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We study Gaussian quantum steering and its asymmetry in the background of a Schwarzschild black
hole. We present a Gaussian channel description of quantum state evolution under the influence of
Hawking radiation. We find that thermal noise introduced by the Hawking effect will destroy the
steerability between an inertial observer Alice and an accelerated observer Bob who hovers outside
the event horizon, while it generates steerability between Bob and a hypothetical observer anti-Bob inside
the event horizon. Unlike entanglement behaviors in curved spacetime, here the steering from Alice to Bob
suffers from a “sudden death” and the steering from anti-Bob to Bob experiences a “sudden birth” with
increasing Hawking temperature. We also find that the Gaussian steering is always asymmetric and the
maximum steering asymmetry cannot exceed ln 2, which means the state never evolves to an extremal
asymmetry state. Furthermore, we obtain the parameter settings that maximize steering asymmetry and find

that (i) s ¼ arccosh cosh2 r
1−sinh2 r is the critical point of steering asymmetry and (ii) the attainment of maximal

steering asymmetry indicates the transition between one-way steerability and both-way steerability for the
two-mode Gaussian state under the influence of Hawking radiation.

DOI: 10.1103/PhysRevD.93.125011

I. INTRODUCTION

Einstein-Podolsky-Rosen steering [1,2], an intermedi-
ate type of quantum correlation between entanglement
and Bell nonlocality, has recently attracted renewed
interest [3–11]. Steering is a quantum phenomenon that
allows one to manipulate the state of one subsystem by
performing measurements on the other entangled sub-
system. After being discovered by Schrödinger [1,2], the
concept of quantum steering was studied by Einstein,
Podolsky, and Rosen (EPR) in their well-known 1935
paper [12], and was treated as the core concept of the
EPR paradox [13]. The experimental detection of
quantum steering, i.e., for the demonstration of the
EPR paradox, was first proposed by Reid [14], after
which several experiments were performed to demon-
strate quantum steering and its asymmetry [15–18].
Most recently, Kogias et al. [19] proposed an opera-
tional measure of quantum steering for bipartite
Gaussian states of continuous variable systems. They
found that for two-mode Gaussian states, the quantum
steering reduces to a form of coherent information and
the asymmetry of steering cannot exceed ln 2 [19].
On the other hand, relativistic quantum information

[20–33], the study of quantum information processes
and concepts in a relativistic setting, has been a blooming

area of research for both conceptual and experimental
reasons. Understanding quantum phenomena in a relativ-
istic framework is necessary because the realistic quantum
systems are essentially noninertial. It was experimentally
demonstrated that the gravitational frequency shift effects
have a remarkable influence on the precision of atomic
clocks for a variation of 0.33 m in height [34]. In addition,
relativistic effects of the Earth notably affect satellite-based
quantum information processing tasks [35–37] and quan-
tum clock synchronization [38]. Quantum information also
plays a prominent role in the study of the thermodynamics
and information loss problem [39,40] of black holes.
Therefore, it is of great interest to study how relativistic
effects influence the properties of quantum steerability [41]
in a curved spacetime.
In this work we present a quantitative investigation of

Gaussian quantum steerability for free bosonic modes in
the background of an eternal Schwarzschild black hole
[27]. We assume that Alice and Bob initially share a two-
mode squeezed Gaussian state with squeezing s [22]. Alice
is a Kruskal observer who stays stationary at an asymp-
totically flat region (or freely falls into the black hole),
while Bob is a Schwarzschild observer who hovers near the
event horizon of the black hole with uniform acceleration.
A vacuum state observed by Alice would be detected as a
thermal state from Bob’s viewpoint. From a general
relativity viewpoint, the temperature T of the Hawking
thermal bath depends on surface gravity κ of the black hole.
In a quantum information scenario, such a process can be
described as a bosonic amplification channel acting on
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Bob’s quantum state [22,23]. We will calculate the
Gaussian quantum steering GA→B, which quantifies to
what extent Bob’s mode can be steered by Alice’s
measurements, and the steering GB→A, to verify the
asymmetric property of steerability in the curved space-
time. We find that the quantum steerability between Alice
and Bob decreases with the increase of the Hawking
temperature parameter r, while the steerability between
Bob and anti-Bob segregated by the event horizon is
generated at the same time. We also find that the attain-
ment of maximal steering asymmetry indicates the tran-
sition between one-way steerability and both-way
steerability for two-mode Gaussian states under the
influence of Hawking radiation.
The outline of the paper is as follows. In Sec. II we

briefly introduce the definition and measure of bipartite
Gaussian quantum steering. In Sec. III we discuss how
the Unruh-Hawking effects of the black hole can be
described by a bosonic amplification channel acting on
the covariance matrix of a bipartite system. In Sec. IV we
study the behavior of Gaussian quantum steering and its
asymmetry in the background of a Schwarzschild black
hole. The last section is devoted to a brief summary.

II. DEFINITION AND MEASUREMENT
OF GAUSSIAN QUANTUM STEERING

Let us first briefly introduce the definition and meas-
urement of Gaussian quantum steering. We consider a
continuous variable quantum system [42] represented by
(nþm) bosonic modes of a bipartite system ρAB,
composed of a subsystem A of n modes and a subsystem
B of m modes. For each mode i, the corresponding

phase space variables can be denoted by âAi ¼ x̂Ai þip̂A
iffiffi

2
p

and âBi ¼ x̂Bi þip̂B
iffiffi

2
p . The phase-space operators x̂AðBÞi ,

p̂AðBÞ
i can be grouped together into a vector R̂ ¼

ðx̂A1 ; p̂A
1 ;…; x̂An ; p̂A

n ; x̂B1 ; p̂
B
1 ;…; x̂Bm; p̂B

mÞT, which satisfies
the canonical commutation relations ½R̂i; R̂j� ¼ iΩij, with

Ω ¼ ⨁
nþm

1

ð 0 1

−1 0
Þ being the symplectic form. Any

Gaussian state ρAB is completely specified by its first
and second statistical moments. The latter is a covariance
matrix with elements σij ¼ Tr½fR̂i; R̂jgþρAB� and can
always be put into a block form,

σAB ¼
�

A C

CT B

�
: ð1Þ

The covariance matrix σAB can describe a physical quantum
state if and only if (iff) it satisfies the bona fide uncertainty
principle relation

σAB þ iðΩABÞ ≥ 0: ð2Þ

Now let us give the definition of steerability. After Alice
performs a set of measurementsMA, the bipartite state ρAB
is A → B steerable (i.e., Alice can steer Bob) iff it is not
possible for every pair of local observables RA (on A with
outcome rA) and RB to express the joint probability as
PðrA;rBjRA;RB;ρABÞ¼

P
λ℘λ℘ðrAjRA;λÞPðrBjRB;ρλÞ [3].

In other words, at least one measurement pair (RA and
RB) is required to violate this expression when ℘λ is fixed
across all measurements. Here ℘λ and ℘ðrAjRA; λÞ are
probability distributions and PðrBjRB; ρλÞ is the condi-
tional probability distribution associated to the extra
condition of being evaluated on the state ρλ. It has been
shown in [3] that a general (nþm)-mode Gaussian state
ρAB is A → B steerable by Alice’s Gaussian measure-
ments iff the condition

σAB þ ið0A ⊕ ΩBÞ ≥ 0 ð3Þ

is violated. Henceforth, a violation of (3) is necessary and
sufficient for the Gaussian A → B steerability.
One can define the Gaussian A → B steering to quantify

how much a bipartite Gaussian state σAB is steerable by the
measurements performed by Alice,

GA→BðσABÞ ≔ max

�
0;−

X
j∶ν̄Bj <1

lnðν̄Bj Þ
�
; ð4Þ

where fν̄Bj g are the symplectic eigenvalues of the Schur
complement of A in the covariance matrix σAB [19].
The A → B steering vanishes iff the state described by

σAB is nonsteerable by Alice’s measurements, and it
generally quantifies the amount by which the condition
(3) fails to be fulfilled. The Gaussian steerability A → B
acquires a particularly simple form when the steered party
Bob has one mode only (i.e., m ¼ 1) [19],

GA→BðσABÞ ¼ max

�
0;
1

2
ln

detA
det σAB

�

¼ maxf0;SðAÞ − SðσABÞg; ð5Þ

where SðσÞ ¼ 1
2
lnðdet σÞ is the Rényi-2 entropy [43].

Similarly, a corresponding measure of Gaussian B → A
steerability can be obtained by swapping the roles of A
and B, resulting in an expression like Eq. (5). Unlike
quantum entanglement, the quantum steering is an
asymmetric property [19]: a quantum state may be
steerable from Alice to Bob, but not vice versa. In a
quantum information scenario, quantum steering corre-
sponds to the task of entanglement distribution by an
untrusted party [3]. If Alice and Bob share a state that is
steerable from Alice to Bob, then Alice is able to
convince Bob (who does not trust Alice) that their shared
state is entangled by performing local measurements and
classical communication [3].
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III. BOSONIC AMPLIFICATION CHANNEL
DESCRIPTION OF THE HAWKING EFFECT

In this section we will show how the Unruh-Hawking
radiation of the black hole can be described by a bosonic
amplification channel [23], which is a Gaussian channel.
The spacetime background near a Schwarzschild black hole
is described by the metric

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ; ð6Þ

whereM represents the mass of the black hole. Throughout
this paper we set G ¼ c ¼ ℏ ¼ κB ¼ 1.
In the background of the black hole, a massless bosonic

field ϕ obeys the Klein-Gordon equation [44]

1ffiffiffiffiffiffi−gp ∂
∂xμ

� ffiffiffiffiffiffi
−g

p
gμν

∂ϕ
∂xν

�
¼ 0: ð7Þ

Solving Eq. (7) near the event horizon, we obtain a set of
positive-frequency outgoing modes propagating in the
regions inside and outside of the event horizon,

Φþ
Ω;in ∼ ϕðrÞeiωu; ð8Þ

Φþ
Ω;out ∼ ϕðrÞe−iωu; ð9Þ

where u ¼ t − r� and r� ¼ rþ 2M ln r−2M
2M is the tortoise

coordinate in Schwarzschild spacetime.
Equations (8) and (9) can be used to expand the scalar

field Φ as

Φ ¼
Z

dΩ½âoutΩ Φþ
Ω;out þ b̂out†Ω Φ−

Ω;out

þ âinΩΦ
þ
Ω;in þ b̂in†Ω Φ−

Ω;in�; ð10Þ

where âoutΩ and b̂out†Ω are the bosonic particle annihilation
and antiboson creation operators acting on the state in the
exterior region of the black hole, and âinΩ and b̂in†Ω are the
boson annihilation and antiboson creation operators acting
on the interior region states. The Schwarzschild vacuum
j0iS can be defined as âoutΩ j0iS ¼ âinΩj0iS ¼ 0; therefore, the
modes Φ�

Ω;out and Φ�
Ω;in are usually called Schwarzschild

modes [27,29,45–47].
Making an analytic continuation for Eqs. (8) and (9), we

find a complete basis for positive energy modes, i.e., the
Kruskal modes, according to the suggestion of Domour
and Ruffini [48]. The Kruskal modes can be used to
define the Hartle-Hawking vacuum, which corresponds
to the Minkowski vacuum in flat spacetime. Then, we can
quantize the massless scalar field in the Schwarzschild and
Kruskal modes, respectively [24,29], and can obtain the

Bogoliubov transformations [44,49] between the modes
and operators in different coordinates. However, as per-
formed in [46], an inertial observer Alice has the freedom to
create excitations in any accessible mode Ωj, ∀j. Hence,
one cannot map a single-frequency Kruskal mode into a set
of single-frequency modes in Schwarzschild coordinates
[46]. To avoid this obstacle we employ the Unruh basis,
which provides an intermediate step between the Kruskal
and Schwarzschild modes. The relations between the
Unruh and Schwarzschild operators take the form

CΩ;R ¼ ðcosh rΩâΩ;out − sinh rΩb̂
†
Ω;inÞ;

CΩ;L ¼ ðcosh rΩâΩ;in − sinh rΩb̂
†
Ω;outÞ;

D†
Ω;R ¼ ð− sinh rΩâΩ;out þ cosh rΩb̂

†
Ω;inÞ;

D†
Ω;L ¼ ð− sinh rΩâΩ;in þ cosh rΩb̂

†
Ω;outÞ; ð11Þ

where sinh rΩ ¼ ðe2πΩ
κ − 1Þ−1

2 and κ is the surface gravity of
the black hole, which relates the Hawking temperature T of
the black hole by T ¼ κ=2π.
A generic Schwarzschild-Fock state jnm; pqiΩ describ-

ing both particles and antiparticles can be written as

jnm;pqiΩ ≔
â†nΩ;outffiffiffiffiffi

n!
p b̂†mΩ;inffiffiffiffiffiffi

m!
p b̂†pΩ;outffiffiffiffiffi

p!
p â†qΩ;inffiffiffiffiffi

q!
p j0iS; ð12Þ

where the � sign denotes the particle and antiparticle,
respectively. This allows us to write the Unruh vacuum as
[45,47]

j0ΩiU ¼ 1

cosh r2Ω

X∞
n;m¼0

tanh rnþm
Ω jnn;mmiΩ; ð13Þ

where j0ΩiU is a shortcut notation used to underline that
each Unruh mode Ω is mapped into a Schwarzschild
mode Ω.
One-particle Unruh states are defined as

j1jiþU ¼ c†Ω;Uj0iH, j1ji−U ¼ d†Ω;Uj0iH, where the Unruh par-
ticle and antiparticle creation operators are defined as linear
combinations of the two Unruh operators c†Ω;U ¼ qRC

†
Ω;R þ

qLC
†
Ω;L and d†Ω;U ¼ qRD

†
Ω;R þ qLD

†
Ω;L, where qR, qL sat-

isfy jqRj2 þ jqLj2 ¼ 1. The operator c†Ω;U indicates the
creation of a pair of particles [29], i.e., a boson with mode
Ω in the exterior region and an antiboson in the interior
region of the black hole. Similarly, the creation operator
d†Ω;U means that an antiboson and a boson are created
outside and inside the event horizon, respectively. The
particles and antiparticles can radiate randomly toward the
inside and outside regions from the event horizon with the
total probability jqRj2 þ jqLj2 ¼ 1. In this situation, jqRj ¼
1 means that all the particles move toward the black hole
exteriors while all the antiparticles move to the inside
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region [29]; i.e., only particles can be detected as Hawking
radiation. If we fix qR ¼ 1 and assume that Bob has a
detector sensitive only to the particle modes, Eq. (13)
reduces to j0ΩiH ¼ 1

cosh rΩ

P∞
n¼0 tanh r

n
ΩjnniΩ and can be

described by a bosonic amplification channel [23,46].
Then, the effect of Hawking radiation corresponds to a
two-mode squeezing operator acting on the input state
jψ0iout for Bob,

ρout ¼ trinfÛout;inðrΩÞ½ðjψ0ihψ0jÞout
⊗ ðj0ih0jÞin�Û†

out;inðrΩÞg; ð14Þ

where Ûout;inðrΩÞ ¼ erΩðb̂
†
Ω;outb̂

†
Ω;in−âΩ;outâΩ;inÞ is the two-mode

squeezing operator. Hereafter we write rΩ as r for con-
venience. It is worth noting that the squeezing trans-
formation Ûout;inðrÞ is a Gaussian operation; it will
preserve the Gaussianity of the input states. A symplectic
phase-space representation of the two-mode squeezing
operation Ûout;inðrÞ has the form

SB;B̄ðrÞ ¼

0
BBB@

cosh r 0 sinh r 0

0 cosh r 0 − sinh r

sinh r 0 cosh r 0

0 − sinh r 0 cosh r

1
CCCA: ð15Þ

IV. THE EFFECT OF HAWKING RADIATION
ON GAUSSIAN QUANTUM STEERABILITY

In this paper we study a massless scalar field ϕ for two
Unruh modes A and B whose state, as prepared in an
inertial frame, is initialized in a pure, entangled Gaussian
two-mode squeezed state with squeezing s [22]. The initial
state can be described from an inertial perspective, via its
covariance matrix

σðMÞ
AB ðsÞ ¼

0
BBB@

C2 0 S2 0

0 C2 0 −S2

S2 0 C2 0

0 −S2 0 C2

1
CCCA; ð16Þ

where C2 ¼ coshð2sÞ and S2 ¼ coshð2sÞ, and the state is
prepared in Unruh modes A and B. From Eq. (14) one can
see that the change from Unruh modes to Schwarzschild
modes corresponds to a two-mode squeezing operation
associating to the symplectic transformation SB;B̄ðrÞ. Under
such transformation, mode B is mapped into two sets of
Schwarzschild regions for the exterior region (out) and the
interior region (in) of the black hole, respectively. From an
inertial viewpoint, the system is bipartite, but an extra set of
modes B̄ becomes relevant from the perspective of a
Schwarzschild observer. Therefore, a complete description
of the system involves three modes: mode A, described by

Alice; mode B, described by the Schwarzschild observer
Bob; and mode B̄; described by a hypothetical observer
anti-Bob confined inside the event horizon. The covariance
matrix of the Gaussian state describing the complete system
is given by [22]

σðaÞABB̄ðs; rÞ ¼ ½IA ⊕ SB;B̄ðrÞ�½σðMÞ
AB ðsÞ ⊕ IB̄�½IA ⊕ SB;B̄ðrÞ�;

ð17Þ

where SB;B̄ðrÞ is the phase-space representation of the two-
mode squeezing operation, and we use the fact that the
covariance matrix of a vacuum state is an identity matrix.
Because the exterior region is causally disconnected

from the interior region of the black hole, Alice and Bob
cannot access mode B̄ inside the event horizon [24]. Taking
the trace over mode B̄, we obtain covariance matrix
σABðs; rÞ for Alice and Bob,

σABðs; rÞ ¼
�
AAB CAB
CTAB BAB

�
; ð18Þ

with elements AAB¼coshð2sÞI2, CAB¼½coshðrÞsinhð2sÞ�
Z2, and BAB ¼ ½coshð2sÞ cosh2ðrÞ þ sinh2ðrÞ�I2 with

Z2 ¼
�
1 0

0 −1
�
. Employing Eq. (5), we obtain an analytic

expression of the A → B Gaussian steering,

GA→BðσABÞ ¼ max

�
0; ln

coshð2sÞ
cosh2ðrÞ þ coshð2sÞsinh2ðrÞ

�
:

ð19Þ

From Eq. (19) we can see that the A → B Gaussian steering
depends not only the squeezing parameter s, but also the
Hawking temperature parameter r; this means that the
Hawking radiation of the black hole will affect the A → B
steerability because sinh r ¼ ðeΩ

T − 1Þ−1
2.

It is well known that the symmetric properties of
quantum steering is a crucial issue. For example, it was
recently found that the quantum steerability from A to B is
asymmetric [19] to the B → A steerability in a Gaussian
setting, which has been experimentally demonstrated in
[16] in a flat spacetime. To obtain understanding of this
issue, we here calculate the steerability GB→A and check if
the relation GA→B ¼ GB→A is satisfied in the Schwarzschild
spacetime. After some calculations, the B → A steering is

found to be GB→AðσABÞ ¼ maxf0; ln cosh2ðrÞ coshð2sÞþsinh2ðrÞ
cosh2ðrÞþcoshð2sÞsinh2ðrÞg.

To check the degree of steerability asymmetric in the
curved spacetime, we define the Gaussian steering asym-
metry as

GΔ
AB ¼ jGB→A − GA→Bj: ð20Þ
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In Fig. 1(a) we plot the steerabilities GB→A, GB→A as well
as the Gaussian steering asymmetry GΔ

AB as a function of the
black hole’s Hawking temperature parameter r for a fixed
squeezing s ¼ 1. The relation between the parameter r and
Hawking temperature T is given in Fig. 1(b) which shows
that T is a monotonically increasing function of r. From
Fig. 1(a) we can see that both the A → B and B → A
steering decrease with the increase of Hawking temperature
parameter r, which means that the thermal noise introduced
by Hawking effect will destroy the steerability between an
inertial and an accelerated observer. It is shown that the
A → B steering decreases quickly and suffers from a
“sudden death” with increasing r; this is quite different
from the behavior of quantum entanglement in a relativistic
setting [21,22,24], where entanglement reduces to zero
only at the limit of r → ∞. It is shown that the B → A
steering is always bigger than the A → B steering and
avoids sudden death with the increase of r, which indicates
that the inertial part steering the noninertial part is easier
than the noninertial part steering the inertial part. From
Fig. 1(a) we can see that GA→B ≠ GB→A for any finite-
valued r, which means that the steering is always asym-
metric between Alice and Bob in the curved spacetime. The

steering asymmetry increases with decreasing steerability
either way; this means that the Hawking radiation destroys
the symmetry of steerability. We find that the parameter
setting maximizing the steering asymmetry of the state σAB
is s ¼ arccoshð cosh2 r

1−sinh2 rÞ. This condition is the same as that
when the A → B steering experiences sudden death in
Fig. 1(a). That is, the steering asymmetry is maximal when
the state is nonsteerable in the A → B way. Therefore, the
parameter r attaining the peak of steering asymmetry is that
which indicates the system is currently experiencing a
transformation from both-way steerability to one-way
steerability. In other words, attainment of maximal steering
asymmetry indicates the transition between one-way steer-
ability and both-way steerability for two-mode Gaussian
states under the influence of Hawking radiation.
To better understand the interplay between squeezing

and the Hawking effect in the generation of Gaussian
quantum steering, we plot the Gaussian steering asymmetry
GΔ
AB as functions of the Hawking temperature parameter r

and the squeezing s in Fig. 2. It is shown that GΔ
AB equals

zero; i.e., the steerability is asymmetric when s ¼ 0 and
r → 0 because GA→B ¼ GB→A ¼ 0 in these two cases. The
steering asymmetry monotonically increases with increas-
ing squeezing parameter s, which means that the quantum
resources shared in the initial state play a dominant role in
quantum steering. In addition, the maximal steerability
point enlarges its value with increasing s.
We then study the steering between mode B and mode B̄,

which propagate, respectively, outside and inside the event
horizon. Tracing over the modes in A, we obtain the
covariance matrix σBB̄ðs; rÞ for Bob and anti-Bob,

σBB̄ðs; rÞ ¼
�
ABB̄ CBB̄
CTBB̄ BBB̄

�
; ð21Þ
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FIG. 1. (a) The Gaussian quantum steering GA→B (solid line),
GB→A (dashed line), and steering asymmetry GΔ

AB (dot-dashed
line) between Alice and Bob as a function of the Hawking
temperature parameter r of the black hole. The squeezing
parameter s of the initial state is fixed as s ¼ 1. (b) The relation
between the parameter r and Hawking temperature T by fixing
Ω ¼ 1.

FIG. 2. The Gaussian steering asymmetry GΔ
AB as functions

of the Hawking temperature parameter r and the squeezing
parameter s.
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where ABB̄ ¼ ½coshð2sÞcosh2ðrÞ þ sinh2ðrÞ�I2, CBB̄ ¼
½cosh2ðsÞ sinhð2rÞ�Z2, and BBB̄ ¼ ½cosh2ðrÞ þ
coshð2sÞ sinh2ðrÞ�I2. Using Eqs. (5) and (20), we obtain
analytic expressions of the B → B̄ and B̄ → B steering,

which are GB→B̄ðσBB̄Þ ¼ maxf0; ln½cosh2ðrÞ þ sinh2ðrÞ
coshð2sÞ�g

and GB̄→BðσBB̄Þ ¼ maxf0; ln½sinh2ðrÞ þ cosh2ðrÞ
coshð2sÞ�g, respec-

tively. The Gaussian steering asymmetry GΔ
BB̄ between

Bob and anti-Bob can be computed in a similar way.
In Fig. 3 we plot the Gaussian quantum steering and

steering asymmetry between Bob and anti-Bob as a
function of the Hawking temperature parameter r with
fixed squeezing s ¼ 1. It is shown that quantum steerability
is generated between Bob and anti-Bob with the increase of
the Hawking temperature parameter r. The steerability
GB→B̄ is nonzero for any r, while the steerability from
anti-Bob to Bob appears as “sudden birth” behavior with
the increase of the Hawking temperature parameter r. It is
interesting to find that the maximizing condition for the σBB̄
steering asymmetry is also s ¼ arccoshð cosh2 r

1−sinh2 rÞ.
Therefore, we arrive at the conclusion that this value of
s is a critical point of steering asymmetry in the curved
spacetime. Again, the maximal steering asymmetry for the
state σBB̄ is obtained when the B̄ → B steering appears as
sudden birth. That is, the parameter r attaining the peak of
B̄ → B steering asymmetry is the one that indicates the
system is experiencing a transformation from one-way
steerability to both-way steerability. In addition, we find
that Bob and anti-Bob can steer each other when the
parameter r is bigger than a critical point, even though they
are separated by the event horizon; this verifies that
quantum steering is a nonlocal quantum correlation. We
again find that the quantum steering between Bob and anti-
Bob is always asymmetric for any Hawking temperature
and the maximum steering asymmetry cannot exceed ln 2,

which means that the state never evolves to an extremal
state under the effects of Hawking radiation.
Finally. let us present a physical interpretation of the

generation of quantum steering across the event horizon. In
this paper, anti-Bob is a hypothetical observer inside the
event horizon of the black hole. It is well known that
Hawking radiation can be explained as the spontaneous
creation of particles and antiparticles by quantum fluctua-
tions near the event horizon. The particles and antiparticles
will randomly radiate ingoing to and outgoing from the
event horizon. If a particle is observed and measured by
the observer Bob outside the event horizon, the state of the
other antiparticle is steered and might observed by anti-
Bob. Therefore, the mode B̄ can be steered by measuring
mode B because they are pair generated and shared initial
entanglement from the event horizon.

V. CONCLUSIONS

The effect of the Hawking effect on Gaussian quantum
steering and its asymmetry in Schwarzschild spacetime are
investigated. We consider three subsystems: subsystem A,
observed by an inertial observer Alice; subsystem B,
observed by accelerated Bob hovers near the event horizon;
and subsystem B̄, observed by an imaginary observer anti-
Bob inside the event horizon. We obtain a phase-space
description of quantum state evolution under the influence
of the thermal bath induced by Hawking radiation. It is
shown that quantum steerability between Alice and Bob
decreases as the Hawking temperature parameter r
increases. That is to say, thermal noise introduced by the
Hawking effect will destroy the steerability between an
inertial and an accelerated observer. However, the steer-
ability between two observers segregated by the event
horizon of the black hole is generated due to the effect of
Hawking radiation. It is found that the steering from Alice
to Bob suffers from a sudden death and the steering from
anti-Bob to Bob experiences a sudden birth with increasing
Hawking temperature, which is quite different from the
behavior of quantum entanglement in accelerated setting
[21,22] and curved spacetime [24,29]. It is intriguing to
find that the steering is always asymmetric and is endowed
with a maximum steering asymmetry for a fixed r, and
that the maximum steering asymmetry cannot exceed
ln 2 in the curved spacetime. It has been shown that
s ¼ arccoshð cosh2 r

1−sinh2 rÞ is a critical point of steering asym-
metry under the influence of Hawking radiation. In
addition, the parameters attaining the peaks of steering
asymmetry are obtained when the A → B steering experi-
ences sudden deathor the B̄ → B steering experiences
sudden birth. That is, the attainment of maximal steering
asymmetry indicates a transition point of the two-mode
Gaussian state in the Schwarzschild spacetime. These
results should be significant both for giving us more
information from a black hole by measuring the
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FIG. 3. The Gaussian quantum steering GB→B̄ (solid line), GB̄→B

(dashed line), and steering asymmetry GΔ
BB̄ (dot-dashed line)

between Bob and anti-Bob as a function of the Hawking
temperature parameter r of the black hole. The squeezing
parameter s of the initial state is fixed as s ¼ 1.
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Hawking radiation and for our general understanding of
quantum steering in a relativistic quantum system.

ACKNOWLEDGMENTS

We acknowledge the reviewer for helpful comments, and
Ioannis Kogias and Gerardo Adesso for helpful discus-
sions. J. Wang is supported the National Natural Science
Foundation of China under Grant No. 11305058, the

Doctoral Scientific Fund Project of the Ministry of
Education of China under Grant No. 20134306120003,
and the Postdoctoral Science Foundation of China under
Grants No. 2014M560129 and No. 2015T80146. J. Jing is
supported the National Natural Science Foundation of
China under Grant No. 11475061. H. Fan is supported
the National Natural Science Foundation of China under
Grant No. 91536108.

[1] E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555
(1935).

[2] E. Schrödinger, Proc. Cambridge Philos. Soc. 32, 446
(1936).

[3] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev.
Lett. 98, 140402 (2007).

[4] P. Skrzypczyk, M. Navascués, and D. Cavalcanti, Phys. Rev.
Lett. 112, 180404 (2014).

[5] S. P. Walborn, A. Salles, R. M. Gomes, F. Toscano, and P. H.
Souto Ribeiro, Phys. Rev. Lett. 106, 130402 (2011).

[6] J. Bowles, T. Vértesi, M. T. Quintino, and N. Brunner,
Phys. Rev. Lett. 112, 200402 (2014).

[7] Q. Y. He, Q. H. Gong, and M. D. Reid, Phys. Rev. Lett. 114,
060402 (2015).

[8] C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and
J.-W. Pan, Phys. Rev. Lett. 115, 010402 (2015).

[9] M. Marciniak, A. Rutkowski, Z. Yin, M. Horodecki, and R.
Horodecki, Phys. Rev. Lett. 115, 170401 (2015).

[10] Q. Y. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid,
Phys. Rev. Lett. 115, 180502 (2015).

[11] A. B. Sainz, N. Brunner, D. Cavalcanti, P. Skrzypczyk, and
T. Vertesi, Phys. Rev. Lett. 115, 190403 (2015).

[12] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[13] M. D. Reid, P. D. Drummond, W. P. Bowen, E. G.
Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and
G. Leuchs, Rev. Mod. Phys. 81, 1727 (2009).

[14] M. D. Reid, Phys. Rev. A 40, 913 (1989).
[15] D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde,

Nat. Phys. 6, 845 (2010).
[16] V. Handchen, T. Eberle, S. Steinlechner, A. Samblowski, T.

Franz, R. F. Werner, and R. Schnabel, Nat. Photonics 6, 598
(2012); S. Wollmann, Nathan Walk, Adam J. Bennet,
Howard M. Wiseman, and Geoff J. Pryde, Phys. Rev. Lett.
116, 160403 (2016); K. Sun, Xiang-Jun Ye, Jin-Shi Xu,
Xiao-Ye Xu, Jian-Shun Tang, Yu-Chun Wu, Jing-Ling
Chen, Chuan-Feng Li, and Guang-Can Guo, Phys. Rev.
Lett. 116, 160404 (2016).

[17] K. Sun, J.-S. Xu, X.-J. Ye, Y.-C. Wu, J.-L. Chen, C.-F. Li,
and G.-C. Guo, Phys. Rev. Lett. 113, 140402 (2014).

[18] S. Kocsis, M. J. W. Hall, A. J. Bennet, and G. J. Pryde,
Nat. Commun. 6, 5886 (2015).

[19] I. Kogias, A. R. Lee, S. Ragy, and G. Adesso, Phys. Rev.
Lett. 114, 060403 (2015).

[20] A. Peres and D. R. Terno, Rev. Mod. Phys. 76, 93 (2004).
[21] I. Fuentes-Schuller and R. B. Mann, Phys. Rev. Lett. 95,

120404 (2005).
[22] G. Adesso, I. Fuentes-Schuller, and M. Ericsson, Phys. Rev.

A 76, 062112 (2007).
[23] M. Aspachs, G. Adesso, and I. Fuentes, Phys. Rev. Lett.

105, 151301 (2010).
[24] J. Wang, Q. Pan, and J. Jing, Phys. Lett. B 692, 202 (2010).
[25] D. J. Hosler, C. van de Bruck, and P. Kok, Phys. Rev. A 85,

042312 (2012).
[26] N. Friis, A. R. Lee, K. Truong, C. Sabín, E. Solano, G.

Johansson, and I. Fuentes, Phys. Rev. Lett. 110, 113602
(2013).

[27] J. Doukas, E. G. Brown, A. Dragan, and R. B. Mann, Phys.
Rev. A 87, 012306 (2013).

[28] D. Su, and T. C. Ralph, Phys. Rev. D 90, 084022 (2014).
[29] J.Wang, J. Jing, andH. Fan, Phys. Rev. D 90, 025032 (2014).
[30] M. Ahmadi, D. E. Bruschi, and I. Fuentes, Phys. Rev. D 89,

065028 (2014); M. Ahmadi, A. R. H. Smith, and A. Dragan,
Phys. Rev. A 92, 062319 (2015).

[31] A. Chęcińska and A. Dragan, Phys. Rev. A 92, 012321
(2015).

[32] A. Blasco, L. J. Garay, M. Martín-Benito, and E. Martín-
Martínez, Phys. Rev. Lett. 114, 141103 (2015).

[33] B. Richter and Y. Omar, Phys. Rev. A 92, 022334 (2015).
[34] C. W. Chou, D. B. Hume, T. Rosenband, and D. J.

Wineland, Science 329, 1630 (2010).
[35] J. Y. Wang et al., Nat. Photonics 7, 387 (2013).
[36] D. E. Bruschi, T. C. Ralph, I. Fuentes, T. Jennewein, and M.

Razavi, Phys. Rev. D 90, 045041 (2014).
[37] D. E. Bruschi, A. Datta, R. Ursin, T. C. Ralph, and I.

Fuentes, Phys. Rev. D 90, 124001 (2014).
[38] J. Wang, Z. Tian, J. Jing, and H. Fan, Phys. Rev. D 93,

065008 (2016).
[39] L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, Phys.

Rev. D 34, 373 (1986).
[40] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975);

Phys. Rev. D 14, 2460 (1976); H. Terashima, Phys. Rev. D
61, 104016 (2000).

[41] C. Sabín and G. Adesso, Phys. Rev. A 92, 042107 (2015);
D. Mondal and C. Mukhopadhyay, arXiv:1510.07556.

[42] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf,
T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys.
84, 621 (2012).

GAUSSIAN QUANTUM STEERING AND ITS ASYMMETRY … PHYSICAL REVIEW D 93, 125011 (2016)

125011-7

http://dx.doi.org/10.1017/S0305004100013554
http://dx.doi.org/10.1017/S0305004100013554
http://dx.doi.org/10.1017/S0305004100019137
http://dx.doi.org/10.1017/S0305004100019137
http://dx.doi.org/10.1103/PhysRevLett.98.140402
http://dx.doi.org/10.1103/PhysRevLett.98.140402
http://dx.doi.org/10.1103/PhysRevLett.112.180404
http://dx.doi.org/10.1103/PhysRevLett.112.180404
http://dx.doi.org/10.1103/PhysRevLett.106.130402
http://dx.doi.org/10.1103/PhysRevLett.112.200402
http://dx.doi.org/10.1103/PhysRevLett.114.060402
http://dx.doi.org/10.1103/PhysRevLett.114.060402
http://dx.doi.org/10.1103/PhysRevLett.115.010402
http://dx.doi.org/10.1103/PhysRevLett.115.170401
http://dx.doi.org/10.1103/PhysRevLett.115.180502
http://dx.doi.org/10.1103/PhysRevLett.115.190403
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/RevModPhys.81.1727
http://dx.doi.org/10.1103/PhysRevA.40.913
http://dx.doi.org/10.1038/nphys1766
http://dx.doi.org/10.1038/nphoton.2012.202
http://dx.doi.org/10.1038/nphoton.2012.202
http://dx.doi.org/10.1103/PhysRevLett.116.160403
http://dx.doi.org/10.1103/PhysRevLett.116.160403
http://dx.doi.org/10.1103/PhysRevLett.116.160404
http://dx.doi.org/10.1103/PhysRevLett.116.160404
http://dx.doi.org/10.1103/PhysRevLett.113.140402
http://dx.doi.org/10.1038/ncomms6886
http://dx.doi.org/10.1103/PhysRevLett.114.060403
http://dx.doi.org/10.1103/PhysRevLett.114.060403
http://dx.doi.org/10.1103/RevModPhys.76.93
http://dx.doi.org/10.1103/PhysRevLett.95.120404
http://dx.doi.org/10.1103/PhysRevLett.95.120404
http://dx.doi.org/10.1103/PhysRevA.76.062112
http://dx.doi.org/10.1103/PhysRevA.76.062112
http://dx.doi.org/10.1103/PhysRevLett.105.151301
http://dx.doi.org/10.1103/PhysRevLett.105.151301
http://dx.doi.org/10.1016/j.physletb.2010.07.035
http://dx.doi.org/10.1103/PhysRevA.85.042312
http://dx.doi.org/10.1103/PhysRevA.85.042312
http://dx.doi.org/10.1103/PhysRevLett.110.113602
http://dx.doi.org/10.1103/PhysRevLett.110.113602
http://dx.doi.org/10.1103/PhysRevA.87.012306
http://dx.doi.org/10.1103/PhysRevA.87.012306
http://dx.doi.org/10.1103/PhysRevD.90.084022
http://dx.doi.org/10.1103/PhysRevD.90.025032
http://dx.doi.org/10.1103/PhysRevD.89.065028
http://dx.doi.org/10.1103/PhysRevD.89.065028
http://dx.doi.org/10.1103/PhysRevA.92.062319
http://dx.doi.org/10.1103/PhysRevA.92.012321
http://dx.doi.org/10.1103/PhysRevA.92.012321
http://dx.doi.org/10.1103/PhysRevLett.114.141103
http://dx.doi.org/10.1103/PhysRevA.92.022334
http://dx.doi.org/10.1126/science.1192720
http://dx.doi.org/10.1038/nphoton.2013.89
http://dx.doi.org/10.1103/PhysRevD.90.045041
http://dx.doi.org/10.1103/PhysRevD.90.124001
http://dx.doi.org/10.1103/PhysRevD.93.065008
http://dx.doi.org/10.1103/PhysRevD.93.065008
http://dx.doi.org/10.1103/PhysRevD.34.373
http://dx.doi.org/10.1103/PhysRevD.34.373
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1103/PhysRevD.61.104016
http://dx.doi.org/10.1103/PhysRevD.61.104016
http://dx.doi.org/10.1103/PhysRevA.92.042107
http://arXiv.org/abs/1510.07556
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1103/RevModPhys.84.621


[43] G. Adesso, D. Girolami, and A. Serafini, Phys. Rev. Lett.
109, 190502 (2012).

[44] N. D. Birrell and P. C. W. Davies, Quantum Fields in
Curved Space (Cambridge University Press, Cambridge,
United Kingdom, 1982).

[45] A. Fabbri and J. Navarro-Salas, Modeling Black Hole
Evaporation (Imperial College Press, London, United
Kingdom, 2005).

[46] D. E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan,
and I. Fuentes, Phys. Rev. A 82, 042332 (2010).

[47] D. E. Bruschi, A. Dragan, I. Fuentes, and J. Louko, Phys.
Rev. D 86, 025026 (2012).

[48] T. Damoar and R. Ruffini, Phys. Rev. D 14, 332 (1976).
[49] S. M. Barnett and P. M. Radmore, Methods in Theoretical

Quantum Optics (Oxford University Press, New York,
1997), pp. 67–80.

WANG, CAO, JING, and FAN PHYSICAL REVIEW D 93, 125011 (2016)

125011-8

http://dx.doi.org/10.1103/PhysRevLett.109.190502
http://dx.doi.org/10.1103/PhysRevLett.109.190502
http://dx.doi.org/10.1103/PhysRevA.82.042332
http://dx.doi.org/10.1103/PhysRevD.86.025026
http://dx.doi.org/10.1103/PhysRevD.86.025026
http://dx.doi.org/10.1103/PhysRevD.14.332

