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We derive a formula which applies to conformal field theories on a spatial torus and gives the asymptotic
density of states solely in terms of the vacuum energy on a parallel plate geometry. The formula follows
immediately from global scale and Lorentz invariance, but to our knowledge has not previously been made
explicit. It can also be understood from the fact that log Z on T2 × Rd−1 transforms as the absolute value of
a nonholomorphic modular form of weight d − 1, which we show. The results are extended to theories
which violate Lorentz invariance and hyperscaling but maintain a scaling symmetry. The formula is
checked for the cases of a free scalar, free Maxwell gauge field, and freeN ¼ 4 super Yang-Mills. The case
of a Maxwell gauge field gives Casimir’s original calculation of the electromagnetic force between parallel
plates in terms of the entropy of a photon gas.
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I. INTRODUCTION

The study of two-dimensional conformal field theory
(CFT) contains many rich and powerful results, with wide
applications from condensed matter systems to quantum
gravity and holography. One of the central tools of the
theory is modular invariance on a Euclidean torus back-
ground. Among other things, modular invariance implies
a duality between the partition function at high temper-
ature and at low temperature. Such dualities often lead to
strong analytic results. As a primitive example, the high-
temperature/low-temperature duality of Kramers and
Wannier exactly determined the critical point of the two-
dimensional Ising model [1]. In the case of a generic
conformal field theory, the temperature-inversion duality
can be used to derive theCardy formula,which depends only
on the central charge of the CFTand gives the degeneracy of
states at high energy in the Hilbert space [2]. The states
are on a circle and are in one-to-one correspondence with
local operators onR2. The derivation of the formula uses two
key facts of two-dimensional CFTs. The first is the high-
temperature/low-temperature duality already mentioned,
which allows one to project the high-temperature partition
function to the contribution of the vacuum sector of the
theory. Second, the vacuum energy (or Casimir energy) is
provided by the anomalous transformation of the stress-
energy tensor when conformally mapping the plane to the
unit cylinder, Evac ¼ −c=12.
It is natural to wonder about higher-dimensional analogs

of modular invariance, temperature-inversion dualities,
and the Cardy formula [3]. The primary difficulty lies in
the possibility of spatial curvature. To count states which
are in one-to-one correspondence with local operators, one
has to consider the manifold Sd ×R, where the Sd is curved
for d > 1. This curvature couples to the CFT fields and
spoils the possibility of a universal formula. Furthermore,
the spatial curvature introduces scheme dependence into

the calculation of the Casimir energy through possible
counterterms which are integrals of local curvature invar-
iants [4,5].1

In this paper we will instead consider an arbitrary CFT
on Td ×R. This manifold is not related to Rdþ1 by a
conformal transformation unless d ¼ 1. At finite temper-
ature the thermal partition function should be invariant
under SLðdþ 1;ZÞ=Z2, which contains the invariance of
swapping cycles. We will see that the Cardy formula
naturally generalizes and gives formulas for the thermal
entropy at high temperature and asymptotic density of
states in terms of the vacuum (or Casimir) energy of the
CFT on S1 × Rd−1:

S ¼ ðdþ 1ÞTdVdεvac;

log ρðEÞ ¼ dþ 1

d
d

dþ1

ðεvacVdÞ 1
dþ1E

d
dþ1: ð1Þ

This does not really require conformal invariance. As we
will review below, for any relativistic QFT, the free energy
density and the Casimir energy density are two sides of the
same coin. Adding scale invariance to the mix then shows
that the thermal entropy is governed entirely by a scale-
independent number εvac which characterizes the Casimir
energy. This dimensionless number is not given by the
anomalies of the theory and is generically dependent on the
coupling constants. Whereas the partition function in two

1Interestingly, strongly coupled field theories with holographic
duals seem to admit a formula on Sd ×R, known as the Cardy-
Verlinde formula [6]. This formula is only universal for holo-
graphicCFTs and becomes ambiguous atweak coupling [7]. Some
interesting higher-dimensional supersymmetric Cardy formulas
have recently been constructed in [8–10], and an extension of the
parity-odd part of the Cardy formula to higher dimensions [11–17]
is reviewed in [18]. In two dimensions, there are extensions of the
formula to nonconformal field theories [19–21].
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dimensions is a modular invariant function, we will find
that the logarithm of the partition function transforms as the
absolute value of a (not necessarily holomorphic) modular
form of weight d − 1:

logZ

�
aτþb
cτþe

;
aτ̄þb
cτ̄þe

�
¼ jðcτþeÞd−1j logZðτ; τ̄Þ; ð2Þ

where τ is the modular parameter of the two-torus made
up of the thermal cycle and finite spatial cycle. To be clear,
the modular invariance is not anomalous; the reason for the
prefactor is that we have kept the size of the spatial
background fixed under modular transformations that
would otherwise change it. This is enforced by using the
usual two-dimensional modular parameter τ. The logarithm
of the partition function is still invariant under a general
SLðdþ 1;ZÞ=Z2 transformation. This will become clear in
the next section. We can also define a modular-invariant
function

Fðτ; τ̄Þ ≔ β
d−1
2 logZðτ; τ̄Þ ¼ F

�
aτ þ b
cτ þ e

;
aτ̄ þ b
cτ̄ þ e

�
ð3Þ

with β ¼ Imτ. Alternatively, we could have defined an
invariant density by dividing by the spatial volume.
These formulas induce a high-temperature/low-

temperature duality from which the entropy formulas
descend. We will also derive analogous formulas for
theories which violate Lorentz invariance and hyperscaling
but maintain an anisotropic scaling symmetry.

II. SWAPPING CYCLES

We will begin with a quantum theory defined by a
Euclidean path integral. The theory will be on a rectangular
spatial torus Td with no twists, i.e., no angular potentials.
We will specify the necessary symmetries as we proceed.
We will not actually use the full conformal symmetry
except when we comment on the connection to local
operators below.
The partition function of the theory at inverse temper-

ature β may be given as

ZðβÞ ¼
Z

½DΦ�e−IE ¼ TrL×Td−1e−βH: ð4Þ

The field Φ is a general placeholder for the fields of the
theory. The spatial manifold on which the Hilbert space is
defined is written explicitly as L × Td−1, i.e., one of the
cycles has length L. Using Euclidean rotational invariance
between the thermal cycle and the spatial cycle of length L
to perform a 90 degree rotation, we can write the partition
function as

ZðβÞ ¼ Trβ×Td−1e−LH: ð5Þ

To admit a correct interpretation as a thermal partition
function, one needs to assign the usual thermal periodicity
conditions along the cycle L.
We now take L large to project the partition function to

the ground state of the theory on the torus β × Td−1. This
gives

ZðβÞ ≈ e−LEvac;β×Td−1 : ð6Þ

Finally, we take β smaller than all the other cycles of the
torus and assume the theory is scale invariant. In that case,
the background is effectively S1 ×Rd−1 with periodicity β
for the S1, so the vacuum energy on this background is
given by scale invariance as Evac;β×Td−1 ¼ −εvacVβ×Td−1=
βdþ1. Vβ×Td−1 is the volume of the spatial torus β × Td−1

(which is effectively S1 ×Rd−1) and εvac is a pure number
independent of any dimensionful scales. The spatial S1

inherits thermal periodicity conditions. This gives

logZðβÞ ≈ εvacLVβ×Td−1=βdþ1 ¼ εvacVL×Td−1=βd; ð7Þ

where in the final expression we translated to quantities for
the original torus using LVβ×Td−1 ¼ βVL×Td−1 . We can now
get the thermodynamic entropy in terms of the volume of
the original spatial torus Vd ≔ VL×Td−1 as

S ¼ ð1 − β∂βÞ logZ ¼ ðdþ 1ÞTdVdεvac: ð8Þ

The microcanonical density of states is obtained by inverse
Laplace transforming the partition function:

ρðEÞ ¼
Z

dβZðβÞeβE ⇒ log ρðEÞ

¼ dþ 1

d
d

dþ1

ðεvacVdÞ 1
dþ1E

d
dþ1; ð9Þ

where we evaluated the integral by a saddle-point approxi-
mation for large E, obtaining β� ¼ ðdεvacVd=EÞ 1

dþ1. This
shows that the thermodynamic entropy at large T and the
degeneracy of states at large E are given solely in terms of
the Casimir energy at zero temperature on S1 ×Rd−1,
where the periodicity conditions along the S1 are inherited
from the periodicity conditions along the original ther-
mal cycle.
It should be noted that εvac is not related to the anomalies

of the theory. This is easily illustrated by the example of
N ¼ 4 super Yang-Mills, for which εvac depends on the
exactly marginal ‘t Hooft coupling. For a CFT at high
temperature we can often ignore the effects of spatial
curvature, so we can consider the spatial manifold to be a
sphere. By the state-operator correspondence this could
equally well be a formula for the degeneracy of local
operators of scaling dimension E of the CFT.
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A. Modular invariance I

So far we have only used the relationship between high
and low temperatures asymptotically. To precisely mimic
what happens in 1þ1 dimensions (i.e., a high-temperature/
low-temperature duality where a given CFT on a given
background at a given temperature maps to the same CFT
on the same background at some inversely related temper-
ature), we can consider the spatial manifold S1 ×Rd−1. We
pick periodicity L for the S1. The plane should be under-
stood as regulated into a large torus with equal-length
cycles L∞ ≫ fβ; L; L2=βg. We will continue to write sums
for the partition function since the spectrum can be
discretized in this way.
We swap the thermal and spatial S1 cycles and perform a

scale transformation by L=β. This scale transformation
restores the spatial cycle to size L and changes the thermal
cycle to size L2=β. The volume of the new plane ~Rd−1 has
increased by a factor of ðL=βÞd−1. This relates the partition
function on the background S1 × Rd−1 to the partition
function on the larger background S1 × ~Rd−1:

ZðβÞ ¼
X

e−βE ¼
X

e−ðL2=βÞ ~E ¼ ~Z

�
L2

β

�
: ð10Þ

Due to the large volume of the plane, we expect that
logZ ∼ Vd−1. We can therefore scale out the factor of
ðL=βÞd−1 from the volume of the larger plane to return to
our original plane. This gives the following high-temperature/
low-temperature duality in dþ 1 dimensions:

logZðβÞ ¼
�
L
β

�
d−1

logZ

�
L2

β

�
: ð11Þ

This relation applies at any β and L, and it has corrections
suppressedby inverse powersof the length scaleL∞. The self-
dual point of the transformation is β ¼ L. To end with the
same theory after swapping cycles, one should either start
with the same periodicity conditions along both cycles or sum
over all possible structures. The entropy can be derived
directly from this invariance and agrees with that of the
previous subsection. There is a subtlety associated with
the fact that there are many states close to the vacuum; see
the Appendix for details.
Defining τ as the usual modular parameter of the two-

dimensional torus will let us make a statement about the
general SLð2;ZÞ transformation:

τ →
aτ þ b
cτ þ e

; τ̄ →
aτ̄ þ b
cτ̄ þ e

: ð12Þ

This requires an overall rigid rescaling of the torus by
jcτ þ ej−1. Performing the same trick as before, we scale
out this factor from the volume of ~Rd−1 to get

logZðτ; τ̄Þ¼ jðcτþeÞ1−dj logZ
�
aτþb
cτþe

;
aτ̄þb
cτ̄þe

�
: ð13Þ

This implies that logZðτ; τ̄Þ transforms as the absolute
value of a (not necessarily holomorphic) modular form of
weight d − 1. Holomorphy would require Im½τ� → Im½τ� þ
i as a symmetry, which generally fails as in the case of free
field theories with d > 1.
We can transform this into a modular-invariant function

Fðτ; τ̄Þ by using Im½aτþb
cτþe� ¼ Im½τ�=jcτ þ ej2:

Fðτ; τ̄Þ≔ Im½τ�d−12 logZðτ; τ̄Þ¼F

�
aτþb
cτþe

;
aτ̄þb
cτ̄þe

�
: ð14Þ

In more physical notation, and ignoring angular momen-
tum, we have

FðβÞ ¼ β
d−1
2 logZðβÞ ¼ F

�
L2

β

�
: ð15Þ

B. Modular invariance II

There is another special torus on which a high-
temperature/low-temperature duality becomes transpar-
ent. It is the torus with cycle lengths β, L, and Li ¼
ðL=βÞLi−1 for i ¼ 1;…; d − 1 with L0 ≔ L. In this case,
we can swap the β and Ld−1 cycles and rescale by L=β.
The spatial cycle lengths of the torus under this com-
bined rotation and scaling remain invariant but become
permuted among one another. They can be taken back to
their original orientation by d − 1 swaps of cycle pairs.
This leaves us with precisely the same spatial torus, with
a thermal cycle of length Ld−1L=β ¼ LðL=βÞd. In other
words,

ZðβÞ ¼ Z

�
L

�
L
β

�
d
�

ð16Þ

on this special torus. This invariance differs from the one
in the previous subsection, but mimics the invariance of
the two-dimensional hyperscaling-violating theories dis-
cussed in Sec. III. As a consistency check, notice that the
thermal entropy at large temperature obtained from
this invariance is the same as derived in the previous
subsections.

C. Modular invariance Iþ II

We can combine the methods of the previous two
subsections by taking a torus with n of the directions
combining into the special torus of Sec. II B and the other
d − n directions are large. This gives

logZðβÞ ¼
�
L
β

�
d−n

logZ

�
L

�
L
β

�
n
�
: ð17Þ
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III. GENERALIZATIONS

A. Hyperscaling violation

We first consider a two-dimensional theory with hyper-
scaling-violation exponent θ on T 2. By hyperscaling
violation we mean that the stress-energy tensor has
dimension 2 − θ∶TμνðλxÞ ¼ λ−2þθTμνðxÞ.2 After swapping
cycles we can write a trivial equivalence as below:

ZðβÞ ¼
X

e−β
R

L

0
dxTttðxÞ ¼|{z}

swap

X
e−L

R
β

0
dxTttðxÞ

¼|{z}
trivial

X
e−λ

1−θL
R

β

0
λdxλ−2þθTttðxÞ: ð18Þ

Upon identifying λ ¼ L=β we can reinterpret the integral in
the final expression as the energy on length L, which leaves
us with an invariance of the form

ZðβÞ ¼ Z

�
L

�
L
β

�
1−θ

�
: ð19Þ

This is the same type of invariance as (16). In this case,
however, we can define a “refined” partition function which
is modular invariant in the usual sense:

ZrefðβÞ ≔
X

e−βE
1=ð1−θÞ

⇒ ZrefðβÞ ¼ Zref

�
L2

β

�
: ð20Þ

In higher dimensions, the special torus of Sec. II B gives

ZðβÞ ¼ Z

�
L

�
L
β

�
d−θ

�
: ð21Þ

We can also consider the background T2 ×Rd−1 and use
the results of Sec. II A to get

logZðβÞ ¼
�
L
β

�
d−1

logZ

�
L

�
L
β

�
1−θ

�
: ð22Þ

Using the refined partition function defined above, we have

logZrefðβÞ ¼
�
L
β

�
d−1

logZref

�
L2

β

�
: ð23Þ

From the refined partition function we can define a
modular-invariant function as before:

Frefðτ; τ̄Þ ≔ Im½τ�d−12 logZrefðτ; τ̄Þ: ð24Þ

The asymptotic density of states follows from these
modular properties, but we will obtain it for a more general
class of theories in the next subsection.

B. Anisotropic scaling

We now consider a theory which has an anisotropic
scaling symmetry andwhich violates hyperscaling.We stick
to T 2 ×Rd−1 and assume a rotational invariance between
the cycles of the T 2. A special torus analogous to Sec. II B
can be defined in this case as well, but we omit the details.
We begin by using rotational invariance to exchange the

thermal cycle β with the spatial cycle L. We can now
perform the scaling symmetry t → λt, xi → λzixi with x1 the
coordinate along L and z1 ¼ 1. We pick λ ¼ L=β to restore
the size of the spatial circle to L. This scales the new
thermal cycle L by a factor of L=β. The energy will
transform anomalously according to the hyperscaling-
violation exponent θ, giving a factor of ðL=βÞ−θ. The

volume of the Rd−1 piece rescales by ðL=βÞ
P

d
i¼2

zi, which
we factor out as before. Altogether we have

logZðβÞ ¼
�
L
β

�Pd
i¼2

zi
logZ

�
L
�
L
β

�
1−θ

�
: ð25Þ

Defining deff ¼
P

d
i¼1 zi − θ > 0, the high-temperature

partition function projects to the ground state:

ZðβÞ ≈ expð−Ldeffþ1TdeffEvacÞ ð26Þ

⇒ S ¼ −ðdeff þ 1ÞLdeffþ1TdeffEvac: ð27Þ

The vacuum energy scales as Evac ∼ Vd=Ldeffþ1 (notice that
in these theories ½Li� ¼ −zi). There is an additional
dimensionful scale in hyperscaling-violating theories,
e.g., the Fermi momentum, which we have left out but
can be inserted to restore dimensions. The asymptotic
density of states is given as

log ρðEÞ ¼ deff þ 1

deff
deff

deffþ1

ð−EvacÞ
1

deffþ1E
deff

deffþ1L: ð28Þ

For d ¼ 1, θ ≠ 0, and zi ¼ 1 this reduces to the formula
in [21,22].
Let us remark on theories with rotational invariance but

without scale invariance, which may shed some light on the
previous derivations. We begin with (6) to find

S¼ð1−β∂βÞ logZ
¼ðdþ1ÞTdVdεvac;β×Td−1 −VdTd−1∂βεvac;β×Td−1 : ð29Þ

We have again defined Evac;β×Td−1 ≔ −εvac;β×Td−1Vβ×Td−1=
βdþ1 ¼ −εvac;β×Td−1Vd=βd, where this time εvac;β×Td−1 can
depend on the cycle lengths. We see that the benefits of a
scaling symmetry were to (a) keep the background space

2In holographic models of hyperscaling violation the shift θ is
more appropriately associated with a scaling dimension of the
quantum state, but since the partition function under consider-
ation here only involves the one-point function hTtti this will
make no difference for us.
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the same and (b) determine the scaling of Evac with the
dimensionful parameters of the theory.

IV. EXAMPLES

In this section we perform a few checks of formula (8).
It is important to note that when calculating Casimir
energies, one only keeps pieces that have a dependence
on the size of the S1 and cannot be mimicked by the
addition of a cosmological constant term to the action. Such
pieces are observable.

A. Free massless scalar

The Casimir energy for a free massless scalar on
S1 ×Rd−1 has been computed in [23]. The result for the
energy is

εvac ¼
Γðdþ1

2
Þζðdþ 1Þ

πðdþ1Þ=2 : ð30Þ

The thermal entropy of a free scalar gas in volume Vd is
given as (see e.g., [24])

S ¼ dþ 1

πðdþ1Þ=2 Γ
�
dþ 1

2

�
ζðdþ 1ÞTdVd: ð31Þ

We see that the thermal entropy and Casimir energy are
related by formula (8).

1. Massive scalar

We reviewed above that the equivalence of the free
energy density with the Casimir energy density follows
immediately from the Euclidean path integral. Let us
then consider the massive scalar in four spacetime dimen-
sions. We will only consider the leading correction due to
the mass. The first correction to the Casimir energy density
is [25]

Evac

V
¼ −

π2

90L4
þ m2

24L2
; ð32Þ

while the free energy density is

F
V
¼ −

π2

90β4
þ m2

24β2
: ð33Þ

These two are clearly the same expression up to inter-
changing β ↔ L. Obtaining the entropy from the free
energy density will show that the leading pieces are related
by (8) whereas the subleading pieces are not. The more
general formula (29) will relate the subleading pieces
as well.

B. Free Maxwell gauge field and the force
between parallel plates

The only difference in the Casimir energy and thermal
entropy of a photon as compared to a scalar is a factor of
d − 1 to account for the number of polarization states of a
massless gauge field in dþ 1 dimensions. Formula (8)
therefore accounts for this case as well.
An interesting case is that of d ¼ 3, where we would like

to compare to Casimir’s original calculation of the induced
pressure acting on parallel conducting plates in an electro-
magnetic medium [26]. Tacking on the two polarization
states of the photon to our massless scalar calculation, we
have

εvac ¼ 2
ζð4ÞΓð2Þ

π2
¼ π2

45
: ð34Þ

The entropy of a photon gas is given as

S ¼ 4π2

45
V3T3: ð35Þ

As already stated, these two expressions are connected
by (8).
Casimir’s original calculation used Dirichlet boundary

conditions at the surfaces of the plates, whereas (8) relates
the entropy of the photon gas to the vacuum energy on a
torus, i.e., periodic boundary conditions. We can translate
boundary conditions from periodic to Dirichlet by taking
L → 2L in εvacL−4 [25,27].
In other words, we can derive Casimir’s result by

calculating the thermal entropy of a photon gas and
deducing the Casimir energy on the torus from (8).
Performing the rescaling L → 2L necessary to change
boundary conditions gives

EQED
vac ¼ S

64T3L4
¼ −

π2V3

720L4
: ð36Þ

Dividing by the volume and multiplying by L gives the
energy per unit area of the plates. Taking a derivative with
respect to L gives the pressure on the plates in terms of the
thermal entropy of the photon gas:

F
A
¼ −∂L

�
LEQED

vac

V3

�
¼ −

3S
64V3T3L4

¼ −
π2

240L4
: ð37Þ

C. N = 4 super Yang-Mills

We now consider noninteracting N ¼ 4 super Yang-
Mills in 3þ 1 dimensions. The field content of this theory
is a single UðNÞ gauge field, six adjoint scalars, and four
adjoint Weyl fermions. The fermions have antiperiodic
boundary conditions along the thermal circle which imply
antiperiodic boundary conditions on the spatial S1 ×R2 on
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which the Casimir energy is calculated. The Casimir energy
density and thermal entropy at weak coupling were first
calculated in [28] and [29], respectively. The results are

S ¼ 2π2

3
N2V3T3; εvac ¼

π2N2

6
: ð38Þ

These are again related by (8).

V. SUMMARY AND OUTLOOK

We have used higher-dimensional modular invariance
to extend the high-temperature/low-temperature duality of
two-dimensional CFTs to higher dimensions. We used the
new invariances to derive formulas for the thermal entropy
at high temperature and asymptotic degeneracy of states
on a torus and provided a few basic checks. For d ¼ 1 the
formula reduces to the usual Cardy formula. We also
provided generalizations to theories which violate hyper-
scaling and which have an anisotropic scaling symmetry.
As a simple application of our formula, we provided a new
derivation of the Casimir force between parallel conducting
plates in quantum electrodynamics.
The symmetries discussed above may be useful in

various applications to entanglement entropy. For example,
consider the nth Rényi entropy of a disk-shaped region.
This can be conformally mapped to the thermal entropy on
hyperbolic space [30]. For n ≪ 1, the temperature is very
large and we can ignore the curvature of the hyperbolic
space. In that case we can treat it as a large torus and use our
formula (8) to obtain the thermal entropy. One can also
analyze the second Rényi entropy of two strips which are
infinite in all directions except one. Under the replica trick
this is topologically T2 ×Rd−1.
Within holography, these formulas give the microscopic

entropy of large AdS-Schwarzschild black holes/branes
and hyperscaling-violating black branes. Generalizing
these formulas to include angular momentum gives the
microscopic entropy of boosted black branes and large
Kerr-AdS black holes. The strongly coupled vacuum
energy of the dual field theory is obtained in all cases
from the AdS soliton and its hyperscaling-violating cous-
ins. These applications to holography will be discussed in a
forthcoming paper [31].
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APPENDIX: HIGHER-DIMENSIONAL CARDY
FORMULA AND NEAR-VACUUM STATES

We have argued that on T 2 × Td−1, with the cycle lengths
L∞ on the Td−1 much bigger than the cycle lengths on L, β
on T 2, that we have

logZðβÞ ¼
�
L
β

�
d−1

logZ

�
L2

β

�
; ðA1Þ

with corrections suppressed by L∞. On first glance, the
derivation of our formulas (8) and (9) proceeds just as in
two dimensions. In particular, one takes L=β large to
project to the vacuum state:

ZðβÞ ¼
X

e−βE ¼
�X

e−
L2
β E
�ðL=βÞd−1

≈ e
−Ldþ1

βd
Evac :

ðA2Þ

However, there is an obvious subtlety. We have
L∞ ≫ L2=β, so the spacing of states above the vacuum
is tiny and there is a degeneracy piling up there. In other
words, one may suspect that you cannot cleanly project to
the vacuum as in two dimensions. There are different ways
to deal with this. One way is to allow L2=β ≫ L∞, even
though L; β ≪ L∞. This is possible, although it breaks our
interpretation of working on a torus with two directions
much smaller than the other d − 1 directions.3

The other way is to notice that even for L∞ ≫ L2=β the
degeneracy of states piling up near the vacuum cannot
compete with the leading piece. To illustrate the point, we
will consider three dimensions with cycle lengths
β ≪ L ≪ L∞. We will consider quantizations along all
three cycles and assume extensivity at high temperature. In
that case, we have

ZðβÞL×L∞
¼

X
e−βEL×L∞ ≈ ecLL∞=β2 ; ðA3Þ

ZðL∞ÞL×β ¼
X

e−βEL×β ≈ e−βEvac;L×β ¼ eεvacLL∞=β2 ; ðA4Þ

where c is the thermal coefficient and εvac is the number
characterizing the vacuum energy on a background that is
approximately S1 ×R. Both quantizations should be equiv-
alent, i.e., ZðβÞL×L∞

¼ ZðL∞ÞL×β. As argued in the main
text and as apparent from these expressions, c ¼ εvac. (A3)
is just the high-temperature partition function which is
fixed by our assumption of extensivity, whereas (A4) is a

3When L2=β ∼ L∞ instead of L2=β ≪ L∞, one may question
the argument of high-temperature extensivity to scale out the
factor of ðL=βÞd−1 to obtain our modular-form structure. How-
ever, since we still have L ≪ L∞, quantizing along this direction
gives a high-temperature partition function that implies exten-
sivity with respect to the L∞ directions. By modular invariance,
this extensivity extends to the quantization along L2=β.
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low-temperature partition function, which projects to the
vacuum. In this case L∞ ≫ L; β so we have a clean
projection. The scaling of the vacuum energy can be argued
by matching the result to the quantization along β. We can
now consider quantization along L:

ZðLÞβ×L∞
¼

X
e−LEβ×L∞ ¼ e−LEvac;β×L∞ þ

X
E>Evac

e−LEβ×L∞ :

ðA5Þ
In the final form of the expression we have simply split the
sum into the contribution of the vacuum state and the
contribution from the excited states. Since L ≪ L∞, one
may be worried that you cannot only pick up the vacuum
contribution and that the sum from the nearly degenerate
excited states can contribute. But notice that the vacuum
contribution alone gives eεvacLL∞=β2 , which agrees with the
quantizations along β and along L∞. Thus, the excited
states do not compete with the leading term.
These three quantizations also illustrate the connections

between corrections to the partition function in the various
quantizations. For example, there are subextensive contri-
butions to the quantization along β. These subextensive
contributions appear as the low-lying excited states that
were neglected in the quantization along L. So far, this is

similar to the story in two spacetime dimensions. However,
quantization along L∞ highlights yet another interesting
form of corrections. In this case, using L∞ as a control
parameter, there is no reason to expect the excited states to
contribute. Instead, the leading correction comes from the
scaling of the vacuum energy on L × β, i.e., Evac;L×β ¼
−εvacL=β2ð1þ a1ðβ=LÞ þ � � �Þ for some constant a1. Such
a correction exists in the quantization along L but β=L∞ ≪
β=Lmakes it subleading compared to the low-lying excited
states. Given such a correction to the ground-state energy,
the low-lying excited states must sum up to a contribution
in the partition function of the form

ZðLÞL∞×β ≈ e−LEvac;L∞×βð1þ ea1εvacL∞=β þ � � �Þ ðA6Þ
to agree with the quantization along L∞. Of course, the
connection of subleading corrections to the free energy
corresponding to subleading corrections to the vacuum
energy is not a surprise; see e.g., (32) and (33). However, it
is interesting in this context to see (a) a situation where the
subleading corrections to the free energy are subextensive
[the correction in (33) still scaled with volume], and (b) the
equality between the correction due to the low-lying
excited states and the correction of the ground state energy
itself.
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