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We study matter-coupled N = 3 gauged supergravity in four dimensions with various semisimple gauge
groups. When coupled to n vector multiplets, the gauged supergravity contains 3 + n vector fields and 3n
complex scalars parametrized by SU(3,n)/SU(3) x SU(n) x U(1) coset manifold. Semisimple gauge
groups take the form of Gy x H C SO(3,n) C SU(3,n) with H being a compact subgroup of
SO(n +3 —dim(Gy)). The G, groups considered in this paper are of the form SO(3), SO(3,1),
S0(2,2), SL(3,R) and SO(2,1) x SO(2,2). We find that SO(3) x SO(3), SO(3, 1) and SL(3, R) gauge
groups admit a maximally supersymmetric AdS, critical point. The SO(2,1) x SO(2,2) gauge group
admits a supersymmetric Minkowski vacuum while the remaining gauge groups admit both half-
supersymmetric domain wall vacua and AdS, vacua with completely broken supersymmetry. For the
SO(3) x SO(3) gauge group, there exists another supersymmetric N =3 AdS, critical point with
SO(3) diag Symmetry. We explicitly give a detailed study of various holographic RG flows between AdS,

critical points, flows to nonconformal theories, and supersymmetric domain walls in each gauge group. The

results provide gravity duals of N = 3 Chern-Simons-matter theories in three dimensions.
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I. INTRODUCTION

The AdS/CFT correspondence has attracted a lot of
attention since its original proposal in [1]. The correspon-
dence provides a duality relation between a gravity theory
in AdS,,; space and a strongly coupled conformal field
theory in d dimensions. The correspondence has also been
extended to the case of nonconformal field theories in
the form of the domain wall and quantum field theory
(DW/QFT) correspondence [2]. These provide a useful tool
to understand strongly coupled gauge theories in various
spacetime dimensions.

AdS,/CFTj correspondence is particularly interesting in
many aspects. In M-theory, AdS, x X’ geometries, with X’
being an internal compact seven-dimensional manifold,
arise naturally from a near horizon limit of M2-brane
configurations. AdS,;/CFT; correspondence is then
expected to shed some light on the dynamics of a strongly
coupled worldvolume theory on M2-branes [3,4]. And,
more recently, the correspondence has also been applied to
condensed matter physics systems; see, for example, [5-7].

As in other dimensions, working in lower-dimensional
gauged supergravity has proved to be useful and efficient.
In the lower-dimensional point of view, the AdS, x X’
geometries are identified with the vacua of the scalar
potential in the gauged supergravity theory, and the iso-
metries of the internal manifold correspond to the gauge
symmetry or its unbroken subgroup at the AdS, vacua. For
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the case of X’ =7, the resulting AdS, x S7 geometry
preserves maximal supersymmetry. The effective gauged
supergravity in this case is the maximal N =8 SO()
gauged supergravity in four dimensions constructed in [8].
The holographic study within this gauged supergravity
has been investigated in many previous works; see, for
example, [9-13]. These results give a description of the
deformations leading to various types of RG flows in the
dual superconformal field theories (SCFTs) in three
dimensions.

For N > 2 supersymmetry, there is a unique nonmaximal
AdS, solution from a compactification of 11-dimensional
supergravity with unbroken N = 3 supersymmetry in four
dimensions [14]. In this case, the internal manifold is a tri-
sasakian N0 with SU(2) x SU(3) isometry. The corre-
sponding Kaluza-Klein spectrum has been given in [15],
and the structure of N =3 multiplets has been further
investigated in [16]. The properties of the possible dual
SCFT to this background in term of Chern-Simons-matter
theory with SU(3) flavor symmetry has been proposed in
[17,18]. The gravity dual of this N =3 SCFT has been
studied in many references; see, for example, [19-24]. In
these results, the four-dimensional scalar potentials, encod-
ing various deformations of the dual SCFT, have been
obtained from compactifications of 11-dimensional super-
gravity restricted to particular field configurations.

It has been pointed out in [15] and [16] that AdS, x N°'°
compactification can be described by an effective theory in
the form of N =3, SO(3) x SU(3) gauged supergravity
coupled to eight vector multiplets constructed in [25-27].
Many supersymmetric deformations of the maximally
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supersymmetric AdS, critical point including a new AdS,
critical point with SO(3) x U(1) symmetry have been
identified in a recent work [28]. The eleven-dimensional
configurations corresponding to these gravity solutions
might be obtained by a consistent reduction ansatz, to
be explicitly identified.

Apart from a simple compact gauge group studied in
[28], it is natural to consider other types of gauge groups.
As in other matter-coupled supergravity, there are many
possible gauged groups for N =3 gauged supergravity
coupled to n vector multiplets, the only existing matter in
N = 3 supersymmetry. These gauge groups are in general
subgroups of the global, duality, symmetry group SU(3, n).
In this paper, we will consider N = 3 gauged supergravity
coupled to n vector multiplets with compact and non-
compact gauge groups G C SO(3,n) C SU(3.n). In each
gauge group, we will study the scalar potential restricted on
scalar submanifolds, which are invariant under particular
subgroups of the full gauge group under consideration, and
identify supersymmetric vacua as well as possible RG flow
solutions describing supersymmetric deformations in the
dual gauge theories in three dimensions.

The paper is organized as follow. In Sec. II, N =3
gauged supergravity coupled to n vector multiplets is
reviewed along with possible semisimple gauge groups
allowed by supersymmetry. The scalar potential of each
gauge group is investigated separately in subsequent
sections in which possible supersymmetric vacua in the
form of an AdS, or a domain wall for different scalar
submanifolds are classified. Conclusions and comments on
the results are presented in Sec. VIII.

II. N=3 GAUGED SUPERGRAVITY
WITH COMPACT AND NONCOMPACT
GAUGE GROUPS

We begin with a review of N = 3 gauged supergravity in
four spacetime dimensions constructed in [25-27]. We will
closely follow most of the notations in [25] but in the
mostly plus metric signature (— + ++).

N =3 supersymmetry in four dimensions contains
twelve supercharges. Apart from the supergravity multiplet,
the only matter multiplets are in the form of vector
multiplets. The supergravity multiplet contains the follow-
ing field content

(€0 Wua- Aya-X) (1)

which are given respectively by a graviton ey, three
gravitini 4, three vectors A, and one spinor field y.

Indices A, B, ... = 1, 2, 3 denote the SU(3),; R-symmetry
triplets while y,v,... =0,...,3and a,b,... =0, ...,3 are
respectively spacetime and tangent space indices.

Throughout the paper, spinor indices will not be shown
explicitly.
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Each of the n vector multiplets has one vector field, four
spinor fields which are a triplet and a singlet of SU(3), and
three complex scalars

(A Aps A2y’ (2)

with indices i, j,... = 1, ..., n labeling each of the vector
multiplets. All spinors are subject to the chirality projection
conditions

X =Vs5X> Aa = Y544, A= —ysi,
A = —y5/1A. (3)

YA = Vs5¥WuAs
W = =75y,

When coupled to n vector multiplets, the supergravity
theory consists of 3n complex or 6n real scalar fields z,’
parametrized by the coset space SU(3,n)/SU(3)x
SU(n) x U(1). The scalars can be parametrized by the
coset representative L(z),* which transforms under
the global G =SU(3,n) and the local H =
SU(3) x SU(n) x U(1) symmetries by left and right multi-
plications, respectively. Indices A, X, ... = (A, i) take the
values 1, ..., n + 3. The indices i, j, ... are used to label the
fundamental representation of SU(n). The coset represen-
tative can be accordingly split as follow Ly* = (L4, Ly).
Being an element of SU(3, n), its inverse is related to L*
via the relation

(L7 ,* = Jan/*2 (L") (4)
where J,y is an SU(3, n) invariant tensor given by
Jaz = I = (845.—6;)). (5)

There are n+ 3 vector fields, three from the gravity
multiplet and »n from the vector multiplets, which can be
written collectively by a single notation Ay = (Ay, A;).
Accompanied by their magnetic dual, the n + 3 vector
fields transform in the fundamental representation n + 3 of
the global symmetry SU(3, n). The Lagrangian consisting
of n+3 “electric” vectors is invariant only under the
SO(3, n) subgroup of the duality symmetry SU(3, n). It has
been argued in [25] that possible gauge groups are sub-
groups of SO(3,n) which transform the vector fields
among themselves. When restricted to SO(3,n), the
fundamental, complex, representation of SU(3,n) split
into two fundamental, real, representations of SO(3, n)

B+n)e—> B+n)g+ 3+n)g. (6)

The (3 +n)g representation of SO(3,n) in turn will
become the adjoint representation of the gauge group.

When a particular subgroup G € SO(3,n) C SU(3,n) is
gauged, the SO(3, n) global symmetry of the Lagrangian is
broken to G. The gauge field strengths become non-
Abelian defined by
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Fy=dAy + fA™Asg A Ap (7)

where f)s! are the structure constants of the gauge group.
The gauge generators T, satisfy the G Lie algebra

[TA.Ts] = fas" Tr. (8)

It should be noted that G needs not be simple, and each
simple factor can have different coupling constants.
Furthermore, in the presence of gaugings, the Mourer-
Cartan one-form on the scalar manifold gets modified by
the gauge fields appearing in the covariant derivative of
Ly*®

Q)" = (L7")\®dLs" + (L7 s AL, (9)

In the following, we will omit all of the gauge fields since
we are only interested in supersymmetric solutions with
only the metric and scalars nonvanishing.

Supersymmetry requires that, for any gauge group
consistent with supersymmetry, the tensor

Fasr = fas" Trr = fiasn (10)

must be totally antisymmetric. The consistency condition
can be satisfied by taking J,s to be the Killing form of the

(n + 3)-dimensional gauge group G. Since J,y has indefi-
nite signs of the eigenvalues, the gauge groups can be both
compact and noncompact types. Furthermore, since J,s
has three positive eigenvalues but arbitrarily large number
of negative eigenvalues depending on the number of vector
fields, the gauge group can have at most three compact or at
most three noncompact directions.

Among the possible gauge groups, SO(3) x H,,
SO(3,1) x H,_3 and SO(2,2) x H,_3 groups, with H,
being an n-dimensional compact group, have been pointed
out in [25] and [29]. However, the consistency condition
and the global symmetry SO(3,n) in which the gauge
group can be embedded are very similar to the half-
maximal gauged supergravity in seven dimensions con-
structed in [30], and a number of possible gauge groups
have been listed in [31]. We then expect that possible gauge
groups of the N = 3 gauged supergravity considered here
should follow the same structure.

Due to the restriction on the number of compact or
noncompact directions of the gauge group mentioned
above, all possible semisimple gauge groups accordingly
take the form of Gy x H with H being a compact group of
dimension n + 3 — dim(Gj). It has been pointed out in [31]
that G is a compact or noncompact group taking one of the
following forms

SO0(3).  50(2.2),
SO(2,1) x S0(2,2),

SO(3.1),

50(2,1), SL(3,R). (11)
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All of these G, actually give rise to the gauge groups
Gy x H with fsr = fasr)- Therefore, they are admissible
gauge groups of the N = 3 gauged supergravity coupled to
vector multiplets.

The bosonic Lagrangian of the N =3 gauged super-
gravity, with all but the metric and scalars vanishing, can be
written as

|
eIL = iR- 5P,;MDQ,. - V. (12)

The vielbein P4 of the SU(3,n)/SU(3) x SU(n) x U(1)
coset are given by the (A, i)-component of the Mourer-

Cartan one-form Q4 = (Q,")*. The scalar potential is
written in terms of the “boosted structure constants”

Clir = LyAL Y™ (LYY frre
and C\" = Jy J ST (CN ) (13)

by the following relation
cm 2 Al ia L\ is A
V: —ZSACS +§Z/{Au +6N1AN +6M AMiB
1 1 1
= 31CuP +5ICPOR =S (CAPOR = [CoP)  (14)

where Cp = —CpyM. Various tensors appearing in the
above equation are defined by

1
Sap = 1 (GBPQCAPQ + €4pcCu™°)
1
=3 (Ca™Ceppo + CpCenpp).
1 1
Ur = ——CyMA, Niax = =5 €eapoCi"?,
4 2
1
M® =§(5§CiMM—2CiAB)- (15)

Other important ingredients for finding supersymmetric
solutions are supersymmetry transformations of fermions

8 yua = Dyeq + Sapy,e®. (16)
Sy = Uley, (17)
oA = —P,-ﬂAy”eA + Niaet, (18)

8hia = =P Briespce + My Bep. (19)

The covariant derivative on the supersymmetry parameter
€4 is defined by

1 1
D€A = d€A + ZwthabeA + QAB€B + EnQeA. (20)
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048 and Q are the SU(3) x U(1) composite connections.
These connections and the corresponding ones for SU(n),

i/, can be obtained from (A, B) and (i, j) components of
the Mourer-Cartan one-form

Q8=0,8-n880, QI=0/+35/0 (21)

with the property that Q4 = Q,/ = 0.
We are now in a position to study the scalar potential in
each gauge group and classify the corresponding vacua.

III. SO(3) x SO(3) GAUGE GROUP

We begin with a simple compact gauge group of the form
SO(3) x SO(3) with Gy = SO(3) and H3 = SO(3). This
gauged supergravity can be obtained from N = 3 super-
gravity coupled to three vector multiplets. The structure
constants are given by

fash = (91€acs D2€143,j43.043)5 Lj=123 (22)

In this case, there are 18 scalars parametrized by the
SU(3,3)/SU(3) x SU(3) x U(1) coset manifold. To
parametrize this manifold and the other related ones
needed in subsequent sections, we introduce the
following 6n noncompact generators for a general
SU(3,n)/SU(3) x SU(n) x U(1) coset

A

Yiu =ei3ateais

and Yy = —iej 34 Tiey;3 (23)

where i = 1,...,n and (exs)ra = Sardsa-

A. AdS, vacua and RG flows with SO(3) symmetry
We first consider scalars which are singlets of
SO(3)giag C SO(3) x SO(3). The 18 scalars transform in
representations (3,3)_, + (3,3), of the local SU(3) x
SU(3) x U(1). From now on, we will neglect all the
U(1) charges for simplicity since they will not play any
important role. With the embedding of SO(3) in SU(3)
such that 3 — 3 and 3 — 3, there are two SO(3) g, singlets
among the 18 scalars according to the decomposition

3x3+3x3=(1+3+5+(1+3+5). (24)

These singlets correspond to the following SU(3,3) non-
compact generators:

Y, =V 4+ Yy + Va5, Yo=Y + Yy + ¥y (25)

The coset representative can be parametrized by

L = e®Vie)2, (26)

PHYSICAL REVIEW D 93, 125017 (2016)

The scalar potential is computed to be

3
V=- ﬁcosh(2<1>2)

X [4 cosh(2®,)[1 + cosh(2®,) cosh(2®,)]?¢?

+ 25sinh(2®)

X [cosh(4®;) — 3 + 2 cosh?(2®, ) cosh(4D,)]g, 9>

+ 4 cosh(2®;)[cosh(2®,) cosh(2®,) — 1]?¢3].  (27)
We find that this potential admits two supersymmetric
AdS, critical points. The first one occurs at ¢; = ¢, =0

with the cosmological constant and the AdS, radius
given by

3 3 1
Vo=—=¢, LP=——=— 28
0 2g1 2V0 g% ( )
Another critical point is given by
1 —
3, _—h{gz 91], &, = 0,
2 g+
39195 %9
Vo=-3 S22 =221 (29)
(95— 91) 9192

It should be noted that reality of ®; requires that
g — g% > 0, so the critical point is AdS, with V < 0.

At the trivial critical point with all scalars vanishing and
SO(3) x SO(3) symmetry unbroken, all scalars have the
same mass m>L? = —2 corresponding to the dual operators
of dimensions A = 1, 2 in the dual N = 3 SCFT. At the
SO(3) iy critical point, we can compute the scalar masses
as shown in Table 1. All masses satisfy the BF bound as
expected for a supersymmetric critical point. Furthermore,
there are three massless Goldstone bosons from the
SO(3) x SO(3) — SO(3) symmetry breaking.

To check for the unbroken supersymmetry and set up
BPS equations for studying supersymmetric domain wall
solutions, we consider supersymmetry transformations of
x> 4i» Aia and 4. The four-dimensional metric is taken
to be

ds?* = A0 dx?, + dr?, (30)

TABLE I. Scalar masses at the N = 3 supersymmetric AdS,
critical point with S0(3)diag symmetry and the corresponding
dimensions of the dual operators in SO(3) x SO(3) gauge group.

SO(3) g Tepresentations m?L? A

1 4, =2 4, (1,2)
3 Ox3)> —2(x3) 3,(1,2)
5 —2(><10) 1,2)
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and the two scalars @ , only depend on r. §y = 0 equations
are identically satisfied since C),”* = 0 in the present case.
We will use Majorana representation for gamma matrices in
which all of the gamma matrices y“ are real. The chirality

matrix ys = zy0y1y2y3 is then purely imaginary. This

implies that €, and ¢* are related by a complex conjugation,
eq = (e*)".
In the following analysis, we will use the same procedure
as in [28]. With the projection condition
Yey = etel, (31)
where ¢! is a phase factor, the equations for 64, = 0 and
0d;4 = 0 reduce to two equations,

e cosh(2®,) P + iP)]
_ —%[sinh(ZCI)l) + icosh(2®, sinh(23,))]
x [cosh @,(g; cosh ®; + g, cosh @)
— isinh ®,(g; sinh ®; + g, cosh @;)], (32)

where ' =4

For this particular coset representative consisting of only

SO(3) g singlets, Syp is diagonal with

1
Sap = §W5AB (33)

where the “superpotential” WV is given by

W = —[cosh ®; cosh &, — i sinh ®; sinh D,|
x [cosh @, cosh ®, + i sinh ®, sinh ®,]?g,
+ [sinh @, cosh &, — i cosh @, sinh P, ]

x [sinh @, cosh ®, + i cosh ®, sinh ®,]%g,. (34)
With this, oy, = 0 equations for 4 = 0, 1, 2 become
Al + W =0. (35)

By writing W = |[W|e!® and separating the real and
imaginary parts of (35), we find

1 o o
e E |W|(ezm—zA + e—1u7+zA) =0, (36)
L i
E|V\}|(el(u N e 1w+1 ) — 0 (37)
where W = |W| will play the role of the “real super-
potential”. The second equation gives e’* = +e™®.

Equation (32) implies ¢, = 0. Consistency with the field
equations requires that ®, = 0. We then set ®, = 0 in the
remaining analysis. Furthermore, setting ®, = 0 gives a
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real W since @ = 0. In this case, we simply have elh = 41,
and the BPS equations (32) and (35) become

@) = Fsinh @ cosh @ (g; cosh®; + g, sinh @),  (38)

A" = +(g; cosh® @ + g, sinh’® @). (39)

These equations admit precisely two AdS, solutions with
N = 3 supersymmetry identified previously. The corre-
sponding Killing spinors could be obtained from oy, = 0

. . . A (0
which eventually gives, as in many other cases, €4 = ezel(4 )

for constant spinors eﬁ‘o) satisfying yrefqo) = 404,

It should also be noted that equations (38) and (39) are
similar to those studied in [28] within the N = 3 gauged
supergravity with SO(3) x SU(3) gauge group. The sol-
ution interpolating between the two supersymmetric AdS,
critical points can be found similarly. The upper signs will
be chosen in order to identify the UV critical point at
®; =0 with r - oo0. The resulting solution is given by

P, 1
g19,7 = 2g,tan"'e® + g, In [e + 1]
e®
-2 g2 gitanh™ [ 1/gz+gl
A=, —In(l - &*)
+In[(e*™ + 1)g; + (™ — 1)g)] (41)

where we have omitted all irrelevant additive integration
constants.
As r — oo, we find

¢>~e_-‘f"~e_ﬁ, A~glr~LL. (42)

uv

This implies that the flow is driven by a relevant operator of
dimension A = 1, 2 in the UV. In the IR as r - —c0, we
find

91927

(I)1 ~ e 70, ~ eﬁ’ A~ glgzr

\/92 9% LIR

which shows that the operator dual to ®; becomes
irrelevant with dimension A = 4. This precisely agrees
with the scalar masses given previously.

Other interesting IR behaviors of the above solution are
flows to large values of |®;|. These correspond to flows
from conformal field theories, identified with the AdS,
critical points, to nonconformal gauge theories in the IR. As
®, — o0, the above solution gives

(43)
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1
@1N—§1n[r(91+92)+c]v A~ =Dy,
ds*> = [r(gi + o) + C]%dx%,z +dr?. (44)
where C is a constant that can be removed by shifting the

coordinate r.
For ®; — —o0, we find

1
‘I’1~§1n[”(91—92)+q7 A~ @y,
ds* = [r(g1 = g2) + Clidxi, + dr. (45)
In the above solutions, there is a singularity at r ~ — g]iqz.

However, the singularity is physically acceptable according
to the criterion of [32] since the potential is bounded above
as can be checked from (27) that

V(®, - d00, P, =0) - —(g; £ ¢)*c0. (46)

B. RG flows with SO(2) x SO(2) symmetry

We now move to a scalar submanifold invariant under
SO(2)giny € SO(2) x SO(2) C SO(3) x SO(3) symmetry.
There are six singlets corresponding to SU(3,3) non-
compact generators

V=V, Yo=Yy, Yi=V,+¥o,
Yo=Y +Yn, Ys=V,-V, Ye=Vy-Y, (47)

The coset representative can be parametrized by

L = e21Y1 2272 o833 o 8u4Y4 ,&5Y5 , &6V (48)

The scalar potential turns out to be far more complicated
than the SO(3) singlet scalars. We will present the results
for some consistent truncations of the full potential.

We first give the result for SO(2) x SO(2) singlet
scalars. These scalars correspond to ®; and ®,. The scalar
potential is given by

1
—gre 212 + (1 + e**) cosh(2®,)].  (49)

V=-—
2

It is clearly seen that this potential admits only a critical
point at &, = ®, = 0 which is the SO(3) x SO(3) critical
point.

By using the same projector as in the previous case, we
can set up the relevant BPS equations as follow. In this case,
the matrix S, is given by

1 .
Sap = Edlag(WhWhWﬁ (50)

where

PHYSICAL REVIEW D 93, 125017 (2016)
W, = —g; cosh @, cosh ®,,
W, = —g;(cosh @, cosh ®, + i sinh ®; sinh ®,). (51)

It should be noted that, when ®; =0 or &, = 0, W, and
W, coincide. For ®; # 0 and &, # 0, it turns out that W,
provides the true superpotential in term of which the scalar
potential (49) can be written as

1 s OWVa[OWs| 3
—_Gop Al 7T AL T 2
V=300, ou, S Wl (52)

With the scalar kinetic terms

| 1
S PP, = = [cos?(29,)07 + 93], (53)
we find G,z = diag(—cosh?(2®,),—1), and G* is the
inverse of G4 with &, = (®, ®,).

The BPS equations coming from éy,4 =0, 4 =0, 1, 2,
become

1
A'=FW| = +50: \/2 +2cosh(2®,) cosh(2®,)  (54)

and e = +¢'® with W, = |W,|e™®. It should also be
noted that for ®; # 0 and ®, # 0, only the supersymmetry
corresponding to €3 can be preserved since we need to set
€1, = 0in the dy,,4 equations. Therefore, together with the
y" projection, the solution will preserve only two super-
charges or N =1 Poincare supersymmetry in three
dimensions.

The conditions 64;4 = 0 are identically satisfied for
€1, = 0 while 64; = 0 equations give

[ [cosh(2®,) D + i D]
+ g1 (sinh ®, cosh ®, — i cosh ®, sinh ®,)]e’ =0.  (55)
This will give the flow equations for ®; and ®,. Using the

above result for ¢’ = +¢i@ it can be verified that the flow
equations can be written as

oW, |
P = +GY

or explicitly

;L sinh(2®, )sech(29,)g;
: /2 + cosh(2®,) cosh(2®,)
(

cosh(2®,) sinh(2®,)g,
\/2 + cosh(2®,) cosh(2®,)

P, = . (57)

We are not able to solve the above equations completely,
but by combining the two equations, we find a relation
between ®; and P,
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o201

COth(z(I)z) = m .

(58)

The full flow solution would require some numerical
analysis. In the following, we will simply give the asymp-
totic behaviors at ®;, ~ 0 and large |®,|.

Identifying » — oo as the UV fixed point, we find

(I)l ~ @2 ~e N’ (59)
As ®, - +o00, we find

Dy ~ Dy, @, ~F1In(gr)

ds* = rldxi, + dr? (60)
where @ is a constant. For convenience, we have put the
singularity at » = 0 by choosing an integration constant.

For ®; — +o00, the solution becomes

@, ~ FIn(gi7). Dy ~ O,
ds* = rPdxi, +dr. (61)
All of these flows give V — —oo and are physical.

As noted before for ®; or ®, vanishing, the eigenvalues
of S,p degenerate W; =W),, and the BPS equations
coming from 64; =0 and 64,4y =0 are identical. The
resulting equations for ®; =0 and ¥, =0 cases turn
out to be symmetric. In the following, we will set &, =0
for definiteness. The flow equations reduce to

(P/l = =0 Sinh‘I)],
A’ = g, cosh @, (62)

with a simple solutions

e =C 41
@1 ==In |:eylr_7c_1:| y
A= —g;r +In(e?72€ - 1). (63)
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At large r, we find ®; ~ e791" and A ~ g;r which is the UV
AdS,. For g;r ~ C, the solution becomes

®, ~+tIn(g;r—C), A ~In(g,r—C),
ds* = (g,r — C)zdxiz +dr*. (64)

This solution is also physical and preserves N = 3 Poincare
supersymmetry in three dimensions. We then find two
classes of deformations that break conformal symmetry.
One of them with ®; and ®, nonvanishing breaks N = 3
supersymmetry to N = 1 while the other with &, or ®,
vanishing preserves N = 3 supersymmetry. On the other
hand, both of them preserve SO(2) x SO(2) symmetry.

C. RG flows with SO(2) symmetry

The scalar potential and BPS equations for SO(2) ;.
singlet scalars are far more complicated than the
SO(2) x SO(2) case. We will only give the result for a
truncation with ¢, = ¢, = & = 0. We have verified that
this is a consistent truncation both for the BPS equations
and the corresponding field equations.

In this truncation, S, is diagonal

1
Sap = §W5AB (65)
where W is real and given by

1
W=W= —29 cosh @ [1 4 cosh(2®;)] cosh(2Ps)
+ ¢o[1 — cosh(2®3) cosh(2®s)| sinh @;.  (66)

With the scalar kinetic terms

1 1, 1
—5 Pt Phi=—5 PP = e s (14t 207 -0, (67)

the scalar potential can be written as

__Lowow et owow 1owow 3,
209,00, (1 +€*)20D;0P; 40P50P5 2
= % [—4[1 + cosh(2®3) cosh(2®P5)][2 cosh(2P3) cosh(2P5)

+ cosh(2®;)[1 + 3 cosh(2®;)] cosh(2®s)]g7

— 6[cosh(4®3) + 2 cosh?(2®3) cosh(4®s) — 3] sinh(2®,) g, g»,

+ 2[2 cosh(2®5) cosh(2®5) — 2][2 cosh(2®5) cosh(2P5)

+ 2 cosh(2®,)[1 — 3 cosh(2®53) cosh(2®Ps)]]g3].- (68)
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All of the BPS equations coming from 64; =0 and
0A;4 = 0 are solved by the following flow equations,

oW
Pl =+——
! 0D,

1
=F; [g1[1 + cosh(2®3) cosh(2®s)] sinh D

+ g, cosh @ [cosh(2®;) cosh(25) — 1]], (69)
gy 2 OW
3 (1 + e4<1>5)2 8@3
o295
= F 5 aw, Sinh(2®s)[g cosh @, + g, sinh &,
(70)
10w
. — 49"
ST T 200
1
= ¥ 5 cosh(2®3) sinh(2s)[g, cosh ®; + g, sinh @],
1)
A= FW, (72)

after using the projector y"e4 = €. The solution to these
equations then preserves N = 3 supersymmetry in three
dimensions. Apart from the trivial critical point with all
®; =0 and the SO(3)4,, With &5 =0 and ¢, = +P; =
%ln[‘;ifgl‘] the above equations admit no new critical
points.

We are not able to solve the above equations analytically
for general values of g; and g,. However, for g, = g; and
®5 = 0, an analytic solution can be found:

diag

1
A= (I)l —zln(€4q)l - 1),

&5 = cosh™! [e(\%\/cosh @1} ,

et +1
e —1]°

1
gir = tan"le® 4+ Eln{ (73)
This solution describes an RG flow from the trivial AdS,
critical point to an N = 3 nonconformal gauge theory in the
IR. At & ~ ®; ~ 0, the above solution approaches the UV
AdS4:
(bl ~ e_Zylr’

D3 ~ e 97, A~gr. (74)

Near the IR singularity r ~ 0, the solution behaves as

@, ~—In(g,r), Q3 ~ Py, A~ =0 ~In(g,r),
ds* = (gyr)*dx}, + dr* (75)
for &; > 0 and

PHYSICAL REVIEW D 93, 125017 (2016)
@, ~1In(gr), A~® ~In(gr),
ds* = (gir)*dxi, + dr? (76)

d; ~ constant,

for &; < 0. Both of these singularities give V ~ —co and,
hence, are physical. Therefore, the solution gives a gravity
dual of an RG flow from N = 3 SCFT with SO(3) x SO(3)
symmetry to N = 3 gauge theory with SO(2) symmetry in
three dimensions.

IV. SO(3,1) GAUGE GROUP

We still work with the n =3 case but with SO(3,1)
gauge group. The structure constants in this case are given

by f AZr - f Azr/] FT, where

fasr = 9(€ac €3, j13.4)s (77)

and €;,3 ;3 4 are totally antisymmetric with €345 = €156 =
€64 = 1.

A. RG flows with SO(3) symmetry

We now proceed as in the previous section by consid-
ering the SO(3) € SO(3.1) singlet scalars. Under this
SO(3), the decomposition of the representation for all
18 scalars is similar to (24) since the SO(3) maximal
compact subgroup of SO(3, 1) is embedded in SO(3, 1) as
a diagonal subgroup of SO(3)xS0(3) c SO(3,3).
Accordingly, there are two singlets given by the SU(3, 3)
noncompact generators:

Y =V, -V +7;, Yo=Y, -V +Ys (78)

We then parametrize the coset representative by
L =P V12, (79)

which gives the potential

3
V=- ag%‘("bl [2e51[13 cosh(2®,) + 3 cosh(6®)]

x cosh(2®,) + (e*®1 — 1)2[(1 + €*®1) cosh(6®,)

— 16€*®1 cosh?(2®,)]]. (80)
This potential admits a trivial critical point at ; = &, =0
at which the SO(3,1) gauge symmetry is broken to its

maximal compact subgroup SO(3). The values of the
cosmological constant and AdS, radius are given by

Vo=—=¢, L?=—. (81)

Scalar masses are given in Table II. We again see that there
are three Goldstone bosons.
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TABLE II. Scalar masses at the N = 3 supersymmetric AdS,
critical point with SO(3) symmetry and the corresponding
dimensions of the dual operators in SO(3, 1) gauge group.

SO(3) representations m*L? A

1 4, =2 4, (1,2)
3 0(x3)s —2(x3) 3,(1,2)
5 =2(x10) (1,2)

We also find a nonsupersymmetric critical point given by

1 [4+V7
@1_§1H|: 3 :|, (1)2:0,
11 27
Vo =——¢>, L2 =—_. 82
0 99 2292 ( )

This critical point is however unstable since some of the
scalar masses violate the BF bound. All scalar masses are
given in Table III.

We now consider possible supersymmetric RG flow
solutions within the N =3 SO(3, 1) gauged supergravity.
Since we have not found any nontrivial supersymmetric
AdS, critical points in this gauge group, we will consider
only supersymmetric RG flows to nonconformal theories.
Similar to the SO(3) x SO(3) gauge group, we find that the
BPS equations coming from 64; = 0 and 64;4 = O give rise
to the following equations

eMcosh(2®,) P + i®)]
1
= gsinh3®, cosh ®, + Egcosh &, [sinh(2®P,) cosh(3P,)
— 2i[1 — 2sinh®®; cosh(2®,)] sinh ®,] (83)

which again imply @) = 0. Consistency with the second
order field equations requires that ®, = 0. This gives rise to
real superpotential.

Follow the same procedure as in the previous section
with an appropriate sign choice, we find the relevant BPS
equations

1
(I)/l _ 16_3(1)19(32(1)] + 66‘1’1 — 64(1)1 — 1), (84)
1
Al — _18—3@19(1 + e8P — 3e2%1 — 3401 (85)

TABLE III. Scalar masses at the nonsupersymmetric AdS,
critical point with SO(3) symmetry in SO(3,1) gauge group.

SO(3) representations

1 _ 168 _36

PHYSICAL REVIEW D 93, 125017 (2016)

Since the operator dual to ®; has dimension A =4
corresponding to an irrelevant operator, we then expect
the AdS, to appear in the IR of the RG flow driven by ®,.
The solution to the above equations can be readily found

o _ 1 1 1 2 d, 29,
gr=1n {e@_} +—In { V26t e . (86)
e® + 1] V2 [V2eh —1 -2
A=® +In(e*® —1) —In(1 + &**). (87)
As ®; ~ 0, the solution gives
, r
Dy ~ eI ~ el A~gr~z (88)

which is the AdS, critical point.
At large |®,|, we find that for ®; > 0 the solution
behaves as

1
<I>1~—§ln(gr—|-C), AN—¢|,
ds? = (gr + C)3dx} , + dr? (89)

while for &, < 0, the solution becomes

1
@1~§1H(C—gr), AN(I)I,
ds® = (C — gr)ida}, + dr’. (90)
Both of these singularities are physical since

V(®, - to0, P, =0) > —oo0. (91)

B. RG flows with SO(2) symmetry

For SO(2) singlet scalars, the coset representative can be
parametrized by

L — ¢®1Y1p02Y2 0375 ,04Y, ®sYs5 , ¥ (92)
where the SU(3, 3) noncompact generators are defined by

YSZ?II_?ZZ’
Y6:?12+?21' (93)

Yi=Ys5, Y=V,
Yy=Y =Y. Ys=Vp+7,,
The resulting scalar potential is very complicated. After

making a truncation by setting ®, = &, = ¢ = 0, we find
a much simpler potential

1
V= §92[16 cosh(2®s) sinh(2®,) sinh(2®;)

—3cosh(2®)[3 + cosh(4®;)]
+2[2 4 (2 = 3cosh(2®,)) cosh(4®5)] sinh?(2®5)].
(94)
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Apart from the trivial critical point, there are no other
supersymmetric critical points from this potential.

We now move to the BPS equations. The S, 5 matrix in
this truncation is diagonal and proportional to the identity
matrix with the superpotential

W = —gcosh ®| + gcosh(2®s) sinh @ sin(2P;). (95)

As usual, the scalar potential can be written in term of W as
1 (OW)?2 oW\ 2
Ve —— [ D) L s o gty 2( Z
2 (a,) -+ e (5)

1 /0OW\2 3
-3 (me) -3 (56)

The flow equations are then given by

ow
Q) =+ _——
! 0P,
= £[—gsinh ®; + gcosh ®; cosh(2®s) sinh(2P;)],
(97)
L, OW
(I)g = :l:2€4q)5(1 + 64(1)5) 2?1)3
4¢4Ps
=+ mgcosh@%) cosh(2®s) sinh @, (98)
e
, 1 oW . . .
oL = ii@? = £gsinh ®; sinh(2®3) sinh(2®5),  (99)
5
A=FW. (100)

We are not able to solve these equations analytically. We
will therefore only discuss the asymptotic behaviors of the
flow solution and leave the full solution for a numerical
analysis. Near the AdS, critical point, we find

O~ Dy~ eI ~et, 5 ~ constant,

-
Amar~’ 101
gr~o (101)

PHYSICAL REVIEW D 93, 125017 (2016)

We see that ®; and ®; are dual to irrelevant operators of
dimension four while ®5 is dual to a marginal operator.
Actually, @5 is one of the Goldstone bosons.

Near the singularity at large |®3|, we find ®5 = 0. In
what follows, we will choose ®5 = 0 for simplicity. The
asymptotic behaviors of the flow solution are given by

1 3 1 3
(I>1~j:<I>3~j:§1n Cizgr, ANEIH Cizgr,

3 2
ds> = (C + Zgr)3dxi2 +dr?. (102)

It can also be checked that both of these singularities are
physical.

V. S0(2,2) GAUGE GROUP

For n =3 vector multiplets, there is another possible
gauge group namely SO(2,2) ~SO(2,1) x SO(2,1). The
structure constants are given by

fash = (gleABD'?DCv 926?;'7’7”()’

AB..=1261j..=345 (103)

with 742 = diag(1,1,-1) and 5"/ = diag(1, -1, -1).

We will consider the scalar potential for SO(2),
invariant scalars. There are six singlets parametrized by
the coset representative

L = e®1(V1+72) g @2(V11472) @333 p @453

‘1’5(?21—?12)3‘1’6(?21—?12) .

X e (104)

The scalar potential turns out be much involved. We will
only give the potential for a truncation &, = &, = &4 =0
for brevity

1
V= 6 [4 cosh(2®;) cosh(2®s5)[cosh(2®,) cosh(2®s) (g7 — ¢3) + &2 + 93]

—2cosh(2®3)[g7 + g3 + cosh(2®;) cosh(2®Ps)[3 cosh(2®;) cosh(2®5) (g3 + ¢3) + 4(97 — 3)]]

+ 39,9, sinh(2®3)[2 cosh(4®5)cosh?(2®,) + cosh(4®,) — 3]

This potential admits an AdS, critical point at ®; =0,
i=1,....6 with Vog=—1g} and L? :g%. This critical
1

point is however nonsupersymmetric. This can be seen by
considering the supersymmetry transformations

(105)

82 = 63g1e’ and  8diq = 61391 (Baz€’ — B41€%).  (106)
We see that the only way these variations will vanish is to

set 4 = 0, so this critical point breaks all supersymmetries.
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This critical point is also unstable as can be seen from the
scalar masses in Table IV.

On the other hand, a half-supersymmetric vacuum in the
form of a domain wall is possible. Use the domain wall
ansatz for the metric and proceed as in the previous
cases, we find a set of very complicated BPS equations
for SO(2) 4, singlet scalars. To give an example of this
solution, we will consider a simpler case of SO(2) x SO(2)
symmetry. Setting all scalars but ®; and ¢, to zero results
in a simple scalar potential

1

V= —Eg%e‘z‘lﬁ[(l + e*®) cosh(2®,) — &?%].  (107)

The gravitini variations give

1.
SAB :Edlag<W1’W1’W2) (108)
where

W, = g, sin ®; cosh @4, (109)
W, = g, cosh @, sinh @5 + ig; cosh @5 sinh ®,. (110)

As in the SO(3) x SO(3) case, only supersymmetry
generated by €3 is preserved. Carrying out a similar analysis
gives the following BPS equations

ow
0P,
grsech(2®,) sinh(2®3)

P, = +cosh™2(29,)

V2 /cosh(283) cosh (28 — 1 (111)
N s
Ao (113)
where

W = [W,| = V2g,/cosh(2®3) cosh(2®,) — 1. (114)

TABLE IV. Scalar masses at the nonsupersymmetric AdS,
critical point with SO(2) x SO(2) symmetry in SO(2,2) gauge
group.

SO(2) x SO(2) representations m*L?
1,1 -6, —6
21 002 =)
1,2 3
42 Op) =3¢ (x2)
2,2 _3eta

2 g (x8)
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From these equations, we immediately see that there is no
supersymmetric AdS, critical point. We can also solve for
A and @5 as a function of @, as follow

1,1
<I>3:§1n Z[csch(2(1>4)\/10cosh(4<I>4)—6—200th(2<I)4)] .
(115)

A= —éln sinh(2®,) — iF(2i®,,5) (116)

where F is the elliptic function of the first kind defined by

o, dy

0 /1 —25sinh%y

However, we are not able to solve for ®4(r) in a closed
form.

For &, =0, [W,| = [W,|, we find much simpler BPS
equations

iF(i®y,5) = (117)

P’ = +g, cosh &3, (118)

A = igl sinh @3. (119)
It should be noted that in this case the supersymmetry is
enhanced to N =3 as in the SO(3) x SO(3) case. An
analytic solution to these equations can be completely
obtained

®; =Intan [M},
A = —Insin(g;r + C), (120)
ds* = sin?(g;r 4 C)dxi , + dr*. (121)

The solution preserves N = 3 Poincare supersymmetry in
three dimensions due to the projection y"e, = +et.
According to the DW/QFT correspondence, this solution
should be dual to a three-dimensional N = 3 gauge theory.
We end this section by giving a remark on SO(2,1)
gauge group. This gauge group can be obtained by
coupling one vector multiplet to the N = 3 supergravity
and gauging the theory by using the structure constant
fast = geappnP €. AB,...=1,2.4,
nip = diag(1,1,—1). (122)
The resulting potential and BPS equations for SO(2) C
SO(2,1) invariant scalars are the same as the above
results for SO(2,2) gauge group with g, = 0. Therefore,
SO(2,1) gauge group also admits a nonsupersymmetric
AdS, critical point with all scalars vanishing and a
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half-supersymmetric domain wall. In particular, the domain
wall with SO(2) symmetry has the same form as the
solution given in (121).

VI. SL(3, R) GAUGE GROUP
This gauge group can be gauged by coupling five vector
multiplets to N = 3 supergravity. To identify the structure

constants fs' = gf s, we define the following SL(3, R)
generators

PHYSICAL REVIEW D 93, 125017 (2016)

3 - 3 and 8 — 3 + 5. The 30 scalars transform under this
SO(3) as

B3x5)+B3x5=0CB+5+7)+3+5+7). (125)
There are accordingly no singlets under SO(3) symmetry.
We then consider scalars which are singlets under
SO(2) c SO(3). Further decomposing the above represen-
tations give six singlets, each of these representations

giving one singlet, corresponding to the following non-
compact generators of SU(3,5)

TA - (l./lz,i/17,i15,11,l3,l4,l6,/18) (123)
where 4; are Gell-mann matrices. The structure constants Y= {/24 T Y”’ Y= {/23 - {/34’ Ys= 3/15’
can be extracted from the SL(3,R) algebra Yy=Yyu+Yss, Ys=VYy3—Y3, Y¢=Y5. (126)
[TA. Ts) = fas' Tr. (124)  With the coset representative
There are 30 scalars transforming as (3,5) + (3,5) L = e®171%2Y200375 0 0aYs pOs¥5 p 0¥ (127)
under the SU(3) x SU(5) local symmetry. The SO(3)
maximal compact subgroup of SL(3,R) is embedded by  we find the following potential
|
1
V= —3—2e‘4¢2‘4‘1’3g2[16\/§e”2(64‘1’2 —1)(e*® — 1) cosh(2®,) cosh(2®5) cosh(2®y)
+ cosh?(2®5)[3e2%3 (2e4P2 — 3e3%2 — 3) — 126223 (e42)% cosh(4Dy)
+ (14 e*®)[2(3 + e*® 4 3e8%) + (9 — 2e*®> + 9¢8%2) cosh(4D,)] cosh(2P)]
+ (1 4 €*®) cosh(2®4)[3 + 4e*®> + 33> + (3 — 4¢*®2 + 3¢8%2)sinh? (295))]
— ®%3[3 + 14€* + 3682 4 3(1 — 642 + ¢8%2)sinh? (2®5)
— 81/3¢2%2(1 4 ¢*®2) cosh(2®,) sinh(4®s ) sinh(2P;)]]. (128)
|
Apart from the trivial critical point at all ¢; = 0, we have P
not found any other critical points. At the trivial AdS, P, = :|:_W
point, we find 05
3 | = Fg[V3cosh @y sinh(2®,) + sinh d5],  (132)
0 2 g gz ( )
Al =FW (133)
and the scalar masses given in Table V. Apart from the
Goldstone bosons, there are marginal deformations corre- where the superpotential is iven b
sponding to the scalar fields in the 7 representation of the Perp & y
unbroken SO(3) symmetry.
We will not give the full BPS equations here due to their W = —g[cosh @5 + v/3 sinh(2®,) sinh ®5). (134)

complexity. To find some supersymmetric deformations of
the N = 3 SCFT dual to the AdS, critical point, we will
consider a truncation to ®;, ®, and P;. Within this
truncation, we find that S,z = %W&AB and the system of
BPS equations

P =0, (130)

10w .
P = iiasz = FV3gcosh(2®,) sinh(®;),  (131)

TABLE V. Scalar masses at the N = 3 supersymmetric AdS,
critical point with SO(3) symmetry and the corresponding
dimensions of the dual operators in SL(3,R) gauge group.

SO(3) representations m2L? A

3 1003), —2(x3) 5, (1,2)
5 Oxs)> —2(xs) 3,(1,2)
7 0(><7)’ _2(><7) 3, (1,2)
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With the scalar kinetic terms

1 1
S e+ PO - 0f - SaR (135)

the scalar potential can be written as

400, 200, 2

1
=- Zgz [2 + cosh(2®3) + cosh(4®,—)[9 cosh(2®53) — 6]

+ 8v/3 sinh(2®,) sinh(2®5)]. (136)
We now analyze asymptotic behaviors of the solution near
the UV and IR of the flow. Near the AdS, critical point, we
find

3r

1
—= Py + Dy~ e~ e,
N

V3

2
(I)3 __(I)2 ~ ezf]lr ~ gfr,

. (137)

A d
~ r~—.
91 I

We see that %@2 + @5 is dual to a vacuum expectation

value of a marginal operator while ®; — @ ®, is dual to an
irrelevant operator of dimension A = 5. Since a marginal
operator does not break conformal symmetry, we expect

that the flow involves the operator dual to ®5 — ‘/75 P,. In
this case, the UV SCFT dual to the supersymmetric AdS,
critical point should appear in the IR since the operator
driving the flow is irrelevant at the fixed point.

Near the singularity, we find for large |®,

B

1. [3v3 1
CI)3~(I>2~ZF§ln{ fgr], A~§lnr,

ds? = Pdx}, + dr. (138)
This leads to a physical singularity and describes an RG
flow in the dual N = 3 supersymmetric field theory to a
conformal fixed point in the IR.

VIL SO(2,1) x SO(2,2) GAUGE GROUP

The last gauge group to be considered in this paper is
S0(2,1)x80(2,2)~S0(2,1)xSO(2,1)xSO(2,1). This
gauge group can be obtained by coupling six vector
multiplets to N = 3 supergravity with the following struc-
ture constants

DC Tk ﬁc)

g€~ ga€siin (139)

fA):F = (g1€a5pN

where A, B, ... =1,4,5,1,j.... =2,6,7,1.]. ...

and

=3,8,9
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7];} = diag(l, —1, —1),
(140)

nap = diag(1,—1,-1),
77 = diag(1,-1,-1).

At the vacua, the full gauge group SO(2,1) x SO(2,2)
will be broken to its maximal compact subgroup
SO(2) x SO(2) x SO(2). We will consider scalars which
are invariant under the SO(2) x SO(2) residual symmetry
chosen to be the first two SO(2)’s. In this case, there are
twelve singlets given by

Yi=Vis. Yo=Vi V3=V, Y=V,
Ys=Fi5. Y=V Y;=Vis. Yy=Vi
Yo=Yy, Yo=Yy Y=V, Y=Yy (141)
The coset representative can be parametrized by
12
L=]]e"". (142)
i=1

The potential is highly complicated. We refrain from
giving its explicit form here but only note that the
resulting potential admits a Minkowski vacuum at
®;, =0,fori=1,...,12 preserving N = 3 supersymmetry
and SO(2) x SO(2) x SO(2) symmetry. It can also be
checked that there are precisely six massless Goldstone
bosons of the symmetry breaking SO(2,1) x SO(2,2) —
SO(2) x SO(2) x SO(2).

VIII. CONCLUSIONS

In this paper, we have studied N = 3 gauged super-
gravity in four dimensions with various types of semi-
simple gauge groups and classified their vacua. We now
summarize the main results found in this paper. For
SO(3) x SO(3), SO(3,1) and SL(3,R) gauge groups,
there exists a maximally supersymmetric AdS, critical
point at which all scalars vanishing. The critical point
has SO(3) symmetry in SO(3,1) and SL(3,R) gauge
groups and SO(3) x SO(3) symmetry for SO(3) x SO(3)
gauge group. In the latter case, we have also found a
nontrivial AdS, critical point with SO(3);,, symmetry and

unbroken N = 3 supersymmetry. A holographic RG flow
interpolating between the SO(3) x SO(3) and SO(3) i,
critical points including a number of RG flows to non-
conformal gauge theories have also been given. The non-
conformal RG flows break conformal symmetry but
preserve N =3 or N =1 supersymmetries. A similar
study has also been carried out in the case of SO(3,1)
and SL(3,R). These results might be useful in the holo-
graphic study of N = 3 Chern-Simons-matter theories in
three dimensions.

For SO(2,1) x SO(2,2) gauge group, the gauged super-
gravity admits N = 3 Minkowki vacuum when all scalars
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vanish. In the case of SO(2,1) and SO(2,2) ~SO(2,1) x
SO(2, 1) gauge groups, the resulting gauged supergravities
admit a half-maximal supersymmetric domain wall as a
supersymmetric vacuum. This solution should be useful in
the context of the DW/QFT correspondence for studying
strongly coupled gauge theories in three dimensions. When
all scalars vanish, there exists a nonsupersymmetric AdS,
critical point with SO(2) and SO(2) x SO(2) symmetries,
respectively. This critical point and all of the nonsupersym-
metric critical points identified in this paper are unstable.

The results have some similarity to the gaugings of
N = 2 gauged supergravity in seven dimensions studied in
[33], but in the present case, nonconformal flows with
partially broken supersymmetry are possible. It should also
be remarked that although we have considered only the G,
part of the full semisimple gauge group G, x H, all of the
vacua and solutions we have found are valid in the full
theory with G, x H gauge group. This is a consequence of
the fact that all scalars in SU (3, n)/SU(3) x SU(n) x U(1)
we have considered are H singlets. By the argument given
in [34], solutions identified within the scalar submanifold
parametized by H' x H, with H' C G, singlets are solutions
of the full Gy x H theory.

It would be interesting to identify the SCFTs or non-
conformal gauge theories that are dual to the gravity
solutions obtained here. Looking for more general domain
walls with the truncated scalars restored could be useful
since these scalars correspond to relevant operators. From
the analysis of this paper, we expect these scalars to break
some supersymmetry. Investigating their role in the dual
SCFT should give some insight to relevant deformations of
the dual three-dimensional SCFT. Among the interesting
supergravity solutions, a domain wall interpolating between
the N = 3 AdS, critical point and the AdS, critical point
with N =1 unbroken supersymmetry discovered in [35]
deserves some investigation. This N = 1 critical point is not
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accesible from our simple scalar parametrization. Looking
for this solution requires a more complicated scalar sub-
manifold of SU(3,n)/SU(3) x SU(n) x U(1). Finally, it
would also be interesting to look for supersymmetric Janus
solutions which are dual to some conformal interface in the
N =3 SCFTs. A number of these solutions have been
obtained within the maximal N = 8 gauged supergravity
in [36].

It should be noted that all gaugings considered here are
of “electric” type in which only electric gauge fields are
involved. Similar to the maximal N = 8 and half-maximal
N = 4 gauged supergravities [37,38], it could be interest-
ing to apply the embedding tensor formalism to the N = 3
gauged supergravity and look for more general gaugings
such as the magnetic or dyonic gaugings in which
magnetic gauge fields also participate in the process of
gauging. We then expect many other possible gauge groups
will arise from the embedding tensor formalism similar to
the N =4 gauged supergravity with SU(1,1)/U(1) x
SO(6,n)/SO(6) x SO(n) scalar manifold studied in [38].

The N =3 AdS, critical point with SO(3) x SO(3)
symmetry within the dyonic 7/SO(7) gauged N = 8 super-
gravity is known [39-41], and the holographic study of the
possible dual SCFT has been given in [42,43]. Furthermore,
this N = 3 AdS, solution has known massive type IIA origin
[42,44]. Similarly, investigating the embedding of the results
presented in this paper in higher dimensions could be of
interest and will give rise to new N = 3 AdS, backgrounds
within the context of string/M-theory. We will leave these
interesting issues for future works.
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