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We give explicit analytical expressions for the partition function ofUðNÞk × UðN þMÞ−k ABJ theory at
weak coupling (k → ∞) for finite and arbitrary values of N andM (including the ABJM case and its mass-
deformed generalization). We obtain the expressions by identifying the one-matrix model formulation with
a Meixner-Pollaczek ensemble and using the corresponding orthogonal polynomials, which are also
eigenfunctions of a suð1; 1Þ quantum oscillator. Wilson loops in mass-deformed ABJM are also studied in
the same limit and interpreted in terms of suð1; 1Þ coherent states.
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I. INTRODUCTION

In recent years there has been considerable progress in
applications of the localization technique to the study of
supersymmetric gauge theories in a number of dimensions,
d ≥ 2. In three dimensions in particular, results have been
obtained for the partition functions and Bogomolny-
Prasad-Sommerfield (BPS) Wilson loops of N ¼ 2 super-
symmetric Chern-Simons-matter (CSM) theories, includ-
ing the N ¼ 6 superconformal theories constructed by
Aharony, Bergman, Jafferis and Maldacena (ABJM theory)
[1]. We shall focus here in the 3d realm exclusively and, in
particular and more specifically, on the partition function of
the ABJ theory [2], which is the N ¼ 6 supersymmetric
UðN1Þk ×UðN2Þ−k CSM theory that generalizes the equal
rank N1 ¼ N2 case of the ABJM theory.
In addition to the extension of ABJM theory, it has also

been conjectured that the ABJ theory at large N2 and k with
N2=k and N1 fixed finite is dual to the N ¼ 6 parity-
violating Vasiliev higher spin theory on AdS4 with UðN1Þ
gauge symmetry [3–5]. In this paper, we will be studying
the ABJ theory at large k and hence we shall be comment-
ing on this higher-spin scaling limit.
The application of the localization method results in the

reduction of path integrals into eigenvalue integrals of the

matrix model type, which allows to obtain various exact
results at strong coupling of supersymmetric gauge theories
and helps in providing further tests of the AdS=CFT
correspondence. The appearance of matrix models typically
implies a connection with exactly solvable models
and/or integrable systems. This will be the viewpoint of
this paper, where we identify ABJ theory at large k with a
Meixner-Pollaczek random matrix ensemble [6], solved
completely in terms of Meixner-Pollaczek orthogonal
polynomials [7], which are also eigenfunctions of the
suð1; 1Þ harmonic oscillator [8].
Using either the two-matrix model description of ABJ

(M) theory or the Fermi gas formulation, both briefly
described below, a large number of results have been
obtained, mostly in studying nonperturbative corrections
of the ABJ(M) matrix models. Both the ’t Hooft expansion,
which is the asymptotic expansion as N goes to infinity and
the ’t Hooft parameter of the model is kept fixed at large N,
and the M-theory expansion, which is the asymptotic
expansion as N goes to infinity in which k is fixed, have
now been studied in detail, see [4,5,9–11] for example.
The ABJ(M) UðNÞk ×UðN þMÞ−k two-matrix model

is given by [9,12]

ZABJðMÞðN; k;MÞ ¼ N ABJ

ZZ
dNμ
ð2πÞN

dNþMy
ð2πÞNþM

Q
i<j4sinh

2ð1
2
ðμi − μjÞÞ

Q
i<j4sinh

2ð1
2
ðyi − yjÞÞQ

N
i¼1

QNþM
j¼1 ð2 cosh ð1

2
ðμi − yjÞÞÞ2

× e
ik
4πð
P

N
i¼1

μ2i−
P

NþM
i¼1

y2i Þ; ð1:1Þ
where

N ABJ ¼
i−κMðN−1=2Þ

N!ðN þMÞ! where κ≔ sgnðkÞ:

*tierz@fc.ul.pt

PHYSICAL REVIEW D 93, 126003 (2016)

2470-0010=2016=93(12)=126003(12) 126003-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.126003
http://dx.doi.org/10.1103/PhysRevD.93.126003
http://dx.doi.org/10.1103/PhysRevD.93.126003
http://dx.doi.org/10.1103/PhysRevD.93.126003


The ABJM case corresponds to M ¼ 0 above. By identi-
fying the Cauchy determinant inside the integrand of (1.1)
and using Cauchy identity

Q
i<jsinh

2ð1
2
ðμi − μjÞÞ

Q
i<jsinh

2ð1
2
ðyi − yjÞÞQ

N
i¼1

QNþM
j¼1 ðcosh ð1

2
ðμi − yjÞÞÞ2

¼
X
σ∈SN

ð−1ÞεðσÞ
Y
i

1

cosh ðμi − yσðiÞÞ
; ð1:2Þ

one can write the matrix model as a sum of permutations
[13,14]. In turn, in the final expression obtained, which is
the basis of the Fermi gas method [14], one can apply again
the Cauchy determinant identity, obtaining then the one-
matrix model form of the ABJ(M) matrix model [11,12,15]

~ZABJðMÞðN; k;MÞ ¼ 1

N!

Z YN
j¼1

dxj
4πk

QðM−1Þ=2
l¼−ðM−1Þ=2 tanh

xjþ2πil
k

exj=2 þ ð−1ÞMe−xj=2

×
Y
i<j

tanh2
�
1

2k
ðxi − xjÞ

�
: ð1:3Þ

Note that the matrix model integral has N eigenvalues and
the dependence in M is through the potential. This is the
matrix model we shall study, focusing on the large k limit.
In the ABJM case, M ¼ 0 above, the matrix integral (1.3)
gives the full partition function but in the more general ABJ
case a somewhat lengthy numerical prefactor, which
includes the partition function of UðMÞ Chern-Simons
theory on S3 appears as well [15]. We shall focus on the
matrix integral (1.3) first and will discuss these additional
prefactors at the end of the next section.
This paper is organized as follows. In the next section,

we show that the large k limit of the one matrix model
formulation of ABJ theory is a Meixner-Pollaczek random
matrix ensemble and compute the partition functions for
finite N and M (from now on, we always write
N2 ¼ N þM). Some quotients between partition func-
tions, relevant in the study of the higher-spin limit, are
given and shown to coincide with the partition function of
the Penner matrix model.
In Sec. III, we show that the identification with a solvable

model also holds for the mass-deformed version of the
theories, focusing on the mass-deformed ABJM theory. An
analytical computation for this model is also given, using
the orthogonal polynomials, which admit an interpretation
as eigenfunctions of a suð1; 1Þ quantum oscillator. In this
interpretation, the M parameter is equal to the Bargmann
index of the positive discrete series representation of
suð1; 1Þ. We also study 1=6-BPS Wilson loops in the
fundamental representation with winding n, in the mass-
deformed ABJM theory, giving an interpretation in terms of
suð1; 1Þ coherent states. The discussion of Wilson loops in
Sec. III is carried out in comparison with 1

2
-BPS Wilson

loop in N ¼ 4 super Yang-Mills theory, whose coherent
state interpretation is also put forward.
Finally, we succinctly conclude with some avenues for

further research. In the Appendix we collect some technical
details on the analytical continuations in the parameters
(Secs. II and III) and on the analytical solution for Wilson
loops (Sec. III).

II. WEAK-COUPLING LIMIT AND MEIXNER-
POLLACZEK POLYNOMIALS

Let us start focusing on (1.3) in the ABJM case, M ¼ 0.
Then, the weight function of the matrix model (1.3), which
in general is

ωðx;MÞ ¼ e−Vðx;MÞ ¼
QðM−1Þ=2

l¼−ðM−1Þ=2 tanh
xþ2πil

k

ex=2 þ ð−1ÞMe−x=2 ;

greatly simplifies to

ωðx;M ¼ 0Þ ¼ 1

2 cosh ðx=2Þ : ð2:1Þ

The most distinctive mathematical feature of the matrix
model (1.3) is the interaction term between the eigenvalues.
It admits, like the model with a standard Vandermonde
term

Q
i<jðxi − xjÞ or with its hyperbolic versionQ

i<j sinhðxi − xjÞ, a Coulomb gas interpretation [16],
but in general there are no standardized analytical methods
to solve the resulting matrix model. Consequently, the one
matrix model formulation has been analyzed with less
detail than the original two-matrix model formulation (1.1)
or the Fermi gas formulation [14].
A simple yet fundamental regime which has only

eventually been analyzed is the weak-coupling limit
k → ∞, when N is fixed. Expressions for the partition
function in the literature include, for the ABJM case, given
in [9] and a computation in Appendix C of [12] for ABJ
theory, using (1.1) and the analytical continuation from a
lens space Chern-Simons matrix model.
To study this regime, the consideration of the one-matrix

model formulation (1.3) is especially useful. Indeed, the
very simple dependence of k in the matrix model (1.3),
immediately implies that, using the rescaled variable
πy ¼ x=2

ZABJMðN; k → ∞Þ ¼ 1

N!

πNðN−1Þ

22NkN
2

Z YN
i¼1

dyi
cosh ðπyiÞ

×
Y
i<j

ðyi − yjÞ2; ð2:2Þ

which is in the form of a standard random matrix
ensemble. In addition, the weight function of the model
(2.2) can also be easily identified with a particular case of
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the Meixner-Pollaczek polynomials [6,7], which are poly-
nomials orthogonal in the interval −∞ < x < ∞, with
regards to the weight function [6]1

wðλÞðxÞ ¼ 22λ−1

π
jΓðλþ ixÞj2

¼ 22λ−1jΓðλÞj2
π

Y∞
k¼0

�
1þ x2

ðkþ λÞ2
�−1

: ð2:3Þ

Notice that the Gamma function is evaluated in a complex
argument and that

jΓðλþ ixÞj2 ¼ Γðλþ ixÞΓðλ − ixÞ for x; λ ∈ R:

Therefore, for λ ¼ 1=2, and also taking into account Euler’s
duplication formula ΓðzÞΓð1 − zÞ ¼ π= sin ðπzÞ, then

wð1=2ÞðxÞ ¼ 1

coshðπxÞ ¼ ωABJMðxÞ;

and with the orthogonal polynomials one can compute
immediately (2.2). We do that below, but before we discuss
the more general ABJ case (1.3) because, interestingly
enough, this identification with an exactly solvable model
also holds with more generality, as it holds for the ABJ
matrix model. In particular, we have that, again in terms of
the y variable

~ZABJðN;k→∞;MÞ

¼ 1

N!

2NðM−1ÞπN2−NþMN

kNðNþMÞ

×
Z YN

j¼1

QðM−1Þ=2
l¼−ðM−1Þ=2 ðyjþ ilÞdyj
eπyj þð−1ÞMe−πyj

Y
i<j

ðyi − yjÞ2: ð2:4Þ

To simplify the presentation, we focus first on the case
whenM ¼ 2q and q ∈ N and later on we show that the odd
case M ¼ 2q − 1 works in the same way. Then, the weight
function of the matrix model is

ωðevenÞ
ABJ ðyÞ ¼

QðM−1Þ=2
l¼1=2 ðy2 þ l2Þ
2 coshðπyÞ :

This is precisely the Meixner-Pollaczek weight if we take
its parameter λ to be λ ¼ 1=2þM=2 ¼ 1=2þ q with
q ∈ N. This follows immediately from the form (2.3)
and Γðzþ 1Þ ¼ zΓðzÞ. Specifically,

~ZABJðN; k → ∞;MÞ

¼ 1

N!

2NðM−2ÞπN2−NþMN

kNðNþMÞ

×
Z YN

i¼1

QðM−1Þ=2
l¼1=2 ðy2i þ l2Þdyi

coshðπyiÞ
Y
i<j

ðyi − yjÞ2

¼ 1

N!

πN
2−NþMN

22NkNðNþMÞ

Z YN
i¼1

wð1=2þM=2ÞðyiÞdyi
Y
i<j

ðyi − yjÞ2;

ð2:5Þ

where the weight function is (2.3) with λ ¼ 1=2þM=2.
Let us take into account then the orthogonality properties

of the polynomials, which is all we need to obtain the

partition functions/free energies. The polynomials PðλÞ
n ðxÞ

satisfy [6]Z þ∞

−∞
dxPðλÞ

n ðxÞPðλÞ
m ðxÞwðλÞðxÞ ¼ δnmh

ðλÞ
n ; ð2:6Þ

with

hðλÞn ¼ Γðnþ 2λÞ
Γðnþ 1Þ : ð2:7Þ

From the recurrence relation [7], the leading coefficient of

the polynomial PðλÞ
n ðxÞ ¼ anxn þ… is also obtained:

an ¼
2n

Γðnþ 1Þ : ð2:8Þ

Then, we can use, exactly as with the Stieltjes-Wigert
polynomials and the computation of the free energy of
UðNÞ Chern-Simons theory on S3 [17], the explicit
analytical expression for the partition function of the matrix
model, using

Z ¼ N!
YN−1

j¼0

~hj;

where Z denotes the partition function of a Hermitian
matrix model with the Meixner-Pollaczek weight function
and ~hj denote the analogous of the hj in (2.6), but for the
monic orthogonal polynomials. Thus, we need the

orthogonality properties of the polynomials QðλÞ
n ðxÞ ¼

PðλÞ
n ðxÞ=an, which are

Z þ∞

−∞
dxQðλÞ

n ðxÞQðλÞ
m ðxÞwðλÞðxÞ ¼ δnm ~h

ðλÞ
n ¼ δnm

hðλÞn

a2n
:

ð2:9Þ

Therefore, we obtain for (2.2)

1This is actually not the most general weight function for this
system of polynomials, since there is also a phase factor, but we
will only need that case below, when we discuss the mass-
deformed ABJM model.
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ZABJMðN; k → ∞Þ

¼ πN
2−N

22NkN
2

YN−1

j¼0

hð1=2Þj

a2j
¼ πN

2−N

22NkN
2

YN−1

j¼0

4−jΓ2ðjþ 1Þ

¼ πN
2−N

2NðNþ1ÞkN2 G
2ðN þ 1Þ ¼

�
π

2k

�
N2 G2ðN þ 1Þ

ð2πÞN ;

where GðzÞ is a Barnes G-function [18]. Hence, the free
energy F ¼ lnZ is

FABJMðN; k → ∞Þ ¼ N2 log

�
π

2k

�
− N logð2πÞ

þ 2 logGðN þ 1Þ: ð2:10Þ

This expression is identical to the one given in Eq. (4.47) of
[9], which is obtained there, since it is a perturbative
computation, by evaluation of the determinants giving the
one-loop contributions of two copies of pure Chern-Simons
theory and the one-loop determinants of the matter fields.
The free energy is the sum of both contributions and this is
why the expression is organized in a slightly different way
there. Thus, the Meixner-Pollaczek polynomials capture
exactly both contributions together. For the ABJ partition
function, we obtain

~ZABJðN;M; k → ∞Þ

¼ πN
2−NþMN

22NkNðNþMÞ
YN−1

j¼0

hð1=2þM=2Þ
j

a2j

¼ πN
2−NþMN

2NðNþ1ÞkNðNþMÞ
GðN þM þ 1ÞGðN þ 1Þ

GðM þ 1Þ : ð2:11Þ

Notice that, in this weak-coupling limit, it holds that

~ZABJðN;M; k → ∞Þ
ZABJMðN; k → ∞Þ ¼

�
π

k

�
NM GðN þM þ 1Þ

GðN þ 1ÞGðM þ 1Þ :

ð2:12Þ

Below we will show how this quotient is modified when we
consider the full ABJ partition function. Since ~ZABJ does
not include the pure Chern-Simons partition function
factor, the ratio (2.12) is precisely the one considered to
be specially relevant in the higher-spin double scaling limit
[Eq. (5.2) of [4]] (dubbed “vector model subsector” in [4]).

The rhs of (2.12) is also, exactly, the partition function of
the Penner matrix model (a Laguerre random matrix
ensemble), which is characterized by a weight function
ωðxÞ ¼ xM expð−xÞ for x > 0. It would be interesting to
see if this can be related both to the results in Eq. (5.2) of
[4] and, at the same time, with the well-known results on
the c ¼ 1 string, topological strings, which are associated
with the Penner matrix model (see [19] for a review).
We consider now the case of M odd since we restricted

the discussion above to M being an even number just to
simplify the presentation of the connection with Meixner-
Pollaczek polynomials. It also holds forM odd in the same
way. The difference being that, instead of half-integer
values of λ, we will have integer values. This is immediate
from, again, Euler’s duplication formula, because

jΓð1þ ixÞj2 ¼ Γð1þ ixÞΓð1 − ixÞ ¼ πx
sinh πx

;

therefore, increasing λ by 1 adds a (1þ x2) term, and so on.
The correspondence with the semiclassical limit of the ABJ
weight is then again exact,

ωðoddÞ
ABJ ðyÞ ¼

QðM−1Þ=2
l¼0 ðy2 þ l2Þ

sinhðπyÞ ¼ 2−ðM−1Þwð1þðM−1Þ=2ÞðyÞ;

and, therefore, for the M odd case, we have

~ZABJðN; k → ∞;MÞ

¼ πN
2−NþMN

22NkNðNþMÞ
YN−1

j¼0

hð1þðM−1Þ=2Þ
j

a2j

¼ πN
2−NþMN

22NkNðNþMÞ
YN−1

j¼0

Γðjþ 1þMÞΓ2ðjþ 1Þ
4j

;

which is the same result as forM even and, therefore (2.11)
holds for M any natural number and the identification is
always λ ¼ 1=2þM=2 for M ∈ N. Below we will see that
this parameter can be interpreted as the Bargmann index of
the positive discrete series representation of the suð1; 1Þ Lie
algebra.
Let us now finally deal with the extra factors that

multiply (1.3). The exact relationship between (1.1) and
(1.3) is detailed in [15], with q ¼ expð2iπ=kÞ,

ZðN;NþMÞ
ABJ ðkÞ ¼ i−

signðkÞ
2

ðN2þðNþMÞ2Þð−1ÞN2ðN−1ÞþM
2
ðM−1ÞþNMiNþM

2q
M
12
ðM2−1Þ

k
M
2

Y
1≤l<m≤M

2i sin
πðl −mÞ

k

×
1

N!

Z
∞

−∞

dNy
ð4πkÞN

Y
a<b

tanh2
ya − yb
2k

YN
a¼1

1

2 cosh ya
2

YM−1

l¼0

tanh
ya þ 2πiðlþ 1=2Þ

2k
: ð2:13Þ
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We can write, for simplicity, the k-independent prefactor in
the first line in (2.13) as N̄ ABJðN;MÞ and the most
interesting aspect of considering the full prefactor in
(2.13) is that the k → ∞ of what is essentially the UðMÞ

Chern-Simons partition function on S3 gives a GðM þ 1Þ
Barnes function which cancels the one in (2.11). More
precisely,

lim
k→∞

ZðN;NþMÞ
ABJ ðkÞ ¼ k

MðM−2Þ
2 N̄ ABJðN;MÞGðM þ 1Þ ~ZABJðN;M; k → ∞Þ

¼ N̄ ABJðN;MÞπN2−NþMNk
MðM−2Þ

2

2NðNþ1ÞkNðNþMÞ GðN þM þ 1ÞGðN þ 1Þ;

where

N̄ ABJðN;MÞ ¼ i−
signðkÞ

2
ðN2þðNþMÞ2Þð−1ÞN2ðN−1ÞþM

2
ðM−1ÞþNMiNþM2

2 ð2πÞM2 ðM−1Þ:

The quotient (2.12) between the full ABJ and ABJM partition function is now

ZABJðN;M; k → ∞Þ
ZABJMðN; k → ∞Þ ¼ N̄ ABJk

MðM−2Þ
2

�
π

k

�
NM GðN þM þ 1Þ

GðN þ 1Þ : ð2:14Þ

In addition to the usual asymptotics of the G Barnes function, one can give an asymptotic expression for the quotient of G
functions in (2.14) for N and M finite, but N much bigger than M. This estimates, in compact form, how the ABJ free
energy differs from the ABJM one at small values ofM. More precisely, from proposition A.1. (1) of [20], we have that, for
M ≤ N1=6 then

Gð1þM þ NÞ
Gð1þ NÞ ¼ ð2πÞM=2e−ðNþ1ÞMð1þ NÞM2=2þNM

�
1þO

�
M2 þM3

N

��
: ð2:15Þ

Thus, we have seen that with Meixner-Pollaczek poly-
nomials, which are actually eigenfunctions of the suð1; 1Þ
harmonic oscillator as we shall see below, the finite N large
k behavior of the ABJ free energy is easily obtained. This
complements the varied number of results in the literature
on ABJ(M) models and the expressions obtained are
consistent with [9] and [12], giving also an alternative
derivation for the ABJ case, to the one in [12], without
having to rely on analytical continuation from the lens
space matrix model. We can also apply the method to a
mass-deformed version of the theory and that is the subject
of the next section.

III. MASS-DEFORMED THEORY, WILSON LOOPS
AND suð1;1Þ COHERENT STATES

More relevant than the application itself is the fact that,
starting with the one matrix model formulation (1.3), the
ABJ matrix model, for all M and N, is an exactly solvable
model in the weak-coupling limit: the Meixner-Pollaczek
model. Further results can be obtained from that identi-
fication. For example, it can be extended to the mass-
deformed ABJM matrix model, which has been the subject
of interest lately. It was first studied at large N in [21] (with
Fayet-Iliopoulos parameter ς ¼ 0). The model is [22,23]

ZðN; k;m1; m2Þ ¼
1

N!2

ZZ
dNμ
ð2πÞN

dNy
ð2πÞN

Q
i<jsinh

2ðμi−μj
2

ÞQi<jsinh
2ðyi−yj

2
Þeik

4π

P
N
i¼1

ðμ2i−y2i ÞQ
N
i;j¼1 cosh ð12 ðμi − yj þm1ÞÞ cosh ð12 ðμi − yj −m2ÞÞ

: ð3:1Þ

This extension of the ABJMmatrix model actually also includes a Fayet-Iliopoulos parameter ς, which has been repackaged
with the mass term deformation as m1 ¼ mþ ς and m2 ¼ m − ς [22,23].
It also admits a sum over permutations form [22,23] and, if one again applies to the resulting expression the Cauchy

determinant formula, we see that we also have a one matrix model form of the mass-deformed ABJM matrix model2

2A factor of 4 is added in the denominator of the matrix model with respect to the expressions in [22,23]. In this way, in the limit
m1 → 0 and m2 → 0 it reduces to the ABJM matrix model above, which is as in [10], for example. The reason is that the two cosh in
[10], unlike those in [22,23], have a 2 term in front.

MASS-DEFORMED ABJ AND ABJM THEORY, MEIXNER- … PHYSICAL REVIEW D 93, 126003 (2016)

126003-5



ZABJMðN; k;m1; m2Þ ¼
1

N!

Z YN
i¼1

e−im2xidxi
4k cosh ðπxiÞ

Q
i<jsinh

2ðπk ðxi − xjÞÞQ
i;j coshðπk ðxi − xjÞ − m1

2
Þ

¼ 1

N! cosh ðm1=2ÞN22NkN
Z YN

i¼1

e−im2xidxi
cosh ðπxiÞ

Y
i<j

sinh2ðπk ðxi − xjÞÞ
cosh2ðπk ðxi − xjÞ − m1

2
Þ : ð3:2Þ

Thus, in first approximation in the semiclassical limit, we have

ZABJMðN; k → ∞; m1; m2Þ ¼
πN

2−N

N! cosh ðm1=2ÞN2

4NkN
2

Z YN
i¼1

e−im2xidxi
cosh ðπxiÞ

Y
i<j

ðxi − xjÞ2: ð3:3Þ

Notice that, to account for them1 deformation is immediate
in this way and, if we also want to account for the m2

parameter, we need to consider what is actually the most
general form of the Meixner-Pollaczek (MP) weight
function [7]

wMPðx; λ; tÞ ¼
22λ−1etx

π
jΓðλþ ixÞj2; ð3:4Þ

where t ∈ ð−π; πÞ. This restriction on t is because, for fixed
λ, jΓðλþ ixÞj2 ∼ e−πjxj as jxj → ∞, therefore it ensures
exponential convergence for x → �∞. Being t real we need
to take its analytical prolongation to imaginary values at the
end (or, alternatively, do the same to the physical parameter
m2). Such a step has precedents in the application of
orthogonal polynomial methods to the study of Chern-
Simons theory, with or without matter [17,24]3 and, as we
shall see, it poses no problems here. In the casem2 ¼ 0, this
continuation is not necessary and the parameter ϕ below
will be ϕ ¼ π=2, as is the case for the nondeformed ABJM
theory. As explained in [23], this specific mass deformation
is a fixed point of the symmetry Zð2ς; m; kÞ ¼ Zðm; 2ς; kÞ,
satisfied by the mass-deformed theory and, in the dual
N ¼ 4 supersymmetric super Yang-Mills theory, m2 ¼ 0
corresponds to coupling the theory to a massless adjoint
hypermultiplet.
In most references, the notation convention is

t ¼ 2ϕ − π, where ϕ ∈ ð0; πÞ and the orthogonality proper-
ties now read

22λ−1

π

Z þ∞

−∞
eð2ϕ−πÞxjΓðλþ ixÞj2PðλÞ

n ðx;ϕÞPðλÞ
m ðx;ϕÞdx

¼ Γðnþ 2λÞ
ðsinϕÞ2λΓðnþ 1Þ δnm: ð3:5Þ

Notice that, if ϕ ¼ π=2, the weight function indeed reduces
to (2.3). We need to see if the leading coefficients of the

polynomial, which did not depend on λ, depend now on ϕ.
From the recurrence relationships [7], we quickly deduce
that

aðϕÞn ¼ ð2 sinϕÞn
Γðnþ 1Þ : ð3:6Þ

Thus, since the weight function of the mass-deformed
ABJM model (3.3) is wMPðx;λ¼1=2;t¼2ϕ−π¼−im2Þ,
then using (3.5) and (3.6), we have, in terms of the ϕ
parameter

ZABJMðN;m1;ϕ; k → ∞Þ

¼
�

π

k cosh ðm1=2Þ
�

N2
1

ð4πÞN
YN−1

j¼0

hð1=2Þj;ϕ

a2j;ϕ

¼ 1

ð2πÞN
�

π

2k cosh ðm1=2Þ
�

N2 G2ðN þ 1Þ
ðsinϕÞN2 :

The identification ϕ ¼ −im2=2þ π=2 poses no problems,
as we shall explicitly check in the Appendix, and we have

ZABJMðN;m1; m2; k → ∞Þ

¼
�

π

2k cosh ðm1=2Þ cosh ðm2=2Þ
�

N2 G2ðN þ 1Þ
ð2πÞN :

Thus, in this limit, for the mass-deformed model we have
that the free energy

FABJMðm1; m2Þ ¼ FABJM − N2ðln cosh ðm1=2Þ
þ ln cosh ðm2=2ÞÞ:

A. Wilson loops in the mass-deformed case

We consider Wilson loops now. The idea is to see if the
Wilson loop can be computed as an average using a density
of states constructed from quantum oscillators, very much
as the Drukker-Gross computation of the 1

2
-BPS Wilson

3The works [25,26] also consider orthogonal polynomials in
Chern-Simons-matter theory.
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loop in N ¼ 4 super Yang-Mills theory [27], which uses
the ordinary quantum harmonic (Hermite) wave functions.
To do so, we will use the Meixner-Pollaczek polynomials
and their suð1; 1Þ quantum oscillator interpretation, giving
also a coherent state interpretation, both for the mass-
deformed ABJ Wilson loops at weak coupling and also for
the 1

2
-BPS Wilson loop in N ¼ 4 super Yang-Mills

theory [27].
For this, one first needs to write down the one matrix

model representation of the Wilson loop. We have not seen
that result in the literature, at least not in a form convenient
to our purpose and methods (there are essentially equiv-
alent integral representations for Wilson loops in [15,28]).
Thus, we work out the required one matrix model expres-
sion, by repeating the procedure in Eqs. (5)–(8) of [21] for
the ABJM mass-deformed theory, but with a Wilson loop
insertion. The Wilson loop averages we consider are the
1
6
-BPS Wilson loops in [29]

hW1=6
R i ¼ hTrRðeμÞi; ð3:7Þ

where the average is taken over the ensemble (1.1) with
M ¼ 0 and one could equivalently consider the Wilson
loop over the other gauge group. The 1

2
-BPS Wilson loops

of Drukker and Trancanelli treat both gauge groups more
symmetrically [30], but they can be expressed in terms of
the 1

6
-BPS Wilson loops. We will consider (3.7) in the

fundamental representation and with winding n,

hW1=6
n im ¼ hTrðenμÞim; ð3:8Þ

and the ensemble average will be over the mass-deformed
ABJM model (3.1), instead of the regular ABJM. This is
denoted by the m subindex in the average.
The procedure in Eqs. (5)–(8) of [21] consists in using

the Fourier transform identityZ
dτ

eiτμ

cosh ðπτÞ ¼
1

cosh μ
2

; ð3:9Þ

for (3.8) twice (as an integral representation; that is, from
right to left), a Gaussian integration and a further immediate
integration, using (3.9). We do exactly the same for (3.8),
which is explicitly given by the matrix model (3.1) with aP

N
j¼1 e

nμj insertion in the integrand. We obtain that the
one-matrix model representation of the Wilson loop is

hW1=6
n im ¼ cn

Z

Z YN
i¼1

e−im2xi
P

N
j¼1 e

2πn
k xj

4k cosh ðπxiÞ
dxi

×

Q
i<jsinh

2ðπk ðxi − xjÞÞQ
i;j coshðπk ðxi − xjÞ − m1

2
þ iπn

k δijÞ
; ð3:10Þ

where the prefactor cn is generated by the Wilson loop
insertion and is given by cn ¼ e−in

2π=k−nς. Notice the

appearance of k in the added exponential insertion in the
integrand in (3.10) (this is due to the Gaussian integration
in the procedure). In the k → ∞ we can then take the
double-scaling limit with the winding n such that n=k ¼ β,
and therefore, we have that

lim
k→∞
n=k→β

hW1=6
n im ¼ αNðk;β;m1Þcn

Z

Z YN
i¼1

e−im2xi
P

N
j¼1 e

2πβxj

cosh ðπxiÞ
dxi

×
Y
i<j

ðxi − xjÞ2; ð3:11Þ

where the prefactor αNðk; β; m1Þ follows in the sameway as
for the partition function (3.3). Specifically,

αNðk; β; m1Þ

¼ πN
2−N

cosh ðm1=2 − iπβÞN cosh ðm1=2ÞNðN−1Þ4NkN2 :

We first given an analytical expression for the matrix
integral in (3.11) and, in the next subsection, a physical
interpretation. Notice that, in general, for a Hermitian
matrix model with weight function ωðxÞ,

hTreyMi
Z

¼
XN−1

s¼0

R
dxωðxÞeyxP2

sðxÞR
dxωðxÞP2

sðxÞ
¼

XN−1

s¼0

hsjeyxjsi; ð3:12Þ

where

hxjsi ¼ ωðxÞ1=2PsðxÞ
½R dxωðxÞP2

sðxÞ�1=2
ð3:13Þ

and PsðxÞ denotes the polynomial of order s, orthogonal
with respect to ωðxÞ. Thus, it is as in the N ¼ 4 SYM/
Hermite setting [27] but with an imaginary y parameter,
instead of a real one. Hence, denoting by jn; λ;ϕi the
Meixner-Pollaczek eigenstates,4 we have that the nontrivial
piece of the Wilson loop (that is, up to normalization
constants) is

lim
k→∞
n=k→μ

hW1=6
n im ∝

XN−1

n¼0

hn; λ ¼ 1=2;ϕj expð−im2X̂Þjn;

λ ¼ 1=2;ϕi; ð3:14Þ
with ϕ ¼ iπð1

2
− βÞ and X̂ is the position operator. Below,

we will identify the operator insertion in (3.14) with a
squeeze operator, but we focus first on obtaining an
analytical expression. The explicit evaluation of (3.14)
follows from a Fourier integral in [31], which generalizes
the orthogonality identity of the MP polynomials (3.5) and

4These are the states such that the rhs of (3.13) is the
normalized Meixner-Pollaczek polynomial of degree s and the
weight function is (3.4).
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is the analogue of the identity for Hermite polynomials
which leads to (3.18) [27] (see the Appendix for further
details). In particular, using [31], we have the following
expression in terms of a (terminating) Gauss hypergeo-
metric function:

hn;λ¼1=2;ϕjexpð−im2X̂Þjn;λ¼1=2;ϕi

¼ 2F1

�−n;−n
1

;−
�
cosðπβÞ
sinhðm2

2
Þ
�

2
�

πiðsinhðm2

2
ÞÞ2n

ðsinhðm2

2
þiπð1

2
−βÞÞ2nþ1

:

ð3:15Þ

In this expression, we have identified the Fourier kernel in
(A1) with the mass-deformed term in the matrix integral
e−im2x, and the Wilson loop insertion with the real expo-
nential part eð2ϕ−πÞx of the weight function. Hence, no
analytical continuation is necessary and one can also give
an expression for the Wilson loop in the standard ABJM
theory with only the standard orthogonality relationship
(3.5). Notice that, in contrast to the Hermite case, the
evaluation of the summation in (3.14) of the hypergeo-
metric terms (3.15), to obtain a more compact expression
for the Wilson loop, is an open problem. On the other hand,
specific cases at finite rank are immediate from (3.15),
since the hypergeometric expression above is a terminating
series, and a more detailed study, including extension to the
ABJ setting and comparison with perturbative computa-
tions, will be given elsewhere.

B. suð1;1Þ oscillator, coherent states and photonic
interpretation

We now exploit a physical interpretation of the Meixner-
Pollaczek polynomials: they are eigenfunctions of a quan-
tum oscillator model. Indeed, the suð1; 1Þ model of a
quantum oscillator is a model which obeys the dynamics of
a harmonic oscillator, but with the position and momentum
operators and the Hamiltonian being elements of the Lie
algebra suð1; 1Þ instead of the Heisenberg algebra [8]. For
an oscillator model, one requires also that the spectrum of
H in unitary representations of the Lie algebra is equidis-
tant. The generators of the algebra are K� and K0 and their
commutation relations,

½K−; Kþ� ¼ 2K0 and ½K0; K�� ¼ �K�: ð3:16Þ
The model is constructed using the positive discrete series
representations of suð1; 1Þ, DþðλÞ, which are infinite
dimensional and labeled by a positive number
(Bargmann index) λ > 0. Then the spectrum of the position
operator is R, the spectra of the Hamiltonian is nþ λ and
the position wave function, when the oscillator is in the nth
eigenstate of the Hamiltonian, is given by [8]

ϕnðx; λ;ϕÞ ¼ Cneð2ϕ−πÞxjΓðλþ ixÞj2PðλÞ
n ðx;ϕÞ; ð3:17Þ

where again PðλÞ
n ðx;ϕÞ are Meixner-Pollaczek polynomials.

Since the partition function of a Hermitian matrix model is

ZN ¼
Z

ρNðxÞdx ¼
Z

lim
x0→x

KNðx0; xÞdx;

where ρNðxÞ is the density of states and the two-point
kernel is

KNðx0; xÞ ¼ ðωðx0ÞωðxÞÞ1=2
XN−1

n¼0

PðλÞ
n ðx0;ϕÞPðλÞ

n ðx;ϕÞ:

Therefore, we have an immediate interpretation in terms of
a suð1; 1Þ oscillator wave function overlap,

~ZABJðN;M; k → ∞Þ ¼ hΦjΦi;

where jΦi ¼ P
N−1
n¼0 jni and

hxjni ¼ ~ϕnðx; λ ¼ 1=2þM=2;ϕ ¼ π=2Þ;

where ~ϕnðx; λ ¼ 1=2þM=2;ϕ ¼ π=2Þ is (3.17), properly
normalized. That is, with Cn ¼ ∥ϕn∥−12 . Likewise, the same
expression holds for the mass-deformed ABJM case above,
but with normalized eigenfunctions

hxjni ¼ ~ϕnðx; λ ¼ 1=2;ϕ ¼ −im2=2þ π=2Þ:

From the results above, we thus have a half-integer
Bargmann index for M even and integer for M odd. The
case λ ¼ 1=2, which is the one that corresponds to ABJM
theory, including its mass-deformed version, is precisely
the one that has the exact quantum oscillator spectra
nþ 1=2, without any shift in the ground state energy.
This relationship with a suð1; 1Þ quantum oscillator can

be further developed in the case of Wilson loops. For this,
notice first that, for a Gaussian matrix model, the (3.13) are
Hermite polynomials, and the resulting expression for the
Wilson loop average (3.12) is that of Drukker and Gross
[27]. In terms of the creation and annihilation operators
a ¼ λ=2þ d=dλ and a† ¼ λ=2 − d=dλ the average (3.12)
is that of the displacement operator [32],

DðyÞ≡ expðyðaþ a†ÞÞ:

The displacement operator acting on the vacuum state
generates a coherent state DðyÞj0i ¼ jyi and when it acts
on an excited state DðyÞjni these are displaced number
states [33], which are also wave packets that keep their
shape and follow classical motion. The evaluation of the
matrix element in (3.12) is a central result in the theory
of coherent states and quantum optics [32] and in laser
cooling [34]. Its evaluation is classical (and can be
completely algebraic, without relying on Hermite poly-
nomials identities) [32,34]
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hn0jeyðaþa†Þjni ¼ e−y
2=2yΔn

� ffiffiffiffiffiffiffi
n<!
n>!

s �
LΔn
n< ð−y2Þ; ð3:18Þ

where n<¼minðn;n0Þ, n>¼maxðn;n0Þ and Δn¼n>−n<.
Comparing matrix models, the generic y parameter in
(3.12) here is identified with the t’ Hooft parameter in
[27] y ¼ ffiffiffiffiffiffiffiffiffiffiffi

λ=4N
p

and then (3.18) for n ¼ n0 coincides with
the result in [27].5 Because of the summation property of
Laguerre polynomials

P
N−1
n¼0 L

α
nðxÞ ¼ Lαþ1

n ðxÞ (used in
[27]), the Wilson loops can also be expressed as a single
matrix element (3.18) between adjacent levels n0 ¼
nþ 1 ¼ N. That is

hW1=2
N¼4

i ¼ 2Nλ−1=2hNje
ffiffiffiffiffiffiffiffi
λ=4N

p
ðaþa†ÞjN − 1i: ð3:19Þ

This displacement operator average in turn can be interpreted
as the average of a unitary operator involving a Jaynes-
Cummings Hamiltonian, but such a quantum optics inter-
pretation of the 1

2
-BPS Wilson loop in N ¼ 4 super

Yang-Mills theory (3.19) shall be better discussed elsewhere.
Regarding our weak-coupling ABJ model, we have that

the averages in (3.14) can be interpreted as averages of the
suð1; 1Þ displacement operator,6 which is, in terms of the
generators (3.16) and with ξ ∈ C [33],

SðξÞ ¼ exp ðξ�K− − ξKþÞ; ð3:20Þ

acting on the states of the suð1; 1Þ quantum oscillator and
with the identification ξ ¼ −im2=2, as explained above.
For a photonic interpretation and to further understand

the meaning of the displacement operator average in the
suð1; 1Þ setting, recall that there is a well-known two-mode
realization7 of suð1; 1Þ [the Holstein-Primakoff realization
for suð1; 1Þ] where

Kþ ¼ a†b†;

K− ¼ ab;

K0 ¼
1

2
ða†aþ b†bþ 1Þ:

The states corresponding to the discrete positive series are
then given by jnþ n0; ni ¼ jnþ n0i ⊗ jni, where the
Bargmann index is λ ¼ ðjn0j þ 1Þ=2. Thus, the observables
in the large k limit of the ABJ theory can be described in

terms of states of a two-mode photonic system with
occupancies of n and nþ n0 photons in each mode with
n ¼ 0; 1; 2;…; N − 1 and n0 ¼ 2M − 1 for M ¼ 1; 2;…
and n0 ¼ 0 for M ¼ 0 (ABJM). Notice also that the
suð1; 1Þ displacement operator (3.20) is eξab−ξ

�a†b† and
hence it is a squeeze operator acting on these two-mode
states [generalized coherent states for suð1; 1Þ are conven-
tional squeezed states of quantum optics].

IV. OUTLOOK

The connection with Meixner-Pollaczek polynomials
can be extended to carry out more detailed computations
of Wilson loops in mass-deformed ABJ(M) theory, in the
weak-coupling limit (some technical aspects are discussed
in more detail in the Appendix). As another open problem,
recall that we have also seen that some of the quotients of
partition functions studied above, such as (2.12), which we
have related to the Penner matrix model and hence, in
principle, with topological strings, are precisely the ones
relevant in the higher-spin double scaling limit [4]. In this
limit UðNÞk × UðN þMÞ−k ABJ theory with finite N and
large M and k is conjectured to be dual to N ¼ 6 parity-
violating Vasiliev higher spin theory on AdS4 with UðNÞ
gauge symmetry [3,4]. Recall that, in the oscillator inter-
pretation put forward here, the M parameter is specifically
the Bargmann index k of the positive discrete series
representation of suð1; 1Þ. It would be also interesting,
therefore, to use the exact solvability found in this paper to
further study this double scaling limit.
Another possible open problem would be to give a

physical interpretation of the appearance of suð1; 1Þ oscil-
lators, for example in terms of motion in AdS space. In this
sense, it is already known that some slightly different
suð1; 1Þ quantum oscillators emerge as solutions of the
Klein-Gordon equation in AdS space [36].
Finally, and more generally, it would be interesting if a

deformation of the suð1; 1Þ oscillator eigenfunctions (or
equivalently, of the Meixner-Pollaczek polynomials) can be
found, such that the full theory, given by the matrix model
(1.3). This deformation would be seemingly different from
the usual q-deformation (which holds in the Gaussian
unitary ensemble/Stieltjes-Wigert ensemble description of
pure Chern-Simons theory [17]) because the Vandermonde
determinant is deformed according to x → tanh x, instead of
x → sinh x. Notice that different generalizations of the
eigenfunctions (beyond the q-deformation) already exist [8].

ACKNOWLEDGMENTS

Thanks to Jorge Russo and Francesco Aprile for reading
the paper and making valuable comments. This work was
supported by the Fundação para a Ciência e Tecnologia
(FCT) through its program Investigador FCT IF2014, under
Contract No. IF/01767/2014.

5In the work [35] on half-BPS Wilson loops in N ¼ 4 SYM
theory, the displacement operator is introduced and coherent
states mentioned, but mostly en route to obtain a normal matrix
model description of the Wilson loops.

6The reason is simply the same that leads to (3.18) in the
quantum harmonic oscillator case. Notice that the position
operator is X̂ ¼ ðKþ þ K−Þ=2 and that these generators are
raising and lowering operators acting on the suð1; 1Þ oscillator
states [8].

7The one boson realization only allows for Bargmann index
λ ¼ 1=4 or λ ¼ 3=4.
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APPENDIX: FOURIER INTEGRAL AND CONSISTENCY CHECK

The following Fourier integral [31],

Z
∞

−∞
e−2ixtPλ

nðx;ϕÞPλ
mðx;ϕÞeð2ϕ−πÞxjΓðλþ ixÞj2dx

¼ Γð2λþ nÞΓð2λþmÞ
4λΓð2λÞn!m!

2πeiπλðsinh tÞnþm

ðcosϕ sinh tþ i sinϕ cosh tÞnþmþ2λ 2F1

�−n;−m
2λ

;−
�
sinϕ
sinh t

�
2
�
; ðA1Þ

is an extension of the orthogonality relationship for
Meixner-Pollaczek polynomials. It suggests that the ana-
lytical continuation, required by the presence of the term in
the mass-deformed ABJM theory, namely e−im2x, can be
accounted for with no problems, since (A1) contains both a
real exponential factor and a Fourier kernel. However, we
can explicitly check that this is the case by explicitly
computing the mass-deformed free energy using an equiv-
alent formulation of the matrix model in terms of a Hankel
determinant and only using the Fourier transform identity
(3.9) to compute the matrix elements. Indeed, since the
integral in (3.3) is a determinant,

1

N!

Z YN
i¼1

e−im2xidxi
cosh ðπxiÞ

Y
i<j

ðxi − xjÞ2 ¼ det ðciþjÞN−1
i;j¼0

with matrix elements

cn ¼
Z

dx
e−im2xxn

cosh ðπxÞ ; ðA2Þ

using (A1) and differentiation under the integral sign (with
respect tom2), every matrix element is computed explicitly.
For N ¼ 2 for example

1

2

Z Y2
i¼1

e−im2xidxi
cosh ðπxiÞ

Y
i<j

ðxi − xjÞ2 ¼ det

0
BBB@

1= coshðm2=2Þ sinhðm2=2Þ
2icosh2ðm2=2Þ

sinhðm2=2Þ
2icosh2ðm2=2Þ

1
4

�
1

cosh3ðm2=2Þ −
sinh2ðm2=2Þ
cosh3ðm2=2Þ

�
1
CCCA ¼ 1

4cosh4ðm2=2Þ
: ðA3Þ

The cross-diagonal terms nicely cancel with part of the
diagonal term and the result coincides with the orthogonal
polynomial computation [notice that in this case, Barnes
function is G2ð3Þ ¼ 1]. It is also immediate to check that
this determinant is equivalent to carrying out the integra-
tions on the lhs of (A3) explicitly. Let us explicitly also
check the N ¼ 3 case,

det

0
B@

c0 c1 c2
c1 c2 c3
c2 c3 c4

1
CA ¼ 1

16
sech9ðm2=2Þ;

where the entries are as in (A3) and the additional matrix
entries are

c3 ¼
i
8
ð−5sech3ðm2=2Þ tanhðm2=2Þ

þ sechðm2=2Þtanh3ðm2=2ÞÞ:

c4 ¼
5

16
sech5ðm2=2Þ −

9

8
sech3ðm2=2Þtanh2ðm2=2Þ

þ 1

16
sechðm2=2Þtanh4ðm2=2Þ:

Thus the same cancellation occurs and only the direct
product of the leading term in the diagonals ends up
contributing. This is remarkable but expected from the
theory of orthogonal polynomials and we emphasize that
the test was just to make sure that the Fourier kernel in (A2)
(and in the matrix model) did not invalidate the orthogonal
polynomial computation. Notice that the moments (A2) are
all obtained from differentiation, under the integral sign, of
a0. This is related to the fact that this Hankel determinant
satisfies a Toda lattice equation, which is a well-known
result in the theory of the six vertex model [37], a problem
where the Meixner-Pollaczek polynomials are well known
to provide analytical solutions [38].
Finally, note that the argument put forward above, right

below Eq. (A1), extends also to the analytical calculability
of the Wilson loop with leads to an average with both types
of factors present. Effectively, the identity (A1) is analo-
gous to the existing expression for Hermite polynomials
which leads to the celebrated expression for the 1

2
-BPS

Wilson loop in N ¼ 4 in terms of a Laguerre polynomial
[27]. However, as we have pointed out above, the same
result can be obtained (and was indeed obtained decades
ago) by using the action of the creation and annihilation
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operators on the Fock states. It would be interesting to do
the same in our setting, since the action on the suð1; 1Þ
Fock basis is equally well known [8].
Regarding the use of (A1) in the evaluation of the Wilson

loop average which, in the mass-deformed case, contains
both a factor of the type e−2ixt and another one of the type
eð2ϕ−πÞx, notice that we chose to identify the former with the
mass-deformed term e−im2x. This lead to the expression

(3.15). It would be interesting to study in further detail the
convenience of this choice and also to see if there exists a
summation analogous to the one that holds for the 1

2
-BPS

Wilson loop inN ¼ 4 SYM, which leads to the final result
in [27] and also has lead us to the interpretation of the
Wilson loop in terms of the overlap of two consecutive
displaced number states of the harmonic oscillator
(3.19).
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