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The helicity of a Dirac neutrino with mass m evolves under the influence of a B field because it has a
magnetic dipole moment proportional tom. Moreover, it was recently shown that a polarized or anisotropic
medium engenders the same effect for both Dirac and Majorana neutrinos. Because a B field polarizes a
background medium, it instigates helicity oscillations even for Majorana neutrinos unless the medium is
symmetric between matter and antimatter. Motivated by these observations, we review the impact of a B
field and of an anisotropic or polarized medium on helicity oscillations for Dirac and Majorana neutrinos
from the common perspective of in-medium dispersion.
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I. INTRODUCTION

The left-handed nature of weak interactions implies that
astrophysical neutrino ensembles emerge far from helicity
equilibrium, notably in the early Universe and the interior
of collapsing stars or merging neutron stars. On the other
hand, the “wrong-helicity” components are not completely
sterile because neutrinos have small masses. Moreover,
there could be new interactions that could accelerate the
relaxation toward left-right equilibrium, although we focus
here on the impact of neutrino masses alone. In the latter
case, the rate towards helicity equilibrium is of order
ðm=2EÞ2 times an ordinary weak rate, where E is a typical
neutrino energy. This rate tends to be far too small to be of
practical interest. However, the helicity conversion rate can
be coherently enhanced in the form of helicity oscillations.
It has long been known that nonzero neutrino masses

imply magnetic and electric dipole and transition moments
[1–7], allowing B fields to instigate spin and spin-flavor
oscillations [8–11]. Only Dirac neutrinos have intrinsic
magnetic dipole moments, whereas both Dirac and
Majorana neutrinos have magnetic and electric transition
moments originating from the mismatch between mass and
interaction eigenstates.
It was only recently fully appreciated that analogous

effects arise for both Dirac and Majorana neutrinos if the
background medium is anisotropic either in the form of a
convective current (background vector current) or polarized
(background axial-vector current) [12–18]. The origin of
this effect is the mismatch between chirality and helicity for
neutrinos with small masses in analogy to the origin of the
traditional dipole moment. A medium polarization nor-
mally originates from a B field that therefore can flip the
spin both by the intrinsic dipole moment and indirectly by
polarizing the medium. The interaction energy of both
effects must be of order eBGFm, so it is not obvious which
is more important.

One way to look at this phenomenon is the perspective
that in a medium both a Dirac and a Majorana neutrino
acquire an effective magnetic moment: the spin polarization
of the medium caused by the B field is interpreted as an in-
medium electromagnetic vertex function. A significant
body of literature has studied this point to determine the
dispersion law of active neutrinos and antineutrinos, but
usually not with an eye for helicity evolution [19–31].
Here, we take the opposite approach and interpret even the
normal B field as yet another helicity-changing refractive
medium and not in terms of intrinsic dipole moments.
The purpose of our short paper is to look at neutrino

helicity flipping by a background medium (B field,
unpolarized medium with currents, polarized medium)
from a common perspective and to provide explicit
expressions for different cases, considering both Dirac
and Majorana neutrinos with equal or different masses
and a medium with a large matter-antimatter asymmetry as
well as one that is matter-antimatter symmetric. Most of
these results can be found scattered in the literature, but we
hope to provide a useful clarification by unifying them
from a common perspective.
We begin in Sec. II with general aspects of neutrino

dispersion and discuss how anisotropic media lead to
helicity conversion when neutrinos have Dirac or
Majorana masses. In Sec. III we turn specifically to a B
field and show that the general formulas coincide with the
usual description in terms of dipole moments. In Sec. IV we
consider an electron gas polarized by a B field and compare
with the B-field-only case. We conclude in Sec. V.

II. HELICITY CONVERSION

In this section we study generic aspects of neutrino
dispersion and helicity evolution in homogeneous and
static media or B fields on the level of refraction (forward
scattering). Of course, in this setup a nontrivial evolution
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arises only if the initial state does not coincide with one of
the in-medium propagation eigenstates.

A. Neutrino dispersion

The medium causes a shift of the neutrino self-energy Σ
by a background-induced term Σb. In the Dirac equation in
Fourier space, it appears in the form

ðk −m − ΣbÞψ ¼ 0; ð1Þ

where k is the neutrino four momentum, k ¼ kμγμ, and m
the neutrino mass. Generally Σb has a nontrivial Dirac
structure and depends on k besides medium properties.
Nontrivial solutions require det ðk −m − ΣbÞ ¼ 0, equiv-
alent to asking for the poles of the propagator. This
condition determines the dispersion relation of the propa-
gation eigenstates in the given background medium.
The neutrino self-energy is the “blob” (the truncated

matrix element) in Fig. 1. In unitary gauge to one-loop
order and ignoring background neutrinos, Σb is given by the
tadpole and bubble graphs of Fig. 2 that must involve the
chirality projections1 R ¼ 1

2
ð1þ γ5Þ and L ¼ 1

2
ð1 − γ5Þ,

where neutrino lines are attached. The only Dirac structure
surviving the chirality projections is γμ or γμγ5, the latter
contributing a negative sign that is absorbed in the common
coefficient. Therefore, on one-loop level we arrive at the
most general form,

Σb ¼ −Rðakþ bÞL; ð2Þ

where a is a dimensionless coefficient. The overall sign
follows the convention of Ref. [32]. The four vector b of
dimension energy depends on the background currents and
fields. It may also involve k, except for a term proportional
to k that we have explicitly separated.
For massless neutrinos, the dispersion of active and

sterile components is independent. The sterile components,
if they exist, are unaffected by the medium. For the active
components, the coefficient amodifies k → ð1þ aÞk in the
Dirac equation and one finds2

k0 þ
b0

1þ a
¼ �

����kþ b
1þ a

����: ð3Þ

Henceforth we neglect a ≪ 1 because perturbatively it
contributes only higher-order corrections.
This result is not as simple as it looks because b can

depend on k. However, in the ultrarelativistic limit, where
dispersion effects are small, we can use the unperturbed k to
express b. Even then we must worry about the sign of k0,
where negative-energy solutions of the Dirac equation
represent positive-energy antiparticles with opposite
momentum. Henceforth we write the dispersion relation
for positive energies for both neutrinos and antineutrinos.
After expanding to linear order in b we arrive at

k0 ¼ jkj − ðb0 − b∥Þ ×
�
1 for ν;

ηb for ν̄;
ð4Þ

where b∥ ≡ k̂ · b and k̂ is a unit vector in the direction of k.
The component b⊥ transverse to the neutrino momentum
does not affect neutrino dispersion in linear approximation.
The parameter ηb ¼ �1 in Eq. (4) had to be introduced

as a price for interpreting antineutrinos as positive-energy
states. In particular, ηb ¼ −1 when b does not depend on k
and therefore the dispersion effect has opposite sign for ν̄.
This is the case for an ordinary medium with large matter-
antimatter asymmetry. On the other hand, ηb ¼ þ1 when
the dispersion effect does not change sign. Typical exam-
ples are a matter-antimatter symmetric medium or a B field
in vacuum.

FIG. 1. Neutrino self-energy graph in a background medium or
electromagnetic field.

FIG. 2. One-loop neutrino self-energy (unitary gauge) in a
medium or B field. Top: Tadpole graph. Bottom: Charged-current
bubble graph. Double lines are dressed propagators, i.e., they
include real particles of the medium and real or virtual states in
the B field. In our physical situations of interest,W and Z bosons
are always virtual. We ignore background neutrinos; otherwise, a
Z bubble also appears. The absence of background neutrinos
renders the evolution equations linear and we can study each
momentum mode separately.

1In the Russian literature, γ5 is defined with opposite sign and
thus appears in the definitions of R and L with opposite sign.

2We use the metric ðþ;−;−;−Þ so that J0 and J0 of a four
vector J are the same. For typographical simplicity we usually
write J0 for the timelike component. In an expression like J ¼
ðJ0; JÞ the three-vector J refers to the contravariant spacelike
components, i.e., to Ji with i ¼ 1, 2, or 3. The Lorentz invariant
product of two four vectors is IJ ¼ IμJμ ¼ I0J0 − I · J.
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Generally there are contributions to b from different
types of background, e.g., a medium of different compo-
nents and a B field. Because Eq. (4) for the ultrarelativistic
limit is linear in b we can consider each component
separately.

B. Helicity evolution

Neutrinos have small masses so that the ultrarelativistic
dispersion relation in vacuum is k0 ¼ jkj þm2=2jkj.
Together with flavor mixing, it leads to the usual flavor
conversion effects. In addition, if b has a nonvanishing
component transverse to k, transitions between states of
opposite helicity occur to linear order in the masses.
Moreover, the background effect is diagonal in the
weak-interaction basis, which is very different from the
mass basis. Therefore, spin-flavor transitions are also
possible.
To understand helicity conversion qualitatively, we use

the mass basis and denote the eigenstates with i or j.
Without calculation we glean from Fig. 3 how the masses
enter when we are in the ultrarelativistic limit. For Dirac
neutrinos, which possess four degrees of freedom just like
the charged leptons, only the left-handed neutrino compo-
nents communicate with the self-energy blob, so it is the
mass of the wrong-helicity (sterile) Dirac state that inter-
venes to connect to Σb. In particular, the amplitude for
νi;þ → νj;− is proportional to mi, while for νi;− → νj;þ it is
proportional to mj. If the two masses are identical, the
amplitude is proportional to m ¼ mi ¼ mj and therefore
the same for both cases.
To calculate the helicity-flipping amplitude it is easiest to

begin with the exact spinors describing massive neutrinos
in vacuum [17]. A Dirac neutrino with massmi, momentum
k, and helicity h ¼ �1 is described by a spinor ui;hðkÞ. The
forward-scattering effect of the medium is encoded in the
energy shifts represented by Σb. In the basis of free massive
neutrinos, as opposed to the in-medium propagation
eigenstates considered earlier, the shift of the neutrino
Hamiltonian is

Hνν
ij;sh ¼ ūi;sΣbuj;h; ð5Þ

where the spinors are taken at momentum k and we
use the same normalization u†i;hui;h ¼ 1 as adopted in
Refs. [17,18]. A similar construction applies to antineu-
trinos with Hν̄ ν̄

ij;sh using v spinors [18]. The self-energy has
the simple form Eq. (2). As explained earlier, to lowest
order we can restrict ourselves to the b term, so that

Hνν
ij;sh ¼ −ðūi;sRÞbðLuj;hÞ: ð6Þ

In agreement with our qualitative arguments presented
earlier, Luj;þ ∝ mj and ūi;þR ∝ mi, so that Hij;−þ ∝ mj

and Hij;þ− ∝ mi.
Dispersion based on interaction with a medium is

diagonal in the weak-interaction basis and we denote with
bl the contribution related to the charged lepton l; see
Fig. 2. For the transition between mass states i and j, the
relevant background charged current is therefore

bμij ¼
X

l¼e;μ;τ

U†
ilb

μ
lUlj; ð7Þ

where U is the unitary leptonic mixing matrix. Neutral-
current interactions are diagonal in both the flavor and mass
basis because of unitarity of the neutrino mixing matrix,X

l¼e;μ;τ

U†
ilUlj ¼ δij; ð8Þ

and therefore do not contribute to flavor or spin-flavor
transitions. If neutrino-neutrino interactions are neglected
then the different momentum modes decouple. Without
loss of generality we may then choose a coordinate system
such that for each mode the neutrino momentum is in the z
direction, whereas the background current lies in the x–z
plane. We arrange the elements of the matrixHνν

ij;sh in such a
way that the equation of motion can be cast in the form [18]

ð9Þ

where each box denoted by helicities � is either a column
or a 3 × 3 matrix in flavor space. For Dirac neutrinos we
then find to linear order in neutrino masses [18]

Hνν
ij;sh ¼ −

 
b0ij − b∥ij b⊥ij

mj

2jkj
b⊥ij

mi
2jkj 0

!
: ð10Þ

Indeed, the masses on the off diagonals are the ones
associated with the “wrong” (positive) helicity Dirac
neutrino. For Dirac antineutrinos, a similar expression
pertains for which we find [18]

FIG. 3. Spin-flip amplitudes between Dirac neutrinos with
masses mi and mj. The amplitude is proportional to the mass
of the wrong-helicity state attached to the blob, which represents
the in-medium self-energy of left-handed neutrinos.
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Hν̄ ν̄
ij;sh ¼ ηb

 
0 b⊥ij

mi
2jkj

b⊥ij
mj

2jkj −ðb0ij − b∥ijÞ

!
: ð11Þ

Now the negative helicity is the sterile one and the masses
appear accordingly. Notice also that the nonzero diagonal
elements of Eqs. (10) and (11) match the energy shifts in
Eq. (4), as anticipated from invariance of the eigenvalues
with respect to the choice of basis.
Majorana neutrinos have only two degrees of freedom

and no helicity is wrong—both of them are active states,
essentially ν and ν̄. Therefore, the amplitude for νi;þ → νj;−
involves both graphs in Fig. 4. For equal masses
m ¼ mi ¼ mj, the amplitude is proportional to m − ηbm.
If the refractive effect changes sign for ν̄ as in an ordinary
medium (ηb ¼ −1), a suitable anisotropy engenders hel-
icity conversions. In the opposite case where ηb ¼ þ1 there
is no helicity evolution. Typical examples are a CP-
symmetric plasma or a B field in vacuum, corresponding
to the absence of a magnetic dipole moment for a Majorana
neutrino. For unequal masses mi and mj, the amplitude is
proportional to mi − ηbeiαmj, where α is a relative phase
that depends on the neutrino mixing matrix. Typically both
Dirac and Majorana neutrinos show spin-flavor oscillations
in any type of anisotropic medium, and, in particular, both
have transition dipole moments engendered by masses and
flavor mixing.
To render these qualitative arguments more quantitative,

we recall that for Majorana particles ν̄ ¼ νTC, where C is
the operator of charge conjugation. If the mean-field
Hamiltonian on the level of the current-current approxi-
mation contains a term

P
ijν̄iRbijLνj, it can be identically

rewritten as X
ij

ν̄iRbijLνj ¼ −
X
ij

ν̄iLbjiRνj: ð12Þ

In the language of Dirac neutrinos, the RbL structure
projects out the neutrino contributions, whereas LbR
projects out the antineutrino contributions. Therefore, for
Majorana neutrinos the resulting mean-field Hamiltonian
can be expressed as a difference of the Dirac neutrino and
antineutrino Hamiltonians in the form

HM
ij;sh ¼ −

0
B@ b0ij − b∥ij

b⊥ijmj−ηbb⊥jimi

2jkj
mib⊥ij−ηbmjb⊥ji

2jkj ηbðb0ji − b∥jiÞ

1
CA: ð13Þ

As expected, the diagonal elements again match the energy
shifts of the active neutrino and antineutrino, respectively.
We emphasize again that these results apply to any kind

of background medium. The Dirac vs Majorana question is
the same in all cases.

C. Unpolarized medium

To illustrate these points let us consider the case of an
ordinary medium consisting of electrons, protons, and
neutrons that has been studied in detail in Refs. [17,18].
Neutrino dispersion is given, at low energies, by the usual
current-current interaction. For a given background species,
it leads to the dispersion effect

bμ ¼ −
ffiffiffi
2

p
GFðCVJ

μ
V − CAJ

μ
AÞ; ð14Þ

where CV and CA are vector and axial-vector couplings that
depend on the background species and the flavor of the test
neutrino. The mean-field currents of the background
fermions (field ψ) are JμV ¼ hψ̄γμψi and JμA ¼ hψ̄γμγ5ψi.
In the remainder of this subsection we consider an

unpolarized medium, JA ¼ 0. If it is isotropic in its rest
frame (JV ¼ 0) dispersion is given in terms of the usual
weak potential,

V ¼
X
e;p;n

CVJ0V ¼
ffiffiffi
2

p
GF ×

� ðNe − NēÞ − 1
2
Nn for νe;

− 1
2
Nn for νμ;τ;

ð15Þ

where Ne, Nē, and Nn are the electron, positron, and
neutron number densities. As usual, the neutral-current
proton and electron vector contributions cancel in a neutral
medium. For antineutrinos as test particles, the potential
changes sign so that ηb ¼ −1.
In the laboratory frame, the medium may flow with a

velocity β so that b ¼ −Vð1; βÞ. Considering a single
neutrino generation with mass m we find for Dirac
neutrinos, antineutrinos, and Majorana neutrinos,

i∂t

�
ν−

νþ

�
¼ V

� 1 − β∥ β⊥ m
2jkj

β⊥ m
2jkj 0

��
ν−

νþ

�
; ð16aÞ

i∂t

�
ν̄−

ν̄þ

�
¼ V

� 0 β⊥ m
2jkj

β⊥ m
2jkj −ð1 − β∥Þ

��
ν̄−

ν̄þ

�
; ð16bÞ

i∂t

�
ν

ν̄

�
¼ V

� 1 − β∥ β⊥ m
jkj

β⊥ m
jkj −ð1 − β∥Þ

��
ν

ν̄

�
: ð16cÞ

FIG. 4. Spin-flip amplitudes between Majorana neutrinos with
massesmi andmj. The positive-helicity state can be interpreted as
a wrong-helicity neutrino or as a “correct-helicity” antineutrino.
Both amplitudes contribute with an important relative phase.
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Note that the transverse current of an ordinary medium
engenders a nontrivial helicity evolution even for Majorana
neutrinos. Spin-flavor oscillations are given by similar
equations with the more complicated flavor structure of
Eqs. (10)–(13).
Whereas at low energies neutrinos interact with the mean

field of an ordinary medium in the usual form of a current-
current Hamiltonian, the medium of the early Universe is
nearly matter-antimatter symmetric and the current-current
refractive effect vanishes. Refractive effects are still engen-
dered by the nonlocal structure of the interaction, i.e., at
higher order in inverse gauge boson masses. If the medium
is isotropic, the contribution of electrons and positrons to νe
dispersion, see Eqs. (4), (10), and (11), is [33]

b0 ¼
8
ffiffiffi
2

p
GFk0

3m2
W

ðhEeiNe þ hEēiNēÞ: ð17Þ

Here, Ee is the energy of background electrons and Eē is
that of positrons. In this example, b0 is proportional to the
neutrino energy k0 so that the dispersion effect is the same
for νe and ν̄e, in our convention meaning that ηb ¼ þ1.

III. MAGNETIC FIELD

As another specific case we turn to neutrinos propagating
in a B field in vacuum. Usually this situation is described in
terms of neutrino dipole moments induced by their masses,
but we should be able to obtain the same results if we think
of the B field as a background medium affecting neutrinos
in analogous ways as a general anisotropic medium.

A. Background current

The relevant self-energy graph at one-loop order in
unitary gauge is shown in Fig. 2 (bottom). The double
lines stand for the dressed propagator of the virtual particles
in the external B field. To linear order in B and for a given
charged lepton l in the loop and neutrino four momentum k
one finds [2,3,6]

bμl ¼ 6e
ffiffiffi
2

p
GF

ð4πÞ2 fðrlÞkα ~Fαμ; ð18Þ

where ~Fμν ¼ 1
2
ϵμναβFαβ is the dual electromagnetic field-

strength tensor that in the laboratory frame is assumed to be
a pure B field. In this frame, the Lorentz structure is
explicitly

kα ~F
αμ ¼ −ðB · k; k0BÞ: ð19Þ

The charged-lepton dependent factor depends on the mass
ratio rl ¼ ðml=mWÞ2 in terms of the function

fðrÞ ¼ 2 − 5rþ r2

2ð1 − rÞ2 −
r2 ln r
ð1 − rÞ3 ¼ 1 −

r
2
þOðr2Þ: ð20Þ

For all charged leptons, rl ≪ 1 so that we may always use
the lowest nontrivial expansion in rl. Therefore, overall we
find

bl ¼ −
6e

ffiffiffi
2

p
GF

ð4πÞ2
�
1 −

rl
2

�
ðk · B; k0BÞ; ð21Þ

which indeed has the dimension of energy.

B. Helicity flip

The components of bμ include b0 ∝ jkjB∥, b∥ ∝ k0B∥,
and b⊥ ∝ k0B⊥. In the Hamiltonian matrices Eqs. (10)–
(13), the refractive effect on the diagonal is always
proportional to b0 − b∥, which is now proportional to
ðjkj − k0ÞB∥ and thus of order ðm2=2EÞB∥. Therefore, to
linear order in neutrino masses, B fields in vacuum do not
produce a refractive effect for neutrinos moving parallel
to B.
To obtain the helicity-changing elements for equal

masses m ¼ mi ¼ mj we observe that b is proportional
to k, implying that the refractive effect is the same for ν and
ν̄ and hence ηb ¼ þ1. Therefore, Majorana neutrinos do
not suffer helicity evolution. For Dirac neutrinos, on the
other hand,

Hνν
ii;þ− ¼ 3e

ffiffiffi
2

p
GF

ð4πÞ2 miB⊥; ð22Þ

where the multiplier of B⊥ is recognized as the usual
magnetic dipole moment for massive Dirac neutrinos.
Notice that E in the denominator of m=2E has canceled
against k0 in b⊥, so indeed the helicity-flip element does
not depend on the neutrino energy.
For transitions between different mass eigenstates, the

term that is independent of the charged fermion drops out
because of the unitarity of the neutrino mixing matrix
shown in Eq. (8). Therefore, the first nonvanishing con-
tribution comes from the second term in the expansion
Eq. (20). With

Fij ¼ −
1

2

X
l¼e;μτ

U†
il

�
ml

mW

�
2

Ulj; ð23Þ

we thus find for Dirac neutrinos

Hνν
ij;þ− ¼ 3e

ffiffiffi
2

p
GF

ð4πÞ2 miFijB⊥: ð24Þ

For the opposite helicity flip, instigated by Hνν
ij;−þ, we get

the other mass mj, i.e., of the participating sterile Dirac
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component. For Majorana neutrinos, the corresponding
element is

HM
ij;þ− ¼ 3e

ffiffiffi
2

p
GF

ð4πÞ2 ðmiFij −mjFjiÞB⊥: ð25Þ

As anticipated earlier, the amplitudes of νi ↔ ν̄j and
ν̄i ↔ νj are proportional to the two participating masses
added with a relative phase that depends on the details of
the complex Majorana mixing matrix. Note also that the
flavor-diagonal diagonal elements of Eq. (25) automati-
cally vanish.

C. Dipole moments

We have formulated the impact of a B field in vacuum on
neutrino propagation in the same way as general neutrino
dispersion in a medium. Usually, however, the same
physics is described in terms of intrinsic neutrino dipole
moments that lead to spin precession in external fields. To
make contact with this more common language, we notice
that the Lorentz structure kα ~F

μα for the B-field background
current given in Eq. (18) leads to the structure kα ~F

μαγμL for
the self-energy. Using common identities for Dirac matrices
we can rewrite the latter as

kα ~F
μαγμL ¼ −

1

8
ðkσμν þ σμνk ÞFμν

þ 1

8
ðkγ5σμν − γ5σμνk ÞFμν: ð26Þ

Sandwiching the rhs of Eq. (26) between ūi;s and uj;h and
using the unperturbed Dirac equation on one of the external
neutrinos, one obtains the equivalent structure

−
1

8
½ðmi þmjÞσμνFμν þ ðmj −miÞγ5σμν�Fμν: ð27Þ

Comparing this with the traditional dipole Lagrangian,

L ¼ −
1

2
ψ̄ iðμijσμν þ iϵijγ5σμνÞψ jFμν; ð28Þ

we can immediately read off the usual flavor structure of
the magnetic and electric dipole moments of Dirac
neutrinos [3],

μij

iϵij

�
¼ mj �mi

2

3e
ffiffiffi
2

p
GF

ð4πÞ2 ðδij þ FijÞ; ð29Þ

where the lower sign refers to ϵij. Fij was defined in
Eq. (23) in terms of the lepton mixing matrix.
Turning this argument around, in the ultrarelativistic

limit the γ5 term in Eq. (28) simply contributes a sign,
depending on the helicity of the initial neutrino. Therefore,
the spin precession engendered by B⊥ corresponds to an

effective transition moment of the form μeff;ij ¼ μij � iϵij.
With Eq. (29), this amounts to

μeff;ij ¼
�
mj þmi

2
�mj −mi

2

�
3e

ffiffiffi
2

p
GF

ð4πÞ2 Fij: ð30Þ

The signs of the masses in the magnetic and electric dipole
moments work out such that the amplitude is proportional
to the mass of the wrong-helicity neutrino participating in
the spin-flavor process in agreement with our earlier
discussion.
In the diagonal case (i ¼ j), the coefficients μ ¼ μii and

ϵ ¼ ϵii are the usual magnetic and electric dipole moments.
Note that the latter automatically vanishes in the one-loop
approximation. In the neutrino rest frame, the nonrelativ-
istic reduction corresponds to a Hamiltonian describing a
two-level system in the form −ðμBþ ϵEÞ · σ, where σ is a
vector of Pauli matrices. If the neutrino spin is not aligned
with the respective electromagnetic field, it precesses
around the field direction with frequency 2μB or 2ϵE,
respectively.
We now take the neutrino to be ultrarelativistic in the

laboratory frame where only a B field exists. One can easily
derive the neutrino spin evolution by a Lorentz transforma-
tion to the rest frame,where both amagnetic and electric field
appear, and then back to the laboratory frame. The well-
known answer is that the longitudinal component B∥
contributes with a strength reduced by a factor of order
m=E caused by the Lorentz transformations and can be
neglected. The transverse component B⊥ leads to spin
precessionwith an effectivemagneticmoment μeff ¼ μþ iϵ.
In particular, this result means that the neutrino electric

dipole moment leads to a spin precession of ultrarelativistic
neutrino in a background magnetic field as first noted by
Okun [34]. Assuming the neutrino starts as a helicity
eigenstate, the “magnetic” moment leads to a precession
in the plane perpendicular to B⊥. The electric dipole
moment, on the other hand, leads to a precession in the
plane spanned by B⊥ and the neutrino velocity v. In other
words, the precession is around the direction B⊥ × v, which
is the electric field direction seen by the neutrino in its rest
frame. So for ultrarelativistic neutrinos, the real part of μeff
leads to a magnetic precession around B⊥, the imaginary
part to an “electric” one around the direction of B⊥ × v.
For Majorana neutrinos, the diagonal dipole moments

vanish, whereas the transition moments are [3]

μij ¼ ðmi þmjÞ
3e

ffiffiffi
2

p
GF

ð4πÞ2 iImFij; ð31aÞ

iϵij ¼ ðmj −miÞ
3e

ffiffiffi
2

p
GF

ð4πÞ2 ReFij: ð31bÞ

Notice that Fij is, strictly speaking, different from the Dirac
case because the leptonic mixing matrix for Majorana
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neutrinos involves two additional Majorana phases beyond
the Dirac phase. In general, Fij has both a real and an
imaginary part. Therefore, the spin precession involves
both the magnetic and electric type in the sense explained
earlier.
Overall, for both Dirac and Majorana neutrinos, the spin-

flavor transition νiþ ↔ νj− is proportional to mi whereas
νi− ↔ νjþ is proportional to mj, i.e., they are different in
contrast to what is usually written in the literature on spin-
flavor oscillations. The reason is that spin-flavor transitions
of ultarelativistic neutrinos are governed by an effective
transition moment of the form μij � iϵij, and the electric
transition moment is frequently ignored in the literature.
In summary, the usual description in terms of dipole

moments leads to the same spin-flavor oscillation effects as
found in our earlier discussion in terms of a general
background.

D. Strong B field

The discussion so far was limited to the weak-field case
where only the linear response to the applied B field was
considered and the effect can be lumped into a set of
intrinsic neutrino magnetic and electric dipole and tran-
sition moments. However, if the B field becomes very large,
one needs to go beyond linear approximation in the dressed
propagators of charged particles in Fig. 2.
Calculations of the neutrino self-energy under the

influence of an external electromagnetic field beyond linear
approximation have a long history [6,31,35–43]. The most
comprehensive study is probably Ref. [6]. The linear B
regime is appropriate for eB < m2

W, i.e., below the W-
critical field strength of BW ¼ m2

W=e ¼ 1.09 × 1024 G.
Effects quadratic in B include a modification of the dipole
moments and the appearance of an energy shift for massless
neutrinos.

E. Gauge invariance

We have taken the attitude that the origin of neutrino
masses and neutrino interactions are unrelated and that the
mechanism that provides a Dirac or Majorana mass acts
only on the external legs of the self-energy graph in Fig. 2.
In the classic calculation of neutrino dipole moments by
Shrock [3], the author uses unitary gauge and argues that
physical results must be gauge invariant so that we can use
any gauge that is convenient. The other classic calculation
by Pal and Wolfenstein [2] was performed in ’t Hooft-
Feynman gauge, where the unphysical charged scalar
couples to the neutrino and charged lepton; see Fig. 5.
For Dirac neutrinos and assuming their masses arise

from ordinary Yukawa couplings, gauge invariance of the
magnetic dipole moment was explicitly demonstrated in
Ref. [6] using the general Rξ gauge. In this gauge, the
neutrino mass appears on the level of an interaction
vertex [6],

L ¼ −
gffiffiffi
2

p
MW

½ðν̄iU†
ilKillÞΦ� þ H:c:�; ð32Þ

where Kil ¼ mlR −mD
i Lwith ml being the Dirac mass of

the charged lepton l. Moreover, mD
i is the Dirac mass term

for neutrino i, which coincides with the physical neutrino
mass, mD

i ¼ mi, if the Higgs boson interaction is the only
contribution. To linear order inmi the resulting contribution
to the self-energy is proportional to miLþmjR.
Sandwiching it between ūi;s and uj;h we find again that,
to leading order in neutrino masses, the transition ampli-
tude νi;− → νj;þ is proportional to mj, and the transition
amplitude νi;þ → νj;− is proportional to mi. Thus, the
neutrino Dirac mass is associated with the external neutrino
line of the wrong helicity. In other words, the flavor
structure of the transition amplitude produced by the
diagram in Fig. 5 matches the one following from
Fig. 2, which is a prerequisite for the gauge invariance
of the total transition amplitude.
The propagators of the gauge and charged Higgs bosons

depend on the gauge parameter ξ, where the limit ξ → ∞
corresponds to unitary gauge, whereas ξ ¼ 1 corresponds
to ’t Hooft-Feynman gauge. The leading contribution to the
self-energy, proportional to GF, is independent of the gauge
choice. The next-to-leading contribution, proportional to
GF=M2

W , is given by a sum of terms, each of which is gauge
dependent. However, the gauge-dependent terms cancel out
in the sum and the resulting contribution to the self-energy
is gauge independent as well [6].
To perform an explicit calculation for Majorana neu-

trinos in an Rξ gauge one needs a concrete model. Pal and
Wolfenstein [2] specifically used a type-II seesaw model
involving a Higgs triplet. In the seesaw type-I scenario,
there are no additional Higgs fields, but the right-handed
neutrino acquires a large Majorana mass term MM.
Diagonalizing the full mass matrix one finds that light
states acquire masses of the order of m ∼m2

D=MM, while
the heavy states get masses of the order ofMM. For the light
mass eigenstates the Lagrangian has a form identical to the
one in Eq. (32), except that the Dirac mass term mD

i in Kil
is replaced by the physical neutrino mass mi and the 3 × 3
matrix U is no longer unitary, but is a submatrix of the
6 × 6 unitary mixing matrix. This implies, in particular, that
the proof of the gauge invariance of the transition amplitude

FIG. 5. Contribution of the charged Higgs boson (in unitary
gauge it becomes the longitudinal degree of freedom of the W
boson) to the neutrino self-energy.
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in the type-I seesaw scenario reduces to that for Dirac
neutrinos.

IV. POLARIZED MEDIA

Our initial interest was triggered by the observation
that a medium polarized by the B field leads to helicity
oscillations in addition to those caused directly by the B
field. One crucial insight is that particles and antiparticles
with spins pointing in the same direction have the same,
not opposite, refractive effect. However, they have
opposite magnetic moments. Therefore, an ambient B field
polarizes them in opposite directions and the particle and
antiparticle contributions to the induced spin polarization
subtract.
From Lorentz covariance considerations one expects the

B-field induced axial-current contribution to the four vector
bμ in the self-energy Eq. (2) to have the structure uα ~F

αμ,
where u is the four velocity of the medium [23]. In the
remainder of this section we assume that we have a pure B
field in the rest frame of the medium, so the structure is
b ∝ ð0;BÞ. This expression is to be compared with the
B-field term in vacuum given in Eq. (19) where the role of u
is played by the neutrino four momentum k. While both
terms are linear in B, their different structure explains their
opposite sign change when the test particle is switched
to an antineutrino, as well as their very different energy
dependence.
We now discuss two examples that illustrate these

general points, i.e., an electron gas and a particle-
antiparticle symmetric medium.

A. Electron gas

The neutron and proton magnetic dipole moments are
much smaller than those of electrons, so typically the
polarization effect is dominated by the electrons and
positrons [26] on which we focus. The electron spin-
polarization contribution to neutrino refraction is given
by Eq. (14). If the axial current represents the spin
polarization induced by B it has only a spatial part
JA ∝ B and the four vector contributing to the self-energy
in Eq. (2) has the form b ¼ ð0; bÞ with

b ¼ CA

ffiffiffi
2

p
GFJA: ð33Þ

In a bath of electrons and for νe as test particles, CA ¼ 1=2,
whereas for νμ and ντ it is −1=2. For antineutrinos as test
particles, the signs reverse.
Probably the most complete derivation of the induced JA

was provided in Ref. [26], which we have independently
verified. In an external B field, the electrons and positrons
reside in Landau levels. Ignoring radiative corrections to
the electron magnetic moment, adjacent Landau levels
with opposite spin are degenerate and thus cancel in the
expression for the polarization. Overall only the lowest

Landau level contributes, which corresponds to electrons or
positrons moving along the B-field direction. One therefore
finds

JA ¼ eB
2π2

Z þ∞

−∞
dp

�
1

eðE−μeÞ=T þ1
−

1

eðEþμeÞ=T þ1

�
; ð34Þ

where e ≈ 0.3028… is the unit electric charge, p the
electron or positron momentum along B, T the temperature,
μe the electron chemical potential, and E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ p2
p

the
energy of the lowest Landau level that is independent
of B. The first term in Eq. (34) is for electrons, the second
with reversed sign and reversed chemical potential for
positrons.
In the limit of vanishing chemical potential (matter-

antimatter symmetric plasma), JA vanishes as anticipated
earlier. In the opposite limit of a highly degenerate electron
gas (vanishing temperature) one finds

JA ¼ eB
π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2e −m2

e

q
: ð35Þ

These results apply to any field strength because only the
lowest Landau level contributes where the electrons move
parallel to the B field, but the B field influences the
relationship between μe and electron density. In particular,
in the weak-field limit, we have pF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2e −m2

e

p
with pF

being the electron Fermi momentum corresponding to the
electron density ne ¼ p3

F=3π
2. In this case, the induced

energy shift for νe is given by [19,26]

Hνν
ii;−− ¼ −

e
ffiffiffi
2

p
GFpF

2π2
B∥: ð36Þ

For ν̄e the overall sign of the refractive terms reverses. For
the other flavors, the sign is opposite to the νe case.
For Dirac neutrinos, the spin-flip energy, i.e., the off-

diagonal element in Eq. (10), is given by

Hνν
ii;þ− ¼ −

e
ffiffiffi
2

p
GFpF

2π2
mi

2E
B⊥jUeij2; ð37Þ

to be compared with the expression following from the
usual Dirac dipole moment in Eq. (22). Therefore, the
B-field induced spin-flip energy mediated by the degener-
ate electron gas is −jUeij24pF=3Eν times that given by the
vacuum dipole moment. In an astrophysical setting, for
example, in a supernova core, typical neutrino energies are
not much smaller than a typical electron Fermi energy.
Therefore, the two contributions tend to be of similar
magnitude.
For Majorana neutrinos, the electron-induced spin-flip

energy is twice that of the Dirac case. It is the only
contribution because the intrinsic Majorana dipole
moment vanishes. Notice that for Majorana neutrinos,
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the spin-flip energy is proportional to mi þ ηbmi and
for the spin-polarization contribution ηb ¼ þ1, whereas
for a B field in vacuum ηb ¼ −1 as discussed earlier.
The general transformation properties of in-medium
neutrino electromagnetic vertices were first studied in
Ref. [22]. It was noted that a Majorana neutrino can have
a nonvanishing effective electromagnetic vertex in a
medium if the latter is not symmetric between particles
and antiparticles.

B. Symmetric medium

A matter-antimatter symmetric medium does not cause
neutrino dispersion in the framework of the low-energy
current-current interaction. In particular, there is no B-field
induced spin polarization as explained earlier [19,24–26].
Moreover, there cannot be an effective Majorana dipole
moment, whereas for the Dirac case there is no objection
from the general transformation properties [22]. In other
words, in such a medium one has similar restrictions as in
vacuum, which can be seen as a charge parity time (CPT)
symmetric “medium” of virtual particles.
However, in a CPT symmetric medium of real particles,

approximately realized in the early Universe, neutrinos
suffer nonvanishing refraction [33]. In the low-energy
limit, it arises from an expansion of the gauge-boson
propagator, i.e., one needs to go beyond the local four-
fermion interaction model. The contribution of electrons
and positrons was given in Eq. (17). The modified
dispersion relation is the same for neutrinos and
antineutrinos.
In addition one may include a B field that affects the

electrons and positrons. In the limit me ≪ T ≪ mW and
B ≪ T2 one finds for the e−eþ contribution to νe dispersion
[25,27,31]3

bμ ¼ −
e
ffiffiffi
2

p
GFT2

6m2
W

ðk · B;−k0BÞ: ð38Þ

It has a very similar structure to the effect of a B field in
vacuum of Eq. (21), except for a sign change of the spatial
part. In vacuum, the timelike and longitudinal spacelike
parts nearly cancel so that b0 − b∥ ¼ Oðm2=E2Þ, i.e., in
vacuum a B field does not cause dispersion even for active
neutrinos. In the present case, on the other hand, b0 and b∥
add up so that for both νe and ν̄e

Hνν
ii;−− ¼ e

ffiffiffi
2

p
GFT2

3m2
W

k · B: ð39Þ

In addition, helicity conversion by neutrino masses occurs
in the now-familiar way, observing that ηb ¼ þ1.

V. CONCLUSIONS

It was recently recognized that a material medium that is
not isotropic in the laboratory frame instigates neutrino spin
and spin-flavor transitions caused by nonvanishing neutrino
masses. It was known for a long time that analogous effects
arise from the B field due to neutrino dipole and transition
moments, which in the simplest case result from neutrino
masses and their flavor mixing.
We have discussed these effects from the common

perspective of neutrino dispersion in a mean-field back-
ground, which could be a material medium, a B field, or
both. If neutrinos, be they Dirac or Majorana particles, have
only left-handed interactions (except for their masses), the
one-loop self-energy has a very simple form where for
ultrarelativistic neutrinos all dispersion effects are encoded
in a single four vector thatwe callb. It is the spatial part b that
causes spin or spin-flavor conversion if it has a nonvanishing
componentb⊥ transverse to the neutrino direction ofmotion.
The dependence on neutrino masses and mixing parameters
for all cases follows from the same structure.
Dirac neutrinos suffer helicity conversion, which for

them is simultaneously active-sterile conversion, for all
types of anisotropic backgrounds. On the other hand,
Majorana neutrinos suffer helicity conversion, which for
them is simultaneously neutrino-antineutrino conversion,
only if b changes sign when we switch from a test ν to a ν̄,
which is the case for an ordinary background medium. It is
not true in a B field, in a matter-antimatter symmetric
medium, or both. It is noteworthy that, while the helicity of
a single Majorana neutrino is not flipped by a B field
directly, it is flipped by a normal medium polarized by the
B field. Spin-flavor transitions arise for all types of
anisotropic backgrounds for both Dirac and Majorana
neutrinos. The relative behavior of Dirac and Majorana
neutrinos is analogous to the well-known structure of their
dipole and transition moments.
Neutrino masses are extremely small. We do not know of

a realistic astrophysical or cosmological setting where the
helicity evolution of ordinary neutrinos would lead to
observable consequences unless the dipole or transition
moments exceed those implied by the masses. We still think
that our perspective on these issues adds some conceptual
clarity to the recent literature on neutrino spin evolution in
anisotropic media.
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