
Scaling laws in chiral hydrodynamic turbulence

Naoki Yamamoto
Department of Physics, Keio University, Yokohama 223-8522, Japan

(Received 11 April 2016; published 13 June 2016)

We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with
chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique
scaling symmetry, only without fluid helicity under the local charge neutrality. We also find a different type
of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial
range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic
energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the
chiral transport of neutrinos.
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I. INTRODUCTION

Recently, chiral transport phenomena related to quantum
anomalies [1,2] have attracted much attention both theo-
retically and experimentally, especially in heavy ion phys-
ics [3] and a new type of materials named the Weyl (semi)
metals [4]. Of particular interest is the possible observation
of the current along a magnetic field in the presence of the
chirality imbalance, called the chiral magnetic effect
(CME) [5–8]. Such unusual transport phenomena could
potentially lead to some physical consequences in other
relativistic systems, such as the electroweak plasmas in the
early Universe [9,10], electromagnetic plasmas in neutron
stars [11] and core-collapse supernovae [12,13], and so on.
To describe these chiral transport phenomena in non-

equilibrium situations, hydrodynamics and kinetic theory
have been reformulated, which are now referred to as the
chiral (or anomalous) hydrodynamics [14] and chiral kinetic
theory [15–17], respectively. However, the evolutions of
chiral matter when nonlinear effects of the fluid velocity
and/or dynamical electromagnetic fields become important
have not been fully understood so far; see Refs. [18,19] for
recent related works. For analytical and numerical analyses
of chiral hydrodynamics in external electromagnetic fields,
see, e.g., Refs. [20,21] and Ref. [22], respectively.
In this paper, we study the generic properties of the

chiral (magneto)hydrodynamics describing the evolutions
of charged and neutral matter at finite chiral chemical
potential μ5 and finite temperature T. We find that the chiral
magnetohydrodynamics (ChMHD), together with the chiral
anomaly relation, possesses a unique scaling symmetry for
μ5 ≪ T under the local charge neutrality without fluid
helicity. We also find a different type of unique scaling
symmetry in the chiral hydrodynamics for neutral matter
at finite chemical potential μ in the presence of fluid
helicity in the so-called “inertial range” where dissipation
is negligible. We stress that the presence of quantum
anomalies and chiral transport phenomena is important
for these scaling symmetries.

From these scaling symmetries, we derive the self-similar
scaling laws of the magnetic and kinetic energies [see
Eqs. (38) and (39)] and the scaling laws of the magnetic
and kinetic correlation lengths in chiralmatter [seeEqs. (47),
(48), and (59)]. These results show that the inverse energy
cascade—the process that transfers the energy from small to
larger scales—occurs in the turbulent regime of both
ChMHD and neutral chiral hydrodynamics under the con-
ditions above. In particular, it implies that the chiral transport
of neutrinos [13] neglected so far may lead to the inverse
energy cascade in core-collapse supernovae, instead of the
direct energy cascade observed in the conventional neutrino
transport theory [23]. This qualitative modification may be
potentially important to understanding the origin of super-
nova explosions.
The paper is organized as follows: In Sec. II, after

reviewing the ChMHD equations, we discuss its applicabil-
ity and the conservation laws.1 We then study the scaling
symmetry of the ChMHD and its physical consequences. In
Sec. III we discuss the scaling symmetry of the neutral chiral
hydrodynamics and its physical applications. Section IV is
devoted to summary and discussion.
In the following, we use the natural units ℏ ¼ c ¼ 1.

II. CHIRAL MAGNETOHYDRODYNAMICS
FOR CHARGED PLASMAS

Let us first consider the ChMHD for plasmas of a Dirac
fermion at finite chiral chemical potential μ5 ≡ ðμR − μLÞ=
2. We will be interested in the time scale larger than 1=σ
(with σ being the electrical conductivity), during which the
electric charge diffuses immediately. Then, we can assume
the local charge neutrality, n ¼ 0 or μ≡ ðμR þ μLÞ=2 ¼ 0.
On the other hand, the chiral chargen5 can begenerally finite

1To our knowledge, the applicability of the ChMHD has not
been appreciated earlier, except for Refs. [24,25]. The regime
of applicability will be essential for determining the scaling
symmetry of the ChMHD below.
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in this regime. We will see in Sec. II B that there is actually
some constraint for μ5 to treat it as a hydrodynamic (slow)
variable.

A. Hydrodynamic equations

The ChMHD equations are obtained by promoting
external electromagnetic fields in the chiral hydrodynamic
equations of Ref. [14] to dynamical ones. Note here that the
chiral charge n5 also evolves in time and space, according
to the chiral anomaly relation in the presence of electro-
magnetic fields [see Eq. (3)], and it should be regarded as a
dynamical variable n5ðt; xÞ as well. As the electromagnetic
fields and the chiral charge vary much faster (and at a
shorter length scale) than T, we assume that T is static and
homogeneous in the regime of our interest. Keeping the
main applications of the ChMHD to chiral plasmas in the
early Universe and astrophysical systems in mind, we also
assume the bulk fluid velocity to be nonrelativistic,
v≡ jvj ≪ 1, and we only retain the terms to the leading
order in v below. We will discuss the case with (ultra)
relativistic bulk fluid velocity v ∼ 1 in Sec. IV, which may
be relevant to quark-gluon plasmas in heavy ion collisions.
The hydrodynamic equations in the Landau-Lifshitz

frame are given by [13,14]2

∂μTμν ¼ Fνλjλ; ð1Þ

∇ · j ¼ 0; ð2Þ
∂tðn5 þ κv · ωÞ þ ∇ · j5 ¼ CE · B; ð3Þ

together with Maxwell’s equations,

∂νFνμ ¼ jμ: ð4Þ

Here the energy-momentum tensor Tμν, and the vector and
axial currents, j and j5, are given by [14]3

Tμν ¼ ðϵþ PÞuμuν − Pgμν þ τμν; ð5Þ
j ¼ σðEþ v × BÞ þ κBB; ð6Þ
j5 ¼ n5vþ κω; ð7Þ

where ϵ is the energy density, P is the pressure, σ is the
electrical conductivity, ω ¼ ∇ × v is the vorticity, and τμν

expresses the dissipative effects like viscosity. Equation (3)
expresses the violation of the axial current conservation by

the chiral anomaly [1,2] and the mixed gauge gravitational
anomaly [13], where C ¼ e2=ð2π2Þ is the coefficient of the
chiral anomaly. The anomalous transport coefficients κB
and κ can be expressed from symmetry consideration
(parity and charge conjugation symmetries) as

κB ¼ ~κBe2μ5; κ ¼ ~κT2; ð8Þ

where ~κB and ~κ are some constants related to the coef-
ficients of the chiral anomaly and mixed gauge gravita-
tional anomaly [14,27]. (The complete expressions of κ and
κB can be found, e.g., in Ref. [27], but they are unimportant
for our purpose in this paper.) The currents proportional to
B and ω in Eqs. (6) and (7) are the CME [5–8] and the
chiral vortical effect (CVE) [14,27–29], respectively.
Note that we used the local charge neutrality, μ ¼ 0,

in Eqs. (6), (7), and (8) to ignore the part of the chiral
separation effect (CSE) [30,31] and the CVE whose
transport coefficients include a factor of μ: j5CSE ∝ μB,
jCVE ∝ μμ5ω, and j5CVE ∝ μ2ω. We also dropped the con-
tribution of the cross helicity ∝ μv · B [13] in Eq. (3).
Under the local charge neutrality, the displacement

current ∂tE is negligible, and Ampère’s law becomes
j ¼ ∇ × B [32]. Then, Eq. (2) is automatically satisfied.
By eliminating j and E, the ChMHD equations for an
incompressible fluid (∇ · v ¼ 0) above reduce to [13]

ðϵþPÞð∂tvþ v ·∇vÞ ¼ −
1

2
∇B2 þ ðB ·∇ÞBþ ν∇2v; ð9Þ

∂tB ¼ ∇ × ðv × BÞ þ κBη∇ × Bþ η∇2B; ð10Þ

∂tðn5 þ κv · ωÞ þ v · ∇n5 ¼ −Cη½κBB2 − ð∇ × BÞ · B�;
ð11Þ

where η≡ 1=σ is the resistivity. We here ignored the
contribution −∇P on the right-hand side of Eq. (9),
because, as we will show that T ≫ μ5 in Sec. II B, the
dominant contribution to P is the homogeneous T. This set
of coupled equations is closed for dynamical variables,
vðt; xÞ, Bðt; xÞ, and μ5ðt; xÞ. [As we will discuss in Eq. (14)
below, n5 is related to μ5.] The electric field is given by
using these variables as

E ¼ −v × B − κBηBþ η∇ × B: ð12Þ

Equations (9)–(11) can be regarded as an extension of the
usual MHD equations for relativistic fluids [26] to the ones
with anomalous parity-violating effects [13]. Indeed, in the
absence of anomalous effects (setting n5 ¼ κB ¼ 0 and
disregarding the terms with the coefficient C), they reduce
to the usual MHD equations. These ChMHD equations
describe the charged plasmas in the early Universe [9,10]
and (proto)neutron stars [11,12] where matter with chirality
imbalance may be realized.

2Precisely speaking, we have an additional charge density due
to the CME as Δn ¼ κBμ5v · B [13]. However, it can be shown
that its contribution to the right-hand side of Eq. (1), expressed by
ΔnE, is negligibly small compared with the term j × B under the
condition (13) derived below.

3We denote the anomalous transport coefficients by κ and κB
instead of ξ and ξB in Refs. [13,14], as ξ will be used for the
correlation length later.
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B. Regime of applicability

Before proceeding further, we first clarify the regime of
the applicability of the ChMHD above. It is known that the
ChMHD has a plasma instability at finite μ5 [9,10], called
the chiral plasma instability (CPI), whose length scale is
microscopically estimated as lCPI ∼ ðe2μ5Þ−1 [24]. For the
physical picture of the CPI, see Ref. [25].
Recall that hydrodynamics is an effective theory valid at

a length scale larger than the mean free path. As the mean
free path for the U(1) electromagnetic plasma is given by
lmfp ∼ ðe4TÞ−1 up to logarithmic corrections, it is necessary
to meet the following condition for the use of hydro-
dynamics: lmfp ≪ lCPI or

μ5ðt; xÞ ≪ e2T: ð13Þ

(Otherwise, the ChMHD would have an unstable mode
which is beyond its applicability, and the theory would not
be well defined.) Under this condition, we have

n5 ≈
μ5T2

6
: ð14Þ

Then, the transport coefficients ν and η can be regarded as
constants for static and homogeneous T.
It should be remarked that, even in the Maxwell-Chern-

Simons equations (or anomalous Maxwell equations),
which correspond to the limit v → 0 of the ChMHD, the
condition (13) must be satisfied to use the notion of the
conductivity σ itself. This is because σ is well defined only
at the long length scale l ≫ lmfp. A related point was
emphasized in Ref. [24] from the viewpoint of the micro-
scopic kinetic theory (see also Ref. [25]).
If one is interested in the physics beyond this regime,

μ5 ≳ T, one needs to use the chiral kinetic theory [15–17]
instead of the ChMHD, as was done in Ref. [24]. This is
beyond the scope of the present paper.

C. Conservation laws

In the usual MHD, the magnetic helicity (or the Chern-
Simons number),

HB ¼
Z

d3xA · B; ð15Þ

can be shown to be an approximate conserved quantity for
sufficiently large Reynolds numbers [26,32]. On the other
hand, one expects thatHB is not a conserved quantity in the
ChMHD due to the CPI. In the following, we consider the
modifications to the conventional conservation laws.
Using the ChMHD equations above, we obtain the time

derivative of the energy E and the magnetic helicity HB as

_E ¼ −
Z

d3x½−κBηB · ð∇ × BÞ þ ηð∇ × BÞ2

þ νðϵþ PÞð∇ × vÞ2�; ð16Þ

_HB ¼ 2η

Z
d3x½κBB2 − B · ð∇ × BÞ�: ð17Þ

Here the terms with the coefficient κB on the right-hand
sides of Eqs. (16) and (17) are the modifications to the usual
MHD. As the other terms contain one more derivative
compared with the κB terms for B ∼ v, the latter terms are
dominant at large length scale, l≳ κ−1B ∼ lCPI. Recalling
that η ≥ 0, we have _HB ≥ 0 for μ5 > 0 in this regime. This
means that the largest change of E and HB occurs at the
scale of the CPI, and so we have _HB= _E ∼ lCPI. Assuming
that the integral scale is also lCPI, we haveHB=E ∼ lCPI. We
thus have _HB=HB ∼ _E=E, and so the magnetic helicity
itself is not a good conserved quantity except for η ¼ 0.
This should be contrasted with the conventional

MHD, where the change of E and HB occurs only at the
scale of dissipation, lmfp. In that case, ð _HB=HBÞ=ð _E=EÞ∼
lmfp=l ≪ 1, andHB is approximately conserved [26]. Here l
is the scale of turbulence that is much larger than lmfp for
large Reynolds numbers.
Although the magnetic helicity alone is not conserved,

one can show that the total helicity, including the helicity of
fermions and the helicity of fluids, is conserved. Indeed,
from Eqs. (11) and (17) [or directly from Eq. (3)], we obtain
the conservation of total helicity [13],

∂tHtot ¼ 0; Htot ≡ C
2
HB þHv þ N5; ð18Þ

where

N5 ≡
Z

d3xn5; Hv ≡
Z

d3xκv · ω ð19Þ

are the helicity (or chiral charge) of fermions and the fluid
helicity, respectively. Note here that the cross helicity
∝
R
μv · B [13] is absent under the local charge neutrality,

μ ¼ 0.

D. Scaling symmetry

We now turn to the scaling symmetry of the ChMHD.
Let us first recall the scaling symmetry of the usual MHD.
For n5 ¼ κB ¼ 0, ignoring the C terms, Eqs. (9) and (10)
are invariant under the scaling [33]

x → lx; t → l1−ht; v → lhv; B → lhB;

ν → l1þhν; η → l1þhη; ð20Þ

where l is the positive scaling factor and h is any real
parameter. The transformation laws for other variables
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follow from Maxwell’s equations (4) as, e.g., E → l2hE.
Imposing the condition that the coefficients ν and η are
nonzero constants, h is fixed as a unique value, h ¼ −1. On
the other hand, in the inertial range where the ν and η terms
are negligible, the MHD has generic scaling symmetries
with any h [33].
It is easy to check that ChMHD equations (9)–(11) have

the same scaling symmetry in the absence of the local fluid
helicity (v · ω ¼ 0) if we further impose the following
scaling for μ5 and n5 at the same time4:

μ5 → l−1μ5; n5 → l1þ2hn5: ð21Þ

As μ5 and n5 are related by n5 ∝ μ5 for μ5 ≪ T as shown in
Eq. (14), h is fixed as

h ¼ −1: ð22Þ

Coincidentally, this is the same value as the one required by
constant ν and η.
It should be remarked that the local charge neutrality and

the absence of the local fluid helicity are essential for this
scaling symmetry; if μ ≠ 0, we would have the CVE of the
form j ∝ μμ5ω in Eq. (6), which would violate the scaling
symmetry above. The presence of the local fluid helicity
κv · ω would also break down the scaling symmetry.
In the inertial range, the chiral anomaly with the

coefficient C and the CME with the coefficient κB do
not contribute at all in Eqs. (9) and (10), while the
local fluid helicity κv · ω can. In this case, the ChMHD
has generic scaling symmetries with any h, even in the
presence of the fluid helicity, if we impose the following
scaling for n5:

n5 → l−1þ2hn5: ð23Þ

E. Physical consequences

Let us explore the physical consequences of the scaling
symmetry (21) with h ¼ −1 in the turbulent regime. Our
argument here is analogous to the one in Refs. [33,34]. We
will first leave h unspecified for later purposes and will set
h ¼ −1 later.
We first define the average chiral density,

n̄5ðtÞ≡ 1

V

Z
d3xn5ðx; tÞ; ð24Þ

where V ¼ R
L
2π=K d3x, with 2π=L and K being the infrared

and ultraviolet momentum cutoffs, respectively. In the
following, we will consider the formal limit as L → ∞
and K → ∞. From Eq. (3), and assuming that j5 vanishes at

sufficiently large distances, the time evolution of n̄5ðtÞ is
given by

∂tn̄5 ¼
C
V

Z
d3xE · B ¼

Z
∞

0

dkN ðk; tÞ; ð25Þ

where

N ðk; tÞ ¼ 4πC
V

k2hEðk; tÞ · B�ðk; tÞi; ð26Þ

for an isotropic turbulence.
We also consider the magnetic and kinetic energy

densities in k≡ jkj space:

EBðk; tÞ ¼
2πk2

ð2πÞ3
Z

d3yeik·yhBðx; tÞ · Bðxþ y; tÞi; ð27Þ

Evðk; tÞ ¼
2πk2

ð2πÞ3
Z

d3yeik·yhvðx; tÞ · vðxþ y; tÞi; ð28Þ

and the magnetic and kinetic correlation lengths defined by

ξBðtÞ ¼ 2π

R∞
0 dkk−1EBðk; tÞR∞
0 dkEBðk; tÞ

; ð29Þ

ξvðtÞ ¼ 2π

R∞
0 dkk−1Evðk; tÞR

∞
0 dkEvðk; tÞ

; ð30Þ

respectively.
Let us now look into the scaling symmetries of N ðk; tÞ,

EBðk; tÞ, and Evðk; tÞ. From Eq. (20), they satisfy

N ðl−1k; l1−htÞ ¼ l1þ3hN ðk; tÞ; ð31Þ

EBðl−1k; l1−htÞ ¼ l1þ2hEBðk; tÞ; ð32Þ

Evðl−1k; l1−htÞ ¼ l1þ2hEvðk; tÞ: ð33Þ

We introduce the functions ψnðk; tÞ≡ k1þ3hN ðk; tÞ,
ψBðk; tÞ≡ k1þ2hEBðk; tÞ and ψvðk; tÞ≡ k1þ2hEvðk; tÞ,
such that

ψnðl−1k; l1−htÞ ¼ ψnðk; tÞ; ð34Þ

ψBðl−1k; l1−htÞ ¼ ψBðk; tÞ; ð35Þ

ψvðl−1k; l1−htÞ ¼ ψvðk; tÞ: ð36Þ

These relations mean that ψn, ψB, and ψv are functions of
x≡ k1−ht alone: ψnðk;tÞ¼ψnðk1−htÞ, ψBðk;tÞ¼ψBðk1−htÞ,
and ψvðk; tÞ ¼ ψvðk1−htÞ. Hence, N ðk; tÞ, EBðk; tÞ, and
Evðk; tÞ can be expressed as

N ðk; tÞ ¼ k−1−3hψnðk1−htÞ; ð37Þ
4A partial transformation law (20), which does not take into

account the anomaly relation (11) and the scaling (21), was
previously given in Ref. [18].
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EBðk; tÞ ¼ k−1−2hψBðk1−htÞ; ð38Þ

Evðk; tÞ ¼ k−1−2hψvðk1−htÞ: ð39Þ

Substituting Eqs. (37), (38), and (39) into Eqs. (25), (29),
and (30), respectively, and performing the integral over t
with assuming n̄5ð∞Þ ¼ 0 in the first,5 we have

n̄5ðtÞ ¼ n̄5ðtsÞ
�
t
ts

�1þ2h
1−h

; ð40Þ

ξBðtÞ ¼ ξBðtsÞ
�
t
ts

� 1
1−h
; ð41Þ

ξvðtÞ ¼ ξvðtsÞ
�
t
ts

� 1
1−h
; ð42Þ

where ts is some parameter and

n̄5ðtsÞ ¼
1

1þ 2h
t
1þ2h
1−h
s

Z
∞

0

dxx−
1þ2h
1−h ψnðxÞ; ð43Þ

ξBðtsÞ ¼ 2πt
1

1−h
s

R
∞
0 dxx−

2þh
1−hψBðxÞR∞

0 dxx−
1þh
1−hψBðxÞ

; ð44Þ

ξvðtsÞ ¼ 2πt
1

1−h
s

R∞
0 dxx−

2þh
1−hψvðxÞR

∞
0 dxx−

1þh
1−hψvðxÞ

: ð45Þ

Inserting h ¼ −1, corresponding to the unique scaling
symmetry (22) in the ChMHD, we obtain

n̄5ðtÞ ¼ n̄5ðtsÞ
�
ts
t

�1
2

; ð46Þ

ξBðtÞ ¼ ξBðtsÞ
�
t
ts

�1
2

; ð47Þ

ξvðtÞ ¼ ξvðtsÞ
�
t
ts

�1
2

: ð48Þ

We expect that the solutions of the ChMHD asymptotically
approach these behaviors regardless of the initial condi-
tions. In particular, Eq. (47) and (48) show that both ξBðtÞ
and ξvðtÞ grow with time, meaning that both the magnetic
and kinetic energies are transferred from a small scale to a
larger scale: the inverse energy cascade.
Equation (37) with h ¼ −1 exhibits the same self-similar

inverse cascade of magnetic helicity observed in the
Maxwell-Chern-Simons theory [35]. Our result here pro-
vides its generalization to the ChMHD, together with the
new result (48), even in the presence of the fluid velocity v.

This argument shows that the self-similar behaviors in
Eqs. (37)–(39) with h ¼ −1 can be seen as a consequence
of the scaling symmetry (20) and (21) in the ChMHD.
However, it would break down away from the charge
neutrality or in the presence of fluid helicity, as we have
seen above.

III. CHIRAL HYDRODYNAMICS FOR
NEUTRAL MATTER

We then consider the chiral hydrodynamics for neutral
matter of a single chiral fermion at finite chemical potential
μ ≠ 0. Our primary interest here is the application to the
neutrino hydrodynamics considered in Ref. [13].

A. Hydrodynamic equations

As neutral matter does not couple to electromagnetic
fields, the hydrodynamic equation in this case is

ðϵþ PÞð∂t þ v · ∇Þv ¼ −∇Pþ ν∇2v: ð49Þ

This is the usual relativistic hydrodynamics to the leading
order in v [36]. We here include the contribution −∇P
unlike Eq. (9) in the ChMHD, because we can consider not
only the regime μ ≪ T, but also μ ≫ T in the neutral chiral
hydrodynamics, where μ is generally inhomogeneous (see
below). On the other hand, the current conservation is
modified by the CVE as [13]

∂tðnþ κv · ωÞ þ ∇ · j ¼ 0; ð50Þ
j ¼ nvþ κω; ð51Þ

where κ ¼ ~κ1μ
2 þ ~κ2T2 with some constants ~κ1;2 (see

Ref. [27] for the detailed expressions).
Note that the neutral chiral matter does not have the CPI,

unlike the charged chiral plasmas in Sec. II. Hence, we do
not have the constraint like Eq. (13) in the present case.

B. Scaling symmetry

Let us now consider the scaling symmetry of the chiral
hydrodynamics for neutral matter above. First, when ϵ and
P are constants, Eq. (49) has the following scaling
symmetry:

x→ lx; t→ l1−ht; v→ lhv; ν→ l1þhν; ð52Þ
for any h. However, once the conservation law (50) is taken
into account, this scaling symmetry seems not to hold for
any h, even in the inertial range, at first sight.
In fact, there is a regime where the hydrodynamic

equations above have a scaling symmetry. The point here
is that, despite the absence of the CPI, the number density n
can vary due to the CVE in Eq. (50) [13], so that n must be
regarded as a dynamical variable, nðt; xÞ. We thus impose
the scaling for μ as

5As seen from Eq. (40), this assumption can be satisfied when
h < − 1

2
or h > 1.
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μ → lpμ; ð53Þ

with some real parameter p.
We now show that the chiral hydrodynamics has a

unique scaling symmetry,

h ¼ 0; p ¼ −1; ð54Þ

both for μ ≪ T and μ ≫ T in the inertial range where the ν
term can be ignored.
When μ ≪ T, the thermodynamic quantities and the

transport coefficient κ depend on T and μ as ϵ ∝ T4,
P ∝ T4, n ∝ μT2, and κ ∝ T2 to the leading order in
μ=T ≪ 1. For Eqs. (50) and (51) to possess a scaling
symmetry, n ∼ κv · ω and nv ∼ κω (where “∼” stands for
the same scaling exponent), we must have

p ¼ 2h − 1; hþ p ¼ h − 1: ð55Þ

The solution of these equations is given by Eq. (54). Then it
is easy to check that Eq. (49) satisfies this scaling symmetry
in the inertial range where the dissipative term ν can be
ignored.
When μ ≫ T, on the other hand, we have ϵ ∝ μ4,

P ∝ μ4, n ∝ μ3, and κ ∝ μ2 to the leading order in
T=μ ≪ 1. Imposing a scaling symmetry in Eqs. (50) and
(51), we must have

3p ¼ 2hþ 2p − 1; hþ 3p ¼ hþ 2p − 1; ð56Þ

leading to Eq. (54) again. Similarly to above, Eq. (49)
satisfies this scaling symmetry in the inertial range.
In summary, the neutral chiral hydrodynamics in the

inertial range has the same scaling symmetry (52) and (53)
with h and p given by Eq. (54) both when μ ≪ T and when
μ ≫ T. The exponent h in this case is uniquely determined
by the presence of the CVE, but it is different from Eq. (22)
in the ChMHD. This uniqueness should be contrasted with
the generic scaling symmetries of the usual hydrodynamics
with any h in the inertial range. Note, however, that this
unique scaling symmetry is lost outside the inertial range.

C. Physical consequences

Let us study the physical consequences of the scaling
symmetry (52) and (53) in the chiral hydrodynamics for
neutral matter in the turbulent regime where the kinetic
Reynolds number is sufficiently large. We consider the
kinetic energy density defined in Eq. (28) and the kinetic
correlation length in Eq. (30).
From the scaling symmetry (52), it follows that

Evðl−1k; l1−htÞ ¼ l1þ2hEvðk; tÞ: ð57Þ

Then, we can use the same argument in Sec. II E, leading to
Eq. (39) for the kinetic energy density and Eq. (42) for the
kinetic correlation length.
Inserting h ¼ 0 as required by Eq. (54) in the neutral

chiral hydrodynamics, we arrive at

Evðk; tÞ ¼ k−1ψvðktÞ; ð58Þ

ξvðtÞ ¼ ξvðtsÞ
�
t
ts

�
; ð59Þ

which we expect to hold universally at late times.
Equation (59) shows the inverse energy cascade. Note
here that the time dependence of ξvðtÞ in Eq. (59) is
different from that of ξvðtÞ in Eq. (48) in the ChMHD; ξvðtÞ
in the neutral chiral hydrodynamics grows faster than ξvðtÞ
in the ChMHD because of the different scaling symmetries
between Eqs. (22) and (54).

IV. SUMMARY AND DISCUSSION

In this paper, we found that the chiral (magneto)hydro-
dynamic equations for charged and neutral matter in the
turbulent regime have unique scaling symmetry under
certain conditions. These scaling symmetries dictate the
behaviors of the chiral charge and magnetic and kinetic
correlation lengths: n5ðtÞ ∼ t−1=2 and ξBðtÞ ∼ ξvðtÞ ∼ t1=2 in
charged chiral matter and ξvðtÞ ∼ t in neutral chiral matter
[see Eqs. (46)–(48) and (59)]. These scaling laws suggest
the inverse energy cascade in both charged and neutral
chiral matter.
Among others, our results may have potential relevance

in core-collapse supernovae, where the chiral transport of
neutrinos are expected to play key roles [13]. Since their
dynamical evolution is described by the coupled transport
equations for neutrinos, electrons, and baryons, the simple
scaling symmetries and scaling laws derived here may not
be directly applicable. Nonetheless, the fact that the inverse
energy cascade occurs both in the ChMHD and in neutral
chiral hydrodynamics suggests the tendency toward the
inverse energy cascade in the presence of the chiral trans-
port of neutrinos. If this is the case, it should work
favorably for supernova explosions compared with the
direct energy cascade observed in the conventional neutrino
transport without the effects of chirality or helicity [23]. It
should be important to check the possible inverse cascade
numerically by the future three-dimensional chiral neutrino
radiation hydrodynamics.
For quark-gluon plasmas created in heavy ion collisions,

the bulk fluid motion is relativistic. In this case, because of
the γ factor in relativistic hydrodynamics, γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
,

there is no scaling symmetry like Eqs. (20) and (21), and the
self-similar behaviors and scaling laws like Eqs. (46), (47),
and (48) are lost. The fate of the ChMHD turbulence in these
ultrarelativistic systems would be an interesting question to
be investigated in the future.
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While we have concentrated on the self-similarity of the
chiral (magneto)hydrodynamics in this paper, it would be
interesting to study the possible self-similarity at the level
of the chiral kinetic theory. Finally, one can also ask the
possible effects of finite fermion masses and nonlinear
chiral transport phenomena [37,38] on the scaling laws in
the turbulent regime.
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