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We evaluate the difference between the Casimir free energies corresponding to either grounded or
isolated perfect conductors, at high temperatures. We show that a general and simple expression for that
difference can be given, in terms of the electrostatic capacitance matrix for the system of conductors.
For the case of close conductors, we provide approximate expressions for that difference, by evaluating the
capacitance matrix using the proximity force approximation. Since the high-temperature limit for the
Casimir free energy for a medium described by a frequency-dependent conductivity diverging at zero
frequency coincides with that of an isolated conductor, our results may shed light on the corrections to the
Casimir force in the presence of real materials.
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I. INTRODUCTION

Casimir forces and related phenomena constitute
remarkable macroscopic manifestation of zero point or
thermal fluctuations of the electromagnetic field.
Different high precision experiments have been imple-
mented in recent years in order to measure the Casimir
force with ever increasing detail [1]. In spite of these
efforts, the corresponding comparison between theory
and experiment has not yet been, however, entirely
satisfying [2]. This suggests that further theoretical and
experimental developments may be required in order to
tackle some of the long standing puzzles which arise in
realistic descriptions of the forces and their detailed
properties.
In this paper, we find a general expression for the

difference, ΔF, between the high temperature free energies
for two different cases, according to whether the conductors
are: (a) grounded or (b) isolated. Albeit this is a question
which has been partially addressed in previous works [3,4],
we want to present a fuller answer here, allowing us to
consider different concrete examples.
As we shall see, isolated perfect conductors can be

used to describe, in the high temperature limit, real
materials with a permittivity diverging in the zero-
frequency limit. Therefore, ΔF may be used to account,
in those cases, for real material corrections to the Casimir
effect of grounded conductors at high temperatures. Thus,
even though most experimental setups involve grounded
conductors (in order to minimize spurious electrostatic
effects), the question we address may be relevant to
account for those corrections, apart from its conceptual
interest.

II. FREE ENERGY FOR THE
ELECTROMAGNETIC FIELD

Since our focus shall be on the high temperature limit of
the free energy, we begin by deriving the expression for the
free energy F for the quantum electromagnetic (EM) field
at a finite temperature. It is a function of the inverse
temperature β ¼ T−1 (in our conventions, Boltzmann’s
constant kB ≡ 1). F may be written in terms of the partition
function, Z as follows:

F ¼ −
1

β
log

�
Z
Z0

�
; ð1Þ

where the denominator, Z0, denotes the partition function
for the free (i.e., in the absence of media) EM field. The
effect of that denominator is to subtract the free energy of a
free Bose gas of photons in the absence of the mirrors,
which does not contribute to the force between them.
In the Matsubara formalism, a functional integral expres-

sion for the partition function Z can be constructed by
integrating over field configurations depending on the
spatial coordinates x and the imaginary time x0 ≡ τ. The
fields are periodic, with period β, in the imaginary time.
Denoting by A ¼ ðAμÞ, (μ ¼ 0, 1, 2, 3) the 4-potential in
Euclidean (imaginary time) spacetime, Z is given by:

Z ¼
Z

½DA�e−SinvðAÞ ð2Þ

where SinvðAÞ is the gauge-invariant action for A, while
½DA� is used to denote the functional integration measure
including gauge fixing.
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In terms of the components of the field strength tensor
Fμν ¼ ∂μAν − ∂νAμ, the form of the gauge-invariant action
in the presence of real materials is

SinvðAÞ ¼
Z

β

0

dτ
Z

β

0

dτ0
Z

d3x

�
1

2
F0jðτ;xÞϵðτ− τ0;xÞ

×F0jðτ0;xÞ þ
1

4
Fijðτ;xÞμ−1ðτ− τ0;xÞFijðτ;xÞ

�
;

ð3Þ
where indices from the middle of the Roman alphabet run
over spatial indices (Einstein summation convention has
been adopted), and ϵðτ − τ0;xÞ and μðτ − τ0;xÞ denote the
Euclidean versions of the permittivity and permeability,
respectively (μ−1 is the inverse integral kernel of μ, with
respect to its time-like arguments). Space locality of those
response functions has been assumed implicitly.
It is rather useful to adopt mixed Fourier transformations

for the fields, as well as for the response functions:

Aμðτ;xÞ ¼
1

β

Xþ∞

n¼−∞

~AðnÞ
μ ðxÞeiωnτ

ϵðτ − τ0;xÞ ¼ 1

β

Xþ∞

n¼−∞
~ϵðnÞðxÞeiωnðτ−τ0Þ

μðτ − τ0;xÞ ¼ 1

β

Xþ∞

n¼−∞
~μðnÞðxÞeiωnðτ−τ0Þ ð4Þ

where ωn ≡ 2πn
β (n ∈ Z) are the Matsubara frequencies.

Note that, with the convention above for the definition of
the Fourier expansion, ~AðnÞ

μ is a dimensionless field.
The high temperature (classical) limit is dominated, for a

Bose field, by the n ¼ 0 Matsubara mode. In a previous
work [5], we have shown that the zero mode free energy
can be written as

F ¼ Fs þ Fv; ð5Þ
where Fs corresponds to the free energy of a scalar field in
2þ 1 (Euclidean) dimensions

e−βFs ¼
Z

D ~Að0Þ
0 e−

1
2β

R
d3x~ϵð0ÞðxÞð∂j ~Að0Þ

0
Þ2 ; ð6Þ

while Fv is the free energy of a vector field in 2þ 1
dimensions

e−βFvðψÞ ¼
Z

D ~Að0Þ
j e

−1
β

R
d3x½ 1

4~μð0ÞðxÞ
ð ~Fð0Þ

jk Þ2þ1
2
Ω2

0
ðxÞð ~Að0Þ

j Þ2�
: ð7Þ

Here, we have introduced the object:

Ω2
0ðxÞ≡ lim

n→0
½ω2

n ~ϵ
ðnÞðxÞ� ð8Þ

(note that ~ϵð0Þ, ~μð0Þ and Ω0 are model-dependent).

Let us now discuss the limit of perfectly conducting
materials, from the point of view of the scalar and vector

contributions: regarding the field ~Að0Þ
0 , which behaves as a

2þ 1 dimensional scalar, the infinite permittivity limit
implies that its gradient inside the regions occupied by the
material bodies vanishes identically. Therefore, the field is
constant in those regions.On theother hand, if the conductors
are grounded, those constants must vanish, so that the field
itself is zero. Namely, the scalar field is subjected to Dirichlet
boundary conditions, corresponding to the transverse mag-
netic (TM) EMmode. If the conductors are isolated, the field
can take any value in each nonvacuum region. In this case, the
functional integral should be performed over all possible
configurations, including arbitrary (constant) values on the
surfaces of the conducting bodies.
The vector zero mode, on the other hand, behaves as an

EM field in 2þ 1 dimensions. If Ω0 tends to infinity, then
the EM field will vanish identically on the regions filled up
by media. It then satisfies perfect conductor boundary
conditions. We have shown this to be equivalent to a real
scalar field with Neumann conditions [6], corresponding to
the transverse electric (TE) EM mode.
There is a well-known subtle point in the case of real

materials, which manifests itself when considering two
typical models for the permittivity, namely, the Drude or
plasma models, where the permittivity diverges in the zero
frequency limit. Therefore, in both cases the associated TM
mode contribution is tantamount to that of a scalar field in
the presence of an isolated perfect conductor. There is a
difference, however, in the TE mode contribution for both
models. Indeed, since Ω0 vanishes in the Drude model,
there is no TE contribution to the Casimir free energy,
whilst the plasma model generates a nonvanishing TE
mode. The latter coincides with that of a perfect conductor
in the limit of a high plasma frequency.

III. GROUNDED VS ISOLATED
FREE ENERGIES

In what follows we will consider in detail the scalar TM
contribution, aiming to obtain the difference

ΔF ¼ FðgÞ
s − FðiÞ

s ð9Þ

between grounded and isolated perfect conductor boundary
conditions. In view of the discussion at the end of the
previous section, ΔF describes the difference between the
scalar field term in the free energy of a system of grounded
perfect conductors and that corresponding to the same
geometry but involving materials which are described by
Drude or plasma models.
In order to simplify the notation, we adopt a simpler

notation for the only field we have to deal with hence-

forward, namely: ~Að0Þ
0 ≡ ϕ [we recall that ϕ is dimension-

less, because of the definition for the Fourier transforms
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used in Eq. (4)]. Regarding the geometry, we assume that
the system under consideration consists of N conductors,
each one occupying a volume Vα enclosed by a surface Sα,
with α ¼ 1; 2;…:N.
An intermediate object that may be conveniently used as

an ingredient to obtain both the grounded and isolated
conductors partition functions, is a partition function where
the (constant) value ofϕ on each surfaceSα is fixed to a given
but otherwise arbitrary value ϕα. The partition function
for these particular boundary conditions is denoted by,

Z½fϕαg� ¼
Z

Dϕe−
1
2β

R
d3xð∂jϕÞ2 YN

α¼1

δ½ϕjSα − ϕα�: ð10Þ

Thus, we may obtain the partition functions correspond-
ing to grounded (ZðgÞ) and isolated (ZðiÞ) conductors as
follows [3]:

ZðgÞ ¼ Z½fϕαg�jϕα¼0 ð11Þ
and

ZðiÞ ¼
Z

∞

−∞

�YN
α¼1

dϕα

�
Z½fϕαg�: ð12Þ

It is self-evident that Eq. (12) does not correspond to
grounded conductors, since the values of the potentials at
each surface are not fixed to zero; rather they have to be
integrated out. One can show explicitly that the result of
that integration corresponds to a situation in which the total
charge of each conductor is zero, with vanishing charge
fluctuations (there are of course ϕα fluctuations). We
present a derivation of this property, within the context
of our approach, in the Appendix (see also [7]).
In view of its relevance to both the grounded and isolated

limits, let us then compute Z½fϕαg�. To that end, it is
convenient to perform a shift (translation) in the integration
variables: ϕðxÞ ¼ ~ϕðxÞ þ φðxÞ, where ~ϕ is the (unique)
solution of the classical electrostatic problem with pre-
scribed boundary conditions for the potential on the
conductors:

∇2 ~ϕðxÞ ¼ 0; ~ϕjSα ¼ ϕα; ð13Þ

and φðxÞ is a scalar field satisfying Dirichlet boundary
conditions. It is rather straightforward to show that, after
the shift, we have:

Z½fϕαg� ¼ e−
1
2β

P
γδ
Cγδϕγϕδ

Z
Dφe−

1
2β

R
d3xð∂jφÞ2 YN

α¼1

δ½φjSα �

¼ e−
1
2β

P
γδ
CγδϕγϕδZðgÞ; ð14Þ

where the Cγδ denote the capacitance coefficients of the
system of conductors.

As discussed previously, ZðiÞ is obtained by performing
a Gaussian integral over the constant values of the potential
on the conductors, obtaining

ΔF ¼ −
1

2β
log½detðCÞ=βN �; ð15Þ

where C is the capacitance matrix. This is the main result of
this work. In what follows we will omit the factor βN inside
the logarithm, since it is irrelevant when computing the
Casimir forces between conductors.

IV. EXAMPLES AND PFA APPROXIMATION

In this section we evaluate ΔF for some particular
geometries, and analyze its behavior at long and short
distances. The latter is elucidated by using an estimation of
the capacitance matrix, obtained by using the proximity
force approximation (PFA) [8].

A. Sphere-sphere geometry

Let us consider two facing spheres of equal radius a,
separated by a distance d between centers. The elements of
the capacitance matrix for this geometry are given by [9]

C11 ¼ C22 ¼ a sinhψ
X∞
n¼1

cschðð2n − 1ÞβÞ;

C12 ¼ C21 ¼ −a sinhψ
X∞
n¼1

cschð2nψÞ; ð16Þ

where coshψ ≡ d=2a. Inserting Eq. (16) into Eq. (15) one
obtains an exact analytic expression for ΔF in this
geometry.
When both spheres are very close, d → 2a, we define

ξ ¼ ðd − 2aÞ=2a and take the limit ξ → 0 in Eqs. (16). It
can be shown that [10]

C11 ¼C22 ¼ a

�
−
1

4
logξþ γ

2
þ 3

4
log2þOðξ logξÞ

�
;

C12 ¼C21 ¼ a

�
1

4
logξ−

γ

2
þ 1

4
log2þOðξ logξÞ

�
; ð17Þ

where γ denotes the Euler-Mascheroni constant. In this
approximation:

βΔF ≈ −
1

2
log ð− log ξÞ: ð18Þ

We note that the last result coincides with the one
obtained in [4], where the authors computed the high
temperature Casimir free energies for the same geometry,
considering Dirichlet and metallic boundary conditions, the
latter described by a Drude model. It has also been shown
there that, in the short distance limit, one has

βFðgÞ
s ≈ −

ζð3Þ
32ξ

þ 1

48
log ξ; ð19Þ
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where the leading term is the usual PFA, while the next to
leading order (NTLO) can be obtained using the derivative
expansion approach [11,12]. We see that the difference ΔF
is much smaller than the NTLO as ξ → 0. Note, however,
that due to the presence of the double logarithm this will
only happen for exceedingly small values of ξ (and there-
fore the double logarithmic term becomes the main
correction to the PFA for typical values of d and a).
Let us now consider the opposite limit, d ≫ a (large

separation), where the capacitance coefficients have the
expansions:

C11 ¼ C22 ¼ a

�
1þ a2

d2
þ 2a4

d4
þ � � �

�
;

C12 ¼ C21 ¼ −a
�
a
d
þ a3

d3
þ 3a5

d5
þ � � �

�
: ð20Þ

Inserting this result into Eq. (15) we obtain:

βΔF ≈ −
1

2

�
a2

d2
þ 5

2

a4

d4

�
: ð21Þ

The free energy for grounded spheres has been obtained
in Ref. [4]. Performing an expansion of their exact result in

the large distance limit, we get FðgÞ
s ≈ ΔF, and therefore

FðiÞ
s ¼ OððadÞ6Þ, which shows that the interaction between

isolated spheres is dominated by the dipole-dipole inter-
action, as discussed in Ref. [3] for compact objects using a
multipole expansion.
This example illustrates a general characteristic of the

difference between the free energies for grounded and

isolated objects. While at short distances both FðgÞ
s and FðiÞ

s

have the same leading order behavior, at long distances the
fluctuations of the charges (that occur for grounded con-
ductors and not for isolated ones), radically change the
nature of the leading interaction between conductors.

B. Sphere-plane geometry

We shall now consider a sphere of radius a, whose center
is at a distance d from an infinite plane. The elements of the
capacitance matrix can be obtained as a limiting case of a
geometry involving two separated spheres with different
radii a and b, in the limit b → ∞ [9]. In this situation,
C22 ≈ b while

C11 ¼ −C12 ¼ a sinh α
X∞
n¼1

cschðnαÞ; ð22Þ

where cosh α ¼ d=a. Therefore, the difference between
free energies reads

βΔF ¼ −
1

2
logðC11b − C2

11Þ ¼ −
1

2
logC11 þ const ð23Þ

where the constant, independent of d and diverging as
b → ∞, is irrelevant for the computation of the force
between sphere and plane.

In the short distance limit α → 0, the sum that defines the
coefficient C11 can be approximated by

X∞
n¼1

cschðnαÞ ≈
Z

∞

1

dn csch ðnαÞ ¼ 1

α
log

�
coth

�
α

2

��

ð24Þ
and then

βΔF ≈ −
1

2
log

�
1

2
log

�
a

d − a

��
: ð25Þ

Once again, there is a double log term in the free energy for
isolated objects. This behavior has been found numerically
for the same geometry, when considering the classical limit
of the Casimir interaction for Drude metallic boundary
conditions [13].

C. General case: Two close conductors

In view of the examples above, the question presents
itself about whether the appearance of double logarithms in
ΔF at close distances is a general feature or not, i.e. if they
always appear (independently of the geometry of the
conductors involved). Exploration of other simple geom-
etries shows that this is not the case. Indeed, the determi-
nant of C does not show a logarithmic behavior at short
distances for some elementary examples, like concentric
cylinders or concentric spheres. One can show that this is
also the case for eccentric cylinders or spheres, as well as
for a cylinder in front of a plane.
In a general case, assuming that the geometry is such that

one can use the PFA to estimate the capacitance matrix
elements, the electrostatic energy between two conductors
held at potentials ϕ1 and ϕ2 respectively can be approxi-
mated by [14]

UPFA ¼ 1

2
ðϕ1 − ϕ2Þ2

Z
d2x

1

dðxÞ≡
1

2
CPFAðϕ1 − ϕ2Þ2;

ð26Þ
where dðxÞ denotes the local distance between facing
surface elements on both conductors. Note that, in this
approximation, we have C11 ¼ C22 ¼ −C12 ¼ −C21 ¼
CPFA and therefore detC vanishes.
In general, including departures from the PFA result, we

will have C11 ¼ CPFA þ Δ11, C22 ¼ CPFA þ Δ22, and
C12 ¼ −CPFA þ Δ12, with Δαβ denoting the contributions
coming from the subleading corrections. Therefore

βΔF ≈ −
1

2
logðCPFAÞ −

1

2
logðΔ11 þ Δ22 þ 2Δ12Þ

≈ −
1

2
logðCPFAÞ; ð27Þ

where we have assumed that the contributions coming from
the subleading corrections are much smaller than the
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leading PFA term [15]. From Eq. (27) we can derive the
form of the short distance behavior, by using the corre-
sponding expressions for CPFA. They are shown, for all the
examples mentioned above, in Table I.

V. DISCUSSION

In this paper we have computed the difference between
the high temperature Casimir free energies for a system of
conductors, when these are either grounded or isolated. We
have shown that difference comes from the TM Matsubara
zero mode of the electromagnetic field, which can be
described by a single scalar field. When the conductors are
grounded, the scalar field satisfies Dirichlet boundary
conditions. On the other hand, when the conductors are
isolated, the scalar field may take any constant value on
the surface of each conductor, and those constant values
have to be integrated. Precisely because of that constant-
potential integration, the difference ΔF becomes propor-
tional to log detC, where C denotes the (electrostatic)
capacitance matrix of the system.
We have evaluated explicitly ΔF for particular geom-

etries, and found a general expression for the case of two
close conductors, using the PFA. Note that the use of the
PFA for the approximate evaluation of ΔF could be
convenient to derive, for example, the free energy for
isolated conductors based on the knowledge of the result
corresponding to grounded ones. The latter could be known
by the use of any other method, not necessarily the PFA.
Essentially the same problem of evaluating the difference

between the two free energies we have considered has been
studied before [3], but an important caveat: in that
reference, a multipole expansion is introduced at an early
stage in the calculation. This is, indeed, adequate, in order
to analyze the case of conductors when they are separated
by long distances, but it cannot be used to write an
expression of general validity. As we have shown here,
such an expression may be written in terms of the
determinant of the capacitance matrix of the system.
As shown in [3], in the long distance limit, the interaction

between conductors changes drastically between the

grounded and isolated case: the former is dominated by
the monopole-monopole term, while, in the latter the
leading interaction comes from the dipole-dipole term.
We have analyzed in some detail the behavior of ΔF in

the opposite regime to the one of [3], namely, at short
distances. This is the case that should be more relevant to
Casimir effect calculations. In that context, we note that in
previous works it has been shown that, at short distances,
the corrections to PFA involve a double logarithm behavior
in the free energy, for the particular cases of a sphere in
front of a plane [13], and also for two spheres [4]. We have
shown that those double logarithmic terms come from the
logarithmic behavior of the capacitance coefficientC11, and
that their occurrence is not a general phenomenon, but in
can nevertheless be predicted using an estimation of the
capacitance matrix based on the PFA.
It is worthwhile to point out that the short distance

corrections for isolated objects may formally be regarded
as a next to NTLO correction to the PFA for grounded ones.
Indeed, we have shown this to be the case for the concrete
example of the sphere-sphere geometry. Note also that, in
this context, when considering the corrections to the PFA
calculation of the free energy for isolated objects, one gets
contributions from two qualitatively different origins: on the
one hand, one has the terms which arise from ΔF. On the
other, we have the ones that proceed from the free energy for
grounded conductors. The derivative expansion (DE)
approach [11,12] has been used for the term which comes
from theDirichlet (grounded) term, and it gives of course the
same result for either isolated and grounded conductors,
since the difference between their free energies is in ΔF.
Finally, we note that there is another important difference

between the contributions to the free energy of two isolated
conductors coming from the two terms which may be
identified as corresponding to grounded conductors and to
ΔF. The interaction energy in the former, for many
interesting cases, can be written as a functional of the
(space dependent) vertical distance between the two sur-
faces. This functional becomes, in the limit of flat and
parallel conductors, extensive in their area. This is the
starting point of the DE [11], which for the Dirichlet case
generates a correction depending on the distance function
and its derivatives. The reason for this term to be extensive
in the area, is that it proceeds from the contribution of field
fluctuations, which form a continuum of degrees of free-
dom (to be integrated out), the number of which goes like
the area of the surfaces times the differential volume in
momentum space.
The ΔF term is, on the other hand, the result of

evaluating the integral over just one (constant) mode: a
single degree of freedom. Therefore there is no area factor
in its contribution, even for flat parallel conductors. Even
though the capacitance coefficients do depend on the areas,
they appear inside a logarithm (in spite of the fact that the
PFA may be correctly applied to calculate the capacitance

TABLE I. Capacitance matrix elements in the PFA for different
geometries CPFA ¼ C11 ¼ C22 ¼ −C12. a and b denote the radii
of spheres or cylinders, h is the distance between conducting
surfaces, and L is the cylinders’ length.

Geometry CPFA

Sphere—sphere − a
4
log h

a

Sphere—plane − a
2
log h

a

Concentric spheres a2
h

Concentric cylinders La
2h

Cylinder—plane L
4
ffiffi
2

p
ffiffi
a
h

p
Eccentric cylinders L

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ab

2ðb−aÞh
q
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coefficients). We see that the same cannot be done to
evaluate, say, the ΔF term as the result of a single PFA (or
even DE) calculation. Indeed, as shown in [11], the PFA is
obtained as the “effective potential” for the corresponding
functional. Namely, the ratio between the functional and the
area, in the infinite area limit, for a constant distance
between plates. And this ratio vanishes for ΔF.
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APPENDIX: PARTITION FUNCTION
FOR ISOLATED CONDUCTORS

In this Appendix we prove that the partition function
that includes an integration over the values of the surface
potentials

ZðiÞ ¼
Z

∞

−∞

�YN
α¼1

dϕα

�
Z½fϕαg� ðA1Þ

corresponds to an isolated conductor with fixed vanishing
total charge. To this end, we introduce a generating func-
tional for the mean values hQn1

α1Q
n2
α2…:i:

Z½fμαg� ¼
Z

∞

−∞

�YN
α¼1

dϕα

�Z
Dϕe−

1
2β

R
d3xð∂jϕÞ2

×
YN
α¼1

δ½ϕjSα − ϕα�e−μαQα ðA2Þ

and prove that it does not depend on μα. The charge on each
conductor reads

Qα ¼ −
Z
Sα

~∇ϕ · ~dS: ðA3Þ

In order to compute the functional integral in Z½fμαg�,
we proceed as before and perform a shift in the integration
variables ϕ ¼ ~ϕþ φ [see Eq. (13)]. In terms of the new
integration variable, φ, the charge is given by

Qα ¼ ~Qα −
Z
Sα

~∇φ · ~dS; ðA4Þ

where ~Qα is the charge associated to the classical field ~ϕ.
We obtain:

Z½fμαg� ¼
Z

∞

−∞

�YN
α¼1

dϕα

�
e−

1
2β

P
γδ
Cγδϕγϕδ

× e−
P

γδ
μγCγδϕδ

Z
Dφe−

1
2β

R
d3xð∂jφÞ2

× e
P

α
μα
R
Sα

~∇φ· ~dS YN
α¼1

δ½φjSα ��; ðA5Þ

which are two independent integrals. The first one [upper
line in Eq. (A5)] is an ordinary Gaussian integral. The
second one [lower line in Eq. (A5)] is a functional integral
for a free scalar field satisfying Dirichlet boundary con-
ditions, in the presence of a source J defined by

X
α

μα

Z
Sα

~∇φ · ~dS≡
Z

d3xJφ; ðA6Þ

so

J ¼ −
X
α

μα

Z
Sα

~dSα · ~∇δðx − xSαÞ; ðA7Þ

where xSα denotes points on the surface Sα. Therefore

Z½fμαg� ¼ e
β
2

P
γδ
Cγδμγμδe

β
2

R
d3x

R
d3yJðxÞGðx;yÞJðyÞ; ðA8Þ

whereG is the Green’s function of the electrostatic problem

∇2Gðx; yÞ ¼ −δðx − yÞGjSα ¼ 0; ðA9Þ

and we omitted an overall constant that is independent
of μα.
Using the explicit expression for the current J, and after

integration by parts we obtain

Z
d3x

Z
d3yJðxÞGðx; yÞJðyÞ

¼
X
αβ

μαμβ

Z
dSα

Z
dSβ∂nα∂nβG; ðA10Þ

where we recognize the (not so well known) formal
expression of the coefficients of capacitance in terms of
the Green’s function [16]

Cγδ ¼ −
Z

dSγ

Z
dSδ∂nγ∂nδG: ðA11Þ

Combining Eqs. (A8)–(A11) we see that Z½fμαg� does not
depend on μα. Therefore, all the mean values hQn1

α1Q
n2
α2…:i

vanish.
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