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In the probe limit, we investigate holographic paramagnetism-ferromagnetism phase transition in the
four-dimensional and five-dimensional Lifshitz black holes by means of numerical and semianalytical
methods, which is realized by introducing a massive 2-form field coupled to the Maxwell field. We find that
the Lifshitz dynamical exponent z contributes evidently to the magnetic moment and hysteresis loop of
single magnetic domain quantitatively, not qualitatively. Concretely, in the case without an external
magnetic field, the spontaneous magnetization and ferromagnetic phase transition happen when the
temperature gets low enough, and the critical exponent for the magnetic moment is always 1=2, which is in
agreement with the result from mean field theory. And the increasing z enhances the phase transition and
increases the dc resistivity, which behaves as the colossal magnetic resistance effect in some materials.
Furthermore, in the presence of the external magnetic field, the magnetic susceptibility satisfies the
Cure-Weiss law with a general z. But the increase of z will result in shortening the period of the external
magnetic field.
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I. INTRODUCTION

The AdS=CFT correspondence [1–4] provides a window
into the dynamics of strongly coupled systems by identi-
fying the underlying field theory with a weakly coupled
gravity dual. Because of the existence of scaling symmetry
near the critical point, over the past years, the methods and
scope of the gauge/gravity have shifted from traditionally
QCD-motivated problems to problems in the area of
condensed matter systems (see reviews [5–8] and refer-
ences therein) involving the strong interaction. And the
duality also gives us a way to understand gravity and
condensed matter physics from the other side.
One interesting application of the duality is to study

high-temperature superconductors, and then several models
of holographic s-wave [9,10] and p-wave superconductors
[11,12] have been constructed among the various para-
digms in condensed matter physics. For example, the
holographic s-wave superconductor model was first real-
ized via an Einstein-Maxwell theory coupled to a complex
scalar field in a Schwarzschild–anti-de Sitter (AdS) black
hole background [9,13–15]. The condensation of the scalar
breaks the U(1) symmetry of the system, mimicking the
conductor-superconductor phase transition. Sequentially,
one analytically studied the superconductor phase transi-
tion near the critical point [16]. Moreover, by an SU(2)
gauge field in the bulk, a holographic p-wave super-
conductor model was constructed [12], in which the
condensed vector field breaks the U(1) symmetry [one

of subgroup of SU(2)] as well as the spatial rotational
symmetry spontaneously.
Recently, some efforts have been made to generalize the

correspondence to systems with fewer symmetries (see
Refs. [16–22], for example) and to the far-from-thermal
equilibrium problems (see Refs. [23–27], for example).
The other application of duality is to study ferromag-

netism where the electron spins align to produce a
magnetization, which breaks the time reversal symmetry
spontaneously and happens in the ferromagnets at the
Curie temperature Tc (sometimes, it is even higher than
the indoor temperature). As we know, magnetism plays a
central role in quantum phase transitions and is ubiquitous
in many strongly correlated electronic systems, for exam-
ple, heavy fermion metals. Yet in holographic contexts, due
to various technical challenges, models of magnetism are
scarce and not extensively explored (see, e.g., Ref. [28]).
In Ref. [29], a new example of the application of the

AdS=CFT correspondence was proposed at first to under-
stand these challenging systems by realizing the holo-
graphic description of the paramagnetism-ferromagnetism
phase transition in a dyonic Reissner-Nordström-AdS black
brane. In that model, the magnetic moment is realized by
the condensation of a real antisymmetric tensor field which
couples to the background gauge field strength in the bulk.
In the case without an external magnetic field, the time
reversal symmetry is spontaneously broken, and the spon-
taneous magnetization happens in low temperatures. The
critical exponents are in agreement with the ones from
mean field theory. In the case of a nonzero magnetic field,
the model realizes the hysteresis loop of the single
magnetic domain, and the magnetic susceptibility satisfies*ybwu61@163.com
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the Curie-Weiss law. Obviously, this model in Ref. [29]
gives a good starting point to explore more complicated
magnetic phenomena and quantum phase transitions.
Although a real antisymmetric tensor field was intro-

duced to realize a holographic magnetic ordered phase in
the above model, a more careful analysis shows there is a
vector ghost in the model. Hence, in Ref. [30], a modified
Lagrangian density was put forward; it comes from the
dimensional compactification of p-form field in string/M-
theory for the antisymmetric tensor, which is ghost free
and in which causality is well defined, and keeps all the
significant results in the original model qualitatively.
On the basis of Ref. [29], the model was further

extended to realize a holographic model of paramagnetism-
antiferromagnetism phase transition by introducing two
real antisymmetric tensor fields coupling to the background
gauge field strength and interacting with each other [31].
And then one studied the coexistence and competition of
ferromagnetism and p-wave superconductivity by combin-
ing a holographic p-wave superconductor model with a
holographic ferromagnetism model [32]. It was found that
the results in Ref. [32] depend on the phase appearing
first (superconductivity or ferromagnetism) besides the
self-interaction of the magnetic moment of the complex
vector field.
On the other hand, for insulator-metal phase transition, a

gravity duality model was constructed by introducing a
massive 2-form field and a dilaton field coupled with U(1)
gauge field in an asymptotic AdS black brane background.
This model shows the colossal magnetoresistance (CMR)
effect found in some manganese oxides materials [33].
Further studies based on this model can be discovered, for
example, the effect of backreaction on the holographic
paramagnetism/ferromagnetism. In Ref. [34], one found
that the phase transition is always second order, which is
different from holographic superconductor exhibiting rich
phase structures, especially “the retrograde condensate.” At
present, the holographic duality has been applied to two-
dimensional magnetic systems [28,29,34], where the behav-
iors near the critical temperature were discussed. However,
the setup in Ref. [35] deals with three-dimensional magnetic
systems and describes their behaviors in low temperatures
where the technology of spintronics is actively developed,
besides near the critical temperature. This holographic model
in principle can provide a means to analyze phenomena
involving magnetization and spin transport, and thus it can
introduce new perspectives in the field of spintronics.
However, all these holographic ferromagnetic models were
constructed only in the relativistic spacetimes. Thus, we
wonder whether the above results still hold in nonrelativistic
spacetimes, for example, the Lifshitz spacetime, which is our
motivation in this paper.
This paper is organized as follows. In Sec. II, we build a

holographic paramagnetism-ferromagnetism phase transi-
tion model in the Lifshitz black hole with AdS2 geometry,

which is realized by introducing a massive 2-form field
coupled to the Maxwell field strength in the bulk. In
Sec. III, by the semianalytic method, we study the magnetic
moment and static magnetic susceptibility. The summary
and some discussions are included in Sec. IV.

II. HOLOGRAPHIC MODEL

A. Background

Recently, the phase transitions in many condensed matter
systems have been found to be governed by the so-called
Lifshitz fixed points, which exhibit the anisotropic scaling
of spacetime t → bzt, ~x → b~x (z ≠ 1), where z is the
Lifshitz dynamical exponent representing the anisotropy
of the spacetime. The gravity description dual to this
scaling in the D ¼ dþ 2-dimensional spacetime was pro-
posed in Ref. [36],

ds2 ¼ L2

�
−r2zdt2 þ r2d~x2 þ dr2

r2

�
; ð1Þ

where d~x2 ¼ dx21 þ � � � þ dx2d, and r ∈ ð0;∞Þ. This geom-
etry reduces to the AdS spacetime when z ¼ 1, while it is a
gravity dual with the Lifshitz scaling as z > 1. The Lifshitz
spacetime (1) can be realized by a massless scalar field
coupled to an Abelian gauge field in the action [37]

S ¼ 1

16πGdþ2

Z
ddþ2x

ffiffiffiffiffiffi
−g

p �
R − 2Λ −

1

2
∂μφ∂μφ

−
1

4
ebφFμνFμν

�
; ð2Þ

where Λ is the cosmological constant, φ is a massless
scalar, and Fμν is an Abelian gauge field strength. The
generalization of Eq. (1) to the case with finite temperature
is [38]

ds2 ¼ L2

�
−r2zfðrÞdt2 þ dr2

r2fðrÞ þ r2
Xd
i¼1

dx2i

�
; ð3Þ

where

fðrÞ¼1−
rzþd
h

rzþd ; Λ¼−
ðzþd−1ÞðzþdÞ

2L2
; ð4Þ

F rt ¼ q0rzþd−1; q20 ¼ 2L2ðz − 1Þðzþ dÞ;

ebφ ¼ r−2d; b2 ¼ 2d
z − 1

: ð5Þ

Evidently, choosing the dynamical exponent z to be 1
reduces the Lifshitz black hole to the Schwarzschild AdS
black hole in (dþ 2) dimensions. The Hawking temper-
ature of the black hole is
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T ¼ zþ d
4π

rzh; ð6Þ

where rh denotes the black hole horizon. As we know,
some works have been carried out for the influence of the
dynamical critical exponent on the properties of holo-
graphic superconductors (for details, see Ref. [39–45]). For
example, Refs. [39] and [40], studied the scalar condensa-
tion in a (3þ 1)-dimensional Lifshitz black hole back-
ground with z ¼ 3=2 and z ¼ 2, respectively. The s-wave
and p-wave superconductor models were built in the
(3þ 1)-dimensional Lifshitz black hole with z ¼ 2 [41].
Recently, Abdalla et al. in Ref. [43] investigated the s-wave
superconductor phase transition in a three-dimensional
Lifshitz black hole in new massive gravity with z ¼ 3
and found a series of peaks in the conductivity for certain
values of the frequency. Based on the previous investiga-
tion on the Lifshitz black hole solution, the effects of the
Lifshitz dynamical exponent z on the holographic super-
conductor models were discussed in some detail via
numerical and analytical methods, including s-wave and
p-wave models with [46] or without magnetic field [47] [46].
Therefore, it is interesting to construct a holographic
ferromagnetic phase transition by using Lifshitz black
hole solutions and to study the influences of the dynamical
exponent z on the properties of the holographic ferromag-
netic phase transition and colossal magnetoresistance effect.

B. Model and EoMs

Following Ref. [30], below, we consider the Lagrangian
density consisting of a U(1) field Aμ and a massive 2-form
field Mμν in (dþ 2)-dimensional spacetime,

Lm ¼ −FμνFμν − λ2
�
1

12
ðdMÞ2 þm2

4
MμνMμν

þ 1

2
MμνFμν þ

J
8
VðMÞ

�
; ð7Þ

where dM is the exterior differential of 2-form field Mμν,
m2 is the squared mass of 2-form field Mμν being greater
than zero (see Ref. [30] for details), λ and J are two real
model parameters with J < 0 for producing the sponta-
neous magnetization, λ2 characterizes the backreaction of
the 2-form fieldMμν to the background geometry and to the
Maxwell field strength, and VðMÞ is a nonlinear potential
of the 2-form field describing the self-interaction of the
polarization tensor. For simplicity, we take the form of
VðMÞ as

VðMÞ ¼ ð�MμνMμνÞ2 ¼ ½�ðM∧MÞ�2; ð8Þ

where � is the Hodge-star operator. As shown in Ref. [30],
this potential shows a global minimum at some nonzero
value of ρ.

By varying action (7), we can get the equations of motion
(EoMs) for the matter fields as

∇τðdMÞτμν −m2Mμν − Jð�MτσMτσÞð�MμνÞ ¼ Fμν;

∇μ

�
Fμν þ

λ2

4
Mμν

�
¼ 0: ð9Þ

In what follows, we start to study systematically the effects
of the Lifshitz dynamical exponent z on the holographic
ferromagnetic phase transition based on the Lifshitz space-
time (3) in the probe limit (i.e., neglecting the backreactions
of the massive 2-form field to the background Lifshitz
geometry and Maxwell field, also including the Maxwell
field to the background geometry). In this probe approxi-
mation, the interaction between the electromagnetic
response and external field is taken into account so that
we can study how spontaneous magnetization influences
the electric transport in the following, but they both have
little influence on the structures of materials. We take the
self-consistent ansatz with matter fields,

Mμν ¼ −pðrÞdt∧drþ ρðrÞdx∧dy;
Aμ ¼ ϕðrÞdtþ Bxdy; ð10Þ

where B is a constant magnetic field viewed as the external
magnetic field in the boundary field theory. Thus, nontrivial
equations of motion in D ¼ dþ 2-dimensional Lifshitz
spacetime read

ρ00 þ
�
f0

f
þ dþ z − 3

r

�
ρ0 −

1

r2f

�
m2 þ 4Jp2

r2z−2

�
ρþ B

r2f
¼ 0;

�
m2 −

4Jρ2

r4

�
p − ϕ0 ¼ 0;

ϕ00 þ d − zþ 1

r
ϕ0 − λ2

�
p0

4
þ ðdþ 1Þp

4r
−
pz
4r

�
¼ 0;

ð11Þ

where a prime stands for the derivative with respect to r.
To solve the above equations, we have to specify
boundary conditions for the fields. At the horizon
r → rh, we impose ϕðrhÞ ¼ 0 to satisfy the finite form
Aμ, while ρðrhÞ needs to be regular. Near the boundary
r → ∞, the linearized equations give the asymptotic
solution for matter fields,

ρ ¼ ρþrΔþ þ ρ−rΔ− þ � � � þ B
m2

;

ϕ ¼ μ −
σ

rðd−zÞ
þ…; p ¼ σðd − zÞ

m2rd−zþ1
þ…; ðz ≠ dÞ

ϕ ¼ μþ σ ln rþ…; p ¼ σ

rm2
þ…:ðz ¼ dÞ; ð12Þ
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where Δ� ¼ 4−d−z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðm2þ4ÞþðdþzÞðdþz−8Þ

p
2

and ρ�, μ, and σ
are all constants. According to gauge-gravity duality and
the explanation for the source in Ref. [30], we treat ρþ as
the source of the dual operator, namely, ρþ ¼ 0, and μ
and σ are chemical potential and charge density of dual
field theory, respectively.
The Breitenlohner-Freedmeltaan (BF) bound requires

m2 ≥ −ðdþzÞðdþz−8Þ
4

− 4, and the mass squaredm2 of massive
2-form field has the lower bound. In this case, there is a
logarithmic term in the asymptotical expansion (12). We
treat the coefficient of this logarithmic term as the
source which is set to be zero to avoid the instability
induced by this term according to Ref. [13]. Within the
BF bound condition, there does not exist the AdS2
geometry and the near horizon geometry of an extremal
black brane with vanishing temperature. To find the
restriction to the parameters, let us consider Eqs. (11) in
the high-temperature region where ρ vanishes, and we can
read off the effective mass square of ρ at the horizon as

m2
eff ¼ m2 þ 4JpðrhÞ2

¼ m2 þ 4Jμ2ðd − zÞ2
m4r2dh

¼ m2 þ 4Jμ2ðd − zÞ2
m4

�
zþ d
4πT

�2d
z

: ð13Þ

Because J < 0, the temperature term contributes a negative
term to the effective mass square, which is divergent when
T → 0. It follows that, whether we choose the grand
canonical ensemble or the canonical ensemble, the insta-
bility always appears provided that the temperature is low
enough.

C. Spontaneous magnetization and susceptibility

In this paper, we consider the canonical ensemble where
the charge density σ will be fixed when we discuss the
Lifshitz black hole background. Concretely, we first con-
sider the cases of z ¼ 1 and 2 in the four-dimensional (4D)
spacetime as examples by the numerical and analytic
methods and then extend to the cases of z ¼ 1, 2, and 3
in the five-dimensional (5D) spacetime. Now, we think
about the spontaneous magnetization in this probe approxi-
mation in the 4D spacetime. To begin with, we compute the
critical temperature Tc when B ¼ 0. Similar to the case in
the Ref. [30], the polarization field ρ is a small quantity near
the critical temperature, and we can neglect the nonlinear
terms of ρ in the equations of ϕ and p. Then, we can get

ϕðrÞ ¼ μ

�
1 −

1

r2−z

�
; pðrÞ ¼ μð2 − zÞ

m2r3−z
; ðz ≠ dÞ;

ϕðrÞ ¼ μ ln r; pðrÞ ¼ μ

m2r
: ðz ¼ dÞ: ð14Þ

In the following calculations, we will consider these two
cases of z ≠ d and z ¼ d. Then, the equations of ρ are as
follows:

ρ00þ
�
f0

f
þz−1

r

�
ρ0−

1

r2f

�
m2þ4Jμ2ð2−zÞ2

m4r4

�
ρ¼0; ðz≠dÞ;

ρ00þ
�
f0

f
þ1

r

�
ρ0−

1

r2f

�
m2þ4Jμ2

m4r4

�
ρ¼0. ðz¼dÞ:

ð15Þ

To find the critical temperature, at the horizon, the initial
conditions are

ρ0 ¼m6 þ 4Jμ2z2 − 16Jμ2ð1− zÞ
ðzþ 2Þm4

; ρðrhÞ ¼ 1. ðz ≠ dÞ

ρ0 ¼m6 þ 4Jμ2

4m4
; ρðrhÞ ¼ 1. ðz¼ dÞ: ð16Þ

When we perform the numerical computation, we can first
fix the horizon radius rh ¼ 1, and thus the temperature is
also fixed. Without loss of generality, we take ρðrhÞ ¼ 1
and treat the chemical potential μ as the shooting parameter
to match the boundary condition ρþ ¼ 0. And then we can
use the scaling transformations to transform our results into
the case in canonical ensemble where the charge density is
fixed. As a typical example, we also choose parameters as
m2 ¼ −J ¼ 1=8 and λ ¼ 1=2. Thus, the critical temper-
ature Tc will be found and is listed in Table I. When the
temperature is lower than the critical temperature, we can
plot the relationship between ρþ and the shooting param-
eter μ, in order to examine whether ρ gets spontaneous
condensation. We find that the solution of source free
always appears, which results in the spontaneous magneti-
zation of the system and breaks the time reversal symmetry
in low temperatures. In addition, here, it is worth stressing
that in the 5D spacetime the spatial rotational symmetry
is also broken spontaneously, since a nonvanishing mag-
netic moment chooses a direction as a special. When the
temperature is lower than the critical one Tc, we have to
solve Eq. (11) to get the solution of the order parameter ρ
and then compute the value of magnetic moment N, which
is defined in the 4D spacetime by

N ¼ −λ2
Z

ρ

2r3−z
dr: ð17Þ

Figure 1 shows the value of magnetic moment N as a
function of temperature with various z in 4D and 5D
Lifshitz black holes backgrounds. Here, in order to see
clearly the effect of the dynamical critical exponent z on
paramagnetism-ferromagnetism phase transition, we fix the
mass squared m2 of the massive 2-form field. We see that
when the temperature is lower than Tc the nontrivial
solution ρ ≠ 0 and the spontaneous magnetic moment
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appears. The numerical results show that this phase
transition is a second-order one with the behavior N ∝ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
near the critical temperature for all cases

calculated above. The result is still consistent with one
in the mean field theory describing the paramagnetism-
ferromagnetism phase transition. Note that when taking
z ¼ 1 and 2 in the 4D and 5D cases the magnetic moment
will decrease with the increasing z; for instance, for the case
of z ¼ 2 in 4D, the value of the magnetic moment is smaller
than the other ones in 4D. However, from the lower right
corner of Fig. 1, it easy to see that the magnetic moment
increases faster when T < Tc than those of other curves in
the 5D case. This might be due to the fact that for the cases
of z ¼ 2 in 4D spacetime and z ¼ 3 in 5D spacetime there
is a logarithmic term in the expansion of the gauge field ϕ
near the boundary r → ∞. In addition, at the sufficient low
temperature, the backreaction effect of the matter sector on
the background geometry becomes important, and thus
the probe approximation considered here would be no
longer valid.

For comparison, we list in Table I the critical temperature
Tc and the condensation behavior near Tc for the cases of
z ¼ 1, 2, and 3 with the fixed squared mass. From the table,
we can find that when we increase z Tc increases for the
fixed D, which indicates that the increasing anisotropy
between space and time enhances the phase transition. This
can be understood as follows. We can see from Eqs. (11)
that near the horizon the effective mass of the massive
2-form field decreases as the dynamical critical exponent z
increases. This leads to a higher critical temperature as z
increases. And the instability of the massive 2-form field is
easier to implement.
In the following, we calculate the static magnetic

susceptibility in this probe limit, defined by

χ ¼ lim
B→0

∂N
∂B : ð18Þ

Based on the previous analysis [30], the magnetic suscep-
tibility is still obtained by solving

ρ00 þ
�
f0

f
þ z − 1

r

�
ρ0 −

1

r2f

�
m2 þ 4Jμ2ð2 − zÞ2

m4r4

�
ρþ B

r2f
¼ 0ðz ≠ dÞ;

ρ00 þ
�
f0

f
þ z − 1

r

�
ρ0 −

1

r2f

�
m2 þ 4Jμ2

m4r4

�
ρþ B

r2f
¼ 0ðz ¼ dÞ: ð19Þ

Thus, when setting the magnetic field B ¼ 1, we can get
λ2

χ
ffiffi
σ

p ¼ 2.966ðT=Tc − 1Þ and λ2

χσ ¼ 0.5751ðT=Tc − 1Þ for the
cases of z ¼ 1 and 2 in 4D spacetime, respectively. And
they all satisfy the Curie-Weiss law of ferromagnetism in
the region of T > Tc. This conclusion is similar to the one
in the 5D case. The inverse susceptibility density in
paramagnetic phase is shown in Fig. 2.

D. DC conductivity in the ferromagnetic phase

As we know, the electric transport is also an important
property in the materials involving spontaneous magneti-
zation. Now, let us study how the dc conductivity is
influenced by spontaneous magnetization in this model.
To simplify our computation in technology, we will work in
the probe limit by neglecting backreactions of all the matter

TABLE I. The critical temperature, magnetic moment, and static magnetic susceptibility for the paramagnetic-ferromagnetic phase
transition in Lifshitz black hole backgrounds. Here, t ¼ 1 − T=Tc, and the subscript SL denotes the quantity calculated by the
semianalytic method. Nc;SL=λ2σz=d, λ2=χc;SLσz=d, N=λ2σz=d, and λ2=χσz=d are calculated near Tc. Here, each coefficient from
C1 to γ should be multiplied by 102 for the case of z ¼ 2 in 5D spacetime, but the order of magnitude when we take z ¼ 3 in 5D
spacetime is 107.

D z k C1 N1 a1 a0 γ1
Nc;SL

λ2σz=d
λ2

χc;SLσ
z=d

N
λ2σz=d

λ2

χσz=d
Tc=σz=d

4 1 3 0.234 1.837 0.477 1.849 1.838 1.341t1=2 −2.996t
1.332t1=2 −2.966t 0.653

4 1 4 0.189 2.042 0.727 2.284 2.042 1.341t1=2 −2.996t
4 2 3 0.212 5.900 0.588 3.078 6.136 19.218t1=2 −0.170t

19.27t1=2 −0.57t 1.451
4 2 4 0.175 6.496 0.864 3.732 6.757 19.218t1=2 −0.170t
5 1 3 0.203 5.757 0.504 9.273 5.987 32.913t1=2 −0.538t

19.09t1=2 −0.508t 0.627
5 1 4 0.169 6.325 0.734 11.191 6.577 32.913t1=2 −0.538t
5 2 3 0.002 0.139 0.007 0.171 0.215 25.468t1=2 −0.088t

13.692t1=2 −0.05t 0.674
5 2 4 0.001 0.149 0.010 0.198 0.231 25.468t1=2 −0.088t
5 3 3 � � � � � � � � � � � � � � � 21.823t1=2 −0.039t

744.075t1=2 −0.95t 0.764
5 3 4 � � � � � � � � � � � � � � � 21.823t1=2 −0.039t
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fields. This limit can give out the main features near the
critical temperature. However, in the case of near-zero
temperature, we have to consider the model with full
backreaction, which will be our work in the near future.
To compute the conductivity, we have to consider some

perturbations for the gauge field with a harmonically time
varying electric field. Because of the planar symmetry at
the boundary, the conductivity is isotropic. Thus, for
simplicity, we just compute the conductivity along the x
direction. According to the dictionary of AdS=CFT, we
consider the perturbation δAx ¼ ϵaxðrÞe−iωt. In the probe
limit, this perturbation will also lead to the perturbations
of the polarization field in the first order of ϵ. As a result,
we have to consider the perturbations for all the compo-
nents of the gauge field and polarization field. However, if
we only care about the conductivity in the low-frequency
limit, i.e., T ≫ ω → 0, the problem can be simplified. In
the low-frequency limit, we only need turn on the three
perturbations,

δAx ¼ ϵaxðrÞe−iωt;
Mrx ¼ ϵCrxðrÞe−iωt;
Mty ¼ ϵCtyðrÞe−iωt; ð20Þ

and corresponding equations to the three perturbations in
the low-frequency limit with Lifshitz scaling z read

C00
ty þ

�
1 − z
r

�
C0
ty −

m2Cty

r2f
−
4JpρCrx

r2
þOðωÞ ¼ 0;

ð21aÞ

Crx −
a0x
m2

−
4JpρCty

r2zþ2fm2
þOðωÞ ¼ 0; ð21bÞ

½rzþ1fða0x − λ2Crx=4Þ�0 þ
axω2

rzþ1f
þOðωÞ ¼ 0; ð21cÞ

FIG. 1. The magnetic moment N as a function of temperature. Top panel: The corresponding temperatures Tc=
ffiffiffi
σ

p ≃ 0.6532 and
Tc=σ ≃ 1.4514 to z ¼ 1 and 2 in the 4D case, respectively. Bottom panel: The corresponding temperatures Tc=σ1=3 ≃ 0.6274,
Tc=σ2=3 ≃ 0.6738, and Tc=σ ≃ 0.7642 to z ¼ 1, 2, and 3 in the 5D case, respectively.
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FIG. 2. The behavior of the inverse susceptibility density in the paramagnetic phase near the critical temperature when
m2 ¼ −J ¼ 1=8. Here, we set 2κ2 ¼ 1 for convenience. Top panel: z ¼ 1 and 2 in the 4D case from left to right. Bottom panel:
z ¼ 1, 2, and 3 in the 5D case from left to right.
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with p and ρ determined by Eqs. (11). Here, OðωÞ is the
terms with order of ω which can be neglected when ω → 0.
In general, the term ω2=rzþ1fðrÞ cannot be neglected since
fðrÞ is zero at the horizon, which makes the limit of ω → 0
ambiguous. However, at the horizon, if we impose the
ingoing conditions for Crx, Cty, and ax,

Cty ¼ e−iωr� ½Cð0Þ
ty þ Cð1Þ

ty ðr − rhÞ þ…�;
Crx ¼ e−iωr� ½Cð0Þ

rx þ Cð1Þ
rx ðr − rhÞ þ…�;

ax ¼ e−iωr� ½að0Þx þ að1Þx ðr − rhÞ þ…�; ð22Þ

with r� ¼
R
dr=ðrzþ1fÞ, we find the system has a well-

defined limit when ω → 0 if T ≠ 0. At the AdS boundary
with the source free condition, we have the following
asymptotic solutions:

Cty ¼ CtyþrðzþδÞ=2 þ Cty−rðz−δÞ=2 þ…;

Crx ¼ −
zax−

rzþ1m2
þ…;

ax ¼ axþ þ ax−
rz

þ…: ð23Þ

Here, δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ z2

p
. Then, the gauge-gravity duality

implies that the electric current hJxi ¼ ax− and the dc
conductivity is given by

σ ¼ lim
ω→0

ax−
iωaxþ

: ð24Þ

As a holographic application of the membrane paradigm of
black holes, we can directly obtain the dc conductivity from
Eq. 21 using the method proposed by Iqbal and Liu in
Ref. [48]. In fact, the transport coefficients in the dual field
theory can be obtained from the horizon geometry of the
dual gravity in the low-frequency limit. Applying this to
the Uð1Þ gauge field, this conclusion implies that the dc
conductivity is given by the coefficient of the gauge field
kinetic term evaluated at the horizon. To see this, we
assume that T > 0 and ω → 0, and then we can neglect all
the terms of ω in Eqs. 21. We first note that

lim
r→∞

rzþ1fðrÞða0x − λ2Crx=4Þ ¼ rzþ1z

�
−hJxi
rzþ1

þ λ2hJxi
4rzþ1m2

�
¼ −zð1 − λ2=4m2ÞhJxi:

ð25Þ

Equation (21c) shows that this quantity is conserved along
the direction r. So, at the horizon, using Eqs. (21b)
and (21c), we have

− zð1 − λ2=4m2ÞhJxi
¼ lim

r→1
rzþ1fða0x − λ2Crx=4Þjr¼rþ ;

¼ rzþ1f

��
1 −

λ2

4m2

�
a0x −

λ2JpρCty

m2fr2zþ2

�
r¼rh

: ð26Þ

Combining Eqs. (21a) with (21b) and considering the fact
that Cty is regular at the horizon, we have

�
m2 þ 16J2p2ρ2

m2r2zþ2

�
Cty ¼ −

4Jpρ
m2

fa0x þ ðz − 1ÞfC0
ty ð27Þ

at r → rþh . Thus, we have from Eqs. (27) and (26) that

− zð1 − λ2=4m2ÞhJxi

¼ lim
r→rþh

r2fa0x

�
1 −

λ2

4m2

�

×

�
1þ 4J2p2ρ2λ2

ðm2 − λ2

4
Þðm4 þ 16J2p2ρ2=r2zþ2Þ

�
: ð28Þ

Now, let us take the ingoing condition for ax at the horizon,
which tells us that

rzþ1fa0x ¼
d
dr�

ax ¼ −iωax; at r → rþh ; ð29Þ

finally, we get

hJxi ¼
iωaxðrþÞ

z

�
1þ 4J2p2

0ρ
2
0λ

2

ðm2 − λ2

4
Þðm4 þ 16J2p2

0ρ
2
0=r

2zþ2
þ Þ

�
:

ð30Þ

Here, p0 and ρ0 are the initial values of pðrÞ and ρðrÞ at
the horizon, which can be computed from Eq. (11). In the
low-frequency limit, Eq. (21) implies that the electric field
is constant, i.e., limr¼rhaxðrÞ ¼ axþ. It follows that we can
obtain the dc conductivity near the horizon as

σ ¼ 1

z

�
1þ 4Jp2

0ρ
2
0λ

2

ðm2 − λ2

4
Þðm4 þ 16J2p2

0ρ
2
0=r

2zþ2
h Þ

�
: ð31Þ

With the appearance of ferromagnetism, dc resistivity
decreases when the sample gets cooling, which shows in
many interesting phenomena in condensed matter physics,
especially in a class of manganese oxides which are
widespread because of the discovery of CMR [49,50].
Note that this effect has a complete different physical origin
from the “giant”magnetoresistance observed in layered and
clustered compounds. In the last 20 years, CMR has been
among the main topics of study within the area of strongly
correlated electron systems, and its popularity is reaching
the level comparable to that of the high-temperature

ZHANG, WU, JIN, CHAI, HU, and ZHANG PHYSICAL REVIEW D 93, 126001 (2016)

126001-8



superconducting cuprates. Here, the expression of Eq. (31)
is just appropriate for the case of 4D spacetime. However,
for the 5D Lifshitz spacetime, we only need to replace the
coefficient 1=z in front of the bracket in Eq. (31) with
1=ðzþ 1Þ. It is not difficult to find that the dynamical
exponent z has no effect on the shape of curve for the fixed
D from Fig. 3, but it affects the value of dc resistivity when
the sample gets cooling; i.e., the bigger the value of z, the
bigger the dc resistivity, although it decreases with the
lower temperature. Moreover, the dc resistivity decreases
faster near the critical temperature Tc in the case of 5D
than the in the case of 4D. In the right panel of Fig. 3, we
show the experimental data from a typical CMR material
La1−xSrxMnO3 as an example. We see that our model gives
a very similar behavior to the latter in a composition range
of x ≥ 0.175. Meanwhile, Fig. 3 shows that the effect of
dynamical exponent z on dc resistivity is different from the
composition x; i.e., the increase of the composition x will
result in the decrease of dc resistivity. Of course, we should
mention here that there still exist some differences between
our model result and experimental data on CMR. In
general, when T > Tc, the material shows a semiconductor
or insulator behavior, and the dc resistivity increases with
cooling the sample which has been realized by introducing
a massive 2-form field and a dilaton field coupled with the
U(1) gauge field in the asymptotic AdS black brane
background [30]. In our model, however, the dc resistivity
is a constant when T > Tc, which is similar to the Ref. [34].
So this model only gives partial property of CMR when
T < Tc. But this is an exciting and enlightening result
because it implies that this model still can lead to a
possibility to build a holographic CMR model in the
Lifshitz black hole and to investigate this typical and
important strong correlated electrons system in the
AdS=CFT setup.

III. SEMIANALYTIC CALCULATIONS NEAR
THE CRITICAL TEMPERATURE

In this section, to complement the numerical calcula-
tions, we study the magnetic moment and static magnetic
susceptibility by using the semianalytic method, which is
different from the analytic method in holographic super-
conductors, but it seems more accurate. Now, we focus on
the case of the four-dimensional Lifshitz black hole. It is
convenient to make a coordinate transformation by
u ¼ rh=r. As p can be solved directly, then we put it into
the equation of ρðrÞ and get when z ≠ d

ρ00 þ
�
3 − z
u

þ f0

f

�
ρ0 −

�
m2

u2f
þ 4Jμ2u2ð2 − zÞ2
ðm2 − 4Jρ2u4Þ2f

�
ρ

þ B
u2f

¼ 0: ð32Þ

As we will care about the behavior of T → Tc, the value of
ρ will be a small quantity near the transition point. In this
case, we can make a Taylor expansion on the nonlinear
term of ρ in Eq. (32) as

4Jμ2u2ð2 − zÞ2
ðm2 − 4Jρ2u4Þ2 ¼

4Jμ2u2ð2 − zÞ2
m4

þ 32J2μ2ρ2u6ð2 − zÞ6
m6

þOðρ4Þ: ð33Þ

Note that for the case of z ¼ d all the terms about (2 − z) in
molecules will be replaced by 1, and some expressions in
the following will also be changed. Here, we do not talk
about it in detail. When neglecting the high-order terms,
Eq. (32) can be rewritten as

FIG. 3. Left panel: dc resistivity vs temperature in our model. Here, we choose parameters as m2 ¼ −J ¼ 1=8 and λ ¼ 1=2. Right
panel: Temperature dependence of resistivity for various single crystals of La1−xSrxMnO3. Arrows indicate the Curie temperature. For
more details, see Ref. [51].
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L̂ρ ¼ ~Jfρ3u9−z þ Bu1−z;

L̂ ¼ −
d
dz

�
u3−zfðuÞ d

du

�
þ qðuÞ;

qðuÞ ¼ m2u1−z þ 4Jμ2u5−zð2 − zÞ2
m4

;

~Jf ¼ −32J2μ2ð2 − zÞ6=m6 < 0: ð34Þ

Up to the order of ρ4, the part of the polarization field in
action (7) can be written as

SðT; B; ρÞ
λ2V2

¼
�
u3−z

2
fρ0ρþ u2−zfρ2

�����zh
0

−
Z

uh

0

dz

�
ρ

2
L̂ρþ Bρu1−z −

~Jf
4
u9−zρ4

�
;

ð35Þ

which is a function of T and B but a functional of ρ. The
asymptotic solution for Eq. (34) is

ρ ¼ ~ρþ B
m2

; with ~ρ ¼ ρþuΔ− þ ρ−uΔþ : ð36Þ

The source free condition is ρþ ¼ 0 as u → 0þ. Under this,
the grand thermodynamic potential or free energy in the
grand canonical ensemble Ω is

ΩðT; B; ρÞ ¼ ~ΩðT; B; ρÞV2

¼ λ2V2

Z
uh

0

dz

�
ρ

2
L̂ρþ Bρu1−z −

~Jf
4
u9−zρ4

�
:

ð37Þ

According to the thermodynamic relationship,

dΩðT; BÞ ¼ −SdT − V2NdB

⇒ N ¼ −
1

V2

�∂ΩðT; BÞ
∂B

�
T
: ð38Þ

It seems that the magnetic moment should be

N ¼ −
1

V2

�∂ΩðT; B; ρÞ
∂B

�
T;ρ

¼ −λ2
Z

uh

0

ρu1−zdu: ð39Þ

However, comparing this result with the previous definition
of the magnetic moment,

N=λ2 ¼ −
Z

uh

0

ρu1−z

2
du: ð40Þ

We find the difference factor 1=2 between Eq. (39)
and (40). It should be shown that the expression (39) is
not true. The reason has been explained in Ref. [34]

according to the Euler homogenous function theorem
and the scaling transformation. Therefore, we can get
the definition (40) and still use it in the following. The
key step for computing the grand thermodynamic potential
is to structure the Sturm-Liouville problem,1 which is the
ordinary differential equation (ODE)

P̂ρn ¼
L̂ρn
ωðuÞ

¼ 1

ωðuÞ
�
−

d
du

�
u3−zfðuÞ d

du

�
þ qðuÞ

	
ρn

¼ λnρn; ð41Þ

with the boundary conditions; one is jρnðuhÞj, required to
be finite at u ¼ uh, fðuhÞ ¼ 0, and the other is ρnð0Þ ¼ 0 at
u → 0þ. The weight function ωðuÞ can be an arbitrary
positive continuous function in the region of ½0; uh�. From a
practical point of view, we choose the weight function such
that the values of λn will not influence the asymptotic
solutions of Eq. (41). There are many choices for the weight
function. Here, we choose ωðrÞ ¼ uk with an integer k > 2.
When r → ∞, we note that the asymptotic solution for

Eq. (41) is

ρn ¼ ρþuΔ− þ ρ−uΔþ : ð42Þ

One can find that the second boundary condition corre-
sponds to ρþ ¼ 0. Let L2ð½0; uh�;ωðuÞ; duÞ be the Hilbert
space of square integrable functions on ½0; uh�, i.e.,

L2ð½0; uh�;ωðuÞ; duÞ

¼
�
h∶½0; uh�↦Rj

Z
uh

0

ωðuÞjhðuÞj2du < ∞
	
; ð43Þ

with the inner product

hh1; h2i ¼
Z

uh

0

ωðuÞh1ðuÞh2ðuÞdu; ð44Þ

andD be the subspace of L2ð½0; uh�;ωðuÞ; duÞ that satisfies
the both of the boundary conditions, i.e.,

D ¼ f∀ h ∈ L2ð½0; uh�;ωðuÞ; duÞjh ∈ C2½0; uh�;
hð0Þ ¼ 0; jhðuhÞj < ∞g: ð45Þ

Then, we can prove that P̂ is the self-adjoint operator
on D, i.e.,

1The method is similar to the one used in Ref. [52] but is
completely different from the Sturm-Liouville eigenvalue method
in Ref. [16]; there, the precision depends on the trial function one
chooses.
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∀h1; h2 ∈ D; hh1; P̂h2i ¼ hP̂h1; h2i: ð46Þ

According to the properties of Sturm-Liouville (SL) prob-
lem, the solutions of Eq. (41) form a function basis
on D with which one can expand any functions belonging
to D, i.e.,

hρn; ρki ¼ δnk; ð47Þ

and

∀h ∈ D; ∃fcng ⊂ R; hðuÞ ¼
X∞
n¼1

cnρnðuÞ ð48Þ

with cn ¼ hρn; hi.
Let us now turn our attention to the free energy (37). For

convenience, we will use scaling transformation to set
uh ¼ 1 in the process of computation and then transform
into the case of fixing charge density in the final results.
Let ~ρðrÞ ¼ ρðrÞ − B=m2 be any function configuration

belonging to D, in which ρðrÞ does not need to be the
solution of the EoM (34). We can use the eigenfunction ρn
to expand ~ρðrÞ and theh magnetic moment as

~ρ ¼
X∞
n¼1

cnρn⇔ρ ¼
X∞
n¼1

cnρn þ
B
m2

; ð49Þ

N ¼ −
Z

1

0

λ2Bu1−z

2m2
du − λ2

Z
1

0

~ρu1−z

2
du

¼ −
Z

1

0

λ2Bu1−z

2m2
du −

λ2

2

X∞
n¼1

cnNn; ð50Þ

where cn and Nn are coefficients, defined as

cn ¼
Z

1

0

ω~ρρndu; Nn ¼
Z

1

0

ρnu1−zdu: ð51Þ

Let us consider the case of spontaneous magnetization, i.e.,
the case with B ¼ 0. In this case, we have

~ΩðT; cnÞ ¼ λ2
Z

1

0

du

�
ωρ

2
P̂ρ − ~Jfu9−zρ4=4

�
; ð52Þ

with ρ ¼ P∞
n¼1 cnρn. Using the orthogonal relationship, we

have

~ΩðT; cnÞ ¼
λ2

2
hρ; P̂ρi − λ2 ~Jf

4

Z
1

0

u9−zρ4du

¼ λ2

2

X∞
n¼1

λnc2n −
λ2 ~Jf
4

Z
1

0

u9−zρ4du: ð53Þ

It follows that the nonzero solution appears only when
λ1 < 0, i.e., T < Tc. Because of J < 0, we can find that

~ΩðT; cnÞ ≥ 0. The minimization of ΩðT; cnÞ ¼ 0 is
achieved only when cn ¼ 0, i.e., ρ ¼ 0.
When T → T−

c , we can set λ1 ¼ a0ðT=Tc − 1Þ with
a0 > 0 and assume that the off-shell solution is dominated
by the first term in Eq. (49) only, i.e., jc1j ≫ cn for n ≥ 2 in
Eq. (51). As a result, we have

λ−2 ~ΩðT; cnÞ≃ 1

2
λ1c21 −

~Jfc41
4

Z
1

0

dzρ41u
9−z;

≃ 1

2
a0ðT=Tc − 1Þc21 − ~Jfc41a1 ð54Þ

with a1 ¼ 1
4

R
1
0 ρ

4
1u

9−zdujT¼Tc
> 0 and

N ≃ −λ2c1N1=2: ð55Þ

Putting Eq. (55) into Eq. (54), we can obtain

~ΩðT; cnÞ≃ ~ΩðT;NÞ

≃ 2a0
λ2N2

1

ðT=Tc − 1ÞN2 þ −16~Jfa1
λ6N4

1

N4: ð56Þ

It easy to see that this is just the Ginzburg-Landau theory of
the ferromagnetic model. Based on the grand thermody-
namic potential in Eq. (56), we can obtain the expression of
the magnetic moment in the ferromagnetic phase as

N=λ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

1a0
−16~Jfa1

s
ð1 − T=TcÞ1=2: ð57Þ

This just confirms the critical behavior obtained in the
numerical calculations, and the critical exponent 1=2 is an
exact result. In that follows, we will compute all the
coefficients appearing in Eq. (57) and compare them with
the numerical ones.

A. Spontaneous magnetization

Let us first compute N1 and a1. For this, we have to first
find the eigenfunction ρ1, which is the solution of

−
d
du

�
u3−zfðuÞ dρn

du

�
þ qðuÞρn ¼ 0 ð58Þ

at T ¼ Tc with the conditions

ρ1ð1Þ ¼ 1; ρ1þ ¼ 0: ð59Þ

For convenience, here, we do not assume that fρng form a
unit base. Thus, we have

N1¼
1

C1

Z
1

0

ρ1u1−zdu; a1¼
1

4C4
1

Z
1

0

u9−zρ41du; ð60Þ
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where C1 is the normalization coefficient and

C2
1 ¼ hρ1; ρ1i ¼

Z
1

0

ωρ21du: ð61Þ

We have

N2=μ2c ¼
N2

1a0
−16~Jfa1μ2c

ð1 − T=TcÞ≃ a2ð1 − T=TcÞ: ð62Þ

To clarify that the results are independent of the specific
form of the weight function, we choose k ¼ 3, 4 as two
examples. From Table I, we see that different weight
functions give different values for N1, a1, and a0 but the
same value for the magnetic moment N (up to a numeri-
cal error).
The value of a0 can also be obtained directly by solving

the ODE (41). In the region near the critical temperature,
we assume λ1 ¼ a0ðT=Tc − 1Þ. Note that all quantities in
Eq. (41) are the functions of temperature; thus, taking the
derivative with respect to T and evaluating at T ¼ Tc, we
get

dP̂
dT

ρ1 þ P̂
dρ1
dT

¼ a0
Tc

ρ1: ð63Þ

Here, ρ1 is the eigenfunction of Eq. (58). Now, treat
ρT ¼ dρ1

dT as an unknown function to be solved; then, the
task to find a0 becomes solving a nonhomogenous eigen-
value problem,

P̂ρT ¼
�
a0
Tc

−
dP̂
dT

�
ρ1: ð64Þ

At the AdS boundary, ρT has the same asymptotic behavior
as Eq. (42), and thus we can impose the boundary
conditions as

jρTð1Þj < ∞; ρTþ ¼ 0: ð65Þ

We find that ρT ∈ D. We then use the basis fρng to expand
ρT , i.e.,

ρT ¼
X∞
n¼1

dn
Cn

ρn: ð66Þ

Here,Cn are the modules of ρn. Using the fact that λ1 ¼ 0 at
T ¼ Tc and

hC−1
1 ρ1; P̂ρTi ¼

X∞
n¼1

dnhC−1
1 ρ1; C−1

n P̂ρni

¼
X∞
n¼1

dnλnδ1n ¼ d1λ1 ¼ 0; ð67Þ

we have



ρ1;

�
a0
Tc

−
dP̂
dT

�
ρ1

�
¼ a0C2

1

Tc
−
Z

1

0

ωρ1
dP̂
dT

ρ1dz

¼ a0C2
1

Tc
−
Z

1

0

ρ1
dL̂
dT

ρ1du ¼ 0: ð68Þ

Furthermore, we get

a0 ¼
Tc

C2
1

Z
1

0

dzρ1
dL̂
dT

ρ1: ð69Þ

This expression is valid in a canonical ensemble with fixed
charge density σ ¼ 1. It is very useful to find its equivalent
form in the case with fixed rh ¼ 1, since it is convenient
when we perform numerical computation. If we fix rh ¼ 1,
the shooting parameter is the chemical potential μ. The
relation between the temperature in the canonical ensemble
and the charge density is given by

T ¼ zþ 2

4πσz=2
: ð70Þ

Thus, the expression (69) can be rewritten as

a0 ¼
Tc

C2
1

dμ
dT

Z
1

0

duρ1
dL̂
dμ

ρ1

¼ −
4μ3cπTc

ð2þ zÞC2
1

Z
1

0

duρ1
dL̂
dμ

ρ1

����
μ¼μc

: ð71Þ

B. Susceptibility

When B ≠ 0, the susceptibility for T > Tc is defined as

χ ¼ lim
B→0

�∂N
∂B

�
T
: ð72Þ

In the case with T > Tc and B → 0, we can neglect the
nonlinear term, i.e., setting ~Jf ¼ 0. The solution of Eq. (34)
can be expressed as

ρ ¼
X∞
n¼1

cnρn þ
B
m2

: ð73Þ

Taking into account Eq. (34) with ~Jf ¼ 0, we have

0 ¼ L̂ρ − Bu1−z ¼
X∞
l¼1

clL̂ρl þ
4BJμ2u5−zð2 − zÞ2

m6

¼
X∞
l¼1

clC−1
l λlωρl −

4BJμ2z4

m6
: ð74Þ

Multiplying a factor ρn=Cn and integrating the above
equation from 0 to 1, we can obtain
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cn ¼ −
Bγn
λn

; with γn ¼
Z

1

0

4Jμ2u5−zð2 − zÞ2
Cnm6

ρndu:

ð75Þ

Thus, we can get the magnetic moment density as

N=λ2 ¼ −
Z

1

0

Bu1−z

2m2
duþ B

X∞
n¼1

γnNn

2λn
ð76Þ

and the magnetic susceptibility

χ=λ2 ¼ −
Z

1

0

u1−z

2m2
du −

X∞
n¼1

γnNn

2λn
: ð77Þ

When T → Tþ
c , we have λ1 ¼ a0ðT=Tc − 1Þ → 0þ. Thus,

χ is dominated by the first term in the summation of
Eq. (77), and its inverse can be expressed as

λ2χ−1=μ
2−z
2
c ¼ 2a0

μ
2−z
2
c

γ1N1ðT=Tc − 1Þ; as T → Tþ
c : ð78Þ

In the case of m2 ¼ −J ¼ 1=8, for example, we have
λ2χ−1=μc ≃ 2.996ðT=Tc − 1Þ, which is very close to our
numerical result λ2χ−1=μc ≃ 2.966ðT=Tc − 1Þ given in the
numerical calculation when we take z ¼ 1 in the case of 4D

spacetime. But from Table I, it easy to see that the magnetic
moment and susceptibility have a great gap when we
compare the analytical method with numerical calculation,
especially for the case of 5D Lifshitz spacetime.
Below, let us move to the case with B ≠ 0. In this case,

from Eq. (34), we have

Z
1

0

ρnðωP̂ρ − Bu1−z − ~Jfρ3u9−zÞdu ¼ 0: ð79Þ

According to Eq. (49), we can rewrite it as

Z
1

0

ρn

�
ωP̂ ~ρ−B

�
u1−z−

qðuÞ
m2

�
− ~Jfρ3u9−z

�
du¼0: ð80Þ

Using the expansion expression (49), we have

cnC2
nλn þ Bγn −

Z
1

0

ρn ~Jfρ3u9−zdu ¼ 0; n ¼ 1; 2;…:

ð81Þ

For convenience, we assume that fρng is a unit base, i.e.,
Cn ¼ 1. Equation (81) is equivalent to Eq. (34) if we take
all the terms in Eq. (49) into account. In the case of
T → T−

c , assuming that the first term in Eq. (49) dominates
only, i.e., jc1j ≫ cn for n ≥ 2 in Eq. (51), we get

FIG. 4. The relation between the magnetic moment density N and external magnetic field B in the cases of T ¼ 1.05Tc, T ¼ 0.9Tc,
and T ¼ Tc, respectively
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N=λ2 ¼ −
B

2m2

Z
1

0

u1−zdu − c1N1=2: ð82Þ

Taking n ¼ 1 in Eq. (81), we have

c1λ1 þ Bγ1 − c31 ~Jf

Z
1

0

ρ41u
9−zdu

¼ c1λ1 þ Bγ1 − 4c31 ~Jfa1 ¼ 0: ð83Þ

For a given temperature T → Tc, we can combine Eq. (82)
with Eq. (83) to obtain a relation between the external
magnetic field B and magnetic moment N. Figure 4 shows
the results with T ¼ 1.05Tc, T ¼ 0.9Tc, and T ¼ Tc,
respectively, in the case of m2 ¼ −J ¼ 1=8. We see that
it is very similar to what we have obtained in Ref. [34],
particularly for the case of z ¼ 1, d ¼ 2. In the case of
T < Tc, when the external field continuously changes
between −Bmax and Bmax periodically, the metastable states
of the magnetic moment can appear. Thus, we see a
hysteresis loop in the single magnetic domain.
Furthermore, from Fig. 4, it is easy to see that the magnetic
moment is not single valued with a general z and D, and the
Lifshitz dynamical exponent z has an effect on the
hysteresis loop quantitatively. Particularly, for the cases
of z ¼ 2 in 4D and z ¼ 3 in 5D spacetime, the period of the
external field B is shorter, and the value of the magnetic
momentN will become bigger than the ones for the cases of
other z in 4D and 5D spacetime. The reason for this
phenomenon is that the critical temperature Tc increases
with increasing z. It makes the phase transition happen
easily. In other words, the magnetic moment N is more
likely to arrive at a certain value with the effect of
dynamical exponent z. At the same time, it means one
just needs a smaller external magnetic field to realize the
hysteresis loop.

IV. SUMMARY AND DISCUSSION

In summary, we have numerically and analytically inves-
tigated the holographic paramagnetism-ferromagnetism
phase transition model in the 4D and 5D Lifshitz black
holes in the probe limit by introducing a massive 2-form
field coupled to the backgroundMaxwell field and obtained
the effects of the dynamical exponent z on the holographic
paramagnetism-ferromagnetism phase transition. Our
results are concluded as follows.
We have obtained the critical temperature Tc first if the

model parameters are in some suitable region and then
typically plotted the magnetic moment and the inverse
susceptibility density as a function of the temperature. The
results show that, in the case without an external magnetic
field, the improving of the dynamical exponent z results in

the increase of Tc, which implies that the increasing
anisotropy between space and time enhances the phase
transition. Especially, for the case of 5D Lifshitz spacetime,
the value of the magnetic moment changes obviously
compared with the 4D spacetime. In the vicinity of the
critical point, however, the behavior of the magnetic
moment is always as ∼ð1 − T=TcÞ1=2, regardless of the
values of z and D, which is in agreement with the result
frommean field theory. And the dc resistivity is not relevant
to the dynamical exponent z qualitatively, though in this
probe limit, it is suppressed by spontaneous magnetization
and shows a metallic behavior. But the value of dc
resistivity is influenced when the sample gets cooling;
i.e., the bigger the value of z, the bigger the dc resistivity,
although it decreases with the decreasing temperature.
Moreover, in the presence of the external magnetic field,
the inverse magnetic susceptibility near the critical point
behaves as ∼ðT=Tc − 1Þ in all cases, which satisfies the
Cure-Weiss law.
Furthermore, by a semianalytic method, we have calcu-

lated the magnetic moment and static magnetic suscep-
tibility and obtained the relation between external magnetic
field B and magnetic moment N near the critical temper-
ature. And we have observed the hysteresis loop in the
single magnetic domain when the external field continu-
ously changes between the maximum and minimum values
periodically with a general z or D. But for the fixed value of
D, the increase of the dynamical exponent z could result in
shortening the period of the external magnetic field. In
addition, the transformation period is smaller in the 5D case
than in the 4D case.
Note that in this paper we only worked on the probe

limit by neglecting the backreaction of the matter fields.
Although the probe limit can reveal some significant
properties of the holographic ferromagnetic phase transi-
tion, maybe the order of the phase transition could be
changed once the backreaction is taken into consideration,
and some new phases could emerge. Therefore, it is
interesting to study the influence of the backreaction of
the matter field to the Lifshitz background and to see
whether there are some new features beyond the probe
limit, which will be our research work in the near future.
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