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The subvacuum phenomena, induced by the squeezed vacuum of the strongly coupled quantum critical
fields with a dynamical scaling z, are explored by a probe particle. The holographic description corresponds
to a string moving in (4þ 1)-dimensional Lifshitz geometry with gravitational wave perturbations. The
dynamics of the particle can be realized from the motion of the endpoint of the string at the boundary. We
then examine the particle’s velocity dispersion, influenced by the squeezed vacuum states of strongly
coupled quantum critical fields. With appropriate choices of squeezing parameters, the velocity dispersion
is found to be smaller than the value caused by the normal vacuum fluctuations of the fields. This leads to
the subvacuum effect. We find that the large coupling constant of the quantum fields tends to counteract the
effect in the reduction of velocity dispersion, though this phenomenon is in principle observable. The effect
of the squeezed vacuum on the decoherence dynamics of a quantum particle is also investigated. Coherence
loss can be shown to be less severe in certain squeezed vacuums than in normal vacuum. This recovery of
coherence is understood as recoherence, another manifestation of the subvacuum phenomena. We make
some estimates of the degree of recoherence and find that, contrary to the velocity dispersion case, the
recoherence effect is enhanced by the large coupling constant. Finally we compare the findings in our
earlier works when the particle is influenced by a weakly coupled relativistic field with the dynamical
scaling z ¼ 1.
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I. INTRODUCTION

Engineering a vacuum state may render suppression of
its quantum fluctuations, resulting in the so-called sub-
vacuum phenomenon. The existence of negative energy
density of the quantum field is a famous example, where
the renormalized expectation value of the energy density
operator can become negative in some spacetime regions
[1]. However, if the dynamics of quantum field theory
places no restrictions on negative energy density, it may
produce significant macroscopic effects that potentially
violate the second law of thermodynamics [2,3] or cosmic
censorship [4]. The negative energy density may also imply
exotic phenomena such as traversable wormholes [5] and
warp drive [6]. Thus, it has been shown that the renor-
malized local energy density cannot be arbitrarily negative
for an arbitrarily long period of time. There exists an
inequality constraining the magnitude and duration of the
negative energy density [4,7–9]. Different aspects of the
subvacuum effects of quantum field theory can be realized
by considering these effects on the dynamics of a particle,
with which the field couples. It is found that the velocity
dispersion of the particle, induced by the squeezed vacuum
of the quantum fields with appropriate choices of squeezing
parameters, can be smaller than the value determined by the
normal vacuum [10]. A similar subvacuum phenomenon

has been investigated in the context of quantumdecoherence
of the particle state as a result of an unavoidable interac-
tion with environmental quantum fields [11,12]. This
decoherence effect can be observed by the contrast change
of the fringes in the interference pattern. It has been shown
that coherence loss can be less severe in certain squeezed
vacuums than in normal vacuum. This is known as recoher-
ence. However, all of the above-mentioned subvacuum
phenomena are explored in either free or weakly coupled
field theories. Accordingly, their effects are supposedly
rather weak. This prompts us to pursue these subvacuum
effects arising from strongly coupled fields.
The idea of holographic dualitywas originally proposed as

the correspondence between four-dimensional conformal
field theory (CFT) and gravity theory in five-dimensional
anti–deSitter (AdS) space [13]. It is soon generalized to other
backgrounds and field theories and opens up the possibility
to study the strong coupling problems in the condensed
matter systems and the hydrodynamics of the quark-gluon
plasma (see [14,15] for reviews). There have been consid-
erable efforts of employing the holographicduality to explore
the dissipative dynamics of a particle moving in a strongly
coupled environment [16–18]. In these cases, the end point
of the string on the boundary of the AdS black hole serves
as a probed particle. Thereafter more works were devoted
to understanding the fluctuations of this end point of the
string in terms of Brownian motion in general backgrounds
[19–45]. A review on the holographic Brownian motion can
be found in [46].
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The holographic duality provides a phenomenological
description of strongly coupled physics, but its applicability
for a real physical system has to be justified by its success
in explaining and predicting experimental results. Thus, our
current work will explore the subvacuum effects on a
particle in the squeezed vacuum of strongly coupled
quantum critical fields by the method of a holographic
influence functional. This method was developed by us
[47] and is consistent with the one in [48–50]. It is hoped
that the large coupling constant might offer the possibility
to observe these effects. The dual description for a particle
coupled to quantum critical fields in its normal vacuum
state corresponds to a string hanging from the boundary of
(4þ 1)-dimensional Lifshitz geometry. The end point of a
string is identified as the particle’s position. Thus, the
effects of the quantum critical fields on the dynamics of
the particle will be encoded in the Green’s functions of the
associated boundary fields. Additionally, a possible holo-
graphical realization of the squeezing vacuum of the
boundary fields is given by the gravitational wave pertur-
bations in Lifshitz geometry [51]. The corrections to the
Green’s functions of the boundary fields can be found from
the perturbed holographic influence functional in bulk
geometry, altered by the gravitational wave. In the context
of holographic Brownian motion, the squeezed-vacuum
correlation functions of the string’s end point can also be
constructed through the Bogoliubov transformations from
the normal vacuum state. The corresponding Green’s
functions of boundary fields can then be obtained via
the Langevin equation, derived from a holographic influ-
ence functional. Comparing these two results, we find that
the forms of the Hadamard functions of boundary fields, to
leading order in the small squeezing parameters and
gravitational wave perturbations, can allow the identifica-
tion of the squeezing parameters with the boundary values
of the gravitational wave perturbations. Then we are able to
explore the effects from squeezed vacuum of the strongly
coupled fields on the dynamics of a particle.
Our presentation is organized as follows. In the next

section, we briefly review the method of a holographic
influence functional. The environmental degrees of free-
dom in the full density matrix are traced over to obtain the
reduced density matrix of the system. Their effects are all
encoded in the influence functional. We then construct the
holographic influence functional for a probed string in
Lifshitz geometry. Later the Lifshitz geometry is perturbed
by gravitational waves. The perturbed holographic influ-
ence functional is found, from which the nonequilibrium
Green’s functions of boundary fields are obtained from this
bulk construction. In Sec. III, the correlation functions of
the string’s end point in its squeezed vacuum states can also
be constructed via the Bogoliubov transformations from the
normal vacuum state of the string. With the derived
Langevin equation of the string’s end point, we can identify
the possible holographic dual of the squeezed vacuum

states as gravitational wave perturbations. We then study
subvacuum effects on the particle’s velocity dispersion
influenced by squeezed vacuum fluctuations. In Sec. IV,
the decoherence dynamics of a particle affected by the
squeezed vacuum of quantum critical fields is also explored.
The reduction in quantum coherence is measured by the
decoherence functional, given by the holographic influence
functional. We propose an interference experiment to find
the subvacuum effect of recoherence. Concluding remarks
are given in Sec. V.

II. HOLOGRAPHIC INFLUENCE FUNCTIONAL
AND CORRELATORS FOR SQUEEZED

VACUUM STATES

A. Influence functional in field theory

We first review the method of an influence functional in
field theory. When the system of interest couples with the
environment, their full dynamics can be described by the
density matrix ρðtÞ that evolves unitarily according to

ρðtfÞ ¼ Uðtf; tiÞρðtiÞU−1ðtf; tiÞ ð1Þ

with Uðtf; tiÞ the time evolution operator of the system and
environment. The reduced density matrix ρr is obtained by
tracing over the environmental degrees of freedom in the
full density matrix, and it will include all the effects from
the environment on the system. We assume that the initial
density matrix at time ti is factorized as

ρðtiÞ ¼ ρqðtiÞ ⊗ ρFðtiÞ; ð2Þ

for simplicity, where q and F generically represent the
system and the environment variables, respectively. We
further assume that the environment field is in thermal
equilibrium at temperature T ¼ 1=β before it is brought
into contact with the system, so ρFðtiÞ takes the form

ρFðtiÞ ¼ e−βHF ; ð3Þ

where HF is the Hamiltonian for the F field. The vacuum
state can be obtained by taking the zero-T limit. We
consider the system linearly coupled to an environment
field. The full Lagrangian takes this form:

Lðq; FÞ ¼ Lq½q� þ LF½F� þ qF: ð4Þ

Then the reduced density matrix becomes [52–54]

ρrðqf; ~qf; tfÞ

¼
Z

dq1dq2J ðqf; ~qf; tf;q1; q2; tiÞρqðq1; q2; tiÞ; ð5Þ

where the propagating function J ðqf; ~qf; tf;q1; q2; tiÞ is
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J ðqf; ~qf; tf; q1; q2; tiÞ

¼
Z

qf

q1

Dqþ
Z

~qf

q2

Dq− exp

�
i
Z

tf

ti

dtðLq½qþ� − Lq½q−�Þ
�

× F ½qþ; q−�: ð6Þ

The influence functional F ½qþ; q−� can be written in terms
of real-time Green’s functions [55],

F ½qþ;q−� ¼ exp

�
−
i
2

Z
tf

ti

dt
Z

tf

ti

dt0½qþðtÞGþþðt; t0Þqþðt0Þ

−qþðtÞGþ−ðt; t0Þq−ðt0Þ−q−ðtÞG−þðt; t0Þqþðt0Þ

þq−ðtÞG−−ðt; t0Þq−ðt0Þ�
�
; ð7Þ

where we keep the terms to the quadratic order in the
particle position, valid in the linear response approxima-
tion. The Green’s functions involved are time-ordered, anti-
time-ordered, and Wightman functions, defined as

iGþ−ðt; t0Þ ¼ hFðt0ÞFðtÞi;
iG−þðt; t0Þ ¼ hFðtÞFðt0Þi;
iGþþðt; t0Þ ¼ hFðtÞFðt0Þiθðt − t0Þ þ hFðt0ÞFðtÞiθðt0 − tÞ;
iG−−ðt; t0Þ ¼ hFðt0ÞFðtÞiθðt − t0Þ þ hFðtÞFðt0Þiθðt0 − tÞ:

ð8Þ

The retarded Green’s function and Hadamard function can
be constructed from them according to

GRðt − t0Þ≡ −iθðt − t0Þh½FðtÞ; Fðt0Þ�i
¼ fGþþðt; t0Þ − Gþ−ðt; t0Þg;

GHðt − t0Þ≡ 1

2
hfFðtÞ; Fðt0Þgi

¼ i
4
fGþþðt; t0Þ þGþ−ðt; t0Þ þG−−ðt; t0Þ

þ G−þðt; t0Þg: ð9Þ

In a time-translation-invariant environment, the Fourier
transform of various Green’s functions is defined by

Gðt − t0Þ ¼
Z

dω
2π

GðωÞe−iωðt−t0Þ: ð10Þ

Their respective ω-dependent functions are obtained as

GþþðωÞ ¼ ReGRðωÞ þ ð1þ 2nÞiImGRðωÞ;
G−−ðωÞ ¼ −ReGRðωÞ þ ð1þ 2nÞiImGRðωÞ;
Gþ−ðωÞ ¼ 2niImGRðωÞ;
G−þðωÞ ¼ 2ð1þ nÞiImGRðωÞ ð11Þ

with n ¼ ðeω
T − 1Þ−1. Notice that the above Green’s func-

tions are not totally independent and they obey the
following relations:

GþþðωÞ þ G−−ðωÞ −Gþ−ðωÞ −G−þðωÞ ¼ 0; ð12Þ
resulting from the unitary evolution of the system and
environment, and

Gþ−ðωÞ
G−þðωÞ ¼ e−

ω
T ð13Þ

due to a bosonic thermal bath. Additionally the fluctuation-
dissipation relation gives

GHðωÞ ¼ −ð1þ 2nÞImGRðωÞ: ð14Þ

B. Holographic influence functional

In this section we review the construction of the holo-
graphic influence functional from dual gravity theory. The
conventional approach to derive the influence functional
can at best be perturbatively implemented for a weakly
coupled environment, let alone the strong coupled theory.
Thus for the latter case, the holography method will be
employed to find the influence functional of the strongly
coupled environment. We consider a particle coupled to
quantum critical theories in 3þ 1 dimensions at zero
temperature [32,39]. Its dual description is a straight string
moving in the (4þ 1)-dimensional Lifshitz geometry with
the metric

ds2 ¼ −
r2z

L2z dt
2 þ L2

r2
dr2 þ r2

L2
d~x2; ð15Þ

in which L is the radius of curvature of the geometry. This
gravity background (15) can be engineered by coupling the
gravitation field with negative cosmological constant to a
massive vector field. The relevant action to give the above
metric is [56]

S ¼ 1

16πG4þ1

Z
d4þ1x

ffiffiffiffiffiffi
−g

p

×

�
Rþ 2Λ −

1

4
F μνF μν −

1

2
m2

AA
μAμ

�
: ð16Þ

In addition to the Einstein-Hilbert action and the cosmo-
logical constant Λ term, the action of a vector fieldAμ with
mass mA is introduced where F μν is the field strength of
Aμ. The equations of motion for the metric and the vector
field can be derived from this action, and they are

Rμν ¼ −
2

3
Λgμν þ

1

2
gαβF μαF νβ þ

1

2
m2

AAμAν

−
1

12
F αβF βαgμν; ð17Þ
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DμF μν ¼ m2
AA

ν; ð18Þ

where Dμ is a covariant derivative with respect to the
background metric gμν. The solutions of the vector field are
assumed to be

Að0Þ
μ ¼ A

rz

Lz δ
0
μ: ð19Þ

Then the Lifshitz background with metric (15) can be
achieved by setting

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðz − 1Þ

z

r
; m2

A ¼ 3z
L2

; Λ ¼ 9þ 2z − z2

2L2
:

ð20Þ
Using the method of holography, as in [32,39], the

classical on-shell gravity action of the string moving in the
Lifshitz background can be identified as the influence
functional for a particle in strongly coupled field theory. We
start from considering the finite-temperature nonequili-
brium correlators and the zero-temperature limit will be
taken later. Hereafter, L ¼ 1 will be used, and reintroduced
later when needed. The metric of a Lifshitz black hole has
the form

ds2 ¼ −r2zfðrÞdt2 þ dr2

fðrÞr2 þ r2d~x2; ð21Þ

where fðrÞ → 1 for r → ∞ and fðrÞ≃ cðr − rhÞ near the
black hole horizon rh with c ¼ ðzþ 3Þ=rh. The detailed
form of fðrÞ is not relevant since only the low-frequency
perturbation is considered in our subsequent discussions.
The black hole temperature, which is also the temperature
in the boundary field theory, is

1

T
¼ 4π

zþ 3

1

rzh
: ð22Þ

Here we assume that the string moves only along the
x-direction and its position variable is X. It is then
straightforward to obtain the linearized Nambu-Goto action
for a string in the background of a Lifshitz black hole:

SNG ¼ −
1

4πα0

Z
drdt

�
rzþ3fðrÞ∂rX∂rX −

∂tX∂tX
fðrÞrz−1

�
;

ð23Þ

where Xðt; rÞ is the linearized string perturbation in the
static gauge. The equation of motion of the string is

∂
∂r

�
rzþ3fðrÞ ∂

∂r Xðr; tÞ
�
−

∂
∂t

�
1

rz−1
1

fðrÞ
∂
∂t Xðr; tÞ

�
¼ 0:

ð24Þ

We express the solutions in terms of two linearly indepen-
dent solutions, whose Fourier transformations are complex
conjugates to one another, XωðrÞ and X�

ωðrÞ, and have the
properties XωðrÞ ∝

r→rh
eþiωr� and X�

ωðrÞ ∝
r→rh

e−iωr� . Here we

have defined

r� ¼
Z

dr
1

rzþ1fðrÞ ; ð25Þ

and the normalization is such that XωðrbÞ ¼ 1.
In accordance with the closed-time-path formalism

[52–54] we have discussed in the previous section, we
introduce Qþðt; r1Þ and Q−ðt; r2Þ, which are the string
world sheets living in maximally extended black hole
geometry with two asymptotical boundaries [48,49].
Then, by choosing appropriate boundary conditions for
the perturbations of the string Q�ðt; rÞ in this background
geometry, the classical on-shell action of the string can be
identified as the influence functional for a particle affected
by the boundary fields [48]:

F ½qþ; q−� ¼ SgravityðQþðt; rbÞ; Q−ðt; rbÞÞ; ð26Þ

where the gravity action is the action SNG in (23). After
some algebraic reduction, the on-shell action contains only
the boundary terms and it takes the form

Son−shellNG ≃ −
rðzþ3Þ
b

4πα0

Z
dtðQþðt; rbÞ∂rQþðt; rbÞ

−Q−ðt; rbÞ∂rQ−ðt; rbÞÞ: ð27Þ
The parameter rb is the location of the boundary and
serves as a cutoff scale in the radial direction to render the
action finite. The boundary conditions of the string per-
turbations are

q�ðtÞ ¼ Q�ðt; rbÞ; ð28Þ

in which the variable qðtÞ can be identified as the position
of the Brownian particle. Following [47], which is con-
sistent with [48,49], we find Q�ðω; rÞ given by

Qþðω; r1Þ ¼
1

1 − e−
ω
T

�
ðq−ðωÞ − e−

ω
TqþðωÞÞXωðr1Þ

þ ðqþðωÞ − q−ðωÞÞX�
ωðr1Þ

�
;

Q−ðω; r2Þ ¼
1

1 − e−
ω
T

�
ðq−ðωÞ − e−

ω
TqþðωÞÞXωðr1Þ

þ e−
ω
TðqþðωÞ − q−ðωÞÞX�

ωðr1Þ
�
: ð29Þ

This general solution is then substituted into the classical
on-shell action (27). Using (7) and (9), the retarded Green’s
function at finite temperature is obtained to be
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GRðωÞ ¼
rzþ3
b

2πα0
X−ωðrbÞ∂rXωðrbÞ: ð30Þ

In general, the analytical expression of GRðωÞ is not
available except in the small ω limit. Nevertheless, there
is an analytical solution for XωðrÞ at zero temperature,

XωðrÞ ¼
r
1þz

2

b

r1þ
z
2

Hð1Þ
1
zþ1

2

ð ω
zrzÞ

Hð1Þ
1
zþ1

2

ð ω
zrzb
Þ
: ð31Þ

Hence the zero-temperature retarded Green’s function can
be found for ω > 0 to be [32]

Gð0Þ
R ðωÞ ¼ −

ωr2b
2πα0

Hð1Þ
1
z−

1
2

ð ω
zrzb
Þ

Hð1Þ
1
zþ1

2

ð ω
zrzb
Þ
: ð32Þ

All other correlators can be derived from (11) by taking
the T → 0 limit. In particular, through the fluctuation-
dissipation relation (14) in the T → 0 limit, we obtain the
Hadamard function for ω > 0 as follows:

Gð0Þ
H ðωÞ ¼ zr2þz

b

π2α0
1

J21
zþ1

2

ð ω
zrzb
Þ þ Y2

1
zþ1

2

ð ω
zrzb
Þ : ð33Þ

C. Influence functional from gravitational
wave perturbed geometry

We can engineer the vacuum of the boundary fields by
perturbing the bulk geometry. In particular, as suggested in
[51], we consider the gravitational wave perturbations in
the Lifshitz background with the metric gð0Þμν (15). The
perturbed metric is given by

gμν ¼ gð0Þμν þ r2ϕðt; rÞξμν; ð34Þ

where ξμν, the polarization tensor, has nonzero components
only in the spatial directions of the boundary and is
assumed transverse and traceless. The field ϕðt; rÞ is
introduced to parametrize small metric perturbations from
gravitational waves, and its equation of motion is

r−2z∂2
tϕðt; rÞ þ ð3þ zÞr∂rϕðt; rÞ þ r2∂2

rϕðt; rÞ ¼ 0;

ð35Þ

which is obtained by linearizing (17) about the background
solutions (15) and (19). Thus, the Fourier transform of the
ϕðt; rÞ field in frequency space is defined as

ϕðt; rÞ ¼
Z

∞

0

dωϕðω; rÞe−iωt þ H.c. ð36Þ

The normalizable solution of (35) can be given by

ϕðω; rÞ ¼ r−
2þz
2 φðωÞJ2þz

2z

�
ω

zrz

�
: ð37Þ

The function φðωÞ is determined by the boundary condition
of the gravitational waves at r ¼ rb and will be identified as
the squeezing parameter defined below. Here we also
assume that the string moves only along the x-direction
with the position variable X. Then the Nambu-Goto action
in perturbed Lifshitz geometry can be written explicitly as

SNG ¼ −
1

4πα0

Z
drdt

�
rzþ3ð1þ ϕðr; tÞÞ∂rX∂rX

− ð1þ ϕðr; tÞÞ ∂tX∂tX
rz−1

�
: ð38Þ

Up to the first order in ϕ, the equation of motion of the
string becomes

∂
∂r

�
rzþ3ð1þ ϕðr; tÞÞ ∂

∂rXðr; tÞ
�

−
∂
∂t

�
1

rz−1
ð1þ ϕðr; tÞÞ ∂∂t Xðr; tÞ

�
¼ 0: ð39Þ

We consider the perturbative solution, which in frequency
space is given by

XωðrÞ ¼ Xð0Þ
ω ðrÞ þ XðϕÞ

ω ðrÞ; ð40Þ
where the zeroth order solution (31) gives the retarded
Green’s function and Hadamard function in the unper-
turbed Lifshitz spacetime. Then the equation of motion for

XðϕÞ
ω ðrÞ to leading order is given by

∂
∂r ½r

zþ3∂rX
ðϕÞ
ω ðrÞ� þ r1−zω2XðϕÞ

ω ðrÞ

¼ −
Z

dω0½rzþ3∂rϕðω; rÞ∂rX
ð0Þ
ω−ω0 ðrÞ

þ ω0ðω − ω0Þr1−zϕðω0; rÞXð0Þ
ω−ω0 ðrÞ�: ð41Þ

In the small ω
rz limit, the asymptotical form of the inho-

mogeneous solution is

XðϕÞ
ω ðrÞ ¼ r−2−3z

2zð2þ 3zÞ
Z

dω0ω0ðω − ω0Þ
�
ω0

z

�2þ2z
z

φðω0Þ

ð42Þ
with φðωÞ given by (37). Thus, the corrections to the
Nambu-Goto action due to the gravitational waves in (38)
have the explicit ϕ dependence and the contributions from

XðϕÞ
ω ðrÞ. Since ϕðω; rbÞ ≫ XðϕÞ

ω ðrbÞ=Xð0Þ
ω ðrbÞ for large rb,

the contributions from XðϕÞ
ω to the above perturbed action

(38) can be ignored if we keep the leading-order terms in
small ϕ. The on-shell perturbed action Son−shellNGϕ is then
expressed as
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Son−shellNGϕ ¼ −
r3þz
b

4πα0

Z
dtϕðt; rbÞðQþðt; rbÞ∂rQþðt; rbÞ

−Q−ðt; rbÞ∂rQ−ðt; rbÞÞ

¼ −
r3þz
b

4πα0

Z
dω
2π

Z
dω0

2π
ϕðωþ ω0; rbÞ

× ðQþ
−ωðrbÞ∂rQ

þ
−ω0 ðrbÞ −Q−

−ωðrbÞ∂rQ−
−ω0 ðrbÞÞ:

ð43Þ
The holographic perturbed influence functional will be
found when we substitute into the above expression
the zero-T limit of (29) with XωðrÞ given by (31). The
corrections to the nonequilibrium Green’s functions can be
identified in this perturbed holographic influence functional.
It will be shown later that the possible holographic descrip-
tion of squeezed vacuum states is given by the gravitational
wave perturbations. Thus, these nonequilibrium Green’s
functions obtained from the perturbed influence functional
will be compared with the Green’s functions of general
multimode squeezed vacuum states of the boundary fields.
In so doing, the function φ in (37), determined by the
boundary condition of gravitational waves, will be related to
the squeezing parameters of the squeezed vacuum states.

III. VELOCITY FLUCTUATIONS OF A PARTICLE

In principle the effects from vacuum fluctuations of an
environment field on a particle can be revealed in the
particle’s velocity dispersion. The environment field not
only modifies the evolution of the particle’s mean trajectory
but also introduces additional stochastic motion [57]. These
two effects are encoded in the associated Langevin equa-
tion. To derive this equation from the influence functional
(7), we find it more convenient to change the qþ, q−

coordinates to the average and relative coordinates:

q ¼ ðqþ þ q−Þ=2; qΔ ¼ qþ − q−: ð44Þ
As will be seen later, the influence of the environment field
can give the mass of the particle and damp its motion. As
such, here we consider that all terms associated with the
particle are dynamically generated from the contributions
of the environmental quantum fields. Thus, the coarse-
grained effective action can be defined from (6) with the
influence functional (7) only, and thus there is no need to
introduce the Lagrangian Lq½q� of the particle:

SCG½q� ¼ q� qΔ=2� ¼ −i lnF ½qþ; q−�

¼
Z

dtqΔðtÞ
�
−
Z

dt0GRðt; t0Þqðt0Þ
�

þ i
2

Z
dt

Z
dt0qΔðtÞGHðt; t0ÞqΔðt0Þ: ð45Þ

We then further introduce an auxiliary variable ηðtÞ, the
noise force, with a Gaussian distribution function:

P½ηðtÞ� ¼ exp

�
−
1

2

Z
dt
Z

dt0ηðtÞG−1
H ðt; t0Þηðt0Þ

�
: ð46Þ

In terms of the noise force ηðtÞ, SCG can be rewritten as an
ensemble average over ηðtÞ,

exp iSCG ¼
Z

DηP½ηðtÞ� exp iSη½q; qΔ; η�; ð47Þ

where the stochastic coarse-grained effective action Sη is
given by

Sη½q; qΔ; η� ¼
Z

dtqΔðtÞ
�
−
Z

dt0GRðt; t0Þqðt0Þ þ ηðtÞ
�
:

ð48Þ

Varying the action Sη with respect to qΔ and setting qΔ ¼ 0

will give the Langevin equation of ½qðtÞ ¼ XðtÞ�Z
dt0GRðt; t0ÞXðt0Þ ¼ ηðtÞ: ð49Þ

The noise force correlation function can be obtained from
(46) as

hηðtÞηðt0Þi ¼ GHðt; t0Þ: ð50Þ

Evidently, the retarded Green’s function will modify the
trajectory, given by noise or external forces, and the
correlated noise forces will render the trajectory fluctuat-
ing. Since the low frequency expansion of the retarded
Green’s function at zero-T in (32) is [32,39]

Gð0Þ
R ðωÞ ¼ mðzÞðiωÞ2 þ μðω; zÞ; ð51Þ

for a general z the induced mass m and the μ term are
given by

mðzÞ ¼ 1

πα0ð2 − zÞrz−2b

;

μðω; zÞ ¼ γðzÞð−iωÞ1þ2
z þOðω4Þ ð52Þ

with the damping coefficient

γðzÞ ¼ 1

πα0ð2zÞ2=z
Γð1

2
− 1

zÞ
Γð1

2
þ 1

zÞ
: ð53Þ

Although bothm and γ change their signs at z ¼ 2, the ratio
γ=m remains positive and varies continuously at z ¼ 2.
When z > 2, the minus signs of the mass term and the term
associated with damping can be simultaneously removed in
the dynamical equation (49) by changing the sign of the
noise forces, i.e., η → −η, thus leading to a sensible
equation of motion. In fact, the noise forces are introduced
as auxiliary variables and their effects on the dynamics
of the particle are formulated only in the form of the
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correlation functions. Then, the magnitude of m can be
identified as a dynamical mass of the particle, which can be
large, about the order λ ∝ 1=α0. λ corresponds to the
coupling constant in quantum field theory via AdS=CFT
correspondence.
Before proceeding further, it is of interest to see how

the solution to the Langevin equation is connected with the
fluctuation-dissipation relation in [32]. In the case of the
vacuum state of an environment field, the Fourier transform
of the Langevin equation (49) is expressed as

XðωÞ ¼ ηðωÞ=Gð0Þ
R ðωÞ: ð54Þ

Then, the fluctuations in the position of a particle induced
by noise forces are obtained as

hXðωÞXð−ωÞi ¼ hηðωÞηð−ωÞi
Gð0Þ

R ðωÞGð0Þ�
R ðωÞ

¼ Gð0Þ
H ðωÞ

Gð0Þ
R ðωÞGð0Þ�

R ðωÞ
¼ −ImχðωÞ; ð55Þ

where χ−1ðωÞ ¼ −Gð0Þ
R ðωÞ and the fluctuation-dissipation

relation (14) in the T → 0 limit is applied. The above
expression is a key result in [32]. Here we recover it by
solving the Langevin equation, which is derived from the
obtained influence functional.
To proceed for the squeezed vacuum states, we consider

a quantized string, as in [32], with its mode expansion as
follows:

XðtÞ ¼ Xðt; rbÞ ¼
ffiffiffiffiffiffiffi
πα0

z

r Z
∞

0

dωUω½aωe−iωt þ a†ωeþiωt�;
ð56Þ

where aω and a†ω are the annihilation and creation oper-
ators, and they obey canonical commutation relations. In
the background of a Lifshitz black hole, the string pertur-
bations are in thermal states where ha†ωaωi ¼ ðeω

T − 1Þ−1
with black hole temperature T. The mode function in the
zero-T limit becomes

Uω ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

ω

p 1

r
1þz

2

b

�
J1

2
þ1

z

�
ω

zrzb

�
þ CωY1

2
þ1

z

�
ω

zrzb

��
;

ð57Þ
in which

Cω ¼ −
J−1

2
þ1

z
ð ω
zrzb
Þ

Y−1
2
þ1

z
ð ω
zrzb
Þ : ð58Þ

Thus it is quite reasonable to assume that the squeezed
vacuum states can be constructed from the Bogoliubov
transformations of the creation and annihilation operators of
the normal vacuum state. Here we consider the two-mode
squeezed states, where the squeezed operator is defined as

jξωω0 i ¼ Sðξωω0 Þj0i;

Sðξωω0 Þ ¼ exp

�
1

2
ðξ�ωω0aωaω0 − ξωω0a†ωa

†
ω0 Þ

�
; ð59Þ

with the squeezing parameter ξωω0 ¼ rωω0eiθωω0 . With the
help of the Baker-Campbell-Hausdorff formula, we readily
find the Bogoliubov transformations of the creation and
annihilation operators due to the squeeze operator Sðξωω0 Þ,

S†ðξωω0 ÞaωSðξωω0 Þ ¼ μωω0aω − νωω0a†ω0 ; and

S†ðξωω0 Þa†ωSðξωω0 Þ ¼ μωω0a†ω − ν�ωω0aω0 ;

S†ðξωω0 Þaω0Sðξωω0 Þ ¼ μωω0aω0 − νωω0a†ω; and

S†ðξωω0 Þa†ω0Sðξωω0 Þ ¼ μωω0a†ω0 − ν�ωω0aω; ð60Þ

and we have

hξωω0 jaωjξωω0 i¼0; hξωω0 jaωaω0 jξωω0 i¼−μωω0νωω0 ;

hξωω0 ja†ωaω0 jξωω0 i¼η2ωω02πδðω−ω0Þ; ð61Þ

where μωω0 ¼ cosh rωω0 , νωω0 ¼ eiθωω0 sinh rωω0 , and
ηωω0 ¼ jνωω0 j. Notice that the retarded Green’s function
defined in (9) remains the same in the two-mode squeezed
vacuum state because the involved Bogoliubov transforma-
tions are the canonical ones so they preserve the commu-
tation relations between the creation and annihilation
operators. Then, the position correlator hXðtÞXðt0Þi in the
squeezed vacuum states can be calculated straightforwardly.
Using the Langevin equation in (49), which is also valid for a
particle influenced by the environmental quantum fields in
general quantum states, we can find the corresponding
Hadamard function of the boundary fields in the squeezed

vacuum states GðsÞ
H ðt; t0Þ

GðsÞ
H ðt; t0Þ ¼ πα0

2

Z
∞

0

dω
2π

Z
∞

0

dω0

2π
WðωÞWðω0ÞUωUω0Gð0Þ

R ðωÞGð0Þ�
R ðω0Þ

×
�
−μωω0νωω0

Gð0Þ
R ðω0Þ

Gð0Þ�
R ðω0Þ

e−iωt−iω
0t0 þ 2πδðω − ω0Þ

�
η2ωω0 þ 1

2

�
ðe−iωtþiω0t0 Þ

�
þ H:c:; ð62Þ
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where Gð0Þ
R is the Fourier transform of the retarded

Green’s function in the normal vacuum state obtained
by (32). In the above expression, we have introduced the
simplest window function WðωÞ given by the unit-step
functions

WðωÞ ¼ 1; if ω0 − Δ ≤ ω ≤ ω0 þ Δ: ð63Þ

Thus only modes within the frequency band ω0 − Δ ≤
ω ≤ ω0 þ Δ are excited to the squeezed vacuum. The
other modes remain in normal vacuum. We can choose a
smoother window function as long as it falls off to
zero sufficiently fast outside the frequency band of
interest. Apparently, in (62) there are two distinct con-
tributions to the Green’s function. The second terms
of (62) are the stationary component. However, there
exists a nonstationary component, and a time-dependent
external field is required to squeeze the vacuum. From the
perturbed holographic influence functional derived in (43),
the corrections to the Hadamard function of boundary

fields in vacuum (33), denoted by GðϕÞ
H ðt; t0Þ, can be

obtained as

GðϕÞ
H ðt; t0Þ ¼

Z
∞

0

dω
2π

Z
∞

0

dω0

2π
2Gð0Þ

H ðωÞ

× fϕðωþ ω0; rbÞe−iωt−iω0t0

þ ϕðω − ω0; rbÞe−iωtþiω0t0 þ H:c:g: ð64Þ

In the limits of small squeezing parameters and the
narrow bandwidth (Δ=ω0 < 1) in (63), when ω and ω0
lie within the frequency band, we have ω ≈ ω0. If we
compare (64) with (62), the field φð2ωÞ obtained from
ϕðω; rbÞ in (37) can be related to the squeezing
parameters up to a constant phase by

r−2−zb φðωþ ω0 ≈ 2ωÞ ¼ −rωωΓ
�
3

2
þ 1

z

��
ω

z

�
−2þz

2z

; ð65Þ

where the mode functions (57) can be expressed in
terms of the retarded Green’s function and Hadamard
function as

π2α0

2
U2

ω ¼ Gð0Þ
H ðωÞ

Gð0Þ
R ðωÞGð0Þ�

R ðωÞ
: ð66Þ

The large rb limit is taken in (65). For a large but finite
rb, the squeezing parameters are typically small.
In the following we will consider the subvacuum effects

for small squeezing parameters so as to be consistent with
the approximations we adopted here. The above identi-
fication provides a possible scheme for the dual gravity
theory to generate metric perturbations that may correspond
to the squeezed vacuum states of the boundary fields, as
suggested in [51]. The physical picture is that the gravi-
tational waves are generated somewhere at small r and then
propagate toward the boundary at larger r. On their way to
reach the boundary, the waves induce fluctuations to the
string dynamics, and thus excite the quantum state of a
string in such a way that their effects on the end point can
be interpreted as those due to the squeezed vacuum
fluctuations of the boundary field. However the faithful
identification of the dual description needs the order by
order comparison of the correlators, obtained from bulk
theory and boundary field theory, in terms of small
squeezing parameters. This work is under way.
If we choose the frequency-independent squeezing

parameters ξω;ω0 ¼ 2πξδðω − ω0Þ within the frequency
band, the difference between the velocity dispersion due
to squeezed vacuum and normal vacuum, defined by
δhðΔVÞ2iξ ≡ hðVðtÞ − Vð0ÞÞ2iξ − hðVðtÞ − Vð0ÞÞ2i0, can
be derived directly from the mode expansion (56),

δhðΔVÞ2iξ ¼
Z

∞

0

dω
2π

WðωÞ 2Gð0Þ
H ðωÞ

Gð0Þ
R ðωÞGð0Þ�

R ðωÞ
ω2½þμωνωðe−iωt − 1Þ2 þ μων

�
ωðeþiωt − 1Þ2 þ 2η2ωðe−iωt − 1Þðeþiωt − 1Þ�

¼
Z

ω0þΔ

ω0−Δ

dω
2π

Gð0Þ
H ðωÞ

Gð0Þ
R ðωÞGð0Þ�

R ðωÞ
ω216½−μη cos½ωt − θ� þ η2�sin2 ωt

2
; ð67Þ

where the mode functions can be written in terms of the
retarded Green’s function and Hadamard function (66), and
the window function (63) is introduced. Thus, the above
expression of the shifted velocity has taken account of not
only the stochastic effects of the environmental quantum
fields through the Hadamard function, but also the dissipa-
tive effects of the retarded Green’s function. The saturated

value of the shifted velocity dispersion can be found from the
late-time behavior of (67) in the limit ðω0 � ΔÞt ≫ 1. In this
case the main contributions to the ω-integration come from
the regions of small ω. The small ω expansion of

Gð0Þ
H ðωÞ=ðGð0Þ

R ðωÞGð0Þ�
R ðωÞÞ takes different forms for 1 <

z < 2 and z > 2, and they are, respectively, given by
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Gð0Þ
H ðωÞ

Gð0Þ
R ðωÞGð0Þ�

R ðωÞ
¼ 4α0zrz−2b

ω2

�
J21

z−
1
2

�
ω

zrzb

�
þ Y2

1
z−

1
2

�
ω

zrzb

��
−1

≃
( 2

α0 N 1<z<2m−2ω−3þ2=z; N 1<z<2 ¼ 1
Γ2ð1zþ1

2
Þ ; 1 < z < 2;

2π2α0N z>2ω
−1−2=z; N z>2 ¼ 1

Γ2ð−1
zþ1

2
Þ ; z > 2:

ð68Þ

There is a dramatic change at z ¼ 2. Notice that different ω dependence in these two regimes of z is mainly attributed to the
fact that the low frequency behavior of the retarded Green’s function is dominated by the inertial mass term when 1 < z < 2
and by the γ term when z > 2.
The change in the velocity dispersion at late time is given by

δhðΔVÞ2iξ ≃
8><
>:

4N 1<z<2
πα0 gþðr; θÞ ½ðω0þΔÞ2=z−ðω0−ΔÞ2=z�

m2 þOððω0 � ΔÞ−1þ2=z=m2tÞ; 1 < z < 2;

4πα0N z>2

ðz−1Þ gþðr; θÞ½ðω0 þ ΔÞ2−2=z − ðω0 − ΔÞ2−2=z� þOððω0 � ΔÞ1−2=z=tÞ; z > 2;
ð69Þ

where the function g� of squeezing parameters is defined as

g�ðη; θÞ ¼ 2η2 � ημ cosðθÞ: ð70Þ
Thus, the evolution of the shifted velocity dispersion of the
particle due to the squeezed vacuum of environment fields
will reach a saturated value at late times, following a power
law like t−1.
Notice that for some particular choices of squeezing

parameters, the function gðη; θÞ can be negative, leading to
the so-called subvacuum phenomenon. The most negative
value can be found as

η2 −
1

2
ημ ≥ −

2 −
ffiffiffi
3

p

4
> −

1

2
: ð71Þ

Therefore, the subvacuum effect has a lower bound given
by the inequality above. This is expected because the sum
of the velocity dispersion arising from the normal vacuum
and the shifted value due to the squeezed vacuum must be
positive. Thus, the shifted value has to be greater than the
minus of the result from the pure vacuum, which in turn
constrains how negative the shifted value can reach.
In the case of 1 < z < 2, the subvacuum phenomenon

shown in the velocity dispersion is found to have the 1=m2

dependence and is consistent with the findings in weakly
coupled fields [10] for the case of z ¼ 1. Although this
subvacuum effect is enhanced by a strongly coupling
constant λ ∝ 1=α0, the heavy mass dependence m2 ∝ λ2

will suppress this effect. As for the z > 2 case, since the
dominant term of the retarded Green’s function comes
from the γ term in (51) and (53), the coupling constant
dependence in the γ term leads to the 1=λ dependence of the
subvacuum effect, which is also relatively weak for a large
λ. To make an estimate, the typical length scale L, which is
associated with the breakdown of Lorentz invariance in
quantum critical theory, is introduced [58]. If the scale 1=L

is the largest momentum scale in the system, the large mass
m can be parametrized as m ¼ λ=L. Then, we find that

jδhðΔVÞ2iξj≃

8>>><
>>>:

1

λ

�
L
λ0

�
2=z

�
Δ
ω0

�
; 1 < z < 2;

1

λ

�
L
λ0

�
2−2=z

�
Δ
ω0

�
; z > 2;

ð72Þ

where λ0 is a typical wavelength of squeezed vacuum
modes, and λ0 > L in general. The result of the shifted
velocity dispersion is suppressed by a large λ but is in
principle observable.

IV. DECOHERENCE AND RECOHERENCE

The above influence functional can also be applied to
study the nature of quantum coherence of a particle when it
interacts with the environment. We consider the initial state
jΨðtiÞi of the particle to be a coherent superposition of two
localized states. Additionally, both states can be arranged to
have the same spatial point at the moment ti,

jΨðtiÞi ¼ jψ1ðtiÞi þ jψ2ðtiÞi; ð73Þ

and then the initial density matrix of the state can be
written as

ρqðtiÞ ¼ jΨðtiÞihΨðtiÞj
¼ ρ11ðtiÞ þ ρ22ðtiÞ þ ρ21ðtiÞ þ ρ12ðtiÞ; ð74Þ

where ρmnðtiÞ ¼ jψmðtiÞihψnðtiÞj. We assume that these
two localized states jψmi move along their respective paths
Cm such that they leave from the same spatial point and
recombine at the location qf at later time tf. The interfer-
ence pattern of the superposed state at tf is given by the off-
diagonal elements of the reduced density matrix. Here we
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assume that the de Broglie wavelength of the localized
states is much shorter than the length scale of interest so
that the width of the wave functions and their subsequent
wave function spreading can be legitimately neglected [11].
Thus, the leading effect of the reduced density matrix can
be obtained by evaluating the propagating function (6)
along a mean trajectory of the localized states dictated by
an external force. Then ρrðqf; qf; tfÞ now becomes

ρrðqf; qf; tfÞ ¼ jψ1ðqf; tfÞj2 þ jψ2ðqf; tfÞj2 þ 2eW½q̄þ;q̄−�

× RefeiΦ½q̄þ;q̄−�ψ1ðqf; tfÞψ�
2ðqf; tfÞg;

ð75Þ

where the W and Φ functionals are the phase and modulus
of the influence functional defined by

F ½qþ; q−� ¼ expfW½qþ; q−� þ iΦ½qþ; q−�
�
; ð76Þ

and they are

Φ½q̄þ; q̄−� ¼ −
1

2

Z
dt

Z
dt0½q̄þðtÞ − q̄−ðt0Þ�GRðt; t0Þ

× ½q̄þðtÞ þ q̄−ðt0Þ�; ð77Þ

W½q̄þ; q̄−� ¼ −
1

2

Z
dt

Z
dt0½q̄þðtÞ − q̄−ðt0Þ�GHðt; t0Þ

× ½q̄þðtÞ − q̄−ðt0Þ�; ð78Þ

evaluated along the classical trajectories, C1 ¼ q̄þ and
C2 ¼ q̄−. The modulus of the influence functional W
reveals decoherence between the coherently superposed
states, and the phase functionalΦ results in an overall phase
shift for the interference pattern. Both effects on the particle
states arise from the interaction with quantum fields. The
retarded Green’s function and Hadamard function con-
structed out of quantum critical fields have been obtained
by the holographic method.
In [12,47], we studied the decoherence effect on a

quantum particle from the vacuum state of electromagnetic
fields and quantum critical fields, respectively. However
from what we have learned above, the retarded Green’s
function of strongly coupled quantum critical fields plays
an essential role in determining the trajectory, otherwise
driven by an external or noise force. In addition, its
different dominant term for 1 < z < 2 and z > 2 gives
rise to a rather different relaxation behavior of the particle.
Accordingly, we will reexamine this effect by taking
account of the retarded Green’s function properly into
the equation of motion. So, for a prescribed force whose
Fourier transform is defined by FexðωÞ≡mω2ζðωÞ, the
trajectory follows the solution of (54):

qζðωÞ ¼ mω2ζðωÞ=GRðωÞ; ð79Þ

where the form of ζ will be specified later. We consider the
mean trajectories of two localized states specified by q̄� ¼
�qζ in the interference experiment and then for the time-
translation-invariant Green’s function, the decoherence
functional is given by

W ¼ −2
Z

dω
2π

mω2ζðωÞ
GRðωÞ

GHðωÞ
mω2ζð−ωÞ
G�

RðωÞ
: ð80Þ

The function ζðtÞ is required to be sufficiently smooth and
is chosen to take the form [11]

ζðtÞ ¼ l0

τ40
ðt2 − τ20Þ2; ð81Þ

where 2l0 characterizes a length scale for path separation
and 2τ0 is the effective flight time for −τ0 < t < τ0 as in
[12]. These two prescribed classical trajectories are sym-
metric with respect to the initial position so that qþðtÞ þ
q−ðtÞ ¼ 0 and thus we will not see any phase shift, Φ ¼ 0
from (77). We now focus on the decoherence functionalW
contributed by the quantum critical fields. For the envi-
ronment in its normal vacuum state, the retarded Green’s

function Gð0Þ
R and Hadamard function Gð0Þ

H are given in (32)
and (33), respectively, and then the decoherence functional
is found to be

W0 ≃

8>>><
>>>:

−
2NW0

1<z<2

πα0
l2
0

τ2=z0

þOð1=r2bτ20Þ; 1 < z < 2;

−2πα0NW0

z>2

m2l2
0

τ2−2=z0

þOð1=r2bτ20Þ; z > 2;

ð82Þ

where

NW0

1<z<2 ¼ 4N 1<z<2
212−

2
z

z2ð4z − 1Þ ð5z − 2Þðz − 1Þ

× cos

�
π

z

�
Γ
�
−6þ 2

z

�
;

NW0

z>2 ¼ 4N z>2
210þ

2
z

z2ð3zþ 1Þ ð3zþ 2Þðz − 1Þ

× cos
�
π

z

�
Γ
�
−4 −

2

z

�
:

The negative value of the W function indicates the
decoherence effect on the wave function of the particle.
Thus, in the case 1<z< 2, for a fixed travel time τ0, the
magnitude of jW0j increases as z increases, and a large
coupling constant λ∝ 1=πα0 renders significant decoherence.
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As for z > 2, the combined results from the respective 1=λ
and m2 ∝ λ2 dependence also cause large decoherence. In
this range of z, the value of jW0j decreases as z increases
instead. The most significant decoherence effect occurs at
z ¼ 2. For z ¼ 1, the result is consistent with the weakly
coupled relativistic field case apart from its large coupling
constant dependence, giving large decoherence.

Now we study the W function associated with the
squeezed vacuum state. The above expression (80) needs
to be modified to account for the nonstationary component
of the Green’s function. The associated decoherence func-
tional is defined by Wξ ¼ W0 þ δWξ, where δWξ is the
modification from the result due to the normal vacuum of
the field, and is given by

δhWiξ ¼ −16
Z

ω0þΔ

ω0−Δ

dω
2π

Gð0Þ
H ðωÞ

Gð0Þ
R ðωÞGð0Þ�

R ðωÞ
m2ω4ζðωÞζð−ωÞ½μη cos½ωt − θ� þ η2�: ð83Þ

The straightforward calculations show at large time scales τ0 ≫ 1=ω0,

δWξ ≃

8>>><
>>>:

−
2N 1<z<2

πα0
g−ðr; θÞ

l2
0

τ2=z0

1024

ðω0τ0Þ4−2=z
Δ
ω0

½sinðω0τ0Þ þOð1=ðω0τ0Þ�; 1 < z < 2;

−2πα0N z>2g−ðr; θÞm2
l2
0

τ2−2=z0

1024

ðω0τ0Þ2þ2=z

Δ
ω0

½sinðω0τ0Þ þOð1=ðω0τ0Þ�; z > 2;

ð84Þ

where we have assumed the narrow bandwidth, namely,
ω0 > Δ. Thus, by choosing some particular values of
squeezing parameters, g−ðr; θÞ in (70) can be negative
with the most negative value −ð2 − ffiffiffi

3
p Þ=2. Thus, an

increase of contrast, as compared to that from the normal
vacuum, is seen for δWξ > 0 due to g−ðr; θÞ < 0 for certain
values of squeezing parameters. This is the phenomenon of
recoherence, which is another subvacuum effect. For
1 < z < 2, a strong coupling λ ∝ 1=α0 may render an
enhancement on this recoherence effect. For z > 2, this
subvacuum effect is also enhanced due to large m2=λ ∝ λ
dependence. To have a rough estimate, we consider the
typical frequency of squeezed vacuum modes such that
ð1=ω0Þ≡ λ0 ∼ l0 [11]. When g−ðr; θÞ < 0 in the expres-
sion (84) for appropriate squeezing parameters, an order of
the magnitude estimation of the recoherence phenomenon
is found to be

δWξ ≃

8>>><
>>>:

λ

�
l0

τ0

�
4
�
l0

L

�
2−2=z

�
Δ
ω0

�
; 1 < z < 2;

λ

�
l0

τ0

�
4
�
l0

L

�
2=z

�
Δ
ω0

�
; z > 2;

ð85Þ

where we have again parametrized m≃ λ=L, and L, the
Lorentz symmetry breaking scale in quantum critical field
theory, is introduced. In the z ¼ 1 case, the ðl0=τ0Þ4
dependence is consistent with the findings from the
environment of a weakly coupled relativistic field [11].
For a general z, this phenomenon will also depend on l0=L.
When l0 > L, the maximum recoherence effect is found at
z ¼ 2, whereas the minimum effect happens at z ¼ 1 and

z → ∞. The presence of strongly coupled quantum critical
fields in squeezed vacuum states gives rise to potentially
large recoherence effects on the wave function of a particle.
Thus the large coupling constant may offer the possibility
to observe these subvacuum phenomena.

V. SUMMARY AND OUTLOOK

Using the holographic influence functional approach, the
effects of the strongly coupled quantum critical fields on
the dynamics of a particle are studied. The dual description
is a string moving in (4þ 1)-dimensional Lifshitz geom-
etry. We first study the influence on the velocity dispersion
of a particle from the squeezed vacuum states of the
quantum critical fields. We find that the evolution of the
velocity dispersion will reach a constant at late times,
where its relaxation dynamics follows a power law in time
as t−1. With particular choices of squeezing parameters, the
saturated value is found to be smaller than the value given
by the normal vacuum background. This leads to a
subvacuum effect. The reduction in the velocity dispersion
changes dramatically as the dynamical exponent passes
through z ¼ 2. This subvacuum effect, which is found to be
proportional to 1=λ ∝ α0, is suppressed by a large value λ in
quantum field theory, but it is in principle observable. We
then study the decoherence dynamics of a quantum particle
induced also by the squeezed vacuum fluctuations. We find
that coherence loss can be shown to be less severe in certain
squeezed vacuums than in normal vacuum. This recovery
of coherence is understood as recoherence, another mani-
festation of subvacuum phenomena. We make some esti-
mates of the degree of recoherence, which is enhanced by a
large coupling constant λ, and thus can potentially be
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measurable. We also show that there exists a bound to
constrain the above-mentioned subvacuum phenomena.
Finally, we would like to point out some of our future

works. In view of a close relation between the holographic
approach and the field-theoretical study, an important next
step is to study the issue of negative energy density and find
the associated quantum inequality, which constrains the
magnitude and duration of the negative energy density in the
strongly coupled field, using the method of the holography

principle. This might give a profound implication to the
existence of exotic spacetimes sourced by negative energy.
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