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We consider the quantum mechanics of Calogero models in an oscillator or Coulomb potential on the
N-dimensional sphere. Their Hamiltonians are obtained by an appropriate Dunkl deformation of the
oscillator/Coulomb system on the sphere and its restriction to (Coxeter reflection) symmetric wave
functions. By the same method we also find the symmetry generators and compute their algebras.
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I. INTRODUCTION

The rational Calogero model [1] and its various gener-
alizations, based on arbitrary Coxeter root systems [2],
continue to attract much interest due to their rich internal
structure and numerous applications. In its simplest
incarnation, for an AN−1 roots system, it describes N
particles on a line with a pairwise inverse-square interaction
potential. An external oscillator potential preserves its
integrability [1,3]. Moreover, these models were found
to be superintegrable, i.e. possessing 2N − 1 functionally
independent constants of motion [4].
There are two powerful tools for the study of Calogero

models: the matrix-model approach [5] and the exchange-
operator (or Dunkl-operator) formalism [6,7]. For reviews
on the subject, see Refs. [2,8]. In the matrix model
approach, one starts from a free-particle system on the
space of N × N Hermitian matrices, so that the (discrete)
permutation symmetries are absorbed in the natural SUðNÞ
invariance. The SUðNÞ reduction of this system in the
minimal gauge yields the original N-particle Calogero
model. In the exchange-operator formalism, the Calogero
interaction is generated by a Dunkl deformation of the
momenta. This is effected by replacing the standard
momentum operator with a Dunkl operator, which in the
AN−1 case is defined as follows [9]:

∇i ¼ ∂i −
X
j≠i

g
xi − xj

sij with ½∇i;∇j� ¼ 0 and

½∇i; xj� ¼ Sij ¼
(
−gsij for i ≠ j;

1þ g
P

k≠i sik for i ¼ j:
ð1:1Þ

Here sij is a AN−1 Coxeter reflection operator, which acts
as the permutation operator exchanging the ith and jth
coordinates:

sijψð…; xi;…; xj;…Þ ¼ ψð…; xj;…; xi;…Þ: ð1:2Þ

Formally, the Calogero interaction in the Hamiltonian is
hidden in the nonlocal “connection” entering the Dunkl
covariant Laplacian. After a restriction to totally symmetric
wave functions, one obtains a local bosonic Hamiltonian
with a Calogero interaction potential. In other words, by
replacing partial derivatives with Dunkl operators in the
Hamiltonian of the N-dimensional harmonic oscillator, one
gets the Calogero model in an oscillator potential. Making
the same substitution in the symmetry generators, we arrive
at the constants of motion of the Calogero-oscillator system.
The picture is reminiscent of the nonlocal unitary trans-
formation mapping the Calogero particles to free ones [10].
In our recent paper [11], we indicate that the spherical or

hyperbolic extension of the rational Calogero potential
associated with an arbitrary Coxeter group is the only
possible superintegrable deformation of the N-dimensional
oscillator and Coulomb systems. The hidden symmetries of
the quantum Calogero-oscillator system are well known
[2,12]. Recently, explicit expressions for the constants of
motion and the symmetry algebra of the quantum Calogero-
Coulomb model [13] have also been revealed within the
Dunkl-operator approach in two [14] and arbitrary [15]
dimensions.
Lately, the same method has been applied to the

integrable two-center Calogero-Coulomb and Calogero-
Coulomb-Stark systems [16]. It seems that any isotropic
integrable system in N dimensions can be Dunkl-deformed
to add a Calogero-type interaction respecting integrability.
Looking at the Coulomb system, it perfectly works for the
angular momentum, while for the Dunkl-extended Runge-
Lenz vector we need to add some correction [15]. The
symmetry algebras of these Dunkl-deformed systems are
nonlocal deformations of the initial ones.
We have also revealed the superintegrability of the oscil-

lator/Coulomb systems on the sphere [17,18] in the presence
of an extra Calogero potential [11]. Applying the matrix-
model reduction, we have described the symmetries of these
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systems in the classical case [19]. This method works for the
quantum systems too. However, it forces us to take into
account the ordering of the individual entries in a matrix
product, making the calculations less transparent.
In this paper, we apply the exchange-operator approach

to the oscillator/Coulomb quantum models on the N-
dimensional sphere with an additional Calogero potential.
There are obvious obstacles in this way, in particular:
(1) The Dunkl operators are not invariant even under the

linear symmetry transformations, so we should first
find their proper definition on the sphere.

(2) We need to fix the operator ordering in the deformed
quantities on curved spaces (including the sphere).

Our key point is the coordinate frame used in
Refs. [11,19]. Namely, we parameterize the sphere by N
Cartesian coordinates x ¼ ðxiÞ in the ambient Euclidean
space RNþ1∋ðx0; xÞ defining the following metric:

ds2 ¼ dx2 þ dx20jx20þx2¼r2
0
¼ dx2 þ ðx · dxÞ2

r20 − x2

¼ hijdxidxj so that hij ¼ δij −
xixj
r20

: ð1:3Þ

First, we choose the Dunkl operators on the sphere by using
the same coordinate expressions as in the flat case [9].
Second, we impose an operator ordering for the hidden-
symmetry generators and Hamiltonians of the spherical
Dunkl-oscillator and Dunkl-Coulomb systems. Third, the
replacement ∂ → ∇ then leads to the correct expressions
for all quantities. Fourth, we calculate the symmetry
algebras and find deformations of those of the familiar
spherical oscillator/Coulomb systems.
The paper is organized as follows: In Sec. II, the

Hamiltonians of the Calogero-oscillator and Calogero-
Coulomb systems on the sphere are formulated in terms
of Dunkl operators. In Sec. III, the symmetry generators of
the spherical Calogero-oscillator system are constructed,
and their algebra is evaluated. In Sec. IV, we find the analog
of the Runge-Lenz vector and compute the symmetry
algebra for the spherical Calogero-Coulomb system.

II. GENERAL CONSIDERATION

According to the general prescription for quantum
systems on the N-dimensional sphere SN ↪ RNþ1, the
kinetic part of a Hamiltonian is given by the Laplace-
Beltrami operator,

XN
i;j¼1

1ffiffiffi
h

p ∂ið
ffiffiffi
h

p
hij∂jÞ ¼ ∂2 −

1

r20
ðx · ∂ þ N − 1Þðx · ∂Þ

¼ ∂2 −
1

4r20
ðfx;∂g2 − 2fx;∂g

− NðN − 2ÞÞ: ð2:1Þ

Here h ¼ det hij ¼ r20=ðr20 − x2Þ and hij ¼ δij − xixj=r20
are, respectively, the determinant and the inverse metric
on the sphere (1.3). For the inclusion of the Calogero
interaction, we replace the partial derivatives in the sym-
metrized version of (2.1) with the Dunkl operators [9] and
get the following nonlocal Hamiltonian on the sphere:

Hosc=Coul¼−
1

2

�
∇2−

1

4r20
ðfx;∇g2−2fx;∇g−NðN−2ÞÞ

�

þVosc=CoulðxÞ

¼−
1

2
∂2þ 1

2r20
ðx ·∂þN−1Þðx ·∂Þ

þ
XN
i<j

gðg− sijÞ
ðxi−xjÞ2

þVosc=CoulðxÞ; ð2:2Þ

where Vosc=Coul is the oscillator/Coulomb potential on the
sphere given by the expressions [18]

Vosc ¼
r20
x20

ω2x2

2
and VCoul ¼ −

x0
r0

γ

x
with x ¼ jxj:

ð2:3Þ

The second equation in (2.2) follows from the identityP
if∇i; xig ¼ P

if∂i; xig, which is a direct consequence of
the commutation relations (1.1) among Dunkl derivatives
and coordinates. The restriction on symmetric wave func-
tions produces the spherical system with an additional
Calogero potential:

Hosc=Coul ¼ Res Hosc=Coul

¼ −
1

2
∂2 þ 1

2r20
ðx · ∂ þ N − 1Þðx · ∂Þ

þ
XN
i<j

gðg − 1Þ
ðxi − xjÞ2

þ Vosc=CoulðxÞ: ð2:4Þ

The generalized Hamiltonian (2.2) commutes with
the Dunkl angular momentum inherited from the flat
case [20,21]:

Lij ¼ xi∇j − xj∇i obeys ½Lij;Hosc=Coul� ¼ 0: ð2:5Þ

The related algebra has recently been investigated in detail
[22]. In particular, the deformed generators satisfy the
following commutation relations:

½Lij; Lkl� ¼ SjkLil þ SilLjk − SkiLjl − SljLik; ð2:6Þ

with themodified permutation operators Sij defined in (1.1).
The corresponding symmetries of the restricted

Hamiltonian (2.4) are given by the symmetrized powers
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L2k ¼
X
i<j

L2k
ij : ð2:7Þ

The first integral is essentially the Casimir element of the
Dunkl angular momentum algebra. It is proportional to the
angular part L0

2 of the generalized Calogero Hamiltonian
[22],

L0
2 ¼ L2 − SðS − N þ 2Þ with

S ¼
X
i<j

Sij so that ½L0
2; Lij� ¼ 0 ¼ ½S; sij�: ð2:8Þ

The angular Calogero model L0
2 has been studied quite

thoroughly [22–25]. In particular, its spectrum and wave
functions have been derived [24], and the classical [25] and
quantum [22] symmetry algebra have been investigated.
Finally, note that if we Dunkl-deform the nonsymme-

trized version of the Laplace-Beltrami operator (2.1), our
Hamiltonian (2.2) will pick up an additional S term, since

X
i;j

1ffiffiffi
h

p ∇ið
ffiffiffi
h

p
hij∇jÞ¼∂2−

1

r20
ðx ·∂þN−1Þðx ·∂Þ

−
XN
i≠j

gðg− sijÞ
ðxi−xjÞ2

þ 1

r20
SðS−Nþ1Þ:

ð2:9Þ

Because the difference between the two versions reduces to
a number on symmetric wave functions, this is incon-
sequential, and we use the former one.

III. INTEGRALS OF THE
CALOGERO-OSCILLATOR
SYSTEM ON THE SPHERE

Let us consider the Dunkl representation Hosc of the
quantum Calogero-oscillator system on the sphere, given
by the generalized Hamiltonian (2.2) with the potential Vosc
from (2.3), which we will refer to as the “spherical Dunkl
oscillator.” We choose the following ansatz for the gen-
erators of its hidden symmetries:

Iij¼
1

2r20
fx0∇i;x0∇jg−ω2r20

xixj
x20

so that ½Iij;Hosc� ¼ 0:

ð3:1Þ

It generalizes the well-known Fradkin tensor for the flat
isotropic oscillator [26] and its extension to the sphere [18].
It is not hard to verify the commutation relations with the

Dunkl angular momenta generators,

½Lij; Ikl� ¼ IikSjl þ SjkIil − IjkSil − SikIjl þ
1

2r20
½Lij; Skl�:

ð3:2Þ

The commutations between the hidden-symmetry gener-
ators (3.1) are more sophisticated:

½Iij; Ikl� ¼−
1

r20
ðIilLjkþLjlIikþ IjkLilþLikIjlÞ

−
1

2r20
ð½Sij; Ikl�− ½Skl;Iij�Þ

þ
�
ω2−

1

4r40

�
ðSjlLikþLilSjkþLjkSilþSikLjlÞ

þω2½Sij;Skl�: ð3:3Þ

Now we switch to the spherical Calogero-oscillator
Hamiltonian (2.4) by restricting to the subspace of
symmetric wave functions. Evidently, any permutation-
invariant combination of products of the elements (2.5)
and (3.1) will produce an integral of motion. In particular,
the constants of motion L2k (2.7) of the generalized
angular Calogero Hamiltonian L0

2 are preserved here too.
Furthermore, the deformed Fradkin tensor (3.1) provides
two series of symmetric powers which are of 2k-th order in
momenta:

I ð1Þ
k ¼

X
i

Ikii; I ð2Þ
k ¼

X
i;j

Ikij: ð3:4Þ

The invariants constructed so far already include a full set of
2N − 1 functionally independent integrals of the Calogero-
oscillator Hamiltonian on the sphere. The generalized
Hamiltonian may be expressed in terms of these:

Hosc ¼ −
1

2
I ð1Þ
1 −

L0
2 þ S
2r20

: ð3:5Þ

The first integral from the second family in (3.4) depends
only on the center-of-mass coordinates,

I ð2Þ
1 ¼ x20

r20
D2 −

1

r20
XD −

ω2r20
x20

X2 with

X ¼
X
i

xi; D ¼
X
i

∂i:
ð3:6Þ

A. Flat-space limit

In the limit r0 → ∞, the Dunkl angular momentum
operators Lij with their commutators remain unchanged.
The model is reduced to the conventional Calogero-
oscillator system, which can be expressed in terms of
deformed creation-annihilation operators [7]:

Hosc=flat ¼ −
1

2
∇2 þ ω2

2
x2 ¼ ω

2

X
i

ðaþi ai þ aia
þ
i Þ ð3:7Þ

where ai ¼
ωxi þ∇iffiffiffiffiffiffi

2ω
p ; aþi ¼ ωxi −∇iffiffiffiffiffiffi

2ω
p : ð3:8Þ
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They obey the Dunkl-operator commutations (1.1) after the
replacements xi → aþi and ∇i → ai.
In the flat-space limit, the symmetry generators (2.5) and

(3.1) simplify to

Lij ¼ aþi aj − aþj ai and Iij ¼ −ωðaþi aj þ aþj ai þ SijÞ;
ð3:9Þ

and their algebra (2.6), (3.2) and (3.3) reduces to the
deformed uðNÞ algebra investigated in detail in Ref. [22].
In particular, the crossing relations

EijEkl − EilEkj ¼ EilSkj − EijSkl ð3:10Þ

among the generators Eij ¼ aþi aj imply the commutation
relations

½Eij; Ekl� ¼ EilSjk − SilEkj þ ½Skl; Eij�: ð3:11Þ

The latter agrees with the relations obtained in the flat-
space limit from (3.2) and (3.3),

½Lij; Ikl� ¼ IikSjl þ SjkIil − IjkSil − SikIjl; ð3:12Þ

½Iij; Ikl� ¼ω2ðSjlLikþLilSjkþLjkSilþSikLjlþ½Sij;Skl�Þ:
ð3:13Þ

Although the deformations of the Cartan algebra elements
Eii (or of Iii ¼ −2Eii − Sii) do not commute, the related
symmetric polynomials mutually commute, as was proven
in Ref. [6]:

½I ð1Þ
i ; I ð1Þ

j � ¼ 0: ð3:14Þ

They form a set of Liouville integrals of the Calogero-
oscillator system.

IV. INTEGRALS OF THE CALOGERO-COULOMB
SYSTEM ON THE SPHERE

The Dunkl representation of the quantum Calogero-
oscillator system on the sphere is given by the generalized
Hamiltonian (2.2) with the Coulomb potential VCoul (2.3),
and we shall refer to it as the spherical Dunkl-Coulomb
system. Knowing the deformed Runge-Lenz vector of the
flat Dunkl-Coulomb system [15], we choose the following
ansatz for its extension to the sphere:

Ai ¼ −
x0
2r0

XN
j¼1

fLij;∇jg þ
x0
2r0

½∇i; S� − γ
xi
x
;

which indeed obeys ½Ai;HCoul� ¼ 0: ð4:1Þ

After some simple algebra, the above expression can be
recast as

Ai ¼
x0
r0

�
x · ∂ þ N − 1

2

�
∇i − xi

�
x0
r0

∇2 þ γ

x

�
: ð4:2Þ

The commutation relations of the Dunkl angular momen-
tum with the deformed Runge-Lenz vector remain as they
are in the flat case [15],

½Lij; Ak� ¼ −SikAj þ SjkAi: ð4:3Þ

The components of the deformed Runge-Lenz vector
commute as follows:

½Ai; Aj� ¼ −2H0Lij; ð4:4Þ

where we have introduced the operator

H0 ¼ HCoul þ
1

r20

�
L0
2 −

ðN − 3Þ2
8

�
;

which still obeys ½H0; Lij� ¼ 0 ð4:5Þ

but does not commute with the deformed Runge-Lenz
vector anymore.
In order to find the integrals of motion of the spherical

Calogero-Coulomb model (2.4), obtained by restricting the
generalized Hamiltonian (2.2) to totally symmetric wave
functions, we have to combine the constructed invariants
into symmetric polynomials as was described already for
the oscillator case. They are given by the Lk (2.7) and the
following 2k-th order (in momentum) invariants:

Ak ¼
X
i

Ak
i : ð4:6Þ

The first member of this family is deduced immediately
from (4.2) and depends only on the center-of-mass degree
of freedom:

A1 ¼
x0
r0

�
x · ∂ þ N − 1

2

�
D − X

�
x0
r0

∇2 þ γ

x

�
: ð4:7Þ

The second member is just the square of the deformed
Runge-Lenz vector, A2 ¼ A2, and depends on the simpler
integrals. As a consequence of the commutation relations
(4.3), (4.4) and (4.5), a simple modification of it commutes
with the angular momentum:

A0
2 ¼ A2 þ 2H0S obeys ½A0

2; Lij� ¼ 0: ð4:8Þ

Thus, one can expect that it can be expressed in terms of the
generalized angular Calogero (2.8) and Dunkl-Coulomb
(2.2) Hamiltonians. In fact, the explicit relation between
these three quantities is given by
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A0
2 ¼ γ2 − 2H0

�
L0
2 −

ðN − 1Þ2
4

�

þ 1

r20

�
L0
2 −

ðN − 1ÞðN − 3Þ
4

�
2

: ð4:9Þ

A. Flat-space limit

In the limit r0 → ∞, we arrive at the Calogero-Coulomb
model studied in detail recently in Ref. [15]. Some of our
expressions then simplify. In particular, (4.5) reduces to
H0 ¼ HCoul. The integrals of motion and their algebra are
mapped to those derived there for the flat case.
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