

4πf2π
h2m3

π
¼ −ðh2ϵmπÞ−1; ð8Þ

where the subscripts 0 on γ0 and r0 indicate that the inverse
scattering length and effective range are LO values. Since
m⋆

π is defined to be the value of mπ where the scattering
length diverges, one finds at LO δ ¼ m⋆

π −mπ . If Δ is
reasonably small, Δ ≪

ffiffiffiffiffiffi
4π

p
fπ , the effective range gains a

rather large value, provided that h is naturally sized. In fact,
by assuming πΣc to be the dominant decay channel Ref. [2]
determines from the PDG values for mass and width of
Λþ
c ð2595Þ that r ¼ 19.5 fm, which gives h ¼ 0.64, con-

sistent with the assumption that h is of the order of unity.

Even when the threshold is outside the resonance region,
we may still use Eq. (8) to determine γ0 and r0, under the
condition that the WT term remains the subleading con-
tribution to the threshold scattering. To this end, vWT must
be much smaller than vs for k≃ 0, which sets the validity
range for Eq. (8), δ ≪ mπ, a condition that we have already
presumed. Note that δ=mπ and ϵ are independent small
parameters, so the results and the discussion do not rely on
whether they are correlated.
The LO amplitude has two poles on the k plane,

k� ¼ −h2ϵmπ

 
i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δ

h4ϵ2mπ
− 1

s !
: ð9Þ

The poles move as δ becomes negative from positive.
Starting as two conjugate resonance poles in the lower half
plane, they move toward each other and coalesce on the
lower half imaginary axis when δ ¼ 1

2
h4ϵ2mπ . The imagi-

nary part of the resonance pole position kI ¼ −h2ϵmπ (or
the inverse effective range 1=r) is small and changes slowly
with respect to δ. This helps the resonance remain narrow
when it is located very near threshold, until δ ∼ 1

2
h4ϵ2mπ . In

the case of Λþ
c ð2595Þ, the lower bound of δ for the

resonance to remain narrow is around merely a couple
of MeVs.
Because it requires that Ψ be coupled to πΣc through the

time derivative on the pion field, chiral symmetry plays an
instrumental role in suppressing kI. Without its constraint,
we would have resorted to, on top of ðm⋆

π −mπÞ=mπ → 0, a
second fine-tuning on the coupling of Ψ to the pion-baryon
continuum, as done in Refs. [25,26]. Reference [22]
devised a power counting to describe narrow resonances
with a single fine-tuning, but it applies only when the real
part of the pole position kR is one order larger than kI and it
requires a loose correlation between the coupling and mass
splitting of the resonance field.
However, chiral symmetry facilitates a narrow resonance

to be near threshold in the S wave only to an extent: when
Δ ≪

ffiffiffiffiffiffi
4π

p
fπ . This is an insight obtained by accounting for

the fact that the pion is nonrelativistic. When Δ≳ ffiffiffiffiffiffi
4π

p
fπ

(but still within the validity range of ChPT), kI is more
likely naturally sized and other decay channels are more
favored than two-body interactions to generate a near-
threshold resonance.
In fact, a more common mechanism to generate a near-

threshold S-wave resonance is a two-body S-wave bound
state weakly coupled to other decay channels. For instance,
in many of its theoretical descriptions Xð3872Þ is con-
structed as a bound state of D0D̄�0 þ D̄0D�0 and it decays
into, among others, D0D̄0π [20,27–31]. In the particular
case of Λþ

c ð2595Þ, the role of three-body decay into ππΛþ
c

has been noted in Ref. [7]. While the construction in the
present paper does not rule out this possibility, for when
δ < 0 the excited baryon indeed corresponds to a bound
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state, it suggests that by a small tweak of δ, a narrow near-
threshold two-body resonance is equally possible.
Since the phase shifts can be obtained from lattice QCD

via Lüscher’s formula [32], we find it useful that the
transition from the bound state to the resonance can in fact
be presented by the morphing of the profile of the phase
shifts. The phase shift θ at LO is most easily expressed as a
function of k=ðh2ϵmπÞ, with ~δ≡ δ=ðh4ϵ2mπÞ being the
only free parameter. Shown in Fig. 2 are the LO phase
shifts, plotted with various ~δ. The curves can be cast into
three categories according to their geometric properties,
with each category taking up a specific region.
In region I, δ < 0 and a shallow bound state emerges.

The phase shift function is convex over the whole domain
of k; it descends from 180° at threshold, as required by
Levinson’s theorem, turning around to start rising at the
stationary point: kstat ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2mπδ

p
.

A few words about the binding energy are in order, for it
is more directly linked to lattice calculations than the phase
shifts. Its value around m⋆

π at LO is found to be

B0ðδ;mπÞ ¼
h4

2
ϵ2mπ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2δ

h4ϵ2mπ

s
− 1

!
2

: ð10Þ

When δ ¼ 0, the binding energy vanishes and the scattering
length diverges. The universality relation, B ∝ δ2 (see, for
example, Ref. [33]), is recovered for δ=ðϵ2mπÞ → 0−,

B ¼ δ2

h4ϵ2mπ

�
1þO

�
δ

h2ϵ2mπ

��
: ð11Þ

With the assumption h ¼ Oð1Þ, an important revelation
here is that the validity scope of universality is extremely
small if Δ ≪

ffiffiffiffiffiffi
4π

p
fπ ,����mπ −m⋆
π

mπ

���� ≪ ½ϵðΔÞ�2 ¼
�

Δ
328 MeV

�
4

: ð12Þ

The surprisingly small validity range of universality has
everything to do with the emergence of a second large
length scale: the effective range. We need to note that
considerations of universality alone cannot capture the
significance of fπ , the mass scale intimately related to
chiral symmetry and its spontaneous breaking.
In region II where ~δ turns positive but is still smaller than

2=3, the phase shift is a concave function of k, and has no
stationary point. This region covers the mπ gap identified
by the coexistence of two virtue poles, but does not exactly
coincide with it. This shows from one aspect the slight
ambiguity of defining the emergence of S-wave resonances.
Finally, when ~δ > 2=3, the phase shift functions occupy

region III. They all consist of a convex segment near
threshold, before becoming concave toward higher ener-
gies. The inflection point is at the origin for ~δ ¼ 2=3, but
more generally its position does not have a closed form as a
function of ~δ. For illustration purposes, the inflection point
is marked out in Fig. 2 on the curve with ~δ ¼ 3.
To know better the uncertainty of the LO calculations

and how reliable the conclusions thus drawn are, we
compute the subleading corrections to the scattering
amplitude. They are partly driven by the WT term, which
brings no free parameters more than h=fπ , δ, andmπ. Other
next-to-leading order (NLO) contributions include the
recoil effects of the pion. The sum of these NLO con-
tributions can too be cast into the form of the effective range
expansion,

Tð1ÞðkÞ ¼ −
−γ1 þ r1

2
k2 þ Pk4

ð−γ0 þ r0
2
k2 − ikÞ2 ; ð13Þ

with

γ1 ¼
3

h4
δ

mπ

δ

ϵ
; ð14Þ

r1
2
¼ −

�
δ

mπ

�
1 −

3

h2

�
þ 2

ϵ

4π

�
ðh2ϵmπÞ−1; ð15Þ

P ¼ ϵ2h2
�
h2 −

3

4

�
ðh2ϵmπÞ−3; ð16Þ

where P is the shape parameter, and γ1 and r1 are the
corrections to the inverse scattering length and the effective
range. ϵ=4π ¼ ðmπ=4πfπÞ2 is the more usual ChPT expan-
sion parameter for relativistic pions and it reflects here the

FIG. 2. The LO phase shifts as functions of k=ðh2ϵmπÞ, with
various values of ~δ. From the top down, the solid lines are the
phase shifts plotted with ~δ ¼ −0.2, 0.2, and 3, respectively. The
inflection point on ~δ ¼ 3 is marked out with a diamond.
The dashed lines separate the three different regions defined in
the text: the boundary between I and II is the phase shift with
~δ ¼ 0 and the one between II and III with ~δ ¼ 2=3.
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recoil corrections of the pion. Compared with LO, these
subleading corrections are of Oðδ=mπ; ϵ2; ϵ=4πÞ.
The NLO correction to the binding energy has a closed

form,

B1ðδ;mπÞ ¼
h4ϵ2mπffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2~δ

p �
ϵ2fð~δÞ − ϵ

4π
κ3ð~δÞ

�
; ð17Þ

where

κð~δÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2~δ

p
− 1; ð18Þ

and

fð~δÞ≡ h2
�
3h2 ~δ3κð~δÞ − 1

2
ðh2 − 3Þ~δκ3ð~δÞ

−
�
h2 −

3

4

�
κ5ð~δÞ

	
: ð19Þ

When δ ¼ 0, B1 ¼ 0; therefore, δ ¼ m⋆
π −mπ still holds

true at NLO.
To summarize, I have explored in an S-wave pion-baryon

system the consequences of chiral symmetry formπ around
its critical valuem⋆

π , at which point the excited baryon can be
viewed as a zero-energy pion-baryon bound state. A
physical realization of such systems is pion-charmed baryon
πΣc, of which the resonance Λþð2595Þ is near threshold.
Chiral symmetry is crucial in constructing a narrow S-

wave resonance so near threshold. The nonrelativistic nature
of the pion brings about one more insight: Such a near-
threshold resonance ismore likely when themass splitting is
smaller than an intermediate scale: mπ ≃ Δ ≪

ffiffiffiffiffiffi
4π

p
fπ.

Regarding pion-baryon elastic scattering, it was found
that a single fine-tuning of m⋆

π −mπ → 0 gives rise
simultaneously to large values for both the scattering length
a and effective range r,

a ∝
ϵ

δ
; r ∝

1

ϵmπ
; ð20Þ

where δ≡ Δ −mπ was found to be just m⋆
π −mπ , at least

up to NLO. The large size of r impacts the threshold
physics even after the resonance collapses and becomes
stable. For instance, r limits considerably the applicability
of universality relations based solely on a large a. To
demonstrate, the binding energy was shown to recover the
universal dependence on δ, B ∝ δ2, only in a tiny window
δ=mπ ≪ ϵ2. In the region the manuscript is more concerned
with, δ=mπ ≪ 1, B is a more complicated function of δ,
shown in Eqs. (10) and (17).
Barring any further fine-tunings in higher partial waves,

the emergence of two large length scales is exclusive to the
S wave. In higher waves chiral symmetry appears to allow
only the scattering length to be fine-tuned bym⋆

π −mπ → 0.
For instance, the P-wave scattering length and effective
range can be shown to scale as

aP ∝ −
1

4πf2πδ
; rP ∝ −

4πf2π
mπ

; ð21Þ

where rP is naturally sized even when δ → 0.
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