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We discuss the magnetic responses of vector meson masses based on the hidden local symmetry (HLS)
model in a constant magnetic field, described by the lightest two-flavor system including the pion, rho and
omega mesons in the spectrum. The effective masses influenced under the magnetic field are evaluated
according to the derivative or chiral expansion established in the HLS model. At the leading order Oðp2Þ,
the g factor of the charged rho meson is fixed to be 2, implying that the rho meson at this order is treated just
like a pointlike spin-1 particle. Beyond the leading order, one finds anomalous magnetic interactions of the
charged rho meson, involving the anomalous magnetic moment, which give corrections to the effective
mass. It is then suggested that up to Oðp4Þ the charged rho meson tends to become massless. Of interest is
that nontrivial magnetic dependence of neutral mesons emerges to give rise to the significant mixing among
neutral mesons. Consequently, it leads to the dramatic enhancement of the omega meson mass, which is
testable in future lattice simulations. Corrections from terms beyond Oðp4Þ are also addressed.
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I. INTRODUCTION

Exploring the quantum chromodynamics (QCD) in an
external magnetic field has recently attracted a lot of
interest, such as the presumable presence of the strong
magnetic field in the neutron star or magnetar, an early
stage of heavy ion collisions, and some topics related to
physics on the early Universe. For instance, in off-central
heavy ion collisions, the scale of the magnetic field reaches
up to about a few hundreds of MeV, which could also be
related to dynamics of quark-gluon plasma. In this respect,
several fascinating QCD phenomena in the magnetic field
have been proposed: the chiral magnetic effect, the mag-
netic catalysis or inverse magnetic catalysis, and so forth.
In addition, striking and exotic magnetic phenomena

involve hadron physics: some studies imply that the vector
meson (rho meson) can condense due to the presence of a
strong magnetic field, which is naively expected from the
Landau-quantized mass of charged particles with spin 1. In
this respect, several works have been done based on
effective models for QCD [1–6], and also some objection
against the rho meson condensation from current lattice
simulation has been reported, for example, in Ref. [7]. The
effort to understand QCD in the magnetic field is, therefore,
receiving much attention not only on the field theoretical
ground but also on some phenomenological aspect involv-
ing other research fields.
In this paper, we discuss the magnetic responses of

vector meson masses based on a chiral effective model
including vector mesons as gauge bosons of some gauge

symmetry: the so-called hidden local symmetry (HLS)
model [8,9]. Setting the background photon gauge to be a
constant magnetic field, and employing the lightest two-
flavor system including the pion, rho and omega mesons in
the spectrum, we evaluate the effective masses influenced
under the magnetic field according to the derivative or
chiral expansion established in the HLS model.
At the leading order, the g factor of the charged rho

meson is fixed to be 2, implying that the rho meson at this
order is dealt with, just like a pointlike spin-1 particle.
Going beyond the leading order, we find anomalous
magnetic interactions of the charged rho meson. The
anomalous magnetic moment arises from Oðp4Þ terms,
and its magnitude can be manifestly controlled in the
derivative or chiral expansion. It turns out that up to Oðp4Þ
the charged rho meson tends to become massless. More
remarkably, nontrivial magnetic-dependence of neutral
mesons emerges from Oðp4Þ terms of the HLS model.
This is tied with the significant mixing among neutral
mesons under the magnetic field, breaking the spin and
Lorentz invariance. As a consequence, we observe the
dramatic enhancement of the omega meson mass, which is
testable in future lattice simulations.
This paper is organized as follows: in Sec. II, we briefly

review the HLS model and formulate the model in a
constant magnetic field. The constant magnetic effect on
vector meson masses is then evaluated in Sec. III including
terms up to Oðp4Þ. In Sec. IV, a summary is given and we
make comments on possible corrections from terms higher
than Oðp4Þ in the derivative or chiral expansion. The
details of the calculation on the Landau quantization for the
vector meson mass are presented in the Appendix.
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II. THE HLS MODEL IN A
CONSTANT MAGNETIC FIELD

In this section, we start with a brief review of the HLS
model [8,9] described by the pion ρ and ω mesons together
with the photon and then formulate the model in a constant
magnetic field.

A. Review of hidden local symmetry model

The HLS formalism is a simple extension from the
nonlinear realization of the chiral symmetry. To see how it
works, we first write the chiral field U in the nonlinear
realization, U ¼ eiπ

iτi=Fπ , where πi (i ¼ 1, 2, 3) are pion
fields, τi are Pauli matrices, and Fπ is the decay constant
associated with the spontaneous breaking of the global
chiral symmetry, G ¼ SUð2ÞL × SUð2ÞR ×Uð1ÞV →
H ¼ Uð2ÞV¼LþR ×Uð1ÞV . The chiral field U transforms
under the G as U → gL ·U · g†R, with gL;R ∈ G. One then
should note an arbitrariness or a gauge degree of freedom
(HLS) in dividing the U into a product of nonlinear bases,
ξ†L and ξR, in such a way that they transform as ξL;R →
hðxÞ · ξL;R · g†L;R, where hðxÞ ∈ Hlocal ¼ ½Uð2ÞV �local and
gL;R ∈ Gglobal ¼ SUð2ÞL × SUð2ÞR ×Uð1ÞV . Thus, intro-
ducing the redundant (spontaneously broken) gauge sym-
metry Hlocal (HLS), the chiral system can always be
extended from the coset spaceG=H¼ ½SUð2ÞL×SUð2ÞR×
Uð1ÞV �=½SUð2ÞV ×Uð1ÞV � to Gglobal × Hlocal=Hdiag ¼
½SUð2ÞL × SUð2ÞR × Uð1ÞV × ½Uð2ÞV �local�=½SUð2ÞV 0×
Uð1ÞV �, where Hdiag ¼ SUð2ÞV 0 denotes the diagonal sum
of Hglobal ∈ Gglobal and Hlocal.
In association with the HLS, the gauge fields (Vμ) are

introduced, which transform under the HLS as Vμ →
hðxÞ · Vμ · h†ðxÞ þ ihðxÞ∂μh†ðxÞ. The ρ and ω meson
fields are embedded in these HLS gauge fields as

Vμ ¼ gρμ þ g0ωμ; ρμ ¼ ρiμ
τi

2
ði ¼ 1; 2; 3Þ;

ωμ ¼ ωμ ·
τ0

2
ðτ0 ≡ 12×2Þ; ð2:1Þ

where g and g0 stand for the HLS gauge couplings
corresponding to the SUð2Þ and Uð1Þ parts in Hlocal ¼
½Uð2ÞV �local, respectively. These vector mesons get massive
by eating the would-be (fictitious) Nambu-Goldstone (NG)
bosons P ¼ Piτi=2þ P0τ0=2 (just like the Higgs mecha-
nism) embedded in the ξL;R as

ξL;R ¼ eiP
iτi
2
=FP · eiP

0τ0

2
=FP0 · e∓iπiτ

i
2
=Fπ ; ð2:2Þ

where FPð0Þ are the associated decay constants giving the
scale of the vector meson masses. After gauge fixing of
Hlocal, for example, by the unitary gauge P ≡ 0, the Hdiag

becomes H of the usual nonlinear sigma model manifold
G=H [8,9].
To construct the Lagrangain invariant under the

Gglobal ×Hlocal, it is convenient to introduce the Maurer-
Cartan 1-forms,

α̂⊥;∥μ ¼
1

2i
ðDμξR · ξ†R ∓ DμξL · ξ†LÞ; ð2:3Þ

where

DμξL;R ¼ ∂μξL;R − iVμξL;R: ð2:4Þ

One then finds that the 1-forms in Eq. (2.3) transform
homogeneously under the Gglobal ×Hlocal as α̂⊥;∥μ → hðxÞ ·
α̂⊥;∥μ · h†ðxÞ. In addition to the 1-forms, the field strength
of the HLS gauge fields Vμ is introduced as

Vμν ¼ ∂μVν − ∂νVμ − i½Vμ; Vν�; ð2:5Þ

which transform homogeneously in the same way as the
1-forms.
With these building blocks at hand, one can readily write

down the Lagrangian invariant under the Gglobal ×Hlocal
(and charge and parity conjugations). At the leading order
of derivative expansion (Oðp2Þ), the Lagrangian is

Lð2Þ ¼ F2
πtr½α̂⊥μα̂

μ
⊥� þ

m2
ρ

g2
tr½α̂∥μα̂μ∥�

þ
�
m2

ω

2g02
−
m2

ρ

2g2

�
tr½α̂∥μ�tr½α̂μ∥� −

1

2g2
tr½VμνVμν�

−
�

1

4g02
−

1

4g2

�
tr½Vμν�tr½Vμν�; ð2:6Þ

where we have assigned the derivative order for the
parameters in the vector meson sector as

g ∼ g0 ∼mρ ∼mω ∼OðpÞ; ð2:7Þ

which makes it possible to perform the systematic expan-
sion in terms of the chiral perturbation theory including the
HLS [10,11]. Instead of the decay constants FPð0Þ for the
HLS, in Eq. (2.6) we have used mρ and mω, taking into
account the form of the embedding in Eq. (2.1).
Independently of the HLS, one can freely gauge the

Gglobal by introducing the external gauge fields Lμ and Rμ

including the photon fieldAμ, asLμ ¼Rμ ¼ eQemAμ, where
e is the electromagnetic coupling andQem ¼ τ3=2þ τ0=6 ¼
diagð2=3;−1=3Þ. Then the covariant derivatives in Eq. (2.4)
are changed as

DμξL;R → DμξL;R ¼ ∂μξL;R − iVμξL;R þ iξL;ReQemAμ;

ð2:8Þ

as well as the 1-forms in Eq. (2.4).
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The pion mass term can be incorporated through
introduction of a spurion field χ̂ ¼ ξLχξ

†
R, where χ trans-

forms in the same way as the chiral field U and is counted
as Oðp2Þ in the derivative or chiral expansion. The mass-
term Lagrangian at the leading order is then written in a
manner invariant under the chiral symmetry and HLS [11]:

Lχ
ð2Þ ¼

F2
π

4
tr½χ̂† þ χ̂�: ð2:9Þ

When the spurion field χ gets the vacuum expectation
value, hχi ¼ m2

π · 12×2 (assuming the isospin symmetric
form), taking the unitary gauge of the HLS (P ≡ 0) and
expanding the 1-forms in powers of the pion fields,

α̂⊥μ ¼
1

Fπ
∂μπ −

i
Fπ

½eQemAμ; π� þ � � �

α̂∥μ ¼ −Vμ þ eQemAμ þ � � � ; ð2:10Þ
one finds that the pions get the mass through the
Lagrangian Lχ

ð2Þ in Eq. (2.9).
Including the pion mass mπ ∼OðpÞ in addition to the

vector meson masses counted as in Eq. (2.7), one can thus
systematically discuss the phenomenology of the vector
mesons and pions coupled to the photon according to the
derivative or chiral expansion as in the literature [10,11]
with the expansion coefficients

p
ð4πFπÞ

∼
mπ

ð4πFπÞ
∼

mρ;ω

ð4πFπÞ
∼OðpÞ: ð2:11Þ

B. Expanding in a constant magnetic field

Now we formulate the HLS model in a constant
magnetic field based on the Lagrangian Eq. (2.6). To this
end, using Eqs. (2.1) and (2.10), we shall first expand
Eq. (2.6) in terms of the NG boson fields and focus on the
vector meson part coupled to the external photon field,
to find

Lρ;ω¼
1

2
ωμðgμν∂2−∂μ∂νÞωνþρþμ ðgμν∂2−∂μ∂νÞρ−ν

þ1

2
ρ0μðgμν∂2−∂μ∂νÞρ0ν− igρ0νð∂μρ

−
ν ρ

þμ−∂μρ
þ
ν ρ

−μÞ
− igρ0μð∂μρ

þ
ν ρ

−ν−∂μρ
−
ν ρ

þνÞ
− ig∂μρ

0
νðρ−μρþν−ρþμρ−νÞ−Vω−Vρ; ð2:12Þ

where ρ� ¼ ðρ1 ∓ iρ2Þ= ffiffiffi
2

p
, ρ0 ≡ ρ3 and

Vω¼−
m2

ω

2

�
ωμ−

e
3g0

Aμ

�
2

;

Vρ¼−
m2

ρ

2

�
ρ0μ−

e
g
Aμ

�
2

þg2ðρ0μρ0μÞðρþν ρ−νÞ−g2ρ0μρ0νρþν ρ−μ

−m2
ρρ

þ
μ ρ

−μþg2

2
ðρþμ ρ−μÞ2−

g2

2
ðρþν ρþνÞðρ−μ ρ−μÞ:

ð2:13Þ

Note that the potential terms Vω and Vρ contain the mixing
between the neutral vector mesons and the photon.
We now consider a constant magnetic field B oriented to

the z direction in the four-dimensional spacetime. It can be
observed by acquiring the vacuum expectation value of the
photon field,

hAμi ¼ ð0;−By=2; Bx=2; 0Þ; ð2:14Þ

where we took the symmetric gauge. Then the potentials in
Eq. (2.13) imply shifts of neutral vector potentials in Vω

and Vρ by nonlocal vacuum expectation value of the photon
field hAμi(constant B). Thus, due to the presence of the
constant B, the stationary point for the Vω and Vρ is
changed from hρ�;0

μ i ¼ hωμi ¼ 0 to

hρ0μi¼ e
g
hAμi; hωμi¼ e

3g0
hAμi; hρ�μi¼ 0: ð2:15Þ

Expanding the fields around these vacuum expectation
values as

ρ0μ ¼ hρ0μi þ ~ρ0μ ωμ ¼ hωμi þ ~ωμ;

ρþμ ¼ ~ρþμ Aμ ¼ hAμi; ð2:16Þ

we see that the Lagrangian Eq. (2.12) is modified to be

Lρ;ω ¼ −
1

2
ðDμ ~ρ

−
ν −Dν ~ρ

−
μ ÞðDμ ~ρþν −Dν ~ρþμÞ − i

2
ehFμνið~ρ−μ ~ρþν − ~ρþμ ~ρ−νÞ − 1

4

�
~ρ0μν −

e
g
hFμνi

�
2

−
1

4

�
~ω0
μν −

e
3g0

hFμνi
�

2

þ ig½~ρ0μ ~ρþνðDμ ~ρ
−
ν −Dν ~ρ

−
μ Þ − ~ρ0μ ~ρ−νðDμ ~ρ

þ
ν −Dν ~ρ

þ
μ Þ� −

i
2
g~ρ0μνð~ρ−μ ~ρþν − ~ρþμ ~ρ−νÞ þ 1

2
m2

ω ~ωμ ~ω
μ þm2

ρ ~ρ
þ
μ ~ρ

−μ

þ 1

2
m2

ρ ~ρ
0
μ ~ρ

0μ −
1

2
g2½ð~ρþμ ~ρ−μÞ2 − ð~ρþμ ~ρ−ν Þ2 þ ð~ρ0μÞ2 ~ρþμ ~ρ−μ − ~ρ0μ ~ρ

0
ν ~ρ

þμ ~ρ−ν�; ð2:17Þ
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where

Dμ ~ρ
�
ν ¼ ð∂μ ∓ iehAμiÞ~ρ�ν ;

hFμνi ¼ ∂μhAνi − ∂νhAμi;
~ρ0μν ¼ ∂μ ~ρ

0
ν − ∂ν ~ρ

0
μ;

~ωμν ¼ ∂μ ~ων − ∂ν ~ωμ: ð2:18Þ
The residual Uð1Þem gauge invariance is manifest in the
expression of Eq. (2.17). This should be so since the
formulation addressed here is nothing but a sort of back-
ground field method for the HLS gauge and photon fields,
which surely ensures the gauge invariance for the back-
ground fields at the Lagrangian level. Note also from the
last term of the first line in Eq. (2.17) that the HLS
formalism fixes the magnetic moment of the charged ρ to
be 2, though it is, in general, arbitrary by only imposing the
Uð1Þem gauge invariance (for more on this, see the later
discussion).

III. EFFECTIVE MASSES IN A CONSTANT
MAGNETIC FIELD FROM TERMS OF OðeBÞ
In this section, we discuss the vector meson masses

influenced under the constant magnetic field based on the
HLS model. We shall focus on the magnetic effect on the
order of OðeBÞ in the HLS model, which turns out to arise
not only from terms of the leading order of Oðp2Þ in the
Lagrangian Eq. (2.17) but also from those of the next-to
leading order of Oðp4Þ in the derivative or chiral
expansion.

A. Charged vector meson mass

Looking at the constant magnetic field configuration in
Eq. (2.14), one can find that only the charged ρ mesons
transversely polarized along the magnetic field B, ~ρ�x;y get
affected. Taking into account the B-dependent mass term,
which arises from the last term of line one in Eq. (2.17), the
~ρ�x;y fields mix via

ð~ρ−x; ~ρ−yÞ
�

m2
ρ ieB

−ieB m2
ρ

��
~ρþx

~ρþy

�
: ð3:1Þ

To diagonalize this matrix, we introduce

Φ ¼ 1ffiffiffi
2

p ð~ρþx þ i~ρþyÞ;

ϕ ¼ 1ffiffiffi
2

p ð~ρþx − i~ρþyÞ: ð3:2Þ

The corresponding mass eigenvalues are given by

m2
Φ ¼ m2

ρ þ eB;

m2
ϕ ¼ m2

ρ − eB: ð3:3Þ

In terms of the mass-eigenstate fields in Eq. (3.1),
Eq. (2.17) is written as

Lϕ;Φ¼−m2
ρðΦ�Φþϕ�ϕÞ−eBΦ�ΦþeBϕ�ϕþ∂tΦ�∂tΦ

−∂zΦ�∂zΦþ∂tϕ
�∂tϕ−∂zϕ

�∂zϕ

−
1

2
DxðΦ�−ϕ�ÞDxðΦ−ϕÞ−1

2
DyðΦ�þϕ�ÞDyðΦþϕÞ

−
1

2i
DxðΦ�−ϕ�ÞDyðΦþϕÞ

þ 1

2i
DyðΦ�þϕ�ÞDxðΦ−ϕÞ; ð3:4Þ

where terms of cubic order in the ϕ and Φ fields have been
discarded. Solving the coupled equations of motion for ϕ
and Φ, one finds that the mass spectra are quantized by the
Landau levels. We provide the detailed derivation in the
Appendix. The effective mass in the lowest Landau level
(LLL) is thus found to be

m2
ρðeBÞ ¼ m2

ρ − eBðG − 1Þ with G ¼ 2; ð3:5Þ

where G is the g factor of the charged ρmeson. Remarkable
to note is that the ρ meson g factor is unambiguously fixed
to be 2 in the HLS formalism as noted in the previous
section.
The g factor of the charged ρ meson actually gets

corrections, i.e., the anomalous magnetic moment, from
terms of Oðp4Þ in the derivative or chiral expansion of the
HLS model. Examining the list of the Oðp4Þ terms in the
literature [10,11] one can easily find that such corrections
arise from the following operators:

Lð4Þ ¼ z3tr½VμνV̂
μν� þ iz7tr½V̂μνα̂

μ
∥α̂

ν
∥�; ð3:6Þ

where

V̂μν ¼
1

2
ehFμνi½ξLQemξ

†
L þ ξRQemξ

†
R�: ð3:7Þ

Including these z3 and z7 terms, one finds that the effective
mass in Eq. (3.5) is now modified by the anomalous
magnetic moment to be

m2
ρðeBÞ ¼ m2

ρ − eB

�
ðG − 1Þ − g2z3 þ

g2z7
2

�
; with

G ¼ 2 ¼ fm2
ρ − eBg þ

��
z3 −

z7
2

�
g2eB

�
: ð3:8Þ

The couplings z3 and z7 are expected to be of the one-loop
order, OðNc=ð4πÞ2Þ. The HLS gauge coupling g ∼mρ=Fπ

from the Lagrangian Eq. (2.6), so that the correction terms
in the second parentheses of the second line in Eq. (3.8)
certainly contribute to the square of the mass as the Oðp4Þ
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correction ∼eB · ð mρ

ð4πFπÞÞ2 ∼Oðp4Þ, based on the derivative

or chiral expansion in Eq. (2.11).
We may fix the anomalous magnetic-moment term

in Eq. (3.8) by quoting the recent result from the lattice
QCD [12]:

−g2z3 þ
g2z7
2

¼ 0.4� 0.2: ð3:9Þ

(The amount of the Oðp4Þ coefficients z3 and z7 fixed here
is consistent with the expected order based on the derivative
or chiral expansion.) In Fig. 1, we plot the effective mass in
Eq. (3.8) as a function of the external magnetic field ðeBÞ,
with the central value of the anomalous magnetic moment
in Eq. (3.9) and the experimental value of mρ, mρ ¼
0.775 ½GeV� [13]. To see the effect of the anomalous
magnetic moment, we have also shown the effective mass
at the order ofOðp2Þ in Eq. (3.5) in the figure. We see from
the figure that as the magnetic scale ðeBÞ grows, the rate of
reduction for the effective mass gets enhanced by the
anomalous magnetic moment. At eB ¼ 0.3 ½GeV2�, for
instance, the effective mass in Eq. (3.5) is estimated to be
mρðeB ¼ 0.3Þ≃ 0.55 ½GeV�, which decreases by about
20% to be ≃0.43 ½GeV� due to the anomalous magnetic
moment in Eq. (3.8).

B. Neutral vector meson masses

We now turn to the neutral vector mesons. At the leading
order of the derivative or chiral expansion, their masses
cannot, of course, be affected by the magnetic field as
clearly seen from the Lagrangian Eq. (2.17). Even at the
higher order as in Eq. (3.6), it seems still true, so one might

conclude that the neutral vector mesons are free from the
magnetic-scale dependence. However, it is actually not the
case: the point to note is that all terms in Eqs. (2.17) and
(3.6) preserve the intrinsic parity (IP)—which is defined to
be even when a particle has the parity ð−1Þspin but
otherwise is odd. In the HLS model, IP-odd terms can
be incorporated at the order ofOðp4Þ, which are HLS-gauge
invariant (à laWess-Zumino-Witten) terms giving rise to the
anomalous vector meson decay processes such as ω → π0γ
and ρ0 → π0γ [11,14]. As will be definitely shown in this
subsection, the neutral vector meson masses, along the
magnetic direction, can be affected by the magnetic field
through the IP-odd terms to get modified by terms on the
order of ðeBÞ2. The result presented here gives the prediction
to be tested by future lattice simulations.
The IP-odd sector involving the vector mesons is

constructed from four terms written in the HLS-gauge
invariant way [11]. Among them, one finds that the
following two terms are relevant to the present study,

Lc ¼ −
Nc

16π2
c3ϵμνλσtr½fα̂⊥μ; α̂∥νgVλσ�

−
Nc

16π2
c4ϵμνλσtr½fα̂⊥μ; α̂∥νgV̂λσ�; ð3:10Þ

with Nc ¼ 3. When the magnetic field is frozen as in
Eq. (2.14), these IP-odd terms turn out to induce the
ρ0 − π0 − ω mixing at the order of OðeBÞ: combining
the c3 and c4 terms with the ρ0 − hAi and ω − hAi mixing
arising from the IP-even sector in Eq. (2.17), we construct
the effective ρ0 − π0 − hAi and ω − π0 − hAi vertex func-
tions. Figure 2 depicts the Feynman graphs for one of them.
The resultant effective vertex functions can be cast into the
following operator form:

Leff ¼ ϵxyλσeB½gρπγπ0∂λ ~ρ
0
σ þ gωπγπ0∂λ ~ωσ�; ð3:11Þ

where

gρπγ ¼ −
Ncg

24π2Fπ

�
−c3 þ

c3 − c4
2

�
;

gωπγ ¼ −
Ncg0

8π2Fπ

�
−c3 þ

c3 − c4
2

�
: ð3:12Þ

The first term in the parentheses arises from a type of the
first diagram in Fig. 2, while the second term comes from
the third diagram. The second diagram in Fig. 2, involving
the vector meson propagator, actually does not contribute at
all, because of the constant magnetic field. Thus the IP-odd
terms generate the vector meson mixing with the neu-
tral pion.
Including the ρ0 − ω − π0 mixing, we write the ρ0, ω and

π0 propagators in the matrix form,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

m
as

s[
G

eV
]

eB[GeV2]

O(p2)
O(p2)+O(p4)

FIG. 1. The plot of the effective mass for the charged ρ meson
in Eq. (3.8) as a function of the external magnetic field ðeBÞ, with
the central value of the anomalous magnetic moment in Eq. (3.9)
and the experimental value ofmρ,mρ ¼ 0.775 ½GeV� [13] (dotted
curve marked by “x”). Also has been shown the effective mass
without the anomalous magnetic moment, corresponding to
Eq. (3.5) (denoted by the curve marked as “+”).
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−
1

2

0
BB@

~ρ0zð−pÞ
π0ð−pÞ
~ωzð−pÞ

1
CCA

T
0
BB@

m2
ρ−pμpμ igρπγpteB 0

−igρπγpteB m2
π−pμpμ −igωπγpteB

0 iptgωπγeB m2
ω−pμpμ

1
CCA

×

0
BB@

~ρ0zðpÞ
π0ðpÞ
~ωzðpÞ

1
CCA; ð3:13Þ

where the label t attached on momentum p denotes the
zeroth component in the momentum space. Defining the
effective masses at p ¼ 0 (i.e., pt ≡mass) and considering
a weak magnetic field satisfying

gρ=ωπγ
eB
mρ=ω

≪ 1 ð3:14Þ

[See Eq. (3.12)], we can analytically calculate the mass
eigenvalues from the propagator matrix to get1

mρ0ðeBÞ ¼ mρ

�
1þ 1

2ð1 −m2
π0
=m2

ρÞ
�
eBgρπγ
mρ

�
2

þ � � �
�
;

mπ0ðeBÞ ¼ mπ0

�
1 −

1

2ð1 −m2
π0
=m2

ρÞ
�
eBgρπγ
mρ

�
2

−
1

2ð1 −m2
π0
=m2

ωÞ
�
eBgωπγ
mω

�
2

þ � � �
�
;

mωðeBÞ ¼ mω

�
1þ 1

2ð1 −m2
π0
=m2

ωÞ
�
eBgωπγ
mω

�
2

þ � � �
�
:

ð3:15Þ

Thus, in the weak magnetic scale region as in Eq. (3.14),
the ρ0 and ω masses along the magnetic direction tend to
increase, while the π0 mass gets smaller.

Apart from the approximation in Eq. (3.14), we numeri-
cally solve the mixing matrix. To this end, we fix the values
of the gρπγ and gωπγ couplings in Eq. (3.13) by using the
experimental values of the decay widths Γðρ0 → π0γÞ and
Γðω → π0γÞ,

Γðρ0 → π0γÞ¼ α

24
jgρπγj2

�
m2

ρ−m2
π0

mρ

�
3≃8.9×10−5 ½GeV�;

Γðω→ π0γÞ¼ α

24
jgωπγj2

�
m2

ω−m2
π0

mω

�
3≃7.0×10−4 ½GeV�;

ð3:16Þ

where α ¼ e2=ð4πÞ and the left-hand sides are theoretical
expressions obtained by the present model. Using the
experimental values, α≃ 1=137 and mπ0 ¼ 0.135 ½GeV�,
mρ ¼ 0.775 ½GeV� and mω ¼ 0.783 ½GeV� [13], we have

jgρπγj≃ 8.3 × 10−1 ½GeV−1�;
jgωπγj≃ 2.3 × 100 ½GeV−1�: ð3:17Þ

In Fig. 3, we plot the effective masses of the π0, ρ0 and ω as
a function of the external magnetic field ðeBÞ. As expected
from the approximate formulas in Eq. (3.15), the vector

FIG. 2. The Feynman graphs corresponding to the effective vertex function for the ρ0 − π0 − hAi. The crossed circle denotes the
background fields hAi and hωi ¼ e=ð3g0ÞhAi multiplied by the derivative.
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FIG. 3. The plot of the effective masses for the π0, ρ0 and ω as a
function of the constant magnetic field ðeBÞ. Here ρ0 and ω are
polarized along the magnetic field (z direction).

1Looking at the matrix form in Eq. (3.13) or the formulas for
the mass eigenvalues in Eq. (3.15), one should note that the ðeBÞ2
corrections do not come with the mass difference ðm2

ω −m2
ρÞ

in the denominators. This is due to the absence of the direct
ρ0—ωmixing up to theOðp4Þ. If it were present at this order, the
finite widths of the vector mesons should be significant since the
ρ and ω are almost degenerate.
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meson masses increase as the magnetic scale gets larger.
Most prominently, the ω mass dramatically gets enhanced.
For instance, the mass becomes larger by about 37% when
the ðeBÞ reaches the scale around 0.3 GeV2. This signifi-
cant enhancement is testable in future lattice simulations.

IV. SUMMARY AND DISCUSSION

In this paper, we discussed the magnetic responses of
vector meson masses based on the hidden local symmetry
model in a constant magnetic field. We employed the
lightest two-flavor system including the pion, rho and
omega mesons in the spectrum. The effective masses
influenced under the magnetic field were evaluated accord-
ing to the derivative or chiral expansion established in the
hidden local symmetry model. At the leading order, the g
factor of the charged rho meson is fixed to be 2, implying
that the rho meson at this order looks as if it were a
pointlike spin-1 particle. Going beyond the leading order,
we found anomalous magnetic interactions of the charged
rho meson, involving the anomalous magnetic moment
arising from the Oðp4Þ terms. It was suggested that the
charged rho mass can be vanishing up to the order of
Oðp4Þ. More remarkably, nontrivial magnetic dependence
of neutral mesons emerges to give rise to the significant
mixing among neutral mesons through the intrinsic-parity
odd term ofOðp4Þ. We found the dramatic enhancement of
the omega meson mass, which is testable in future lattice
simulations.
Phenomenological consequences derived from the

enhanced omega mass in magnetic field are anticipated
to be seen through decay processes relevant to strong-
magnetic field systems such as in magnetars. Inclusion of
temperature in the present model is straightforward, so it
would be possible to draw some implications for the
magnetic catalysis, or inverse one, and for physics in heavy
ion collisions. More explicit analysis on such exotic
phenomenologies is to be pursued elsewhere.
Before closing the present paper, we discuss possible

corrections to our findings from terms higher than Oðp4Þ.
Based on the systematic expansion with respect to the

derivative or chiral orders established in the HLS model, in
the present paper we have discussed the magnetic responses
of vector mesons. As noted at the end of Sec. III, one could
say that the charged rho meson can be massless when one
looks at Fig. 1, and one might have a question: could it be
true even if higher-order corrections are incorporated? First
of all, we shall consider this point.

A. OðeBÞ2 corrections to charged ρ mass
transverse to magnetic field

The charged rho mass transverse to the magnetic field has
been evaluated including terms up toOðp4Þ in the derivative
or chiral expansion of the HLS model. Those terms come in
the mass as the correction of OðeBÞ, i.e., the magnetic

moment term [see Eq. (3.8)]. Figure 1 implies that the ρ
meson can be massless at around eB≃ 0.3 − 0.4 ½GeV2�.
However, as noted in the literature [7], the vanishing charged
rho mass in the magnetic field might contradict with the
Vafa-Witten theorem [15] and also the QCD inequalities
[16–20].
Here we shall attempt to include corrections of the order

of OðeBÞ2, which would arise from the Oðp6Þ terms. One
can easily write down the Oðp6Þ terms in a manner
invariant under the chiral, or HLS, parity and charge
conjugations. The terms relevant to the charged rho mass
then involve the following operators,2

Lð6Þ ¼
1

ð4πFπÞ2
fd1tr½V̂μνV̂μνα̂∥σα̂

σ
∥� þ d2tr½V̂μνV̂μσα̂∥να̂

σ
∥�

þ d3tr½V̂μνV̂μσα̂
σ
∥α̂∥ν� − d4ðtr½V̂μνα̂∥νV̂μσα̂

σ
∥�

þ tr½V̂μνα̂σ∥V̂μσα̂∥ν�Þ − d5tr½V̂μνα̂∥σV̂μνα̂
σ
∥�g; ð4:1Þ

where d1;2;3;4;5 are arbitrary coefficients, expected to be on
the order of OðNc=ð4πÞ2Þ ¼ Oð10−2Þ from the scheme in
terms of the systematic derivative or chiral expansion.
Taking these Oðp6Þ terms into account, one finds that the
charged rho mass transverse to the magnetic field (in the
LLL) is modified from Eq. (3.8) to be3

fm2
ρ − eBg þ

��
z3 −

z7
2

�
g2eB

�
þ
�

d
4ð4πFπÞ2

g2ðeBÞ2
�
;

ð4:2Þ
with d ¼ 2d1 þ d2 þ d3 þ 2d4 þ 2d5.
To see how corrections from the Oðp6Þ terms can be

effective, in Fig. 4 we attempt to plot the effective mass in
Eq. (4.2) as a function of ðeBÞ taking the coefficient
d ¼ 0.04, 0.05, 0.06, 0.07, where the rho mass in the
vacuum has been set to the value estimated in the lattice
simulation [7], mρ ¼ 985 MeV, and we have used Fπ ¼
92 MeV [13]. TheHLSgauge coupling g has been estimated
by assuming the vector meson dominance for the pion
electromagnetic form factor [11] as g≃ 7.55with use of the
values of mρ and Fπ as above. We see from the figure that
theOðp6Þ correction can kick up the effectivemass from the
massless limit point (around eB≃ 0.3 − 0.4 GeV2). Similar
observation in a region of strong magnetic scale ≳1 GeV2

has been made in a quark model approach [21], where it is

2OtherOðp6Þ terms made of the product of two traces, such as
tr½V̂2

μν�tr½α̂2∥σ �, can be incorporated there, but these would be
suppressed by a factor of ð1=NcÞ compared to terms with
coefficients d1;2;3;4;5 in Eq. (4.1).

3Other B-dependent terms to the rho mass formula in Eq. (4.2)
would arise from charged pion loops as finite part corrections like
∼1=ð4πÞ2 logðeB=m2

πÞ. This term can be absorbed into redefini-
tion of the HLS couplings, such as g, to give a shift to the Oðp6Þ
term in Eq. (4.2) as ∼ðeBÞ logðeBÞ, which is, however, negligibly
small compared to the power correction term ∼ðeBÞ2.
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proposed that the increase in effective mass for the rho
meson can be understood by magnetic moments of con-
stituent quarks, not in terms of hadrons. In Fig. 4, such a
degree of freedom of constituent quarks might be mimicked
by higher-derivative term corrections. Incidentally, in Fig. 4,
comparison with the lattice data points [7], based on the
quenched QCD with no quark loop effects, has also
been made.

B. OðeBÞ2 corrections to ω mass along
the magnetic field

When the Oðp6Þ corrections become relevant as seen in
Fig. 4, one might suspect that the significant enhancement
of the ω meson mass in Fig. 3 could be washed out by
higher-order corrections. However, this is not the case: the
ω meson mass, parallel to the magnetic field, would get
contributions from terms of Oðp6Þ (i.e. OðeBÞ2) in the
form constructed from two traces:

tr½V̂2
μνα̂∥σ�tr½α̂σ∥�: ð4:3Þ

Note that this class of contributions is potentially sup-
pressed in terms of the 1=Nc expansion (1=3 suppression,
in the real-life QCD), in addition to the suppression by an
extra loop factor, compared to IP-odd terms of the leading
order of OðNcÞ [see Eq. (3.10)]. We have numerically
checked that the Oðp6Þ corrections are indeed tiny enough
to keep the result in Fig. 3 intact, up to a moderate magnetic
scale, for example, eB≃ 0.3 GeV2. Thus,Oðp6Þ (OðeBÞ2)
corrections to the ω meson mass can safely be neglected.
The Oðp6Þ operator as in Eq. (4.3) can actually generate

the direct ρ0 − ω mixing. Even if the ρ0 − ω mixing is
absent at the order of Oðp4Þ, as noted in footnote 1, one
might naively think that the higher-order corrections would

spoil the argument in the enhancement on the ω meson
mass in Sec. III. However, it is again not the case: by the
same argument as above, the Oðp6Þ contribution turns out
to be sufficiently suppressed in magnitude by the extra loop
factor and 1=Ncð∼1=3Þ, compared to terms of Oðp4Þ.
Thus, the ρ0—ω mixing will not be sizable to be negligible
in the mixing structure as in Eq. (3.13), even considering
the higher-order terms. In the end, the significant develop-
ment on the ω mass predicted in Sec. III is totally intact.
In closing, as has been addressed so far, the result

including Oðp4Þ corrections shown in Figs. 1 and 3 would
be reliable up to some moderate magnetic scale
eB≃ 0.3 − 0.4 GeV2.4 Going further to a larger magnetic
scale region would require incorporating higher-order
terms, such as corrections of Oðp6Þ [i.e. OðeBÞ2], in order
to appropriately discuss the magnetic response of vector
meson masses.
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APPENDIX: THE LANDAU QUANTIZATION OF
THE VECTOR MESON MASS

We derive the equations of motion for ϕ and Φ fields
from the Lagrangian Eq. (3.4),

M1ϕ −
1

2
H1H2ϕþ 1

2
H1H1Φ ¼ 0; ðA1Þ

M2Φ −
1

2
H2H1Φþ 1

2
H2H2ϕ ¼ 0; ðA2Þ

where

M1 ¼ m2
ρ − eBþ ∂2

t − ∂2
z ;

M2 ¼ m2
ρ þ eBþ ∂2

t − ∂2
z ;

H1 ¼ Dx − iDy;

H2 ¼ Dx þ iDy: ðA3Þ
We then multiply byH1H1 on the left-hand side and use the
commutation relation ½H1; H2� ¼ 2eB to get

�
M2 −

1

2
H1H2 − eB

�
H1H1Φþ 1

2
H1H1H2H2ϕ ¼ 0:

ðA4Þ
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FIG. 4. The charged rho meson mass transverse to the magnetic
field as a function of ðeBÞ in Eq. (4.2) with theOðp6Þ corrections
included, taking the Oðp6Þ parameter d as d ¼ 0.04, 0.05, 0.06,
0.07. The curves have been compared with the current lattice data
[7]. In the plots, the rho mass in the vacuum has been set to the
value estimated in the lattice simulation.

4In this respect, the neutral pion in Fig. 3 cannot be massless,
although the effective mass tends to decrease monotonically as
the magnetic scale gets larger.
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Using Eq. (A1) to replace Φ with ϕ, we have

ðm2
ρþ∂2

t −∂2
zÞðm2

ρþ∂2
t −∂2

z −H1H2−eBÞϕ¼ 0: ðA5Þ

Note that H1 and H2 form the creation ða†Þ and annihi-
lation (a) operators for the Landau quantization,

a ¼ 1ffiffiffiffiffiffi
eB

p
�
∂Z̄ þ eB

2
Z

�
;

a† ¼ 1ffiffiffiffiffiffi
eB

p
�
−∂Z þ eB

2
Z̄

�
; ðA6Þ

where

Z ¼ ðxþ iyÞ=
ffiffiffi
2

p
;

∂Z ¼ ð∂x − i∂yÞffiffiffi
2

p ;

½a; a†� ¼ 1: ðA7Þ

Since the eigenvalue of ða†aÞ is integer n, the energy (mass)
of the ρ meson is thus given by

EðeBÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpzÞ2 þm2

ρ þ ð2n − 1ÞeB
q

: ðA8Þ
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