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We study matter-coupled N ¼ 3 gauged supergravity in four dimensions with various semisimple gauge
groups. When coupled to n vector multiplets, the gauged supergravity contains 3þ n vector fields and 3n
complex scalars parametrized by SUð3; nÞ=SUð3Þ × SUðnÞ ×Uð1Þ coset manifold. Semisimple gauge
groups take the form of G0 ×H ⊂ SOð3; nÞ ⊂ SUð3; nÞ with H being a compact subgroup of
SOðnþ 3 − dimðG0ÞÞ. The G0 groups considered in this paper are of the form SOð3Þ, SOð3; 1Þ,
SOð2; 2Þ, SLð3;RÞ and SOð2; 1Þ × SOð2; 2Þ. We find that SOð3Þ × SOð3Þ, SOð3; 1Þ and SLð3;RÞ gauge
groups admit a maximally supersymmetric AdS4 critical point. The SOð2; 1Þ × SOð2; 2Þ gauge group
admits a supersymmetric Minkowski vacuum while the remaining gauge groups admit both half-
supersymmetric domain wall vacua and AdS4 vacua with completely broken supersymmetry. For the
SOð3Þ × SOð3Þ gauge group, there exists another supersymmetric N ¼ 3 AdS4 critical point with
SOð3Þdiag symmetry. We explicitly give a detailed study of various holographic RG flows between AdS4
critical points, flows to nonconformal theories, and supersymmetric domain walls in each gauge group. The
results provide gravity duals of N ¼ 3 Chern-Simons-matter theories in three dimensions.
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I. INTRODUCTION

The AdS/CFT correspondence has attracted a lot of
attention since its original proposal in [1]. The correspon-
dence provides a duality relation between a gravity theory
in AdSdþ1 space and a strongly coupled conformal field
theory in d dimensions. The correspondence has also been
extended to the case of nonconformal field theories in
the form of the domain wall and quantum field theory
(DW/QFT) correspondence [2]. These provide a useful tool
to understand strongly coupled gauge theories in various
spacetime dimensions.
AdS4=CFT3 correspondence is particularly interesting in

many aspects. In M-theory, AdS4 × X7 geometries, with X7

being an internal compact seven-dimensional manifold,
arise naturally from a near horizon limit of M2-brane
configurations. AdS4=CFT3 correspondence is then
expected to shed some light on the dynamics of a strongly
coupled worldvolume theory on M2-branes [3,4]. And,
more recently, the correspondence has also been applied to
condensed matter physics systems; see, for example, [5–7].
As in other dimensions, working in lower-dimensional

gauged supergravity has proved to be useful and efficient.
In the lower-dimensional point of view, the AdS4 × X7

geometries are identified with the vacua of the scalar
potential in the gauged supergravity theory, and the iso-
metries of the internal manifold correspond to the gauge
symmetry or its unbroken subgroup at the AdS4 vacua. For

the case of X7 ¼ S7, the resulting AdS4 × S7 geometry
preserves maximal supersymmetry. The effective gauged
supergravity in this case is the maximal N ¼ 8 SOð8Þ
gauged supergravity in four dimensions constructed in [8].
The holographic study within this gauged supergravity
has been investigated in many previous works; see, for
example, [9–13]. These results give a description of the
deformations leading to various types of RG flows in the
dual superconformal field theories (SCFTs) in three
dimensions.
ForN > 2 supersymmetry, there is a unique nonmaximal

AdS4 solution from a compactification of 11-dimensional
supergravity with unbroken N ¼ 3 supersymmetry in four
dimensions [14]. In this case, the internal manifold is a tri-
sasakian N010 with SUð2Þ × SUð3Þ isometry. The corre-
sponding Kaluza-Klein spectrum has been given in [15],
and the structure of N ¼ 3 multiplets has been further
investigated in [16]. The properties of the possible dual
SCFT to this background in term of Chern-Simons-matter
theory with SUð3Þ flavor symmetry has been proposed in
[17,18]. The gravity dual of this N ¼ 3 SCFT has been
studied in many references; see, for example, [19–24]. In
these results, the four-dimensional scalar potentials, encod-
ing various deformations of the dual SCFT, have been
obtained from compactifications of 11-dimensional super-
gravity restricted to particular field configurations.
It has been pointed out in [15] and [16] that AdS4 × N010

compactification can be described by an effective theory in
the form of N ¼ 3, SOð3Þ × SUð3Þ gauged supergravity
coupled to eight vector multiplets constructed in [25–27].
Many supersymmetric deformations of the maximally
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supersymmetric AdS4 critical point including a new AdS4
critical point with SOð3Þ ×Uð1Þ symmetry have been
identified in a recent work [28]. The eleven-dimensional
configurations corresponding to these gravity solutions
might be obtained by a consistent reduction ansatz, to
be explicitly identified.
Apart from a simple compact gauge group studied in

[28], it is natural to consider other types of gauge groups.
As in other matter-coupled supergravity, there are many
possible gauged groups for N ¼ 3 gauged supergravity
coupled to n vector multiplets, the only existing matter in
N ¼ 3 supersymmetry. These gauge groups are in general
subgroups of the global, duality, symmetry group SUð3; nÞ.
In this paper, we will consider N ¼ 3 gauged supergravity
coupled to n vector multiplets with compact and non-
compact gauge groups ~G ⊂ SOð3; nÞ ⊂ SUð3; nÞ. In each
gauge group, we will study the scalar potential restricted on
scalar submanifolds, which are invariant under particular
subgroups of the full gauge group under consideration, and
identify supersymmetric vacua as well as possible RG flow
solutions describing supersymmetric deformations in the
dual gauge theories in three dimensions.
The paper is organized as follow. In Sec. II, N ¼ 3

gauged supergravity coupled to n vector multiplets is
reviewed along with possible semisimple gauge groups
allowed by supersymmetry. The scalar potential of each
gauge group is investigated separately in subsequent
sections in which possible supersymmetric vacua in the
form of an AdS4 or a domain wall for different scalar
submanifolds are classified. Conclusions and comments on
the results are presented in Sec. VIII.

II. N = 3 GAUGED SUPERGRAVITY
WITH COMPACT AND NONCOMPACT

GAUGE GROUPS

We begin with a review of N ¼ 3 gauged supergravity in
four spacetime dimensions constructed in [25–27]. We will
closely follow most of the notations in [25] but in the
mostly plus metric signature ð−þþþÞ.
N ¼ 3 supersymmetry in four dimensions contains

twelve supercharges. Apart from the supergravity multiplet,
the only matter multiplets are in the form of vector
multiplets. The supergravity multiplet contains the follow-
ing field content

ðeaμ;ψμA; AμA; χÞ ð1Þ

which are given respectively by a graviton eaμ, three
gravitini ψμA, three vectors AμA and one spinor field χ.
Indices A;B;… ¼ 1, 2, 3 denote the SUð3ÞR R-symmetry
triplets while μ; ν;… ¼ 0;…; 3 and a; b;… ¼ 0;…; 3 are
respectively spacetime and tangent space indices.
Throughout the paper, spinor indices will not be shown
explicitly.

Each of the n vector multiplets has one vector field, four
spinor fields which are a triplet and a singlet of SUð3ÞR, and
three complex scalars

ðAμ; λA; λ; zAÞi ð2Þ

with indices i; j;… ¼ 1;…; n labeling each of the vector
multiplets. All spinors are subject to the chirality projection
conditions

ψμA ¼ γ5ψμA; χ ¼ γ5χ; λA ¼ γ5λA; λ ¼ −γ5λ;

ψA
μ ¼ −γ5ψA

μ ; λA ¼ −γ5λA: ð3Þ

When coupled to n vector multiplets, the supergravity
theory consists of 3n complex or 6n real scalar fields zAi

parametrized by the coset space SUð3; nÞ=SUð3Þ×
SUðnÞ ×Uð1Þ. The scalars can be parametrized by the
coset representative LðzÞΛΣ which transforms under
the global G ¼ SUð3; nÞ and the local H ¼
SUð3Þ × SUðnÞ ×Uð1Þ symmetries by left and right multi-
plications, respectively. Indices Λ;Σ;… ¼ ðA; iÞ take the
values 1;…; nþ 3. The indices i; j;… are used to label the
fundamental representation of SUðnÞ. The coset represen-
tative can be accordingly split as follow LΛ

Σ ¼ ðLΛ
A; LΛ

iÞ.
Being an element of SUð3; nÞ, its inverse is related to LΛ

Σ

via the relation

ðL−1ÞΛΣ ¼ JΛΠJΣΔðLΔ
ΠÞ� ð4Þ

where JΛΣ is an SUð3; nÞ invariant tensor given by

JΛΣ ¼ JΛΣ ¼ ðδAB;−δijÞ: ð5Þ

There are nþ 3 vector fields, three from the gravity
multiplet and n from the vector multiplets, which can be
written collectively by a single notation AΛ ¼ ðAA; AiÞ.
Accompanied by their magnetic dual, the nþ 3 vector
fields transform in the fundamental representation nþ 3 of
the global symmetry SUð3; nÞ. The Lagrangian consisting
of nþ 3 “electric” vectors is invariant only under the
SOð3; nÞ subgroup of the duality symmetry SUð3; nÞ. It has
been argued in [25] that possible gauge groups are sub-
groups of SOð3; nÞ which transform the vector fields
among themselves. When restricted to SOð3; nÞ, the
fundamental, complex, representation of SUð3; nÞ split
into two fundamental, real, representations of SOð3; nÞ

ð3þ nÞC → ð3þ nÞR þ ð3þ nÞR: ð6Þ

The ð3þ nÞR representation of SOð3; nÞ in turn will
become the adjoint representation of the gauge group.
When a particular subgroup ~G ⊂ SOð3; nÞ ⊂ SUð3; nÞ is

gauged, the SOð3; nÞ global symmetry of the Lagrangian is
broken to ~G. The gauge field strengths become non-
Abelian defined by

PARINYA KARNDUMRI and KHEM UPATHAMBHAKUL PHYSICAL REVIEW D 93, 125017 (2016)

125017-2



FΛ ¼ dAΛ þ fΛΣΓAΣ ∧ AΓ ð7Þ

where fΛΣΓ are the structure constants of the gauge group.
The gauge generators TΛ satisfy the ~G Lie algebra

½TΛ; TΣ� ¼ fΛΣΓTΓ: ð8Þ

It should be noted that ~G needs not be simple, and each
simple factor can have different coupling constants.
Furthermore, in the presence of gaugings, the Mourer-
Cartan one-form on the scalar manifold gets modified by
the gauge fields appearing in the covariant derivative of
LΛ

Σ

ΩΛ
Π ¼ ðL−1ÞΛΣdLΣ

Π þ ðL−1ÞΛΣfΣΩΓAΩLΓ
Π: ð9Þ

In the following, we will omit all of the gauge fields since
we are only interested in supersymmetric solutions with
only the metric and scalars nonvanishing.
Supersymmetry requires that, for any gauge group

consistent with supersymmetry, the tensor

fΛΣΓ ¼ fΛΣΓ
0
JΓ0Γ ¼ f½ΛΣΓ� ð10Þ

must be totally antisymmetric. The consistency condition
can be satisfied by taking JΛΣ to be the Killing form of the
(nþ 3)-dimensional gauge group ~G. Since JΛΣ has indefi-
nite signs of the eigenvalues, the gauge groups can be both
compact and noncompact types. Furthermore, since JΛΣ
has three positive eigenvalues but arbitrarily large number
of negative eigenvalues depending on the number of vector
fields, the gauge group can have at most three compact or at
most three noncompact directions.
Among the possible gauge groups, SOð3Þ ×Hn,

SOð3; 1Þ ×Hn−3 and SOð2; 2Þ ×Hn−3 groups, with Hn
being an n-dimensional compact group, have been pointed
out in [25] and [29]. However, the consistency condition
and the global symmetry SOð3; nÞ in which the gauge
group can be embedded are very similar to the half-
maximal gauged supergravity in seven dimensions con-
structed in [30], and a number of possible gauge groups
have been listed in [31]. We then expect that possible gauge
groups of the N ¼ 3 gauged supergravity considered here
should follow the same structure.
Due to the restriction on the number of compact or

noncompact directions of the gauge group mentioned
above, all possible semisimple gauge groups accordingly
take the form of G0 ×H with H being a compact group of
dimension nþ 3 − dimðG0Þ. It has been pointed out in [31]
thatG0 is a compact or noncompact group taking one of the
following forms

SOð3Þ; SOð2; 2Þ; SOð3; 1Þ;
SOð2; 1Þ; SOð2; 1Þ × SOð2; 2Þ; SLð3;RÞ: ð11Þ

All of these G0 actually give rise to the gauge groups
G0 ×H with fΛΣΓ ¼ f½ΛΣΓ�. Therefore, they are admissible
gauge groups of the N ¼ 3 gauged supergravity coupled to
vector multiplets.
The bosonic Lagrangian of the N ¼ 3 gauged super-

gravity, with all but the metric and scalars vanishing, can be
written as

e−1L ¼ 1

4
R −

1

2
PiA
μ Pμ

Ai − V: ð12Þ

The vielbein Pi
A of the SUð3; nÞ=SUð3Þ × SUðnÞ ×Uð1Þ

coset are given by the ðA; iÞ-component of the Mourer-
Cartan one-form Ωi

A ¼ ðΩA
iÞ�. The scalar potential is

written in terms of the “boosted structure constants”

CΛ
ΠΓ ¼ LΛ0ΛðL−1ÞΠΠ0 ðL−1ÞΓΓ0

fΠ0Γ0Λ
0

and CΛ
ΠΓ ¼ JΛΛ0JΠΠ

0
JΓΓ

0 ðCΛ0
Π0Γ0 Þ� ð13Þ

by the following relation

V ¼ −2SACSCM þ 2

3
UAUA þ 1

6
N iAN iA þ 1

6
MiB

AMiB
A

¼ 1

8
jCiA

Bj2 þ 1

8
jCi

PQj2 − 1

4
ðjCA

PQj2 − jCPj2Þ ð14Þ

where CP ¼ −CPM
M. Various tensors appearing in the

above equation are defined by

SAB ¼ 1

4
ðϵBPQCA

PQ þ ϵABCCM
MCÞ

¼ 1

8
ðCA

PQϵBPQ þ CB
PQϵAPQÞ;

UA ¼ −
1

4
CM

MA; N iA ¼ −
1

2
ϵAPQCi

PQ;

MiA
B ¼ 1

2
ðδBACiM

M − 2CiA
BÞ: ð15Þ

Other important ingredients for finding supersymmetric
solutions are supersymmetry transformations of fermions

δψμA ¼ DμϵA þ SABγμϵB; ð16Þ

δχ ¼ UAϵA; ð17Þ

δλi ¼ −Piμ
AγμϵA þN iAϵ

A; ð18Þ

δλiA ¼ −Piμ
BγμϵABCϵ

C þMiA
BϵB: ð19Þ

The covariant derivative on the supersymmetry parameter
ϵA is defined by

DϵA ¼ dϵA þ 1

4
ωabγabϵA þQA

BϵB þ 1

2
nQϵA: ð20Þ
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QA
B and Q are the SUð3Þ ×Uð1Þ composite connections.

These connections and the corresponding ones for SUðnÞ,
Qi

j, can be obtained from ðA; BÞ and ði; jÞ components of
the Mourer-Cartan one-form

ΩA
B¼QA

B−nδBAQ; Ωi
j¼Qi

jþ3δjiQ ð21Þ

with the property that QA
A ¼ Qi

i ¼ 0.
We are now in a position to study the scalar potential in

each gauge group and classify the corresponding vacua.

III. SOð3Þ × SOð3Þ GAUGE GROUP

We begin with a simple compact gauge group of the form
SOð3Þ × SOð3Þ with G0 ¼ SOð3Þ and H3 ¼ SOð3Þ. This
gauged supergravity can be obtained from N ¼ 3 super-
gravity coupled to three vector multiplets. The structure
constants are given by

fΛΣΓ ¼ ðg1ϵABC; g2ϵiþ3;jþ3;kþ3Þ; i; j ¼ 1; 2; 3: ð22Þ

In this case, there are 18 scalars parametrized by the
SUð3; 3Þ=SUð3Þ × SUð3Þ ×Uð1Þ coset manifold. To
parametrize this manifold and the other related ones
needed in subsequent sections, we introduce the
following 6n noncompact generators for a general
SUð3; nÞ=SUð3Þ × SUðnÞ ×Uð1Þ coset

ŶiA ¼ eiþ3;A þ eA;iþ3

and ~YiA ¼ −ieiþ3;A þ ieA;iþ3 ð23Þ

where i ¼ 1;…; n and ðeΛΣÞΓΔ ¼ δΛΓδΣΔ.

A. AdS4 vacua and RG flows with SOð3Þ symmetry

We first consider scalars which are singlets of
SOð3Þdiag ⊂ SOð3Þ × SOð3Þ. The 18 scalars transform in
representations ð3; 3̄Þ−2 þ ð3̄; 3Þ2 of the local SUð3Þ×
SUð3Þ × Uð1Þ. From now on, we will neglect all the
Uð1Þ charges for simplicity since they will not play any
important role. With the embedding of SOð3Þ in SUð3Þ
such that 3 → 3 and 3̄ → 3, there are two SOð3Þdiag singlets
among the 18 scalars according to the decomposition

3 × 3þ 3 × 3 ¼ ð1þ 3þ 5Þ þ ð1þ 3þ 5Þ: ð24Þ

These singlets correspond to the following SUð3; 3Þ non-
compact generators:

Y1 ¼ Ŷ11 þ Ŷ22 þ Ŷ33; Y2 ¼ ~Y11 þ ~Y22 þ ~Y33: ð25Þ

The coset representative can be parametrized by

L ¼ eΦ1Y1eΦ2Y2 : ð26Þ

The scalar potential is computed to be

V ¼ −
3

32
coshð2Φ2Þ

× ½4 coshð2Φ1Þ½1þ coshð2Φ1Þ coshð2Φ2Þ�2g21
þ 2 sinhð2Φ1Þ
× ½coshð4Φ1Þ − 3þ 2 cosh2ð2Φ1Þ coshð4Φ2Þ�g1g2
þ 4 coshð2Φ1Þ½coshð2Φ1Þ coshð2Φ2Þ − 1�2g22�: ð27Þ

We find that this potential admits two supersymmetric
AdS4 critical points. The first one occurs at Φ1 ¼ Φ2 ¼ 0
with the cosmological constant and the AdS4 radius
given by

V0 ¼ −
3

2
g21; L2 ¼ −

3

2V0

¼ 1

g21
: ð28Þ

Another critical point is given by

Φ1 ¼
1

2
ln

�
g2 − g1
g2 þ g1

�
; Φ2 ¼ 0;

V0 ¼ −
3g21g

2
2

2ðg22 − g21Þ
; L2 ¼ g22 − g21

g21g
2
2

: ð29Þ

It should be noted that reality of Φ1 requires that
g22 − g21 > 0, so the critical point is AdS4 with V0 < 0.
At the trivial critical point with all scalars vanishing and

SOð3Þ × SOð3Þ symmetry unbroken, all scalars have the
same massm2L2 ¼ −2 corresponding to the dual operators
of dimensions Δ ¼ 1, 2 in the dual N ¼ 3 SCFT. At the
SOð3Þdiag critical point, we can compute the scalar masses
as shown in Table I. All masses satisfy the BF bound as
expected for a supersymmetric critical point. Furthermore,
there are three massless Goldstone bosons from the
SOð3Þ × SOð3Þ → SOð3Þ symmetry breaking.
To check for the unbroken supersymmetry and set up

BPS equations for studying supersymmetric domain wall
solutions, we consider supersymmetry transformations of
χ, λi, λiA and ψμA. The four-dimensional metric is taken
to be

ds2 ¼ e2AðrÞdx21;2 þ dr2; ð30Þ

TABLE I. Scalar masses at the N ¼ 3 supersymmetric AdS4
critical point with SOð3Þdiag symmetry and the corresponding
dimensions of the dual operators in SOð3Þ × SOð3Þ gauge group.
SOð3Þdiag representations m2L2 Δ

1 4, −2 4, (1,2)
3 0ð×3Þ, −2ð×3Þ 3, (1,2)
5 −2ð×10Þ (1,2)
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and the two scalarsΦ1;2 only depend on r. δχ ¼ 0 equations
are identically satisfied sinceCM

MA ¼ 0 in the present case.
We will use Majorana representation for gamma matrices in
which all of the gamma matrices γa are real. The chirality
matrix γ5 ¼ iγ0γ1γ2γ3 is then purely imaginary. This
implies that ϵA and ϵA are related by a complex conjugation,
ϵA ¼ ðϵAÞ�.
In the following analysis, we will use the same procedure

as in [28]. With the projection condition

γr̂ϵA ¼ eiΛϵA; ð31Þ

where eiΛ is a phase factor, the equations for δλi ¼ 0 and
δλiA ¼ 0 reduce to two equations,

eiΛ½coshð2Φ2ÞΦ0
1 � iΦ0

2�

¼ −
1

2
½sinhð2Φ1Þ þ i coshð2Φ1 sinhð2Φ2ÞÞ�

× ½coshΦ2ðg1 coshΦ1 þ g2 coshΦ1Þ
− i sinhΦ2ðg1 sinhΦ1 þ g2 coshΦ1Þ�; ð32Þ

where 0 ≡ d
dr.

For this particular coset representative consisting of only
SOð3Þdiag singlets, SAB is diagonal with

SAB ¼ 1

2
WδAB ð33Þ

where the “superpotential” W is given by

W ¼ −½coshΦ1 coshΦ2 − i sinhΦ1 sinhΦ2�
× ½coshΦ1 coshΦ2 þ i sinhΦ1 sinhΦ2�2g1
þ ½sinhΦ1 coshΦ2 − i coshΦ1 sinhΦ2�
× ½sinhΦ1 coshΦ2 þ i coshΦ1 sinhΦ2�2g2: ð34Þ

With this, δψμA ¼ 0 equations for μ ¼ 0, 1, 2 become

A0eiΛ þW ¼ 0: ð35Þ

By writing W ¼ jWjeiω and separating the real and
imaginary parts of (35), we find

A0 þ 1

2
jWjðeiω−iΛ þ e−iωþiΛÞ ¼ 0; ð36Þ

1

2
jWjðeiω−iΛ − e−iωþiΛÞ ¼ 0 ð37Þ

where W ¼ jWj will play the role of the “real super-
potential”. The second equation gives eiΛ ¼ �eiω.
Equation (32) impliesΦ0

2 ¼ 0. Consistency with the field
equations requires that Φ2 ¼ 0. We then set Φ2 ¼ 0 in the
remaining analysis. Furthermore, setting Φ2 ¼ 0 gives a

realW since ω ¼ 0. In this case, we simply have eiΛ ¼ �1,
and the BPS equations (32) and (35) become

Φ0
1 ¼ ∓ sinhΦ1 coshΦ1ðg1 coshΦ1 þ g2 sinhΦ1Þ; ð38Þ

A0 ¼ �ðg1 cosh3 Φ1 þ g2 sinh3Φ1Þ: ð39Þ

These equations admit precisely two AdS4 solutions with
N ¼ 3 supersymmetry identified previously. The corre-
sponding Killing spinors could be obtained from δψ rA ¼ 0

which eventually gives, as in many other cases, ϵA ¼ e
A
2ϵð0ÞA

for constant spinors ϵð0ÞA satisfying γrϵð0ÞA ¼ �ϵð0ÞA.
It should also be noted that equations (38) and (39) are

similar to those studied in [28] within the N ¼ 3 gauged
supergravity with SOð3Þ × SUð3Þ gauge group. The sol-
ution interpolating between the two supersymmetric AdS4
critical points can be found similarly. The upper signs will
be chosen in order to identify the UV critical point at
Φ1 ¼ 0 with r → ∞. The resulting solution is given by

g1g2r ¼ 2g1tan−1eΦ1 þ g2 ln
�
eΦ1 þ 1

eΦ1 − 1

�

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22 − g21

q
tanh−1

�
eΦ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g1
g2 − g1

r �
; ð40Þ

A ¼ Φ1 − lnð1 − e4Φ1Þ
þ ln ½ðe2Φ1 þ 1Þg1 þ ðeΦ1 − 1Þg2� ð41Þ

where we have omitted all irrelevant additive integration
constants.
As r → ∞, we find

Φ ∼ e−g1r ∼ e−
r

LUV ; A ∼ g1r ∼
r

LUV
: ð42Þ

This implies that the flow is driven by a relevant operator of
dimension Δ ¼ 1, 2 in the UV. In the IR as r → −∞, we
find

Φ1 ∼ e

g1g2rffiffiffiffiffiffiffi
g2
2
−g2

1

p
∼ e

r
LIR ; A ∼

g1g2rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22 − g21

p ∼
r
LIR

ð43Þ

which shows that the operator dual to Φ1 becomes
irrelevant with dimension Δ ¼ 4. This precisely agrees
with the scalar masses given previously.
Other interesting IR behaviors of the above solution are

flows to large values of jΦ1j. These correspond to flows
from conformal field theories, identified with the AdS4
critical points, to nonconformal gauge theories in the IR. As
Φ1 → ∞, the above solution gives

GAUGINGS OF FOUR-DIMENSIONAL N ¼ 3 … PHYSICAL REVIEW D 93, 125017 (2016)

125017-5



Φ1 ∼ −
1

3
ln ½rðg1 þ g2Þ þ C�; A ∼ −Φ1;

ds2 ¼ ½rðg1 þ g2Þ þ C�23dx21;2 þ dr2: ð44Þ

where C is a constant that can be removed by shifting the
coordinate r.
For Φ1 → −∞, we find

Φ1 ∼
1

3
ln ½rðg1 − g2Þ þ C�; A ∼ Φ1;

ds2 ¼ ½rðg1 − g2Þ þ C�23dx21;2 þ dr2: ð45Þ

In the above solutions, there is a singularity at r ∼ − C
g1�g2

.
However, the singularity is physically acceptable according
to the criterion of [32] since the potential is bounded above
as can be checked from (27) that

VðΦ1 → �∞;Φ2 ¼ 0Þ → −ðg1 � g2Þ2∞: ð46Þ

B. RG flows with SOð2Þ × SOð2Þ symmetry

We now move to a scalar submanifold invariant under
SOð2Þdiag ⊂ SOð2Þ × SOð2Þ ⊂ SOð3Þ × SOð3Þ symmetry.
There are six singlets corresponding to SUð3; 3Þ non-
compact generators

Y1¼ Ŷ33; Y2¼ ~Y33; Y3¼ Ŷ11þ Ŷ22;

Y4¼ ~Y11þ ~Y22; Y5¼ Ŷ21− Ŷ12; Y6¼ ~Y21− ~Y12: ð47Þ

The coset representative can be parametrized by

L ¼ eΦ1Y1eΦ2Y2eΦ3Y3eΦ4Y4eΦ5Y5eΦ6Y6 : ð48Þ

The scalar potential turns out to be far more complicated
than the SOð3Þ singlet scalars. We will present the results
for some consistent truncations of the full potential.
We first give the result for SOð2Þ × SOð2Þ singlet

scalars. These scalars correspond to Φ1 and Φ2. The scalar
potential is given by

V ¼ −
1

2
g21e

−2Φ1 ½e2Φ1 þ ð1þ e4Φ1Þ coshð2Φ2Þ�: ð49Þ

It is clearly seen that this potential admits only a critical
point at Φ1 ¼ Φ2 ¼ 0 which is the SOð3Þ × SOð3Þ critical
point.
By using the same projector as in the previous case, we

can set up the relevant BPS equations as follow. In this case,
the matrix SAB is given by

SAB ¼ 1

2
diagðW1;W1;W2Þ ð50Þ

where

W1 ¼ −g1 coshΦ1 coshΦ2;

W2 ¼ −g1ðcoshΦ1 coshΦ2 þ i sinhΦ1 sinhΦ2Þ: ð51Þ

It should be noted that, when Φ1 ¼ 0 or Φ2 ¼ 0, W1 and
W2 coincide. For Φ1 ≠ 0 and Φ2 ≠ 0, it turns out that W2

provides the true superpotential in term of which the scalar
potential (49) can be written as

V ¼ 1

2
Gαβ ∂jW2j

∂Φα

∂jW2j
∂Φβ

−
3

2
jW2j2: ð52Þ

With the scalar kinetic terms

−
1

2
PAi
μ Pμ

iA ¼ −
1

2
½cosh2ð2Φ2ÞΦ02

1 þ Φ02
2 �; ð53Þ

we find Gαβ ¼ diagð− cosh2ð2Φ2Þ;−1Þ, and Gαβ is the
inverse of Gαβ with Φα ¼ ðΦ1;Φ2Þ.
The BPS equations coming from δψμA ¼ 0, μ ¼ 0, 1, 2,

become

A0 ¼∓jW2j ¼ �1

2
g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 coshð2Φ1Þ coshð2Φ2Þ

p
ð54Þ

and eiΛ ¼ �eiω with W2 ¼ jW2jeiω. It should also be
noted that for Φ1 ≠ 0 and Φ2 ≠ 0, only the supersymmetry
corresponding to ϵ3 can be preserved since we need to set
ϵ1;2 ¼ 0 in the δψμA equations. Therefore, together with the
γr projection, the solution will preserve only two super-
charges or N ¼ 1 Poincare supersymmetry in three
dimensions.
The conditions δλiA ¼ 0 are identically satisfied for

ϵ1;2 ¼ 0 while δλi ¼ 0 equations give

½eiΛ½coshð2Φ2ÞΦ0
1 þ iΦ0

2�
þ g1ðsinhΦ1 coshΦ2 − i coshΦ1 sinhΦ2Þ�ϵ3 ¼ 0: ð55Þ

This will give the flow equations for Φ1 and Φ2. Using the
above result for eiΛ ¼ �eiω, it can be verified that the flow
equations can be written as

Φ0
α ¼ �Gαβ ∂jW2j

∂Φβ
ð56Þ

or explicitly

Φ0
1 ¼ ∓ sinhð2Φ1Þsechð2Φ2Þg1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ coshð2Φ1Þ coshð2Φ2Þ
p ;

Φ0
2 ¼ ∓ coshð2Φ1Þ sinhð2Φ2Þg1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ coshð2Φ1Þ coshð2Φ2Þ
p : ð57Þ

We are not able to solve the above equations completely,
but by combining the two equations, we find a relation
between Φ1 and Φ2
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cothð2Φ2Þ ¼
e2Φ1

2 − 2e4Φ1
: ð58Þ

The full flow solution would require some numerical
analysis. In the following, we will simply give the asymp-
totic behaviors at Φ1;2 ∼ 0 and large jΦαj.
Identifying r → ∞ as the UV fixed point, we find

Φ1 ∼ Φ2 ∼ e−g1r ð59Þ

As Φ2 → �∞, we find

Φ1 ∼ Φ0; Φ2 ∼∓ lnðg1rÞ
ds2 ¼ r2dx21;2 þ dr2 ð60Þ

where Φ0 is a constant. For convenience, we have put the
singularity at r ¼ 0 by choosing an integration constant.
For Φ1 → �∞, the solution becomes

Φ1 ∼∓ lnðg1rÞ; Φ2 ∼ Φ0;

ds2 ¼ r2dx21;2 þ dr2: ð61Þ

All of these flows give V → −∞ and are physical.
As noted before for Φ1 or Φ2 vanishing, the eigenvalues

of SAB degenerate W1 ¼ W2, and the BPS equations
coming from δλi ¼ 0 and δλiA ¼ 0 are identical. The
resulting equations for Φ1 ¼ 0 and Φ2 ¼ 0 cases turn
out to be symmetric. In the following, we will set Φ2¼0
for definiteness. The flow equations reduce to

Φ0
1 ¼ −g1 sinhΦ1;

A0 ¼ g1 coshΦ1 ð62Þ

with a simple solutions

Φ1 ¼ � ln

�
eg1r−C þ 1

eg1r−C − 1

�
;

A ¼ −g1rþ lnðe2g1r−2C − 1Þ: ð63Þ

At large r, we find Φ1 ∼ e−g1r and A ∼ g1r which is the UV
AdS4. For g1r ∼ C, the solution becomes

Φ1 ∼� lnðg1r − CÞ; A ∼ lnðg1r − CÞ;
ds2 ¼ ðg1r − CÞ2dx21;2 þ dr2: ð64Þ

This solution is also physical and preservesN ¼ 3 Poincare
supersymmetry in three dimensions. We then find two
classes of deformations that break conformal symmetry.
One of them with Φ1 and Φ2 nonvanishing breaks N ¼ 3
supersymmetry to N ¼ 1 while the other with Φ1 or Φ2

vanishing preserves N ¼ 3 supersymmetry. On the other
hand, both of them preserve SOð2Þ × SOð2Þ symmetry.

C. RG flows with SOð2Þ symmetry

The scalar potential and BPS equations for SOð2Þdiag
singlet scalars are far more complicated than the
SOð2Þ × SOð2Þ case. We will only give the result for a
truncation with Φ2 ¼ Φ4 ¼ Φ6 ¼ 0. We have verified that
this is a consistent truncation both for the BPS equations
and the corresponding field equations.
In this truncation, SAB is diagonal

SAB ¼ 1

2
WδAB ð65Þ

where W is real and given by

W ¼ W ¼ −
1

2
g1 coshΦ1½1þ coshð2Φ3Þ� coshð2Φ5Þ

þ g2½1 − coshð2Φ3Þ coshð2Φ5Þ� sinhΦ1: ð66Þ

With the scalar kinetic terms

−
1

2
PiA
μ Pμ

Ai¼−
1

2
Φ02

1 −
1

4
e−4Φ5ð1þe4Φ5Þ2Φ02

3 −Φ02
5 ; ð67Þ

the scalar potential can be written as

V ¼ −
1

2

∂W
∂Φ1

∂W
∂Φ1

−
e4Φ5

ð1þ e4Φ5Þ2
∂W
∂Φ3

∂W
∂Φ3

−
1

4

∂W
∂Φ5

∂W
∂Φ5

−
3

2
W2

¼ 1

32
½−4½1þ coshð2Φ3Þ coshð2Φ5Þ�½2 coshð2Φ3Þ coshð2Φ5Þ

þ coshð2Φ1Þ½1þ 3 coshð2Φ3Þ� coshð2Φ5Þ�g21
− 6½coshð4Φ3Þ þ 2 cosh2ð2Φ3Þ coshð4Φ5Þ − 3� sinhð2Φ1Þg1g2;
þ 2½2 coshð2Φ3Þ coshð2Φ5Þ − 2�½2 coshð2Φ3Þ coshð2Φ5Þ
þ 2 coshð2Φ1Þ½1 − 3 coshð2Φ3Þ coshð2Φ5Þ��g22�: ð68Þ
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All of the BPS equations coming from δλi ¼ 0 and
δλiA ¼ 0 are solved by the following flow equations,

Φ0
1 ¼ � ∂W

∂Φ1

¼ ∓ 1

2
½g1½1þ coshð2Φ3Þ coshð2Φ5Þ� sinhΦ1

þ g2 coshΦ1½coshð2Φ3Þ coshð2Φ5Þ − 1��; ð69Þ

Φ0
3 ¼ � 2e4Φ5

ð1þ e4Φ5Þ2
∂W
∂Φ3

¼ ∓ e2Φ5

1þ e4Φ5
sinhð2Φ3Þ½g1 coshΦ1 þ g2 sinhΦ1�;

ð70Þ

Φ0
5 ¼ � 1

2

∂W
∂Φ5

¼ ∓ 1

2
coshð2Φ3Þ sinhð2Φ5Þ½g1 coshΦ1 þ g2 sinhΦ1�;

ð71Þ

A0 ¼ ∓W; ð72Þ

after using the projector γrϵA ¼ �ϵA. The solution to these
equations then preserves N ¼ 3 supersymmetry in three
dimensions. Apart from the trivial critical point with all
Φi ¼ 0 and the SOð3Þdiag with Φ5 ¼ 0 and Φ1 ¼ �Φ3 ¼
1
2
ln½g2þg1

g2−g1
�, the above equations admit no new critical

points.
We are not able to solve the above equations analytically

for general values of g1 and g2. However, for g2 ¼ g1 and
Φ5 ¼ 0, an analytic solution can be found:

A ¼ Φ1 −
1

2
lnðe4Φ1 − 1Þ;

Φ3 ¼ cosh−1
h
e
Φ1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshΦ1

p i
;

g1r ¼ tan−1eΦ1 þ 1

2
ln

�
eΦ1 þ 1

eΦ1 − 1

�
: ð73Þ

This solution describes an RG flow from the trivial AdS4
critical point to anN ¼ 3 nonconformal gauge theory in the
IR. At Φ1 ∼ Φ3 ∼ 0, the above solution approaches the UV
AdS4:

Φ1 ∼ e−2g1r; Φ3 ∼ e−g1r; A ∼ g1r: ð74Þ

Near the IR singularity r ∼ 0, the solution behaves as

Φ1 ∼ − lnðg1rÞ; Φ3 ∼ Φ1; A ∼ −Φ1 ∼ lnðg1rÞ;
ds2 ¼ ðg1rÞ2dx21;2 þ dr2 ð75Þ

for Φ1 > 0 and

Φ1 ∼ lnðg1rÞ; Φ3 ∼ constant; A ∼ Φ1 ∼ lnðg1rÞ;
ds2 ¼ ðg1rÞ2dx21;2 þ dr2 ð76Þ

for Φ1 < 0. Both of these singularities give V ∼ −∞ and,
hence, are physical. Therefore, the solution gives a gravity
dual of an RG flow fromN ¼ 3 SCFTwith SOð3Þ × SOð3Þ
symmetry to N ¼ 3 gauge theory with SOð2Þ symmetry in
three dimensions.

IV. SOð3; 1Þ GAUGE GROUP

We still work with the n ¼ 3 case but with SOð3; 1Þ
gauge group. The structure constants in this case are given
by fΛΣΓ ¼ fΛΣΓ0JΓ

0Γ, where

fΛΣΓ ¼ gðϵABC; ϵiþ3;jþ3;AÞ; ð77Þ

and ϵiþ3;jþ3;A are totally antisymmetric with ϵ345 ¼ ϵ156 ¼
ϵ264 ¼ 1.

A. RG flows with SOð3Þ symmetry

We now proceed as in the previous section by consid-
ering the SOð3Þ ⊂ SOð3; 1Þ singlet scalars. Under this
SOð3Þ, the decomposition of the representation for all
18 scalars is similar to (24) since the SOð3Þ maximal
compact subgroup of SOð3; 1Þ is embedded in SOð3; 1Þ as
a diagonal subgroup of SOð3Þ × SOð3Þ ⊂ SOð3; 3Þ.
Accordingly, there are two singlets given by the SUð3; 3Þ
noncompact generators:

Y1 ¼ Ŷ11 − Ŷ22 þ Ŷ3; Y2 ¼ ~Y11 − ~Y22 þ ~Y33: ð78Þ

We then parametrize the coset representative by

L ¼ eΦ1Y1eΦ2Y2 ; ð79Þ

which gives the potential

V ¼ −
3

64
g2e−6Φ1 ½2e6Φ1 ½13 coshð2Φ1Þ þ 3 coshð6Φ1Þ�

× coshð2Φ2Þ þ ðe4Φ1 − 1Þ2½ð1þ e4Φ1Þ coshð6Φ2Þ
− 16e2Φ1 cosh2ð2Φ2Þ��: ð80Þ

This potential admits a trivial critical point at Φ1 ¼ Φ2 ¼ 0
at which the SOð3; 1Þ gauge symmetry is broken to its
maximal compact subgroup SOð3Þ. The values of the
cosmological constant and AdS4 radius are given by

V0 ¼ −
3

2
g2; L2 ¼ 1

g2
: ð81Þ

Scalar masses are given in Table II. We again see that there
are three Goldstone bosons.
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We also find a nonsupersymmetric critical point given by

Φ1 ¼
1

2
ln

�
4� ffiffiffi

7
p

3

�
; Φ2 ¼ 0;

V0 ¼ −
11

9
g2; L2 ¼ 27

22g2
: ð82Þ

This critical point is however unstable since some of the
scalar masses violate the BF bound. All scalar masses are
given in Table III.
We now consider possible supersymmetric RG flow

solutions within the N ¼ 3 SOð3; 1Þ gauged supergravity.
Since we have not found any nontrivial supersymmetric
AdS4 critical points in this gauge group, we will consider
only supersymmetric RG flows to nonconformal theories.
Similar to the SOð3Þ × SOð3Þ gauge group, we find that the
BPS equations coming from δλi ¼ 0 and δλiA ¼ 0 give rise
to the following equations

eiΛ½coshð2Φ2ÞΦ0
1 � iΦ0

2�

¼ gsinh3Φ1 coshΦ2 þ
1

2
g coshΦ1½sinhð2Φ1Þ coshð3Φ2Þ

− 2i½1 − 2sinh2Φ1 coshð2Φ2Þ� sinhΦ2� ð83Þ

which again imply Φ0
2 ¼ 0. Consistency with the second

order field equations requires thatΦ2 ¼ 0. This gives rise to
real superpotential.
Follow the same procedure as in the previous section

with an appropriate sign choice, we find the relevant BPS
equations

Φ0
1 ¼

1

4
e−3Φ1gðe2Φ1 þ e6Φ1 − e4Φ1 − 1Þ; ð84Þ

A0 ¼ −
1

4
e−3Φ1gð1þ e6Φ1 − 3e2Φ1 − 3e4Φ1Þ: ð85Þ

Since the operator dual to Φ1 has dimension Δ ¼ 4
corresponding to an irrelevant operator, we then expect
the AdS4 to appear in the IR of the RG flow driven by Φ1.
The solution to the above equations can be readily found

gr ¼ ln

�
eΦ1 − 1

eΦ1 þ 1

�
þ 1ffiffiffi

2
p ln

�
1þ ffiffiffi

2
p

eΦ1 þ e2Φ1ffiffiffi
2

p
eΦ1 − 1 − e2Φ1

�
; ð86Þ

A ¼ Φ1 þ lnðe2Φ1 − 1Þ − lnð1þ e4Φ1Þ: ð87Þ

As Φ1 ∼ 0, the solution gives

Φ1 ∼ egr ∼ e
r
L; A ∼ gr ∼

r
L

ð88Þ

which is the AdS4 critical point.
At large jΦ1j, we find that for Φ1 > 0 the solution

behaves as

Φ1 ∼ −
1

3
lnðgrþ CÞ; A ∼ −Φ1;

ds2 ¼ ðgrþ CÞ23dx21;2 þ dr2 ð89Þ

while for Φ1 < 0, the solution becomes

Φ1 ∼
1

3
lnðC − grÞ; A ∼ Φ1;

ds2 ¼ ðC − grÞ23dx21;2 þ dr2: ð90Þ

Both of these singularities are physical since

VðΦ1 → �∞;Φ2 ¼ 0Þ → −∞: ð91Þ

B. RG flows with SOð2Þ symmetry

For SOð2Þ singlet scalars, the coset representative can be
parametrized by

L ¼ eΦ1Y1eΦ2Y2eΦ3Y3eΦ4Y4eΦ5Y5eΦ6Y6 ð92Þ

where the SUð3; 3Þ noncompact generators are defined by

Y1¼ Ŷ33; Y2¼ ~Y33; Y3¼ Ŷ11− Ŷ22;

Y4¼ ~Y11− ~Y22; Y5¼ Ŷ12þ Ŷ21; Y6¼ ~Y12þ ~Y21: ð93Þ

The resulting scalar potential is very complicated. After
making a truncation by setting Φ2 ¼ Φ4 ¼ Φ6 ¼ 0, we find
a much simpler potential

V ¼ 1

8
g2½16 coshð2Φ5Þ sinhð2Φ1Þ sinhð2Φ3Þ

− 3 coshð2Φ1Þ½3þ coshð4Φ3Þ�
þ 2½2þ ð2 − 3 coshð2Φ1ÞÞ coshð4Φ5Þ� sinh2ð2Φ3Þ�:

ð94Þ

TABLE II. Scalar masses at the N ¼ 3 supersymmetric AdS4
critical point with SOð3Þ symmetry and the corresponding
dimensions of the dual operators in SOð3; 1Þ gauge group.

SOð3Þ representations m2L2 Δ

1 4, −2 4, (1,2)
3 0ð×3Þ, −2ð×3Þ 3, (1,2)
5 −2ð×10Þ (1,2)

TABLE III. Scalar masses at the nonsupersymmetric AdS4
critical point with SOð3Þ symmetry in SOð3; 1Þ gauge group.

SOð3Þ representations m2L2

1 − 168
11
, − 36

11

3 0ð×3Þ, − 36
11
jð×3Þ

5 − 24
11
jð×5Þ, − 36

11
jð×5Þ
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Apart from the trivial critical point, there are no other
supersymmetric critical points from this potential.
We now move to the BPS equations. The SAB matrix in

this truncation is diagonal and proportional to the identity
matrix with the superpotential

W ¼ −g coshΦ1 þ g coshð2Φ5Þ sinhΦ1 sinð2Φ3Þ: ð95Þ

As usual, the scalar potential can be written in term ofW as

V ¼ −
1

2

�∂W
∂Φ1

�
2

− e4Φ5ð1þ e4Φ5Þ−2
�∂W
∂Φ3

�
2

−
1

4

�∂W
∂Φ5

�
2

−
3

2
W2: ð96Þ

The flow equations are then given by

Φ0
1 ¼ � ∂W

∂Φ1

¼ �½−g sinhΦ1 þ g coshΦ1 coshð2Φ5Þ sinhð2Φ3Þ�;
ð97Þ

Φ0
3 ¼ �2e4Φ5ð1þ e4Φ5Þ−2 ∂W∂Φ3

¼ � 4e4Φ5

ð1þ e4Φ5Þ2 g coshð2Φ3Þ coshð2Φ5Þ sinhΦ1; ð98Þ

Φ0
5 ¼ � 1

2

∂W
∂Φ5

¼ �g sinhΦ1 sinhð2Φ3Þ sinhð2Φ5Þ; ð99Þ

A ¼ ∓W: ð100Þ

We are not able to solve these equations analytically. We
will therefore only discuss the asymptotic behaviors of the
flow solution and leave the full solution for a numerical
analysis. Near the AdS4 critical point, we find

Φ1 ∼ Φ3 ∼ egr ∼ e
r
L; Φ5 ∼ constant;

A ∼ gr ∼
r
L
: ð101Þ

We see that Φ1 and Φ3 are dual to irrelevant operators of
dimension four while Φ5 is dual to a marginal operator.
Actually, Φ5 is one of the Goldstone bosons.
Near the singularity at large jΦ3j, we find Φ0

5 ¼ 0. In
what follows, we will choose Φ5 ¼ 0 for simplicity. The
asymptotic behaviors of the flow solution are given by

Φ1 ∼�Φ3 ∼� 1

3
ln

����C� 3

4
gr

����; A ∼
1

3
ln

����C� 3

4
gr

����;
ds2 ¼

�
C� 3

4
gr

�2
3

dx21;2 þ dr2: ð102Þ

It can also be checked that both of these singularities are
physical.

V. SOð2; 2Þ GAUGE GROUP

For n ¼ 3 vector multiplets, there is another possible
gauge group namely SOð2; 2Þ ∼ SOð2; 1Þ × SOð2; 1Þ. The
structure constants are given by

fΛΣΓ ¼ ðg1ϵĀ B̄ D̄η
D̄ C̄; g2ϵī j̄ l̄η

l̄ k̄Þ;
Ā; B̄;… ¼ 1; 2; 6; ī; j̄;… ¼ 3; 4; 5 ð103Þ

with ηĀ B̄ ¼ diagð1; 1;−1Þ and ηī j̄ ¼ diagð1;−1;−1Þ.
We will consider the scalar potential for SOð2Þdiag

invariant scalars. There are six singlets parametrized by
the coset representative

L ¼ eΦ1ðŶ11þŶ22ÞeΦ2ð ~Y11þ ~Y22ÞeΦ3Ŷ33eΦ4
~Y33

× eΦ5ðŶ21−Ŷ12ÞeΦ6ð ~Y21− ~Y12Þ: ð104Þ

The scalar potential turns out be much involved. We will
only give the potential for a truncation Φ2 ¼ Φ4 ¼ Φ6 ¼ 0
for brevity

V ¼ 1

16
½4 coshð2Φ1Þ coshð2Φ5Þ½coshð2Φ1Þ coshð2Φ5Þðg21 − g22Þ þ g21 þ g22�

− 2 coshð2Φ3Þ½g21 þ g22 þ coshð2Φ1Þ coshð2Φ5Þ½3 coshð2Φ1Þ coshð2Φ5Þðg21 þ g22Þ þ 4ðg21 − g22Þ��
þ 3g1g2 sinhð2Φ3Þ½2 coshð4Φ5Þcosh2ð2Φ1Þ þ coshð4Φ1Þ − 3�� ð105Þ

This potential admits an AdS4 critical point at Φi ¼ 0,
i ¼ 1;…; 6 with V0 ¼ − 1

2
g21 and L2 ¼ 3

g2
1

. This critical

point is however nonsupersymmetric. This can be seen by
considering the supersymmetry transformations

δλi ¼ δi3g1ϵ3 and δλiA ¼ δi3g1ðδA2ϵ1 − δA1ϵ
2Þ: ð106Þ

We see that the only way these variations will vanish is to
set ϵA ¼ 0, so this critical point breaks all supersymmetries.
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This critical point is also unstable as can be seen from the
scalar masses in Table IV.
On the other hand, a half-supersymmetric vacuum in the

form of a domain wall is possible. Use the domain wall
ansatz for the metric and proceed as in the previous
cases, we find a set of very complicated BPS equations
for SOð2Þdiag singlet scalars. To give an example of this
solution, we will consider a simpler case of SOð2Þ × SOð2Þ
symmetry. Setting all scalars but Φ3 and Φ4 to zero results
in a simple scalar potential

V ¼ −
1

2
g21e

−2Φ3 ½ð1þ e4Φ3Þ coshð2Φ4Þ − e2Φ3 �: ð107Þ

The gravitini variations give

SAB ¼ 1

2
diagðW1;W1;W2Þ ð108Þ

where

W1 ¼ g1 sinΦ3 coshΦ4; ð109Þ

W2 ¼ g1 coshΦ4 sinhΦ3 þ ig1 coshΦ3 sinhΦ4: ð110Þ

As in the SOð3Þ × SOð3Þ case, only supersymmetry
generated by ϵ3 is preserved. Carrying out a similar analysis
gives the following BPS equations

Φ0
3 ¼ �cosh−2ð2Φ4Þ

∂W
∂Φ3

¼ � g1sechð2Φ4Þ sinhð2Φ3Þffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshð2Φ3Þ coshð2Φ4Þ − 1

p ; ð111Þ

Φ0
4¼∓∂W

∂Φ4

¼∓ g1 coshð2Φ3Þsinhð2Φ4Þffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshð2Φ3Þcoshð2Φ4Þ−1

p ; ð112Þ

A0 ¼ ∓W ð113Þ

where

W ¼ jW2j ¼
ffiffiffi
2

p
g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshð2Φ3Þ coshð2Φ4Þ − 1

p
: ð114Þ

From these equations, we immediately see that there is no
supersymmetric AdS4 critical point. We can also solve for
A and Φ3 as a function of Φ4 as follow

Φ3¼
1

2
ln

�
1

4
½cschð2Φ4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10coshð4Φ4Þ−6

p
−2cothð2Φ4Þ�

�
;

ð115Þ

A ¼ −
1

2
ln sinhð2Φ4Þ − iFð2iΦ4; 5Þ ð116Þ

where F is the elliptic function of the first kind defined by

iFðiΦ3; 5Þ ¼
Z

Φ3

0

dχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 25sinh3χ

p : ð117Þ

However, we are not able to solve for Φ4ðrÞ in a closed
form.
For Φ4 ¼ 0, jW1j ¼ jW2j, we find much simpler BPS

equations

Φ0
3 ¼ �g1 coshΦ3; ð118Þ

A0 ¼ �g1 sinhΦ3: ð119Þ

It should be noted that in this case the supersymmetry is
enhanced to N ¼ 3 as in the SOð3Þ × SOð3Þ case. An
analytic solution to these equations can be completely
obtained

Φ3 ¼ ln tan

�
g1rþ C

2

�
;

A ¼ − ln sinðg1rþ CÞ; ð120Þ

ds2 ¼ sin−2ðg1rþ CÞdx21;2 þ dr2: ð121Þ

The solution preserves N ¼ 3 Poincare supersymmetry in
three dimensions due to the projection γrϵA ¼ �ϵA.
According to the DW/QFT correspondence, this solution
should be dual to a three-dimensional N ¼ 3 gauge theory.
We end this section by giving a remark on SOð2; 1Þ

gauge group. This gauge group can be obtained by
coupling one vector multiplet to the N ¼ 3 supergravity
and gauging the theory by using the structure constant

fΛΣΓ ¼ gϵĀ B̄ D̄η
D̄ C̄; Ā; B̄;… ¼ 1; 2; 4;

ηĀ B̄ ¼ diagð1; 1;−1Þ: ð122Þ

The resulting potential and BPS equations for SOð2Þ ⊂
SOð2; 1Þ invariant scalars are the same as the above
results for SOð2; 2Þ gauge group with g2 ¼ 0. Therefore,
SOð2; 1Þ gauge group also admits a nonsupersymmetric
AdS4 critical point with all scalars vanishing and a

TABLE IV. Scalar masses at the nonsupersymmetric AdS4
critical point with SOð2Þ × SOð2Þ symmetry in SOð2; 2Þ gauge
group.

SOð2Þ × SOð2Þ representations m2L2

(1, 1) −6, −6
(2, 1) 0ð×2Þ, − 15

2
jð×2Þ

(1, 2) 0ð×2Þ, −
3g2

2

2g2
1

j
ð×2Þ

(2, 2) − 3
2

g2
1
þg2

2

g2
1

j
ð×8Þ
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half-supersymmetric domain wall. In particular, the domain
wall with SOð2Þ symmetry has the same form as the
solution given in (121).

VI. SLð3;RÞ GAUGE GROUP

This gauge group can be gauged by coupling five vector
multiplets to N ¼ 3 supergravity. To identify the structure
constants fΛΣΓ ¼ g ~fΛΣ

Γ, we define the following SLð3;RÞ
generators

TΛ ¼ ðiλ2; iλ7; iλ5; λ1; λ3; λ4; λ6; λ8Þ ð123Þ

where λi are Gell-mann matrices. The structure constants
can be extracted from the SLð3;RÞ algebra

½TΛ; TΣ� ¼ ~fΛΣ
ΓTΓ: ð124Þ

There are 30 scalars transforming as ð3; 5̄Þ þ ð3̄; 5Þ
under the SUð3Þ × SUð5Þ local symmetry. The SOð3Þ
maximal compact subgroup of SLð3;RÞ is embedded by

3 → 3 and 8 → 3þ 5. The 30 scalars transform under this
SOð3Þ as

ð3 × 5Þ þ ð3 × 5Þ ¼ ð3þ 5þ 7Þ þ ð3þ 5þ 7Þ: ð125Þ

There are accordingly no singlets under SOð3Þ symmetry.
We then consider scalars which are singlets under
SOð2Þ ⊂ SOð3Þ. Further decomposing the above represen-
tations give six singlets, each of these representations
giving one singlet, corresponding to the following non-
compact generators of SUð3; 5Þ

Y1 ¼ Ŷ24þ Ŷ33; Y2 ¼ Ŷ23− Ŷ34; Y3 ¼ Ŷ15;

Y4 ¼ ~Y24þ ~Y33; Y5 ¼ ~Y23− ~Y34; Y6 ¼ ~Y15: ð126Þ

With the coset representative

L ¼ eΦ1Y1eΦ2Y2eΦ3Y3eΦ4Y4eΦ5Y5eΦ6Y6 ; ð127Þ

we find the following potential

V ¼ −
1

32
e−4Φ2−4Φ3g2½16

ffiffiffi
3

p
e2Φ2ðe4Φ2 − 1Þðe4Φ3 − 1Þ coshð2Φ4Þ coshð2Φ5Þ coshð2Φ6Þ

þ cosh2ð2Φ5Þ½3e2Φ3ð2e4Φ2 − 3e8Φ2 − 3Þ − 12e2Φ3ðe4Φ2Þ2 coshð4Φ4Þ
þ ð1þ e4Φ3Þ½2ð3þ e4Φ2 þ 3e8Φ2Þ þ ð9 − 2e4Φ2 þ 9e8Φ2Þ coshð4Φ4Þ� coshð2Φ6Þ�
þ ð1þ e4Φ3Þ coshð2Φ6Þ½3þ 4e4Φ2 þ 3e8Φ2 þ ð3 − 4e4Φ2 þ 3e8Φ2Þsinh2ð2Φ5Þ�
− e2Φ3 ½3þ 14e4Φ2 þ 3e8Φ2 þ 3ð1 − 6e4Φ2 þ e8Φ2Þsinh2ð2Φ5Þ
− 8

ffiffiffi
3

p
e2Φ2ð1þ e4Φ2Þ coshð2Φ4Þ sinhð4Φ5Þ sinhð2Φ6Þ��: ð128Þ

Apart from the trivial critical point at all Φi ¼ 0, we have
not found any other critical points. At the trivial AdS4
point, we find

V0 ¼ −
3

2
g2; L2 ¼ 1

g2
ð129Þ

and the scalar masses given in Table V. Apart from the
Goldstone bosons, there are marginal deformations corre-
sponding to the scalar fields in the 7 representation of the
unbroken SOð3Þ symmetry.
We will not give the full BPS equations here due to their

complexity. To find some supersymmetric deformations of
the N ¼ 3 SCFT dual to the AdS4 critical point, we will
consider a truncation to Φ1, Φ2 and Φ3. Within this
truncation, we find that SAB ¼ 1

2
WδAB and the system of

BPS equations

Φ0
1 ¼ 0; ð130Þ

Φ0
2 ¼ � 1

2

∂W
∂Φ2

¼ ∓ ffiffiffi
3

p
g coshð2Φ2Þ sinhðΦ3Þ; ð131Þ

Φ0
3 ¼ � ∂W

∂Φ3

¼ ∓g½
ffiffiffi
3

p
coshΦ3 sinhð2Φ2Þ þ sinhΦ3�; ð132Þ

A0 ¼ ∓W ð133Þ

where the superpotential is given by

W ¼ −g½coshΦ3 þ
ffiffiffi
3

p
sinhð2Φ2Þ sinhΦ3�: ð134Þ

TABLE V. Scalar masses at the N ¼ 3 supersymmetric AdS4
critical point with SOð3Þ symmetry and the corresponding
dimensions of the dual operators in SLð3;RÞ gauge group.

SOð3Þ representations m2L2 Δ

3 10ð×3Þ, −2ð×3Þ 5, (1,2)
5 0ð×5Þ, −2ð×5Þ 3, (1,2)
7 0ð×7Þ, −2ð×7Þ 3, (1,2)
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With the scalar kinetic terms

−
1

4
e−4Φ2ð1þ e4Φ2Þ2Φ02

1 − Φ02
2 −

1

2
Φ02

3 ; ð135Þ

the scalar potential can be written as

V ¼ −
1

4

∂W
∂Φ2

−
1

2

∂W
∂Φ3

−
3

2
W2

¼ −
1

4
g2½2þ coshð2Φ3Þ þ coshð4Φ2−Þ½9 coshð2Φ3Þ− 6�

þ 8
ffiffiffi
3

p
sinhð2Φ2Þ sinhð2Φ3Þ�: ð136Þ

We now analyze asymptotic behaviors of the solution near
the UVand IR of the flow. Near the AdS4 critical point, we
find

1ffiffiffi
3

p Φ2 þ Φ3 ∼ e−3g1r ∼ e−
3r
L ;

Φ3 −
ffiffiffi
3

p

2
Φ2 ∼ e2g1r ∼ e

2r
L ; A ∼ g1r ∼

r
L
: ð137Þ

We see that 1ffiffi
3

p Φ2 þ Φ3 is dual to a vacuum expectation

value of a marginal operator while Φ3 −
ffiffi
3

p
2
Φ2 is dual to an

irrelevant operator of dimension Δ ¼ 5. Since a marginal
operator does not break conformal symmetry, we expect

that the flow involves the operator dual to Φ3 −
ffiffi
3

p
2
Φ2. In

this case, the UV SCFT dual to the supersymmetric AdS4
critical point should appear in the IR since the operator
driving the flow is irrelevant at the fixed point.
Near the singularity, we find for large jΦ2j,

Φ3 ∼ Φ2 ∼∓ 1

3
ln
�
3

ffiffiffi
3

p
gr

4

�
; A ∼

1

3
ln r;

ds2 ¼ r
2
3dx21;2 þ dr2: ð138Þ

This leads to a physical singularity and describes an RG
flow in the dual N ¼ 3 supersymmetric field theory to a
conformal fixed point in the IR.

VII. SOð2;1Þ × SOð2;2Þ GAUGE GROUP

The last gauge group to be considered in this paper is
SOð2;1Þ×SOð2;2Þ∼SOð2;1Þ×SOð2;1Þ×SOð2;1Þ. This
gauge group can be obtained by coupling six vector
multiplets to N ¼ 3 supergravity with the following struc-
ture constants

fΛΣΓ ¼ ðg1ϵĀ B̄ D̄η
D̄ C̄; g2ϵī j̄ l̄η

l̄ k̄; g3ϵ~i ~j ~lη
~l ~kÞ ð139Þ

where Ā; B̄;… ¼ 1, 4, 5, ī; j̄;… ¼ 2, 6, 7, ~i; ~j;… ¼ 3, 8, 9
and

ηĀ B̄ ¼ diagð1;−1;−1Þ; ηī j̄ ¼ diagð1;−1;−1Þ;
η~i ~j ¼ diagð1;−1;−1Þ: ð140Þ

At the vacua, the full gauge group SOð2; 1Þ × SOð2; 2Þ
will be broken to its maximal compact subgroup
SOð2Þ × SOð2Þ × SOð2Þ. We will consider scalars which
are invariant under the SOð2Þ × SOð2Þ residual symmetry
chosen to be the first two SOð2Þ’s. In this case, there are
twelve singlets given by

Y1 ¼ Ŷ15; Y2¼ Ŷ16; Y3¼ Ŷ25; Y4¼ Ŷ26;

Y5 ¼ Ŷ35; Y6¼ Ŷ36; Y7¼ ~Y15; Y8¼ ~Y16;

Y9 ¼ ~Y25; Y10¼ ~Y26; Y11¼ ~Y35; Y12¼ ~Y36: ð141Þ

The coset representative can be parametrized by

L ¼
Y12
i¼1

eΦiYi : ð142Þ

The potential is highly complicated. We refrain from
giving its explicit form here but only note that the
resulting potential admits a Minkowski vacuum at
Φi ¼ 0, for i ¼ 1;…; 12 preserving N ¼ 3 supersymmetry
and SOð2Þ × SOð2Þ × SOð2Þ symmetry. It can also be
checked that there are precisely six massless Goldstone
bosons of the symmetry breaking SOð2; 1Þ × SOð2; 2Þ →
SOð2Þ × SOð2Þ × SOð2Þ.

VIII. CONCLUSIONS

In this paper, we have studied N ¼ 3 gauged super-
gravity in four dimensions with various types of semi-
simple gauge groups and classified their vacua. We now
summarize the main results found in this paper. For
SOð3Þ × SOð3Þ, SOð3; 1Þ and SLð3;RÞ gauge groups,
there exists a maximally supersymmetric AdS4 critical
point at which all scalars vanishing. The critical point
has SOð3Þ symmetry in SOð3; 1Þ and SLð3;RÞ gauge
groups and SOð3Þ × SOð3Þ symmetry for SOð3Þ × SOð3Þ
gauge group. In the latter case, we have also found a
nontrivial AdS4 critical point with SOð3Þdiag symmetry and
unbroken N ¼ 3 supersymmetry. A holographic RG flow
interpolating between the SOð3Þ × SOð3Þ and SOð3Þdiag
critical points including a number of RG flows to non-
conformal gauge theories have also been given. The non-
conformal RG flows break conformal symmetry but
preserve N ¼ 3 or N ¼ 1 supersymmetries. A similar
study has also been carried out in the case of SOð3; 1Þ
and SLð3;RÞ. These results might be useful in the holo-
graphic study of N ¼ 3 Chern-Simons-matter theories in
three dimensions.
For SOð2; 1Þ × SOð2; 2Þ gauge group, the gauged super-

gravity admits N ¼ 3 Minkowki vacuum when all scalars
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vanish. In the case of SOð2; 1Þ and SOð2; 2Þ ∼ SOð2; 1Þ ×
SOð2; 1Þ gauge groups, the resulting gauged supergravities
admit a half-maximal supersymmetric domain wall as a
supersymmetric vacuum. This solution should be useful in
the context of the DW/QFT correspondence for studying
strongly coupled gauge theories in three dimensions. When
all scalars vanish, there exists a nonsupersymmetric AdS4
critical point with SOð2Þ and SOð2Þ × SOð2Þ symmetries,
respectively. This critical point and all of the nonsupersym-
metric critical points identified in this paper are unstable.
The results have some similarity to the gaugings of

N ¼ 2 gauged supergravity in seven dimensions studied in
[33], but in the present case, nonconformal flows with
partially broken supersymmetry are possible. It should also
be remarked that although we have considered only the G0

part of the full semisimple gauge group G0 ×H, all of the
vacua and solutions we have found are valid in the full
theory with G0 ×H gauge group. This is a consequence of
the fact that all scalars in SUð3; nÞ=SUð3Þ × SUðnÞ ×Uð1Þ
we have considered are H singlets. By the argument given
in [34], solutions identified within the scalar submanifold
parametized byH0×H, withH0 ⊂G0, singlets are solutions
of the full G0 ×H theory.
It would be interesting to identify the SCFTs or non-

conformal gauge theories that are dual to the gravity
solutions obtained here. Looking for more general domain
walls with the truncated scalars restored could be useful
since these scalars correspond to relevant operators. From
the analysis of this paper, we expect these scalars to break
some supersymmetry. Investigating their role in the dual
SCFT should give some insight to relevant deformations of
the dual three-dimensional SCFT. Among the interesting
supergravity solutions, a domain wall interpolating between
the N ¼ 3 AdS4 critical point and the AdS4 critical point
with N ¼ 1 unbroken supersymmetry discovered in [35]
deserves some investigation. ThisN ¼ 1 critical point is not

accesible from our simple scalar parametrization. Looking
for this solution requires a more complicated scalar sub-
manifold of SUð3; nÞ=SUð3Þ × SUðnÞ × Uð1Þ. Finally, it
would also be interesting to look for supersymmetric Janus
solutions which are dual to some conformal interface in the
N ¼ 3 SCFTs. A number of these solutions have been
obtained within the maximal N ¼ 8 gauged supergravity
in [36].
It should be noted that all gaugings considered here are

of “electric” type in which only electric gauge fields are
involved. Similar to the maximal N ¼ 8 and half-maximal
N ¼ 4 gauged supergravities [37,38], it could be interest-
ing to apply the embedding tensor formalism to the N ¼ 3
gauged supergravity and look for more general gaugings
such as the magnetic or dyonic gaugings in which
magnetic gauge fields also participate in the process of
gauging. We then expect many other possible gauge groups
will arise from the embedding tensor formalism similar to
the N ¼ 4 gauged supergravity with SUð1; 1Þ=Uð1Þ ×
SOð6; nÞ=SOð6Þ × SOðnÞ scalar manifold studied in [38].
The N ¼ 3 AdS4 critical point with SOð3Þ × SOð3Þ

symmetry within the dyonic ISOð7Þ gauged N ¼ 8 super-
gravity is known [39–41], and the holographic study of the
possible dual SCFT has been given in [42,43]. Furthermore,
thisN ¼ 3AdS4 solution has knownmassive type IIAorigin
[42,44]. Similarly, investigating the embedding of the results
presented in this paper in higher dimensions could be of
interest and will give rise to new N ¼ 3 AdS4 backgrounds
within the context of string/M-theory. We will leave these
interesting issues for future works.

ACKNOWLEDGMENTS

This work is supported by Chulalongkorn University
through the Ratchadapisek Sompoch Endowment Fund
under Grant No. GF-58-08-23-01 (Sci-Super II).

[1] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Adv. Theor. Math. Phys. 2, 231
(1998).

[2] H. J. Boonstra, K. Skenderis, and P. K. Townsend, The
domain-wall/QFT correspondence, J. High Energy Phys. 01
(1999) 003.

[3] J. Bagger and N. Lambert, Gauge symmetry and supersym-
metryofmultipleM2-branes, Phys.Rev.D77, 065008 (2008).

[4] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena,
N ¼ 6 superconformal Chern-Simons-matter theories, M2-
branes and their gravity duals, J. High Energy Phys. 10
(2008) 091.

[5] J. P. Gauntlett, J. Sonner, and T. Wiseman, Holographic super-
conductivity inM-Theory, Phys.Rev.Lett.103, 151601 (2009).

[6] S. S. Gubser, S. S. Pufu, and F. D. Rocha, Quantum critical
superconductors in string theory and M-theory, Phys. Lett.
B 683, 201 (2010).

[7] J. P. Gauntlett, J. Sonner, and T. Wiseman, Quantum
criticality and holographic superconductors in M-theory,
J. High Energy Phys. 02 (2010) 060.

[8] B. de Wit and H. Nicolai, N ¼ 8 supergravity with local
SOð8Þ × SUð8Þ invariance, Phys. Lett. B 108, 285 (1982).

[9] C. Ahn and J. Paeng, Three-dimensional SCFTs, super-
symmetric domain wall and renormalization group flow,
Nucl. Phys. B595, 119 (2001).

[10] C. Ahn and K. Woo, Supersymmetric domain wall and RG
flow from 4-dimensional gauged N ¼ 8 supergravity, Nucl.
Phys. B599, 83 (2001).

PARINYA KARNDUMRI and KHEM UPATHAMBHAKUL PHYSICAL REVIEW D 93, 125017 (2016)

125017-14

http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.1088/1126-6708/1999/01/003
http://dx.doi.org/10.1088/1126-6708/1999/01/003
http://dx.doi.org/10.1103/PhysRevD.77.065008
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://dx.doi.org/10.1103/PhysRevLett.103.151601
http://dx.doi.org/10.1016/j.physletb.2009.12.017
http://dx.doi.org/10.1016/j.physletb.2009.12.017
http://dx.doi.org/10.1007/JHEP02(2010)060
http://dx.doi.org/10.1016/0370-2693(82)91194-7
http://dx.doi.org/10.1016/S0550-3213(00)00687-8
http://dx.doi.org/10.1016/S0550-3213(01)00008-6
http://dx.doi.org/10.1016/S0550-3213(01)00008-6


[11] C. Ahn and T. Itoh, An N ¼ 1 supersymmetric G2-invariant
flow in M-theory, Nucl. Phys. B627, 45 (2002).

[12] N. Bobev, N. Halmagyi, K. Pilch, and N. P. Warner,
Holographic, N ¼ 1 supersymmetric RG flows on M2
branes, J. High Energy Phys. 09 (2009) 043.

[13] T. Fischbacher, K. Pilch, and N. P. Warner, New super-
symmetric and stable, non-supersymmetric phases in super-
gravity and holographic field theory, arXiv:1010.4910.

[14] L. Castellani and L. J. Romans, N ¼ 3 and N ¼ 1 super-
symmetry in a class of solutions for D ¼ 11 supergravity,
Nucl. Phys. B238, 683 (1984).

[15] P. Termonia, The complete N ¼ 3Kaluza-Klein spectrum of
11D supergravity on AdS4 × N010, Nucl. Phys. B577, 341
(2000).

[16] P. Fre, L. Gualtieri, and P. Termonia, The structure of N ¼ 3
multiplets in AdS4 and the complete Ospð3j4Þ × SUð3Þ
spectrum of M-theory on AdS4 × N010, Phys. Lett. B 471,
27 (1999).

[17] M. Billo, D. Fabbri, P. Fre, P. Merlatti, and A. Zaffaroni,
Rings of short N ¼ 3 superfields in three dimensions and
M-theory on AdS4 × N0;1;0, Classical Quantum Gravity 18,
1269 (2001).

[18] M. Billo, D. Fabbri, P. Fre, P. Merlatti, and A. Zaffaroni,
Rings of short N ¼ 3 superfields in three dimensions and
M-theory on AdS4 × N0;1;0, Classical Quantum Gravity 18,
1269 (2001).

[19] H. U. Yee, AdS/CFT with Tri-Sasakian manifolds, Nucl.
Phys. B774, 232 (2007).

[20] D. Gaiotto and D. L. Jafferis, Notes on adding D6 branes
wrapping RP3 in AdS4 × CP3, J. High Energy Phys. 11
(2012) 015.

[21] M. Fujita and T. S. Tai, Eschenburg space as gravity dual of
flavored N ¼ 4 Chern-Simons-matter theory, J. High
Energy Phys. 09 (2009) 062.

[22] C. Ahn and Soo-Jong Rey, More CFTs and RG Flows from
Deforming M2/M5-Brane Horizon, Nucl. Phys. B572, 188
(2000).

[23] C. Ahn, Penrose limit of AdS4 × N0;1;0 and N ¼ 3 gauge
theory, Mod. Phys. Lett. A 17, 1847 (2002).

[24] S. Cheon, D. Gang, S. Kim, and J. Park, Refined test of
AdS4/CFT3 correspondence for N ¼ 2, 3 theories, J. High
Energy Phys. 05 (2011) 027.

[25] L. Castellani, A. Ceresole, S. Ferrara, R. D’Auria, P. Fre,
and E. Maina, The complete N ¼ 3 matter coupled super-
gravity, Nucl. Phys. B268, 317 (1986).

[26] L. Castellani, A. Ceresole, R. D’Auria, S. Ferrara, P. Fre,
and E. Maina, σ-model, duality transformations and scalar
potentials in extended supergravities, Phys. Lett. B 161B, 91
(1985).

[27] L. Castellani, R. D’ Auria, and P. Fre, Supergravity and
Superstring Theory: A Geometric Perspective (World
Scientific, Singapore, 1990).

[28] P. Karndumri, Holographic RG flows in N ¼ 3 Chern-
Simons-Matter theory from N ¼ 3 4D gauged supergravity,
arXiv:1601.05703.

[29] V. A. Tsokur and Y. M. Zinoviev, Spontaneous supersym-
metry breaking in N ¼ 3 supergravity with matter, Phys.
Atom. Nucl. 59, 2185 (1996).

[30] E. Bergshoeff, I. G. Koh, and E. Sezgin, Yang-Mills-
Einstein supergravity in seven dimensions, Phys. Rev. D
32, 1353 (1985).

[31] E. Bergshoeff, D. C. Jong, and E. Sezgin, Noncompact
gaugings, chiral reduction and dual sigma model in super-
gravity, Classical Quantum Gravity 23, 2803 (2006).

[32] S. S. Gubser, Curvature singularities: The good, the bad and
the naked, Adv. Theor. Math. Phys. 4, 679 (2000).

[33] P. Karndumri, Noncompact gauging of N ¼ 2 7D super-
gravity and AdS/CFT holography, J. High Energy Phys. 02
(2015) 034.

[34] N. P. Warner, Some new extrema of the scalar potential
of gauged N ¼ 8 supergravity, Phys. Lett. B 128B, 169
(1983).

[35] S. Ferrara, P. Fre, and L. Giraadello, Spontaneously broken
N ¼ 3 supergravity, Nucl. Phys. B274, 600 (1986).

[36] N. Bobev, K. Pilchand, and N. P. Warner, Supersymmetric
Janus solutions in four dimensions, J. High Energy Phys. 06
(2014) 058.

[37] B. de Wit, H. Samtleben, and M. Trigiante, The maximal
D ¼ 4 supergravities, J. High Energy Phys. 06 (2007)
049.

[38] J. Schon and M. Weidner, Gauged N ¼ 4 supergravity,
J. High Energy Phys. 05 (2006) 034.

[39] A. Gallerati, H. Samtleben, and M. Trigiante, The N > 2
supersymmetric AdS vacua in maximal supergravity,
J. High Energy Phys. 12 (2014) 174.

[40] A. Guarino and O. Varela, Dyonic ISO(7) supergravity and
the duality hierarchy, arXiv:1508.04432.

[41] Y. Pang and J. Rong, An N ¼ 3 solution in dyonic ISO(7)
gauged maximal supergravity and its uplift to massive type
IIA, Phys. Rev. D 92, 085037 (2015).

[42] A. Guarino, D. L. Jafferis, and O. Varela, The string origin
of dyonic N ¼ 8 supergravity and its simple Chern-Simons
duals, Phys. Rev. Lett. 115, 091601 (2015).

[43] Y. Pang and J. Rong, Evidence for the holographic dual of
N ¼ 3 solution in massive type IIA, Phys. Rev. D 93,
065038 (2016).

[44] A. Guarino and O. Varela, Consistent N ¼ 8 truncation of
massive IIA on S6, J. High Energy Phys. 12 (2015) 020.

GAUGINGS OF FOUR-DIMENSIONAL N ¼ 3 … PHYSICAL REVIEW D 93, 125017 (2016)

125017-15

http://dx.doi.org/10.1016/S0550-3213(02)00058-5
http://dx.doi.org/10.1088/1126-6708/2009/09/043
http://arXiv.org/abs/1010.4910
http://dx.doi.org/10.1016/0550-3213(84)90343-2
http://dx.doi.org/10.1016/S0550-3213(00)00061-4
http://dx.doi.org/10.1016/S0550-3213(00)00061-4
http://dx.doi.org/10.1016/S0370-2693(99)01296-4
http://dx.doi.org/10.1016/S0370-2693(99)01296-4
http://dx.doi.org/10.1088/0264-9381/18/7/310
http://dx.doi.org/10.1088/0264-9381/18/7/310
http://dx.doi.org/10.1088/0264-9381/18/7/310
http://dx.doi.org/10.1088/0264-9381/18/7/310
http://dx.doi.org/10.1016/j.nuclphysb.2007.03.031
http://dx.doi.org/10.1016/j.nuclphysb.2007.03.031
http://dx.doi.org/10.1007/JHEP11(2012)015
http://dx.doi.org/10.1007/JHEP11(2012)015
http://dx.doi.org/10.1088/1126-6708/2009/09/062
http://dx.doi.org/10.1088/1126-6708/2009/09/062
http://dx.doi.org/10.1016/S0550-3213(00)00008-0
http://dx.doi.org/10.1016/S0550-3213(00)00008-0
http://dx.doi.org/10.1142/S0217732302008265
http://dx.doi.org/10.1007/JHEP05(2011)027
http://dx.doi.org/10.1007/JHEP05(2011)027
http://dx.doi.org/10.1016/0550-3213(86)90157-4
http://dx.doi.org/10.1016/0370-2693(85)90615-X
http://dx.doi.org/10.1016/0370-2693(85)90615-X
http://arXiv.org/abs/1601.05703
http://dx.doi.org/10.1103/PhysRevD.32.1353
http://dx.doi.org/10.1103/PhysRevD.32.1353
http://dx.doi.org/10.1088/0264-9381/23/9/003
http://dx.doi.org/10.4310/ATMP.2000.v4.n3.a6
http://dx.doi.org/10.1007/JHEP02(2015)034
http://dx.doi.org/10.1007/JHEP02(2015)034
http://dx.doi.org/10.1016/0370-2693(83)90383-0
http://dx.doi.org/10.1016/0370-2693(83)90383-0
http://dx.doi.org/10.1016/0550-3213(86)90529-8
http://dx.doi.org/10.1007/JHEP06(2014)058
http://dx.doi.org/10.1007/JHEP06(2014)058
http://dx.doi.org/10.1088/1126-6708/2007/06/049
http://dx.doi.org/10.1088/1126-6708/2007/06/049
http://dx.doi.org/10.1088/1126-6708/2006/05/034
http://dx.doi.org/10.1007/JHEP12(2014)174
http://arXiv.org/abs/1508.04432
http://dx.doi.org/10.1103/PhysRevD.92.085037
http://dx.doi.org/10.1103/PhysRevLett.115.091601
http://dx.doi.org/10.1103/PhysRevD.93.065038
http://dx.doi.org/10.1103/PhysRevD.93.065038
http://dx.doi.org/10.1007/JHEP12(2015)020

