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We revisit a class of SUð5Þ supersymmetric grand unified theory (SUSY GUT) models which arise in the
context of the spectral cover with Klein Group monodromy V4 ¼ Z2 × Z2. We examine the polynomials of
the corresponding factorized spectral cover and discuss the constraints imposed on their coefficients for the
transitive and nontransitive realization of this monodromy. We show that Z2 matter parities can be realized
via new geometric symmetries respected by the spectral cover.
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I. INTRODUCTION

Over the last decades string theory grand unified theories
(GUTs) have aroused considerable interest. Recent progress
has been focused in F-theory [1,2] effective models [3–42],
which incorporate several constraints attributed to the
topological properties of the compactified space. Indeed,
in this context the gauge symmetries are associated to the
singularities of the elliptically fibred compactificationmani-
fold. As such, GUT symmetries are obtained as a subgroup
of E8 and the matter content emerges from the decompo-
sition of the E8-adjoint representation (for reviews see [8]).
As is well known, GUT symmetries have several inter-

esting features such as the unificationof gauge couplings and
the accommodation of fermions in simple representations.
Yet, they fail to explain the fermionmass hierarchy andmore
generally, to impose sufficient constraints on the super-
potential terms. Hence, depending on the specific model,
several rare processes—including proton decay—are not
adequately suppressed. We may infer that, a realistic
description of the observed low energy physics world,
requires the existence of additional symmetry structure of
the effective model, beyond the simple GUT group.
Experimental observations on limits regarding exotic

processes (such as baryon and lepton number as well as
flavor violating cases) and in particular neutrino physics
seem to be nicely explained when the standard model or
certain GUTs are extended to include Abelian and discrete
symmetries. On purely phenomenological grounds, Uð1Þ
as well as non-Abelian discrete symmetries such as An, Sn,
SLP2ðnÞ and so on, have already been successfully
implemented. However, in this context there is no principle
to single out the family symmetry group from the enormous
number of possible finite groups. Moreover, the choice of

the scalar spectrum and the Higgs vacuum expectation
value (vev) alignments introduce another source of arbi-
trariness in the models.
In contrast to the above picture, F-theory constructions

offer an interesting framework for restricting both the gauge
(GUT and discrete) symmetries as well as the available
Higgs sector. In the elliptic fibration we end up with an
8-dimensional theory with a gauge group, which will be of
the special unitary (An), special orthogonal (Dn), and
exceptional (En) types in the Cartan classification (ADE
in short). In this work we will focus in the simplest unified
symmetry which is SUð5Þ GUT. In the present geometric
picture, the SUð5Þ GUT is supported by 7-branes wrapping
an appropriate (del Pezzo) surface S on the internal mani-
fold, while the number of chiral states is given in terms of a
topological index formula. Moreover, there is no use of
adjoint Higgs representations since the breaking down to the
standard model symmetry can occur by turning on a non-
trivial Uð1ÞY flux along the hypercharge generator [4]. At
the same time this mechanism determines exactly the
standard model matter content. Further, if the flux param-
eters are judiciously chosen they may provide a solution to
thewell-knowndoublet triplet splitting problemof theHiggs
sector. In short, in F-theory one can in principle develop all
those necessary tools to determine the GUT group and
predict the matter content of the effective theory.
In the present work we will revisit a class of SUð5Þ

supersymmetric (SUSY) GUT models which arise in the
context of the spectral cover. The reason is that the recent
developments in F-theory provide now a clearer insight and
a better perspective of these constructions. For example,
developments on computations of the Yukawa couplings
[9–20] have shown that a reasonable mass hierarchy and
mixing may arise even if more than one of the fermion
families reside on the same matter curve. This implies that
effective models left over with only a few matter curves
after certain monodromy identifications could be viable
and it would be worth reconsidering them. More specifi-
cally, we will consider the case of the Klein group
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monodromy V4 ¼ Z2 × Z2 [22–25,27]. Interestingly, with
this particular spectral cover, there are two main ways to
implement its monodromy action, depending on whether
V4 is a transitive or nontransitive subgroup of S4. A
significant part of the present work will be devoted to
the viability of the corresponding two kinds of effective
models. Another ingredient related to the predictability of
the model, is the implementation of R-parity conservation,
or equivalently a Z2 matter parity, which can be realized
with the introduction of new geometric symmetries [11]
respected from the spectral cover.
The paper is organized as follows. In Sec. II we give a

short description of the derivation of SUð5Þ GUT in the
context of F-theory. In Sec. III we describe the action of
monodromies and their role in model building. We further
focus on the Klein group monodromy and the correspond-
ing spectral cover factorisations which is our main concern
in the present work. In Sec. IV we review a few well known
mathematical results and theorems which will be used in
model building of the subsequent sections. In Sec. V we
discuss effective field theory models with Klein group
monodromy and implement the idea of matter parity of
geometric origin. In Sec. VI we discuss the conclusions.

II. THE ORIGIN OF SU(5) IN F-THEORY

In this section we explain the main setup of these class of
models. Focusing on the case under consideration, i.e. the
GUT SUð5Þ, the effective four dimensional model can be
reached from the maximal E8 gauge symmetry through the
decomposition

E8 ⊃ SUð5ÞGUT × SUð5Þ⊥:
In the elliptic fibration, we know that an SUð5Þ singularity
is described by the Tate equation

y2 ¼ x3 þ b0z5 þ b2xz3 þ b3yz2 þ b4x2zþ b5xy ð2:1Þ
where the homologies of the coefficients in the above
equation are given by:

½bk� ¼ η − kc1

η ¼ 6c1 − t

where c1 and t are the Chern classes of the tangent and
normal bundles, respectively.
The first SUð5Þ is defining the GUT group of the

effective theory, the second SUð5Þ⊥ incorporates additional
symmetries of the effective theory while it can be described
in the context of the spectral cover. Indeed, in this picture,
one can depict the non-Abelian Higgs bundle in terms of
the adjoint scalar field configuration [6] and work with the
Higgs eigenvalues and eigenvectors. For SUðnÞ these
emerge as roots of a characteristic polynomial of nth
degree. Thus the SUð5Þ spectral surface C5 is represented
by the fifth order polynomial

C5 ¼ b0s5 þ b1s4 þ b2s3 þ b3s2 þ b4sþ b5

¼ b0
Y5
i¼1

ðs − tiÞ: ð2:2Þ

Since the roots are associated to the SUð5Þ Cartan sub-
algebra their sum is zero,

P
iti ¼ 0, thus we have

put b1 ¼ 0.
The 5þ 5̄ and 10þ 10 representations are found at

certain enhancements of the SUð5Þ singularity. In particu-
lar, for this purpose the relevant quantities are [6]

P10 ¼ b5 ¼
Y
i

ti ð2:3Þ

P5 ¼ b23b4 − b2b3b5 þ b0b25 ∝
Y
i≠j

ðti þ tjÞ: ð2:4Þ

At the P10 ¼ 0 locus the enhanced singularity is SOð10Þ
and the intersection defines the matter curve accommodat-
ing the 10’s. Fiveplets are found at a matter curve defined at
an SUð6Þ enhancement associated to the locus P5 ¼ 0.
In practice, we are interested in phenomenologically

viable cases where the spectral cover splits in several
pieces. Consider for example the splitting expressed
through the breaking chain

E8 → SUð5Þ × SUð5Þ → SUð5Þ ×Uð1Þ4

where we assumed breaking of SUð5Þ⊥ along the Cartan,P
iti ¼ 0. The presence of four Uð1Þ’s in the effective

theory leaves no room for a viable superpotential, since
many of the required terms, including the top Yukawa
coupling, are not allowed. Nevertheless, monodromies
imply various kinds of symmetries among the roots ti of
the spectral cover polynomial which can be used to relax
these tight constraints. The particular relations among these
roots depend on the details of the compactification and the
geometrical properties of the internal manifold. All possible
ways fall into some Galois group which in the case of
SUð5Þ⊥ is a subgroup of the corresponding Weyl group,
i.e., the group S5 of all possible permutations of the five
Cartan weights ti. It is obvious that there are several options
and each of them leads to models with completely different
properties and predictions of the effective field theory.
Before starting our investigations on the effective models
derived in the context of the aforementioned monodromy,
we will analyze these issues in the next section.

III. THE IMPORTANCE OF MONODROMY

For the SUð5ÞGUT model, we have seen that any possible
remnant symmetries (embeddable in the E8 singularity)
must be contained in SUð5Þ⊥. We have already explained
that in the spectral cover approach we quotient the theory
by the action of a finite group [22] which is expected to
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descend from a geometrical symmetry of the compactifi-
cation. Starting from a C5 spectral cover, the local field
theory is determined by the SUð5Þ GUT group and the
Cartan subalgebra of SUð5Þ⊥ modulo the Weyl group
WðSUð5Þ⊥Þ. This is the group S5, the permutation sym-
metry of five elements which in the present case correspond
to the Cartan weights t1;…5.
Depending on the geometry of the manifold, C5 may

split to several factors

C5 ¼
Y
j

Cj:

For the present work, we will assume two cases where the
compactification geometry implies the splitting of the
spectral cover to C5→C4×C1 and C5 → C2 × C0

2 × C1.
Assuming the splitting C5 → C4 × C1, the permutation
takes place between the four roots, say t1;2;3;4, and the
corresponding Weyl group is S4. Notwithstanding, under
specific geometries to be discussed in the subsequent
sections, the monodromy may be described by the Klein
group V4 ∈ S4. The latter might be either transitive or
nontransitive. This second case implies the spectral cover
factorization C4 → C2 × C0

2. As a result, there are two
nontrivial identifications acting on the pairs (t1, t2) and (t3,
t4) respectively while both are described by the Weyl group
WðSUð2Þ⊥Þ ∼ S2. Since S2 ∼ Z2, we conclude that in this
case the monodromy action is the nontransitive Klein group
Z2 × Z2. Next, we will analyze the basic features of these
two spectral cover factorizations.

A. S4 subgroups and monodromy actions

The group of all permutations of four elements, S4, has a
total of 24 elements.1 These include 2,3,4 and 2þ 2-cycles,
all of which are listed in Table I. These cycles form a total
of 30 subgroups of S4, shown in Fig. 1. Of these there are
those subgroups that are transitive subgroups of S4: the
whole group, A4, D4, Z4 and the Klein group.
We focus now on compactification geometries con-

sistent with the Klein group monodromy V4 ¼ Z2 × Z2.
We observe that there are three nontransitive V4 subgroups

within S4 and only one transitive subgroup. This transitive
Klein group is the subgroup of the A4 subgroup.
Considering Table I, one can see that A4 is the group of
all even permutations of four elements and the transitive V4

is that group excluding 3-cycles. The significance of this is
that in the case of Galois theory, to be discussed in Sec. IV,
the transitive subgroups A4 and V4 are necessarily irre-
ducible quartic polynomials, while the nontransitive V4

subgroups of S4 should be reducible.
In terms of group elements, the Klein group that is

transitive in S4 has the elements:

fð1Þ; ð12Þð34Þ; ð13Þð24Þ; ð14Þð23Þg ð3:1Þ

which are the 2þ 2-cycles shown in Table I along with the
identity. On the other hand, the nontransitive Klein groups
within S4 are isomorphic to the subgroup containing the
elements:

V4 ¼ fð1Þ; ð12Þ; ð34Þ; ð12Þð34Þg: ð3:2Þ

TABLE I. A summary of the permutation cycles of S4, categorized by cycle size and whether or not those cycles
are contained within the transitive subgroups A4 and V4. This also shows that V4 is necessarily a transitive subgroup
of A4, since it contains all the 2þ 2-cycles of A4 and the identity only.

S4 cycles Transitive A4 Transitive V4

4-cycles (1234), (1243), (1324), (1342), (1423), (1432) No No
3-cycles (123), (124), (132), (134), (142), (143), (234), (243) Yes No
2þ 2-cycles (12)(34), (13)(24), (14)(23) Yes Yes
2-cycles (12), (13), (14), (23), (24), (34) No No
1-cycles e Yes Yes
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FIG. 1. Pictorial summary of the subgroups of S4, the group of
all permutations of four elements—representative of the sym-
metries of a cube.1The order of an SN group is given by N!
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The distinction here is that the group elements are not
all within one cycle, since we have two 2-cycles and one
2þ 2-cycle. These types of subgroup must lead to a
factorization of the quartic polynomial, as we shall discuss
in Sec. IV. Referring to Fig. 1, these Klein groups are the
nodes disconnected from the web, while the central V4 is
the transitive group.

B. Spectral cover factorization

In this section we will discuss the two possible factor-
izations of the spectral surface compatible with a Klein
group monodromy, in accordance with the previous analy-
sis. In particular, we shall be examining the implications of
a monodromy action that is a subgroup of S4—the most
general monodromy action relating four weights. In par-
ticular we shall be interested in the chain of subgroups
S4 → A4 → V4, which we shall treat as a problem in Galois
theory.

1. C4 spectral cover

This set of monodromy actions requires the spectral
cover of Eq. (2.2) to split into a linear part and a quartic
part:

C5 → C4 × C1 ð3:3Þ

C5 → ða5s4 þ a4s3 þ a3s2 þ a2sþ a1Þða6 þ a7sÞ: ð3:4Þ

The b1 ¼ 0 condition must be enforced for SUð5Þ trace-
lessness. This can be solved by consistency in Eq. (3.4),

b1 ¼ a5a6 þ a4a7 ¼ 0: ð3:5Þ

Let us introduce a new section a0, enabling one to write a
general solution of the form:

a4 ¼ �a0a6

a5 ¼ ∓a0a7:

Upon making this substitution, the defining equations for
the matter curves are

C5∶ ¼ a1a6 ð3:6Þ

C10∶ ¼ ða22a7 þ a2a3a6∓a0a1a26Þ
× ða3a26 þ ða2a6 þ a1a7Þa7Þ; ð3:7Þ

which is the most general, pertaining to an S4 monodromy
action on the roots. By consistency between Eq. (3.4) and
Eq. (2.2), we can calculate that the homologies of the
coefficients are

½ai� ¼ η − ði − 6Þc1 − χ

i ¼ 1; 2; 3; 4; 5

½a6� ¼ χ

½a7� ¼ c1 þ χ

½a0� ¼ η − 2ðc1 þ χÞ

2. The C2 × C0
2 × C1 case

If the V4 actions are not derived as transitive subgroups
of S4, then the Klein group is isomorphic to:

A4 ⊅ V4∶ fð1Þ; ð12Þ; ð12Þð34Þ; ð34Þg: ð3:8Þ

This is not contained in A4, but is admissible from the
spectral cover in the form of a monodromy C5 → C2×
C0
2 × C1.
Then, the 10 ∈ SUð5Þ GUT (∈ SUð5Þ⊥) spectral cover

reads

C5∶ ða1 þ a2sþ a3s2Þða4 þ a5sþ a6s2Þða7 þ a8sÞ:
ð3:9Þ

We may now match the coefficients of this polynomial in
each order in s to the ones of the spectral cover with the bk
coefficients:

b0 ¼ a368

b1 ¼ a367 þ a358 þ a268

b2 ¼ a357 þ a267 þ a348 þ a258 þ a168

b3 ¼ a347 þ a257 þ a167 þ a248 þ a158

b4 ¼ a247 þ a157 þ a148

b5 ¼ a147 ð3:10Þ
following the notation aijk ¼ aiajak in [23]. In order to
find the homology classes of the new coefficients ai, we
match the coefficients of the above polynomial in each
order in s to the ones of Eq. (2.2) such that we get relations
of the form bk ¼ bkðaiÞ.
Comparing to the homologies of the unsplit spectral

cover, a solution for the above can be found for the
homologies of ai. Notice, though, that we have 6 well-
defined homology classes for bj with only 8 ai coefficients,
therefore the homologies of ai are defined up to two
homology classes:

½an¼1;2;3� ¼ χ1 þ ðn − 3Þc1
½an¼4;5;6� ¼ χ2 þ ðn − 6Þc1
½an¼7;8� ¼ ηþ ðn − 8Þc1 − χ1 − χ2: ð3:11Þ

We have to enforce the SUð5Þ tracelessness condition,
b1 ¼ 0. An Ansatz for the solution was put forward in [23],
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a2 ¼ −cða6a7 þ a5a8Þ
a3 ¼ ca6a8 ð3:12Þ

which introduces a new section, c, whose homology class is
completely defined by

½c� ¼ −ηþ 2χ1: ð3:13Þ

With this anstaz for the solution of the splitting of
spectral cover, P10 reads

P10 ¼ a1a4a7 ð3:14Þ

while the P5 splits into

P5 ¼ a5ða6a7 þ a5a8Þða6a27 þ a8ða5a7 þ a4a8ÞÞ
× ða1 − a5a7cÞ ð3:15Þ

ða21 − a1ða5a7 þ 2a4a8Þc
þ a4ða6a27 þ a8ða5a7 þ a4a8ÞÞc2Þ: ð3:16Þ

An extended analysis of this interesting case will be
presented in the subsequent sections.

IV. A LITTLE BIT OF GALOIS THEORY

So far, we have outlined the properties of the most
general spectral cover with a monodromy action acting on
four of the roots of the perpendicular SUð5Þ group. This
monodromy action is the Weyl group S4, however a
subgroup is equally admissible as the action. Transitive
subgroups are subject to the theorems of Galois theory,
which will allow us to determine what properties the
coefficients of the quartic factor of Eq. (3.4) must have
in order to have roots with a particular symmetry [37–40].
In this paper we shall focus on the Klein group,
V4 ≅ Z2 × Z2. As already mentioned, the transitive V4

subgroup of S4 is contained within the A4 subgroup of S4,
and so shall share some of the same requirements on the
coefficients.
While Galois theory is a field with an extensive literature

to appreciate, in the current work we need only reference a
handful of key theorems. We shall omit proofs for these
theorems as they are readily available in the literature and
are not required for the purpose at hand.
Theorem 1.—Let K be a field with characteristic differ-

ent than 2, and let fðXÞ be a separable, polynomial in KðXÞ
of degree n.

(i) If fðXÞ is irreducible in KðXÞ then its Galois group
over K has order divisible by n.

(ii) The polynomial fðXÞ is irreducible in KðXÞ if and
only if its Galois group over K is a transitive
subgroup of Sn.

This first theorem offers the key point that any poly-
nomial of degree n, that has nondegenerate roots, but
cannot be factorized into polynomials of lower order with
coefficients remaining in the same field must necessarily
have a Galois group relating the roots that is Sn or a
transitive subgroup thereof.
Theorem 2.—Let K be a field with characteristic differ-

ent than 2, and let fðXÞ be a separable, polynomial in KðXÞ
of degree n. Then the Galois group of fðXÞ over K is a
subgroup of An if and only if the discriminant of f is a
square in K.
As already stated, we are interested specifically in

transitive V4 subgroups. Theorem 2 gives us the require-
ment for a Galois group that is A4 or its transitive subgroup
V4—both of which are transitive in S4. Note that no
condition imposed on the coefficients of the spectral cover
should split the polynomial (C4 → C2 × C2), due to
Theorem 1. We also know by Theorem 2 that both V4

and A4 occur when the discriminant of the polynomial is a
square, so we necessarily require another mechanism to
distinguish the two.

A. The cubic resolvent

The so-called cubic resolvent, is an expression for a
cubic polynomial in terms of the roots of the original
quartic polynomial we are attempting to classify. The roots
of the cubic resolvent are defined to be,

x1 ¼ ðt1t2 þ t3t4Þ; x2 ¼ ðt1t3 þ t2t4Þ;
x3 ¼ ðt1t4 þ t2t3Þ ð4:1Þ

and one can see that under any permutation of S4 these
roots transform between one another. However, in the event
that the polynomial has roots with a Galois group relation
that is a subgroup of S4, the roots need not all lie within the
same orbit. The resolvent itself is defined trivially as:

ðx − ðt1t2 þ t3t4ÞÞðx − ðt1t3 þ t1t4ÞÞðx − ðt1t4 þ t3t2ÞÞ
¼ g3x3 þ g2x2 þ g1xþ g0: ð4:2Þ

The coefficients of this equation can be determined by
relating of the roots to the original C4 coefficients. This
resulting polynomial is

gðxÞ ¼ a35x
3 − a3a25x

2 þ ða2a4 − 4a1a5Þa5x
− a22a5 þ 4a1a3a5 − a1a24: ð4:3Þ

Note that this may be further simplified by making the
identification y ¼ a5x.

gðyÞ ¼ y3 − a3y2 þ ða2a4 − 4a1a5Þy
− a22a5 þ 4a1a3a5 − a1a24: ð4:4Þ
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If the cubic resolvent is factorizable in the field K, then the
Galois group does not contain any three cycles. For
example, if the Galois group is V4, then the roots will
transform only under the 2þ 2-cycles:

V4 ⊂ A4 ¼ fð1Þ; ð12Þð34Þ; ð13Þð24Þ; ð14Þð23Þg: ð4:5Þ

Each of these actions leaves the first of the roots in Eq. (4.1)
invariant, thus implying that the cubic resolvent is reducible
in this case. If the Galois group were A4, the 3-cycles
present in the group would interchange all three roots, so
the cubic resolvent is necessarily irreducible. This leads us
to a third theorem, which classifies all the Galois groups of
an irreducible quartic polynomial (see also Table II).
Theorem 3.—The Galois group of a quartic polynomial

fðxÞ ∈ K, can be described in terms of whether or not the
discriminant of f is a square in K and whether or not the
cubic resolvent of f is reducible in K.

V. KLEIN MONODROMY AND THE ORIGIN
OF MATTER PARITY

In this section wewill analyze a class of four-dimensional
effective models obtained under the assumption that the
compactification geometry induces a Z2 × Z2 monodromy.
As we have seen in the previous section, there are two
distinct ways to realize this scenario, which depends on
whether the corresponding Klein group is transitive or
nontransitive.
There are significant differences in the phenomenologi-

cal implications of these models since in a factorized
spectral surface matter and Higgs are associated with
different irreducible components.2

In the present work we will choose to explore the rather
promising case where the monodromy Klein group is
nontransitive. In other words, this essentially means that
the spectral cover admits a C2 × C0

2 × C1 factorization. The
case of a transitive Klein group is more involved and it is
not easy to obtain a viable effective model, and we will
consider this issue in a future work.

Hence, turning our attention to the nontransitive case, the
basic structure of the model obtained in this case corre-
sponds to one of those initially presented in [22] and
subsequently elaborated by other authors [23–27]. This
model possesses several phenomenologically interesting
features and we consider it is worth elaborating it further.

A. Analysis of the Z2 × Z2 model

To set the stage, we first present a short review of the
basic characteristics of the model following mainly the
notation of [23]. The Z2 × Z2 monodromy case implies a
2þ 2þ 1 splitting of the spectral fifth-degree polynomial
which has already been given in (3.9). Under the action
(3.8), for each element, either x2 and x3 roots defined in
(4.1) are exchanged or the roots are unchanged.
The effective model is characterized by three distinct 10

matter curves, and five 5 matter curves. The matter curves,
along with their charges under the perpendicular surviving
Uð1Þ and their homology classes are presented in Table III.
Knowing the homology classes associated to each curve

allows us to determine the spectrum of the theory through
the units of Abelian fluxes that pierce the matter curves.
Namely, by turning on a flux in the Uð1ÞX directions, we
can endow our spectrum with chirality and break the
perpendicular group. In order to retain an anomaly free
spectrum we need to allow for

X
M5 þ

X
M10 ¼ 0; ð5:1Þ

whereM5 (M10) denote Uð1ÞX flux units piercing a certain
5 (10) matter curve.
A nontrivial flux can also be turned on along the

hypercharge. This will allow us to split GUT irreps, which
will provide a solution for the doublet-triplet splitting
problem. In order for the hypercharge to remain unbroken,
the flux configuration should not allow for a Green-
Schwarz mass, which is accomplished by

FY · c1 ¼ 0; FY · η ¼ 0: ð5:2Þ

For the new, unspecified, homology classes, χ1 and χ2
we let the flux units piercing them to be

FY · χ1 ¼ N1; FY · χ2 ¼ N2; ð5:3Þ
where N1 and N2 are flux units, and are free parameters of
the theory.
For a fiveplet, 5 one can use the above construction as a

doublet-triplet splitting solution as

nð3; 1Þ−1=3 − nð3̄; 1Þ1=3 ¼ M5; ð5:4Þ

nð1; 2Þ1=2 − nð1; 2Þ−1=2 ¼ M5 þ N; ð5:5Þ

where the states are presented in the SM basis. For a 10 we
have

TABLE II. A summary of the conditions on the partially
symmetric polynomials of the roots and their corresponding
Galois group.

Group Discriminant Cubic resolvent

S4 Δ ≠ δ2 Irreducible
A4 Δ ¼ δ2 Irreducible
D4=Z4 Δ ≠ δ2 Reducible
V4 Δ ¼ δ2 Reducible

2Further phenomenological issues concerning proton decay
and unbroken Uð1Þ factors beyond a local spectral cover can be
found in [25,26].
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nð3; 2Þ1=6 − nð3̄; 2Þ−1=6 ¼ M10; ð5:6Þ

nð3̄; 1Þ−2=3 − nð3; 1Þ2=3 ¼ M10 − N; ð5:7Þ

nð1; 1Þ1 − nð1; 1Þ−1 ¼ M10 þ N: ð5:8Þ

In the end, given a value for each M5, M10, N1, N2 the
spectrum of the theory is fully defined as can be seen in
Table IV.

B. Matter parity

Some major issues in supersymmetric GUT model
building, including operators leading to fast proton decay
and other flavor processes at unacceptable rates, are usually
solved by introducing the concept of R-parity. In early
F-theory model building [23,41], such matter parity sym-
metries where introduced by hand. Here, in the present
approach, the conjecture is that as in the case of the GUT
symmetries which are associated with the manifold singu-
larities, R-parity can also be attributed to the geometric
properties of the manifold.
In this work we concentrate on models with matter being

distributed on different matter curves in contrast to the
models where all three families reside on a single curve. In
such models the Higgs field, Hu, is accommodated on a
suitable curve so that a tree-level coupling for the up-quark
fermion mass matrix is ensured. Similarly, we may require
at most one tree level coupling for down-type quarks.
Because of Uð1Þ symmetries left over under some chosen

monodromy action, all other mass entries are generated at
higher orders. However, despite the existence of Uð1Þ
symmetries, it is possible that other trilinear (tree-level)
couplings among the fermion fields themselves are still
allowed in the effective superpotential. In the present
2þ 2þ 1 spectral cover splitting for example, we can see
that more than one down-quark type trilinear coupling
exists, since any of the following 101ð5̄135̄35 þ 5̄155̄3Þ,
103ð5̄135̄15 þ 5̄15̄35Þ and 105ð5̄15̄3 þ 5̄135̄13Þ are invariant
under all symmetries. A similar picture emerges for the up-
quark sector. Such terms are also present in 2þ 1þ 1þ 1 as
well as other splittings as can be easily checked. Assigning
the Higgs in the appropriate fiveplet, one of the above terms
may account for the quark mass of the third generation. Of
course, we might seek appropriate flux parameters to
eliminate chiral states on the unwanted fiveplets involved
in the remaining terms, but this is not always possible. In
such cases additional restrictions are required and a possible
solution to this drawback is the concept of R-parity.
In an F-theory framework, we can think of three different

ways to introduce R-parity in the model: As a first
approach, we may impose ad hoc a Z2 symmetry on the
grounds of the desired low energy phenomenology. As has
already been said, this has been suggested in early F-theory
constructions. However, inasmuch as F-theory gauge sym-
metries are intimately connected to geometric properties, it
would be desirable that R-parity has also a geometric
origin. A second possibility, then, is to seek such a
symmetry within the properties of the spectral cover.
Finally, a third way to deal with the annihilation of the

TABLE IV. Matter curve spectrum. Note that N ¼ N1 þ N2 has been used as short hand.

Curve Weight Homology NY NX Spectrum

101 t1 −2c1 þ χ1 N1 M101
M101

Qþ ðM101
− N1Þuc þ ðM101

þ N1Þec
103 t3 −2c1 þ χ2 N2 M103

M103
Qþ ðM103

− N2Þuc þ ðM103
þ N2Þec

105 t5 η − c1 − χ1 − χ2 −N1 − N2 M105
M105

Qþ ðM105
þ NÞuc þ ðM105

− NÞec
51 −2t1 η − c1 − χ1 −N1 M51 M51

dc þ ðM51
− N1ÞL̄

513 −t1 − t3 −4c1 þ 2χ1 2N1 M513 M513
dc þ ðM513

þ 2N1ÞL̄
515 −t1 − t5 −2c1 þ χ1 N1 M515 M515

dc þ ðM515
þ N1ÞL̄

535 −t3 − t5 2η − 2c1 − 2χ1 − χ2 −2N1 − N2 M535 M535
dc þ ðM535

− 2N1 − N2ÞL̄
53 −2t3 −c1 þ χ2 N2 M53 M53

dc þ ðM53
þ N2ÞL̄

TABLE III. Matter curves and their charges and homology classes.

Curve Uð1Þ Charge Defining equation Homology class

101 t1 a1 −2c1 þ χ1
103 t3 a4 −2c1 þ χ2
105 t5 a7 η − c1 − χ1 − χ2
51 −2t1 a6a7 þ a5a8 η − c1 − χ1
513 −t1 − t3 a21 − a1ða5a7 þ 2a4a8Þcþ a4ða6a27 þ a8ða5a7 þ a4a8ÞÞc2 −4c1 þ 2χ1
515 −t1 − t5 a1 − a5a7c −2c1 þ χ1
535 −t3 − t5 a6a27 þ a8ða5a7 þ a4a8Þ 2η − 2c1 − 2χ1 − χ2
53 −2t3 a5 −c1 þ χ2
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perilous Yukawa couplings is to introduce new symmetries
emerging from specific elliptic fibrations possessing
rational sections. Indeed, these imply the existence of
new Uð1Þ symmetries [43] of the Mordell-Weil type,
beyond those embedded in the non-Abelian part. Such
symmetries may prevent undesirable terms.
Given the fact that the GUT symmetries in F-theory are

associated with geometric singularities, in the present work
we think it is also worth exploring the possibility that
R-parity may be of a similar nature. Of course, imposing
R-parity in a bottom up approach is always possible,
however, we will follow the second path and attempt to
describe R-parity from geometric symmetries associated
with the spectral cover. Such a conjecture might also look
ad hoc but in the following we will try to give a kind of
“evidence” of this correlation.
It was proposed [11], that in local F-theory constructions

there are geometric discrete symmetries of the spectral
cover that manifest on the final field theory. In F-theory the
relevant data originate from the geometric properties of the
Calabi-Yau four-fold and the G4-flux. For example, for a
surface of the type S ¼ P2, it was shown in [11] that a Z2

transformation acting on S generates also a Z2 trans-
formation on spinors. If this transformation is a symmetry
of the specific geometric configuration, it should also be a
symmetry of the spectral surface and this is indeed the case.
To be more precise, we analyze this in some detail for the

SUð5Þ group where the spectral surface is described by the
equation

P
5
k¼0 bks

5−k ¼ 0. We consider the GUT divisor
SGUT and three open patches S, T, U covering SGUT; we
define a phase ϕN ¼ 2π

N and a map σN such that

σN∶ ½S∶ T∶ U� → ½eiϕNS∶ eiϕNT∶ U�:

For a Z2 symmetry discussed in [11] one requires a Z2

background configuration, with a Z2 action so that the
mapping is

σ2∶ ½S∶ T∶ U� → ½−S∶ − T∶ U� or ½S∶ T∶ −U�:

To see if this is a symmetry of the local geometry for a given
divisor, we take local coordinates for the three trivialization
patches. These can be defined as ðt1; u1Þ ¼ ðT=S;U=SÞ,
ðs2;u2Þ¼ðS=T;U=TÞ and ðs3;t3Þ¼ðS=U;T=UÞ. Assuming
that σ2ðpÞ, is the map of a point p under σ2 transformation
the corresponding local coordinates aremapped according to

ðt1; u1; ξsÞjσ2ðpÞ ¼ ðt1;−u1;−ξsÞjp
ðs2; u2; ξtÞjσ2ðpÞ ¼ ðs2;−u2;−ξtÞjp
ðs3; t3; ξuÞjσ2ðpÞ ¼ ð−s3;−t3; ξuÞjp ð5:9Þ

This is an SUð3Þ rotation on the three complex coordinates,
which acts on the spinors in the same way. Hence, starting
from a Z2 symmetry of the three-fold we conclude that a Z2

transformation is also induced on the spinors. The required
discrete symmetry must be a symmetry of the local geom-
etry. This can happen if the defining equation of the spectral
surface is left invariant under the corresponding discrete
transformation. Consequently we expect nontrivial con-
straints on the polynomial coefficients bk, which carry the
information of local geometry. In order to extract these
constraints we focus on a single trivialization patch and take
s to be the coordinate along the fiber. Under the mapping of
points p → σðpÞ we consider the phase transformation

sðσðpÞÞ ¼ sðpÞeiϕ; bkðσðpÞÞ ¼ bkðpÞeiðχ−ð6−kÞϕÞ:

Under this action, each term in the spectral cover equation
transforms the same way

bks5−k → eiðχ−ϕÞbks5−k:

It can be readily observed that a nontrivial solution accom-
modates a ZN symmetry for ϕ ¼ 2π

N . Thus, for N ¼ 2, we
have ϕ ¼ π and the transformation reduces to

s → −s; bk → ð−1Þkeiχbk: ð5:10Þ

Further,wemayassume that this symmetry is communicated
from the C5 theory to the split spectral cover geometry. On
matter curves GUT symmetry is enhanced while their
geometric description is given by the defining equations.
Clearly, the properties of their coefficients are determined
frombk’s.Our conjecture is that theR-parity is determined in
analogy with the bulk surface fields. In this respect, for a Z2

choice, to all fields residing on a specific matter curve, we
assign either even or odd parity in accordance with the
property of its corresponding defining equation.
Returning to the present construction, for curves accom-

modatingminimal supersymmetric standardmodel (MSSM)
chiral matter we will assume that R-parity is defined by
the corresponding “parity” of its defining equation, which
is fixed through its relation with the C5 coefficients. Thus the
chiral matter fields on the same matter curve must
necessarily have the same parity, since it is a symmetry
arising from thematter curve itself. For the specificmodels of
this work, we can use [27] the equations relating

bk ∝ alaman; with lþmþ n ¼ 17 ð5:11Þ

to find the transformation rules of theak such that the spectral
cover equation respects the symmetry of Eq. (5.11).
Consistency with Eq. (5.11) implies that the coefficients
an should transform as

an → eiψneið11=3−nÞϕan: ð5:12Þ

We now note that the above transformations can be
achieved by a ZN symmetry if ϕ ¼ 3 2π

N . In that case one can
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find, by looking at the equations (3.10) for bk ∝ alaman
that we have

ψ1 ¼ ψ2 ¼ ψ3 ð5:13Þ

ψ4 ¼ ψ5 ¼ ψ6 ð5:14Þ

ψ7 ¼ ψ8 ð5:15Þ

meaning that there are three distinct cycles, and

χ ¼ ψ1 þ ψ4 þ ψ7: ð5:16Þ

Furthermore, the section c introduced to split the matter
conditions (3.12) has to transform as

c → eiϕcc; ð5:17Þ

with

ϕc ¼ ψ3 − ψ6 − ψ7 þ
�
−
11

3
þ 11

�
ϕ;

ϕc ¼ ψ2 − ψ5 − ψ8 þ
�
−
11

3
þ 11

�
ϕ: ð5:18Þ

We can now deduce what would be the matter parity
assignments for Z2 with ϕ ¼ 3ð2π=2Þ. Let pðxÞ be the
parity of a section (or products of sections), x. We notice
that there are relations between the parities of different
coefficients, for example one can easily find

pða1Þ
pða2Þ

¼ −1 ð5:19Þ

amongst others, which allow us to find that all parity
assignments depend only on three independent parities

pða1Þ ¼ i ð5:20Þ

pða4Þ ¼ j ð5:21Þ

pða7Þ ¼ k ð5:22Þ

pðcÞ ¼ ijk; ð5:23Þ

where we notice that i2 ¼ j2 ¼ k2 ¼ þ. The parities for
each matter curve—both in form of a function of i, j, k and
all possible assignments—are presented in Table V.
As such, models from Z2 × Z2 are completely specified

by the information present in Table VI.

C. Application of geometric matter parity

We study now the implementation of the explicit Z2 × Z2

monodromy model presented in [23] alongside the matter
parity proposed above. The model under consideration is
defined by the flux data

N1 ¼ M515
¼ M535

¼ 0 ð5:24Þ

N2 ¼ M103
¼ M51

¼ 1 ¼ −M105
¼ −M53

ð5:25Þ

TABLE V. All possible matter parity assignments.

Curve Charge Parity All possible assignments

101 t1 i þ − þ − þ − þ −
103 t3 j þ þ − − þ þ − −
105 t5 k þ þ þ þ − − − −
51 −2t1 jk þ þ − − − − þ þ
513 −t1 − t3 þ þ þ þ þ þ þ þ þ
515 −t1 − t5 i þ − þ − þ − þ −
535 −t3 − t5 j þ þ − − þ þ − −
53 −2t3 −j − − þ þ − − þ þ

TABLE VI. All the relevant information for model building with Z2 × Z2 monodromy.

Curve Charge Matter parity Spectrum

101 t1 i M101
Qþ ðM101

− N1Þuc þ ðM101
þ N1Þec

103 t3 j M103
Qþ ðM103

− N2Þuc þ ðM103
þ N2Þec

105 t5 k M105
Qþ ðM105

þ N1 þ N2Þuc þ ðM105
− N1 − N2Þec

51 −2t1 jk M51
d̄c þ ðM51

− N1ÞL̄
513 −t1 − t3 þ M513

d̄c þ ðM513
þ 2N1ÞL̄

515 −t1 − t5 i M515
d̄c þ ðM515

þ N1ÞL̄
535 −t3 − t5 j M535

d̄c þ ðM535
− 2N1 − N2ÞL̄

53 −2t3 −j M53
d̄c þ ðM53

þ N2ÞL̄
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M101
¼ 3 ¼ −M513

ð5:26Þ

which leads to the spectrum presented in Table VII along-
side all possible geometric parities.
Inspecting Table VII one can arrive at some conclusions.

For example, looking at the spectrum from each curve it is
immediate that all matter is contained in 101 and 513, while
the Higgses come from 51 and 535, and the rest of the states
are exotics that come in vectorlike pairs. Immediately we
see that there will be R-parity violating terms since 513 has
positive parity.
Of the possible combinations fi; j; kg for the geometric

parity assignments, the only choices that allow for a tree-
level top quark mass are

fi; j; kg ¼ fþ;þ;þg
fi; j; kg ¼ f−;þ;þg
fi; j; kg ¼ fþ;−;−g
fi; j; kg ¼ f−;−;−g: ð5:27Þ

The option that most closely resembles the R-parity
imposed in the model [23] corresponds to the choice
i ¼ −, j ¼ k ¼ þ. However, if R-parity has a geometric
origin the parity assignments of matter curves cannot be
arbitrarily chosen. Using the Mathematica package pre-
sented in [44], it is straightforward to produce the spectrum
of operators up to an arbitrary mass dimension. One can
readily observe that its implementation allows a number of
operators that could cause bilinear R-parity violation
(BRPV) at unacceptably high rates.

It transpires that in a similar way, all the models with this
flux assignment must be ruled out when we apply this
geometric parity. This is due to the tension between BRPV
terms and exotic masses, which seem to always be at odds in
models with this novel parity. This motivates one to search
formodelswithout any exotics, as thesemodelswill not have
any constraining features coming from exotic masses.

VI. CONCLUSIONS

We have revisited a class of SUð5Þ SUSY GUT models
which arise in the context of the spectral cover with Klein
group monodromy V4 ¼ Z2 × Z2. By investigating the
symmetry structures of the spectral cover equation and
the defining equations of the mater curves it is possible to
understand the F-theory geometric origin of matter parity,
which has hitherto been just assumed in an ad hoc way. In
particular, we have shown how the simplest Z2 matter
parities can be realized via the new geometric symmetries
respected by the spectral cover. By exploiting the various
ways that these symmetries can be assigned, there are a
large number of possible variants. The results of our
analysis are presented in the Tables of Sec. V C. where
various examples can be easily worked out.
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