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In this paper, we study the influence of an external magnetic field in holographic QCD models where the
backreaction is modeled via an appropriate choice of the background metric. We add a phenomenological
soft wall dilaton to incorporate better IR behavior (confinement). Elaborating on previous studies
conducted by [K. A. Mamo, J. High Energy Phys. 05 (2015) 121.], we first discuss the Hawking-Page
transition, the dual of the deconfinement transition, as a function of the magnetic field. We confirm that the
critical deconfinement temperature can drop with the magnetic field. Secondly, we study the quark
condensate holographically as a function of the applied magnetic field and demonstrate that this model does
not exhibit inverse magnetic catalysis at the level of the chiral transition. The quest for a holographic QCD
model that qualitatively describes the inverse magnetic catalysis at finite temperature is thus still open.
Throughout this work, we pay special attention to the different holographic parameters and we attempt to
fix them by making the link to genuine QCD as close as possible. This leads to several unanticipated and so
far overlooked complications (such as the relevance of an additional length scale lc in the confined
geometry) that we discuss in detail.
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I. INTRODUCTION

(De)confinement and chiral symmetry breaking/restoration
are important features of quantum chromodynamics
(QCD). A good way to describe them consistently is very
hard due to the nonperturbative character of these phenom-
ena. Along the years, several tools have been developed in
order to access this regime. A recent paradigm rests on the
AdS=CFT correspondence, well suited to nonperturbative
regimes of strongly coupled gauge theories as QCD.
The AdS=CFT correspondence maps a strongly coupled

conformal theory living in flat space-time into a weakly
coupled theory living in a higher-dimensional anti-de Sitter
space. In [1,2] the conformal field theory is N ¼ 4
supersymmetric Yang-Mills. However, most of the inter-
esting strongly coupled systems found in nature (such as
QCD) do not have conformal symmetry. QCD, for exam-
ple, is neither supersymmetric nor conformal: Its nonzero
running coupling constant shows that the conformal sym-
metry in QCD is broken. QCD definitely needs a (dynami-
cal) mass scale to explain its spectrum. Several holographic
models that exhibit this breaking have been constructed
(so-called AdS/QCD models). One can basically distin-
guish two approaches: The first (top-down) approach

utilizes stringy constructions to access field theory [3–9],
whereas the other (bottom-up) approach involves phenom-
enological models [10–19], where we constrain the bulk
theory as to reproduce the desirable features of QCD.
Our goal in this work is to analyze more closely the

implementation of a background magnetic field in QCD in
a holographic setup. Multiple studies have been performed
in the past where this magnetic field is modeled as a bulk
diagonal flavor gauge field whose matrix elements are
proportional to the electric charge of each of the quark
flavors. The holographic dictionary then guarantees a
correct coupling to a magnetic field in the boundary theory.
One typically takes a holographic geometry, then one
solves Maxwell’s equations on this background to obtain
a magnetic field solution, and finally, diverse quantities
(correlation functions, spectral functions, thermodynamic
quantities etc.) are holographically computed in this geo-
metric and gauge background [20–31]. However, the
backreaction of the magnetic field on the geometry itself
is usually neglected. Several years ago, D’Hoker and Kraus
solved the Einstein-Maxwell system with asymptotic AdS
boundary conditions and a constant magnetic field in the
bulk [32,33]. This model hence cures these earlier
deficiencies.
We are interested in modifying this model in the infrared

to account for the correct phenomenological predictions of
QCD. In this paper we follow the path of phenomenologi-
cal AdS/QCD models. Among several options available on
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the holographic market, there are two well-known models,
namely the hard wall [10] and soft wall model [11,12].
Both of these models can generate essential features of
confinement and chiral symmetry breaking, but they utilize
different strategies. In the hard wall model, one introduces a
cutoff in the gravitational geometry that confines the space.
Recently, Mamo examined the Hawking-Page phase tran-
sition in the D’Hoker-Kraus background with a hard wall
cutoff related to the confinement/deconfinement transition
in the boundary theory [34]. In the soft wall model, one
introduces an extra field that explicitly breaks the con-
formal symmetry in the IR regime of the theory. Regarding
confinement, both models experience some issues. The
hard wall model is, for example, not capable of reproducing
the linear Regge trajectory, and the soft wall model fails in
the sense that the Wilson loop vacuum expectation value
does not present an area law [12].
Regarding the chiral phase transition, each model also

has its own drawback. The soft wall model directly relates
the bare quark mass m with the chiral condensate hψ̄ψi in
the sense that hψ̄ψi ∼m.1 Such a relation does not exist in
QCD. In the hard wall model, the parameters m and hψ̄ψi
cannot be determined dynamically (at least in the confined
phase): They act as independent constraints that one has to
impose on the theory. We come back to this model in the
end and demonstrate that it is quite pathological when
considering the chiral dynamics. Despite the drawback
mentioned before, the soft wall model is the one capable of
providing the desired results.
So the model we work with is the geometry and gauge

field background obtained by D’Hoker and Kraus, supple-
mented “by hand” with the soft wall dilaton field to model
in confinement; this is completely analogous to the ration-
ale behind the original soft wall model construction [11].
We remark at the outset already that the resulting model
does not solve Einstein’s equations. However, the soft wall
model can be viewed as a phenomenological model and a
first step towards obtaining intuition and insight into the
effects that might occur in real QCD. It seems that by
including the soft wall dilaton field we are taking a
step back again. D’Hoker and Kraus finally obtained a
fully backreacted solution, while we again ignore parts of
the backreaction (of the dilaton). Note though that this
actually can be viewed as a piecewise process towards the
final answer. We include the magnetic field in a more
satisfying way, and we improve this model in the infrared
by including a soft wall. We hence expect that this model is

a step forward towards real QCD with magnetic fields. We
come back to the issue on how to relate the bulk and
boundary magnetic field later in this paper. Notice that the
D’Hoker-Kraus solution describes the holographic dual for
magnetizedN ¼ 4 supersymmetric Yang-Mills with hence
adjoint flavors in the boundary theory. However, soft-wall
models are utilized to understand real QCD (with funda-
mental flavors). Within the same philosophy, we employ
our soft wall-modified D’Hoker-Kraus solution with the
hope of understanding magnetized QCD with fundamental
flavors.
The QCD deconfinement and chiral transition phase

diagram under the influence of the magnetic field has been
studied before using a myriad of approaches; next to the
already quoted papers let us also refer to e.g. [39–71] or
[72,73] for recent reviews. The interest in this was revived
since it became clear that strong magnetic fields are most
likely generated during the early stages of noncentral heavy
ion collisions and with a lifetime that persists into the
quark-gluon plasma phase [74–80].
Despite the fact that the recent lattice results [59,60,66]

indicate an inverse magnetic catalysis (the critical temper-
ature decreases under the influence of the magnetic field, at
least in the explored regime of magnetic fields and temper-
ature), most of the (holographic) QCD phase diagram
models predict magnetic catalysis [20,31,40,56–58].
Nonholographic approaches towards inverse magnetic
catalysis can be found in [81–90].
In this paper, we study the influence of a magnetic field

in both chiral and confinement/deconfinement phase tran-
sitions using phenomenological AdS/QCD models. In
Sec. II, we review the elements of the magnetized back-
ground geometry, both confining and deconfining, in
Einstein-Maxwell theory in 5D used in [34], which is
based on work of D’Hoker and Kraus [32,33]. We describe
how to embed the latter into a soft wall model intended to
describe magnetized QCD. Throughout this process, we see
that the confined geometry actually contains a free dimen-
sionful parameter lc that affects physical quantities. We fix
it later in this work. Another feature that is explored is the
region of validity of the solution itself and how the hard and
soft walls actually save the models in the end. This section
is supplemented by material collected in the Appendix in
which the structure of the black hole solution is explored.
We want to remark that (to the best of our knowledge) we
are the first to explore these backgrounds to this level of
accuracy.
Armed with this knowledge, we study in Sec. III in detail

the Hawking-Page transition in both the hard wall and soft
wall model setting, thereby obtaining the magnetic field-
dependent confinement/deconfinement transition. The hard
wall analysis is a revisiting of [34] in which case we add
some clarifications; the soft wall results are new. In both
cases, we recover that the critical deconfinement temper-
ature drops with increasing magnetic field, at least for

1Explicit symmetry breaking and spontaneous symmetry
breaking are not allowed to be described separately. Such can
be overcome by playing with adding potentials for both dilaton
and the scalar field representing the chiral condensate, at the cost
of more complicated equations [35–38]. Throughout this work,
we mean by hψ̄ψi only a single flavor. In practice, we look at the
degenerate up and down sector, and the total condensate (which
we denote by hQ̄Qi) should then be twice what we determine.

DUDAL, GRANADO, and MERTENS PHYSICAL REVIEW D 93, 125004 (2016)

125004-2



reasonable values of the length scale lc that we introduce.
In Sec. IV, we include for completeness the thermodynam-
ical stability analysis. We continue in Sec. V to scrutinize
the chiral condensate, symmetry breaking, and related
restoration at finite temperature and magnetic field, thereby
extending the earlier (zero magnetic field) results of [91]. It
becomes clear there is no sign of inverse magnetic catalysis.
We end with our conclusion in Sec. VI. We have relegated
several computational details to a series of appendixes, in
which we also analyze the horizon structure of the
D’Hoker-Kraus black hole solution, the relative normali-
zation of the magnetic field in bulk vs boundary, and also
how a meaningful finite (renormalized) chiral condensate
can be derived.

II. HOLOGRAPHIC SETUP

A. Einstein-Maxwell action and its magnetized
AdS black hole solution

In this section, we set the stage by describing the action
and classical solution found in [32,33]. The Einstein-
Maxwell action is given by2

SM ¼ SMbulk þ SMbndy; ð2:1Þ

where the bulk piece SMbulk is

SMbulk ¼
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
R − FMNFMN þ 12

L2

�
; ð2:2Þ

with
ffiffiffiffiffiffi−gp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det gμν
p

, FMN is the electromagnetic field
strength, R is the Ricci scalar and Λ ¼ − 12

L2 is the negative
cosmological constant. The second piece is the boundary
action SMbndy consisting of the Gibbons-Hawking surface
term and holographic counterterms to cancel the UV
divergence (close to the AdS boundary). These are intro-
duced as boundary terms. This action SMbndy is of the
following form:

SMbndy ¼
1

8πG5

Z
d4x

ffiffiffiffiffiffi
−γ

p �
K −

3

L
−
L
2
FμνFμν

�
ln

r
L

������
rλ

:

ð2:3Þ

The 5D solution is written in coordinates (t, x, y, z, r)
where the radial holographic coordinate r is introduced
shortly. The boundary is found at r ¼ 0; rλ is introduced as
a regulating UV cutoff for the divergence at r ¼ 0. Here, γ
denotes the determinant of the induced metric γμν at
r → ∞:

γμν ≡ diagðgtt; gxx; gyy; gzzÞ; ð2:4Þ

and K is the trace of the extrinsic curvature,

K ≔ γμνKμν ¼ −
ffiffiffiffiffiffi
grr

p ∂r ffiffi
γ

pffiffi
γ

p .

The equations of motion obtained from (2.2) are

RMN ¼ −
4

L2
gMN −

1

3
FPQFPQgMN

þ 2FMPFN
P; ð2:5Þ

∇MFMN ¼ 0. ð2:6Þ

Next, we describe the D’Hoker-Kraus solution. The black
hole metric (perturbative in B) that was found in [32,33] is3

ds2bh ¼
L2

r2

�
−fðrÞdt2þqðrÞdz2þhðrÞðdx2þdy2Þþ dr2

fðrÞ
�

þOðB4Þ; ð2:7Þ

where L is the AdS radius.
The coefficient functions appearing in this metric are

fðrÞ ¼ 1 −
r4

r4h
þ 2

3

B2r4

L2
ln

�
r
ld

�
þOðB4Þ; ð2:8Þ

qðrÞ ¼ 1þ 8

3

B2

L2

Z
1=r

þ∞
dx

lnðrhxÞ
x3ðx2 − 1

r4hx
2Þ þOðB4Þ; ð2:9Þ

hðrÞ ¼ 1 −
4

3

B2

L2

Z
1=r

þ∞
dx

lnðrhxÞ
x3ðx2 − 1

r4hx
2Þ þOðB4Þ; ð2:10Þ

and a constant magnetic field B in the z-direction Fxy
indeed solves the Maxwell equations (2.6). Some com-
ments are in order at this point. In fðrÞ, we introduced an
extra length parameter ld that is a priori a completely
independent scale in the problem: For any choice of ld, this
metric solves Einstein’s equations with a constant magnetic
field up to order B2.
The factor of rh in lnðrhxÞ is chosen such that no

singularity is encountered at r ¼ rh.
It should be noted that this solution differs from the one

utilized in [34] in that the functions qðrÞ and hðrÞ are
different; even more so, the metric given in [34] is not even
a solution to Einstein’s equations to the relevant order in B.
However, it turns out that (luckily) this on its own does not
influence the results obtained there.
From the Einstein equation, one can then find the Ricci

scalar as

2M stands for Minkowski signature.

3It is found by setting the charge density ρ ¼ 0 for the solution
in Sec. 6 of [33].
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R ¼ −
20

L2
þ 2

3
B2gxxgyy: ð2:11Þ

A closely related background can be found by letting
rh → ∞. This corresponds to a magnetized AdS solution.
This is actually more subtle than one might imagine at first
sight. Up to order B2, a solution is

ds2th ¼
L2

r2

�
−fðrÞdt2þqðrÞdz2þhðrÞðdx2þdy2Þþ dr2

fðrÞ
�

þOðB4Þ; ð2:12Þ

where in this case

fðrÞ ¼ 1þ 2

3

B2r4

L2
ln

�
r
lc

�
þOðB4Þ; ð2:13Þ

qðrÞ ¼ 1þ 8

3

B2

L2

Z
1=r

þ∞
dx

lnðlYxÞ
x5

þOðB4Þ; ð2:14Þ

hðrÞ ¼ 1 −
4

3

B2

L2

Z
1=r

þ∞
dx

lnðlYxÞ
x5

þOðB4Þ: ð2:15Þ

For small enough B, this metric indeed has no horizons. In
this case, however, the length scale lc is of direct physical
relevance. We later fix this parameter to find the best match
with actual magnetized QCD by matching to the confined
chiral condensate.
Since this represents the confined phase, we can expect

the Hawking-Page temperature to be also sensitive to lc (as
it uses input from both confined and deconfined phases).
The length scale lY on the other hand is completely

irrelevant for anything we might compute using this metric
up to order B2 in this work.
As is well known, the thermal AdS and the AdS

black hole represent both phases of the confinement/
deconfinement phase transition. The above solutions hence
represent the analogues of these when a background
magnetic field is turned on. Notice that we kept the AdS
length L explicit to keep track of dimensions.
When considering both of these backgrounds as two

phases in the same thermal ensemble, one requires the
asymptotic geometry to match. This however is not
sufficient to conclude that ld ¼ lc as the dominant
asymptotic behavior of fðrÞ is the same regardless of
the independent choice of lc and ld.
In Appendix A, we have collected a technical analysis of

the black hole described by the metric (2.7), including its
horizon structure in terms of the magnetic field B, the
Hawking temperature, its extremal limit with temperature
T ¼ 0 and the difference of the latter with the (needed)
magnetized thermal AdS metric.
To make the transition to the physical boundary mag-

netic field requires some more thought. The above back-
ground simply describes a magnetic field embedded in

AdS. In holography, it is known that one should model a
magnetic field in the boundary theory by including a flavor-
diagonal gauge field in the bulk. The above solution
describes this for one flavor only. To proceed, we first
embed this system into a larger one, more suitable to study
chiral and confinement properties of the dual gauge theory.

B. Embedding in the soft wall model

The action that we envision using is a generalization of
the one written above, which includes multiple flavors and
a soft wall dilaton:

S ¼ SEH þ Sbndy þ
Nc

16π2

Z
d4x

Z
RH

0

dre−ϕ
ffiffiffiffiffiffi
−g

p
Tr

×

�
jDXj2 −m2

5jXj2 −
1

4g25
ðF2

L þ F2
RÞ
�
: ð2:16Þ

For the dilaton ϕ, we make the standard choice [11]

ϕ ¼ cr2: ð2:17Þ

The scale c is directly related to the QCD spectrum.
The background solution can be found by setting X ¼ 0

and FL ¼ FR ∼ B and diagonal.4 Given this solution, the
above action describes how gauge fluctuations (holograph-
ically dual to vector and axial currents) propagate. The
X-field describes the quark condensate in soft wall models,
and the dilaton field ϕ ensures the IR effective cutoff of the
model. Adding all of these additional fields enriches the
structure that we are analyzing. The prefactors that we
wrote above have been fixed by comparing 2-point corre-
lators in bulk and boundary [92–94]. Throughout this work,
we work with only two degenerate flavor indices (up and
down) and study the chiral transition using the associated
condensate.
Our working hypothesis is thus a prolongation of the

“standard” soft wall model. The usual AdS space is dual to
a theory of adjoint flavors. When a magnetic field is
coupled to this adjoint matter, the D’Hoker-Kraus magnetic
AdS solution becomes the relevant metric. Adding a soft
wall in that space serves to model in confinement and to
describe QCD with fundamental (confined) flavors, with or
without magnetic field depending on the metric (normal
AdS vs D’Hoker-Kraus).
The non-Abelian (but diagonal) gauge field might worry

the reader. Firstly, we remark that this is still a solution to
the coupled Einstein-Maxwell system, where the energy
density of the magnetic field sourcing the Einstein equa-
tions gets contributions from the different flavors. The
Maxwell equations are again trivially satisfied for each
gauge component. What remains to be done then is to make

4The magnetic field B is included in the flavor vector subgroup
simply because an electromagnetic field couples to the Noether
(vector) current ψ̄γμψ of the fundamental quark fields.
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the link between this effective magnetic field sourcing the
Einstein equations and the real physical 4D magnetic field
as measured in the boundary QCD-like theory.
A related issue is that the magnetic field B has mass

dimension 1 in 5D. However, the physical 4D magnetic
field B should have mass dimension 2 (GeV2). In order to
obtain the physical magnetic field from the one in (3.1), it
turns out we need to rescale it such that B ¼ 1.6 B

L. This is
explained in detail in Appendix B where we are particularly
careful in making this transition. The main idea to write
down such a formula is to use the fact that the flavor gauge
field has a fixed holographic coupling constant, and we
insist on embedding the magnetic field in the flavor gauge
field in the bulk, hence fixing its prefactor immediately.
This method is different than the one utilized by [32,33] for
N ¼ 4 SYM where the authors match the anomalies of
bulk and boundary to fix the normalization of the physical
magnetic field. Unfortunately, we cannot follow the strat-
egy of [32,33] since in bottom-up AdS/QCD models the
relative normalizations of the bulk and boundary anomalies
are not fixed a priori. Usually one achieves this goal by
matching the expected (known) QCD anomaly strength
with the one derived from the higher-dimensional
counterpart.
Before putting these models to work, we want to clarify

some further issues related to the two backgrounds
given above.

C. Independence of the deconfined phase of ld

A curious feature is that anything we might compute in
the deconfining black hole phase (2.7) is actually inde-
pendent of the value of ld. To see this, one has to recall that
the physical input parameters of our model are T and B.
These determine directly RH through the Hawking temper-
ature formula (A6). The horizon function (which is the only
place where ld appears) is written as

fðrÞ ¼ 1 −
r4

r4h
þ 2

3

B2r4

1.62
ln

�
r
ld

�
; ð2:18Þ

where rh is on its own a function of ld, determined by
fðr ¼ RHÞ ¼ 0,

1 −
R4
H

r4h
þ 2

3

B2R4
H

1.62
ln

�
RH

ld

�
¼ 0: ð2:19Þ

Solving this equation for rh and plugging it into the above
expression, one finds

fðrÞ ¼ 1 −
r4

R4
H
þ 2

3

B2r4

1.62
ln

�
r
RH

�
; ð2:20Þ

and all ld dependence has dropped out.

The only important aspect for which ld matters is
whether the above horizon equation can in fact be solved
for real rh, which is not always possible.
Hence, if one changes ld, one changes the range ofB and

T forwhich a black hole geometry is possible.Obviously,we
want to maximize this region (as there is no such restriction
in QCD), but one has to remember that for sufficiently large
B we cannot trust the geometry anymore, and it makes no
sense to draw conclusions for higher values of B.

D. Curvature singularities and the validity
of the perturbation series

There is a troublesome feature of the magnetized AdS
solution (2.12). The Ricci scalar in both confined and
deconfined phases is the same and is equal to

R ¼ −
20

L2
þ 2

3

r4

L4
B2: ð2:21Þ

In both cases, this curvature invariant blows up as r → ∞,
meaning a singularity is present in the deep interior of AdS,
either cloaked in a horizon (for the black hole case) or
naked (for the thermal AdS case).
Hence, what we thought was just plain magnetized AdS

actually contains a naked curvature singularity at r → ∞.
The ambiguity with the logarithmic term in fðrÞ shows that
the difference between what we call the black hole and the
thermal AdS is actually quite subtle.
Does this mean that this solution is completely useless?

In fact, it is not, and the artificial (hard or soft) walls that we
include ensure that the naked singularity spacetimes do
make sense as thermal AdS as we demonstrate now.
To that effect, let us better understand the conditions

required for the perturbation series in B to make sense. The
black hole function is given by

fðrÞ ¼ 1 −
r4

r4h
þ 2

3

B2r4

L2
ln

�
r
ld

�

¼ 1 −
r4

R4
H
þ 2

3

B2r4

L2
ln
�

r
RH

�
: ð2:22Þ

The perturbation needs to be sufficiently small of course.
More precisely, a good criterion is that it is smaller than
either of the first two terms separately.5 The logarithm itself
is usually Oð1Þ.6 The correction needs to be smaller than

5It is not a contradiction if it were larger than one of them and
smaller than the other one, as it would still be valid to call it a
perturbation. Also, it is not a good criterion to impose that it is
smaller than the sum of the first and second terms, as the sum of
the first and second terms vanishes at r ¼ RH , and it is overly
restrictive to impose the same thing for the perturbation.

6An exception occurs when r ≈ 0 (the AdS boundary), where
the logarithm itself becomes arbitrarily large. For that particular
case, the B2 term is thought much smaller than the þ1 term, and
so there is no problem.
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either the þ1 or the black hole RH term. The second
condition gives

B2 <
1

R4
H
: ð2:23Þ

Within this same regime, the Hawking temperature is
approximated as T ∼ 1

RH
, and hence,

B < T2; ð2:24Þ

which is the criterion D’Hoker and Kraus write in [33].
The first condition requires

B2r4 < L2; ð2:25Þ

and hence restricts the range of r: One cannot trust the
perturbative series for too large values of r. Luckily, we
only care about the solution outside the outer event horizon,
and we restrict ourselves hence to the range r < RH. This
condition is hence precisely the same as the previous one.
Now, for the horizonless case (supposedly thermal AdS)

the situation is very different. One has instead

fðrÞ ¼ 1þ 2

3

B2r4

L2
ln

�
r
lc

�
: ð2:26Þ

We only have the condition7

B2r4 < L2; ð2:27Þ

and hence, we should not trust the solution too deep in the
interior.8 This time this region is of interest and relevant to
our computations.
The curvature singularity is hence in a region outside the

reach of our perturbative solution and should be resolved
upon treating the magnetic field in a nonperturbative
fashion. It would seem that we cannot describe the whole
space with our constructed metric. This is true, but this is
precisely where the walls come in and save the day.
So we find that the naked singularity solutions can be

interpreted as magnetized thermal AdS when r is not
too large.
In our case, we adjust this model by including either a

hard wall or a soft wall in the deep interior of AdS,
precisely where the perturbative solution begins to fail. It is
particularly transparent to see this in the hard wall case. The

range of r is truncated to r < r0 where r0 ≈ 3 GeV−1. In
order to trust the solution all the way to the hard wall, we
require

B <
1

r20
≈
1

9
GeV2: ð2:28Þ

This condition is in fact an order of magnitude less strict
than B < T2 for T ∼ 100 MeV.
It should be noted that both the hard wall and the soft

wall case sufficiently dampen the curvature singularity
contribution (either by excising it or by exponentially
damping its contribution) to make the on-shell action finite
in the deep interior. This is the reason we do not encounter
any pathologies related to this singularity in our answers
later.

III. HAWKING-PAGE OR CONFINEMENT/
DECONFINEMENT TRANSITION UNDER THE

INFLUENCE OF A MAGNETIC FIELD

As is well known, the Hawking-Page transition is the
holographic dual of the confinement/deconfinement phase
transition. We perform a detailed analysis here, first by
revisiting the analysis done in [34] for the hard wall model
and then by transferring to the soft wall scenario that we are
mainly interested in here.

A. Revisiting Mamo’s analysis—hard wall model

As we are interested in the thermodynamics of the
system, we need to Euclideanize the on-shell actions
(2.2) and (2.3) from which the free energy F is determined
by S ¼ βF. For the hard wall model, the Euclidean bulk
action reads

Sbulk ¼
V3

8πG5

Z
β

0

dtE

Z
r0

rλ

dr
ffiffiffi
g

p �
4

L2
þ2

3
B2gxxgyy

�
; ð3:1Þ

where rλ is the UV cutoff required to regulate the infinite
volume available close to the AdS boundary, r0 is r0 ¼ RH
in the case of the black hole and r0 ¼ r0 in the case of
thermal AdS (this is the hard wall cut-ff in the IR) and V3 is
the volume in the boundary directions. The value of r0 is
fixed phenomenologically at r0 ¼ 3.096 GeV−1 by match-
ing with the lowest ρ meson mass [95]. The Euclidean
boundary action reads

Sbndy¼−
V3

8πG5

Z
β

0

dtE
ffiffiffiffiffiffi
−γ

p �
K−

3

L
−LB2gxxgyy

�
ln
r
L

������
rλ

:

ð3:2Þ

We review the method implemented in [34] to compute
the on-shell actions in order to analyze the Hawking-Page
transition under the influence of a constant magnetic field.

7This can also be understood without any computation since
upon writing the Einstein equations in terms of B, no explicit
factor of L is present anymore, and the only dimensionful
parameter left in the problem is r itself. Note that the temperature
is arbitrary and geometry-independent if there are no horizons.

8Note that also the logarithm blows up as r → ∞, but this
becomes appreciable only for much larger values of r than the
criterion written here.
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B. Black hole—deconfined phase

As the computations are a bit tedious, we present them in
Appendix C. For the hard wall model, we find

Sbh ¼ Sbhbulk þ Sbhbndy

¼ V3L3

8πG5

β

�
−

1

R4
H
þ 1

2r4h
þ B2

3L2
þ 2B2

3L2
ln

�
RH

rλ

�

−
B2

3L2
ln

�
rλ
ld

�
þ B2

L2
ln

�
rλ
L

��
þOðB4Þ: ð3:3Þ

Using fðr ¼ RHÞ ¼ 0, we can rewrite this as

Sbh ¼
V3L3

8πG5

β

�
−

1

2R4
H
þ B2

3L2
þ B2

L2
ln

�
RH

L

��
þOðB4Þ: ð3:4Þ

C. Thermal AdS—confined phase

The thermal magnetized AdS geometry was written in
Eq. (2.12) above.
Unlike for the black hole geometry, in the thermal AdS

space the temperature is not linked to any geometrical
quantity and can be chosen at will.
The computation of the on-shell action is again deferred

to the Appendix D, and we obtain in this case:

Sth ¼ Sthbulk þ Sthbndy

¼ V3L3

8πG5

β

�
−

1

r40
þ B2

3L2
þ 2B2

3L2
ln

�
r0
rλ

�

−
B2

3L2
ln

�
rλ
lc

�
þ B2

L2
ln

�
rλ
L

��
þOðB4Þ: ð3:5Þ

1. Phase transition

The phase transition occurs when the solution with the
lowest free energy switches between the two. Thus, we
need to find the temperature where ΔS ¼ 0:

ΔS ¼ Sbh − Sth

¼ V3L3

8πG5

β

�
−1
2R4

H
þ 1

r40
þ B2

3L2
ln

�
R3
H

lcr20

��
þOðB4Þ: ð3:6Þ

Since RH is fully determined by T and B by the formula for
the Hawking temperature, this equation defines a relation
between the Hawking-Page temperature and the applied
magnetic field.
As anticipated earlier, the arbitrary length scale lc of the

confined phase leaves a distinct physical imprint on the
formulas. Since it is quite difficult to compare the resulting
Hawking-Page temperature for various values of lc as a
function of B with lattice results, we do not attempt to do

this here. The behavior of the Hawking-Page temperature
as a function of B for various values of lc is shown
in Fig. 1.
In Sec. VA, we find another way to constrain lc

significantly (in the soft wall model), and we effectively
fix it to lc ¼ 1.03 GeV−1. For the purposes of this section,
we assume this value of lc and make our figures accord-
ingly. We do remark that this value is indeed plausible for
the scenario discussed here.
In Fig. 2, we can see that the critical temperature THP

decreases with the applied magnetic field B.

D. Hawking-Page transition with a magnetic field
in the soft wall model

In this section, we follow the method implemented in
[34] to compute the on-shell actions to analyze the
Hawking-Page transition for the soft wall model.

0.1 0.2 0.3 0.4 0.5

THP

0.10

0.12

0.14

0.16

0.18

0.20

FIG. 1. The THP (GeV) in the hard wall model as a function of
the applied magnetic field B (GeV2) with c ¼ 0.151 GeV2 for
various values of lc. From top to bottom: lc ¼ 0.1 GeV−1 (red),
lc ¼ 0.5 GeV−1 (green), lc ¼ 1 GeV−1 (blue), lc ¼ 2 GeV−1

(orange).

0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15

0.20
THP

FIG. 2. The THP (GeV) in the hard wall model as a function of
the applied magnetic field B (GeV2) with r0 ¼ 3.096 GeV−1 and
lc ¼ 1.03 GeV−1.
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E. Einstein-Maxwell action in the soft wall model

In order to analyze the Hawking-Page transition under
the influence of a magnetic field, we need to first compute
the on-shell Euclidean actions for the deconfined phase
(black hole geometry) and for the confined phase (thermal
AdS) at the same temperature.
As was pointed out in [95], in order to analyze the

Hawking-Page transition using the soft wall model we need
to assume that the dilaton field does not significantly
backreact on the metric, i.e. it does not affect the gravi-
tational dynamics. Thus, the equations of motion are (2.5)
and (2.6).

F. Black hole—deconfined phase

The computations themselves are included in
Appendix D. One finds the on-shell action

Sbh ¼ Sbhbulk þ Sbhbndy

¼ V3L3

8πG5

β

�
e−cR

2
H

�
−1
R4
H
þ c
R2
H

�
þ
�
B2

3L2
þ c2

�
Eið−cR2

HÞ

− e−cr
2
λ

�
−1
r4λ

þ c
r2λ

�
−
�
B2

3L2
þ c2

�
Eið−cr2λÞ−

1

r4λ

þ 1

2r4h
þ B2

3L2
−
1

3

B2

L2
ln

�
rλ
ld

�
þB2

L2
ln

�
rλ
L

��
þOðB4Þ: ð3:7Þ

G. Thermal AdS—confined phase

For the confining phase, the resulting on-shell action is
given by

Sth ¼ Sthbulk þ Sthbndy

¼ V3L3

8πG5

β

�
−e−cr2λ

�
−1
r4λ

þ c
r2λ

�
−
�
B2

3L2
þ c2

�
Eið−cr2λÞ

−
1

r4λ
þ B2

3L2
−
1

3

B2

L2
ln

�
rλ
lc

�
þ B2

L2
ln

�
rλ
L

��
þOðB4Þ: ð3:8Þ

1. Phase transition

The difference in the on-shell action hence becomes
(using fðr ¼ RHÞ ¼ 0)

ΔS¼ Sbh − Sth

¼ V3L3

8πG5

β

�
e−cR

2
H

�
−1
R4
H
þ c
R2
H

�
þ
�
B2

3L2
þ c2

�
Eið−cR2

HÞ

þ 1

2R4
H
þ 1

3

B2

L2
ln

�
RH

lc

��
þOðB4Þ: ð3:9Þ

Again, lc appears explicitly in this expression.

As a special case, for B ¼ 0 we retrieve the condition for
ΔS ¼ 0 as

1

2
þ e−cR

2
Hð−1þ cR2

HÞ þ ðc2R4
HÞEið−cR2

HÞ ¼ 0; ð3:10Þ

which is the same expression obtained in [95,96].
The relation of THP as a function of B for various values

of lc is shown in Fig. 3. We remark here already that a
qualitative match with the lattice requires that lc ∼
1 GeV−1 but definitely not much smaller than this. The
value we find later indeed gives a qualitative nice behavior.
One can see that the decreasing critical temperature is not
universal in lc; as for rather small values of lc, we observe
an increasing deconfinement temperature with B.

0.1 0.2 0.3 0.4 0.5

0.15

0.20

0.25

THP

FIG. 3. The THP (GeV) in the soft wall model as a function of
the applied magnetic field B (GeV2) with c ¼ 0.151 GeV2 for
various values of lc. From top to bottom: lc ¼ 0.1 GeV−1 (red),
lc ¼ 0.5 GeV−1 (green), lc ¼ 1 GeV−1 (blue), lc ¼ 2 GeV−1

(orange).
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0.12

0.14

0.16

0.18

0.20

0.22

0.24
THP

FIG. 4. The THP (GeV) in the soft wall model as a function of
the applied magnetic field B (GeV2) with c ¼ 0.151 GeV2 and
lc ¼ 1.03 GeV−1.

DUDAL, GRANADO, and MERTENS PHYSICAL REVIEW D 93, 125004 (2016)

125004-8



Specifying again the value of lc ¼ 1.03 GeV−1, one
obtains the profile shown in Fig. 4.
Again, we find a decreasing behavior of the deconfine-

ment temperature with the applied magnetic field B.

IV. INTERNAL ENERGY
AND THERMODYNAMIC

STABILITY

There is a further thermodynamic stability issue we can
discuss using the on-shell action: Any stable thermody-
namic theory should have a positive heat capacity. We
know that black holes in asymptotically flat space violate
this stability criterion, and they are hence unstable towards
either evaporation or growth from the thermal heat bath. In
AdS, this does not happen (at least for large AdS black
holes), and these are thermodynamically stable. Since we
have altered the black hole solution, it seems interesting to
reconsider this issue for the current geometry. We anticipate
small black holes being unstable (just like in normal AdS).

To start off, we need to find the thermodynamic internal
energy of the system. One way of finding the mass
contained in this spacetime is to use the thermodynamics
of the boundary theory.9 The on-shell free energy was
found in the previous section, and it is given by10

F ¼ e−cR
2
H

�
−

1

R4
H
þ c
R2
H

�
þ
�
B2

3L2
þ c2

�
Eið−cR2

HÞ

þ 1

2r4h
; ð4:1Þ

where we have discarded all temperature-independent
contributions; these are irrelevant for thermodynamical
purposes and include the UV divergent terms that require
holographic renormalization.11 The internal energy E can
now be found as

E ¼ ∂βðβFÞ

¼ expð−cR2
HÞ
�
−

1

R4
H
þ c
R2
H

�
þ
�
B2

3L2
þ c2

�
Eið−cR2

HÞ þ
1

2R4
H
þ B2

3L2
ln
�
RH

ld

�

þ
4πRH

�
1
27

expð−cR2
HÞð6L2þB2R4

HÞð−6L2þB2R4
HÞ2

R5
HL

4πð2L2þB2R4
HÞ

þ 1
54

ð−6L2þB2R4
HÞ3

R5L4πð2L2þB2R4
HÞ
	

4 − 2
3

B2R4
H

L2

: ð4:2Þ

We remark that if c ¼ 0, this complicated formula
reduces to

E ¼ 1

2R4
H

�
3 −

2

3

B2R4
H

L2

�
þ B2

L2
ln

�
RH

ld

�
þ ðT-indepÞ

¼ 3

2R4
H
þ B2

L2
ln

�
RH

ld

�
þ ðT-indepÞ; ð4:3Þ

where we again have dropped temperature-independent
terms.

This energy depends on three dimensionful quantities:
ld, c and B ∼ B

L, from which we can construct two
dimensionless numbers. Note that ld only provides a
temperature-independent contribution and is hence irrel-
evant as we have been neglecting such terms throughout.
For computational simplicity and without loss of generality,
we hence fix ld ¼ 1 here. The energy hence depends
nontrivially on two independent parameters. Numerically
analyzing the dependence of equation (4.2) on RH for a
selection of the parameters, one learns the following
lessons:

(i) If c ¼ 0 and B ¼ 0, the energy decreases monoton-
ically as RH increases.

(ii) As soon as either c ≠ 0 or B ≠ 0, the energy only
decreases with RH for sufficiently small RH. It
reaches a minimum at some R�

H after which generi-
cally it increases monotonically for all RH larger
than this value. However, for a relatively small
subset of the parameter space, it is possible that
the energy reaches a maximum and a second

10An overall prefactor L3=κ2 with κ2 ¼ 8πG5 is left implicit in
the following.

9An alternative would be to use F ¼ E − TS where one
computes S via the Bekenstein-Hawking entropy of the black
hole. We checked however that these expressions do not match
when c ≠ 0. This is no surprise, as the soft wall does not solve
Einstein’s equations. Another alternative would be to use the
ADM definition of mass in asymptotically AdS spacetimes [97].
This however makes crucial use of the background equations of
motion as well. Since the free energy as computed holograph-
ically in the soft wall model has proven to lead to a very nice
criterion on the deconfinement temperature [95], we believe it to
be more trustworthy to fully continue in the boundary theory after
obtaining F (i.e. to not use any more holographic dictionary
entries). The internal energy E is then computed instead using
∂βðβFÞ. 11One does have to be a bit careful here, as it seems our result

now depends on ld, but this is only as an overall temperature-
dependent addition as we see.
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minimum, after which it will increase monotonically
again. If this happens, it is possible that there exists
another stable region within the unstable zone we
discuss below. We ignore this possibility here.

To analyze the thermodynamic stability, we only need to
combine this behavior with Fig. 19, and we can readily
reach the following conclusion. If R < minðR�

H; R
c
HÞ, the

solution is thermodynamically stable, in the sense that
C ¼ ∂E

∂T > 0. If R�
H is smaller than Rc

H, the system is
thermodynamically unstable in between these values of
RH. The instability causes the black hole to shrink (by
emitting radiation) until it reaches extremality with T ¼ 0.
In all other cases, the region for larger RH is not accessible
for a given B as shown in Fig. 5.
Next, we apply this general discussion to the case at

hand. For our specific case, we take c ¼ 0.151 GeV2. The
value of ld is arbitrary for thermodynamics, as it only
provides a temperature-independent shift to the energy.

With these choices, the behavior of the (temperature-
dependent part of the) energy is shown in Fig 6. It is seen
that for larger values of B, this curve has multiple extrema.
Since this indeed only happens at larger values of B, we do
not discuss this here.
The critical horizon radius, above which an instability

occurs, is shown for small values of B in Fig. 7.
In Fig. 8, we combine this with the behavior of Rc

H
[determined by equation (A6)] as a function of B. Clearly,
the most stringent condition for these values of B is that
RH < R�

H; we are in the first situation displayed in Fig. 5.
For any such value of RH, the system is stable in the sense
discussed above. Finally, we can translate this criterion into
one on the temperature T. It should be larger than the

FIG. 7. Critical horizon radius R�
H (GeV−1) as a function of the

applied magnetic field B (GeV2).

FIG. 8. Critical horizon radius R�
H (GeV−1) and extremal

horizon radius Rc
H (GeV−1) as a function of the applied magnetic

field B (GeV2).

FIG. 6. Energy E − E0 (GeV) as a function of horizon radius
RH (GeV−1) for several values of the applied magnetic field B.
Black: B¼ 0.0GeV2, green: B¼ 0.1GeV2, blue: B ¼ 0.2 GeV2,
red: B ¼ 0.3 GeV2.

FIG. 5. The system is thermodynamically unstable in between
both special values of RH . For higher values of RH , it is
impossible with a given value of B to construct this black hole
geometry with outer horizon RH .
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minimal temperature displayed in Fig. 9. Since for these
values of B this minimal temperature is about 100–
108 MeVand this is on its own smaller than the deconfine-
ment (Hawking-Page) temperature, we conclude that the
system is indeed thermodynamically stable in the regime
we are probing it.

V. CHIRAL PHASE TRANSITION UNDER THE
INFLUENCE OF A MAGNETIC FIELD

In this section, we proceed with the main goal of this
work: to analyze the chiral condensate as a function of
the applied external magnetic field and to determine the
resulting chiral phase transition temperature. The action
relevant for the chiral properties of the dual QCD-like
theory was already written above. Let us retake it here,

S ¼ Nc

16π2

Z
d4x

Z
RH

0

dre−ϕ
ffiffiffiffiffiffi
−g

p
Tr

×

�
jDXj2 −m2

5jXj2 −
1

3
ðF2

L þ F2
RÞ
�
: ð5:1Þ

In this action, X is a complex field in the bifundamental
representation of SUðNfÞL ⊗ SUðNfÞR, associated to the
chiral symmetry breaking. Its covariant derivative is
defined as DμX ¼ ∂μX − iAL;μX þ iXAR;μ, for two gauge
fields whose field strength is FMN

L;R . The scalar field ϕðrÞ ¼
cr2 is the dilaton field which is responsible for the
phenomenological IR properties of the theory, i.e. confine-
ment [98] and the linear Regge behavior of the meson
spectrum (c ¼ 0.151 GeV2 which is fixed by the ρ-meson
mass [11]). The mass parameter is fixed at m2

5L
2 ¼ −3.

As mentioned in [91], the dominant behavior of hψ̄ψi is
expected to be due to the interaction of the field X with the
background geometry and dilaton wall. This means that we

can restrict ourselves to only the linearized equations of
motion for X. The scalar field is decomposed as
Xðxμ; rÞ ¼ X0ðrÞ1Nf

eiπðxμ;rÞ, where X0ðrÞ is the component
independent of the boundary directions and πðxμ; rÞ re-
present chiral fields. As stated before, we work in the
approximation of two degenerate flavors. In principle, as
soon as a magnetic field is turned on, one might expect a
different value for the chiral condensate in terms of either
the up or down quarks due to their different electromagnetic
coupling. This would amount to allowing X to be a
diagonal rather than scalar matrix. Though we soon see
this would make no difference in our case, so we keep X
proportional to the unit matrix 1Nf

, meaning we can still
consider a degenerate quark condensate.
According to the AdS=CFT lore, the boundary expan-

sion of this X-field starts with the bare quark mass as the
lowest order coefficient. The second term contains the
chiral condensate, and this is the quantity we are interested
in. The main goal is then to solve the equations of motion
for X and distill this coefficient of the boundary expansion.
Since our computations are done in the Euclidean formal-
ism, we impose our solution to be finite at the black hole
horizon.12

Before discussing the temperature-dependent chiral con-
densate in the deconfined regime, we first discuss it in the
low temperature confined region. Note that it is a general
property of holographic models that the confined regime is
described by thermal AdS. The temperature does not
emerge from the geometry itself (it is an independent
variable), and hence, the chiral condensate, as determined
by solving bulk equations of motion, is independent of the
temperature. This is a general feature of large N holo-
graphic models and is something we will not be able to
remedy.
Since we are interested in a spatially homogeneous

condensate, we make the ansatz Xðxμ; rÞ ¼ X0ðrÞ. Using
the metric (2.7), the equations of motion are given by

X00
0 −

ð2cr2 þ 3ÞfðrÞ − rf0ðrÞ
rfðrÞ X0

0 þ
3

r2fðrÞX0 ¼ 0; ð5:2Þ

where fðrÞ is the horizon function of the black hole.
Magnetized AdS can be found by taking rh → ∞ in fðrÞ.
To derive this, we remark that the background magnetic

field appears explicitly both in the metric as in the covariant
derivatives of X. The latter contribution vanishes though for
the case at hand since the magnetic field is modeled into the
(diagonal) vector part of the flavor gauge group AL ¼ AR
and we take X to be proportional to the identity matrix in
flavor space. So

FIG. 9. Minimal temperature (in GeV) needed to have a stable
black hole system as a function of B (GeV2).

12We note that we choose X to be time independent, so our
computation borders the Lorentzian and Euclidean methods.
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DμX ¼ ∂μX − iAL;μX þ iXAR;μ ¼ ∂μX; ð5:3Þ

hence, the only way in which the magnetic field enters is
through its presence in the metric. This demonstrates that
we would find no dependence on the magnetic field at all if
we were to exclude the backreaction of the B-field on the
geometry. Notice here that the foregoing argument stands
also were X to be merely diagonal. The Eq. (5.2) is thus
identical for the up and down quark sector; hence, there is
only need for a single X0. This explains why we maintained
from the start X ∝ 1Nf

.

A. Chiral condensate for the confining background

The T → 0 limit of the AdS black hole solution will not
yield thermal AdS when magnetic fields are turned on,
instead it gives the extremal black hole solution. Hence, to
discuss the confinement behavior of the condensate, we
need to numerically solve for the condensate directly in
AdS space.
One can show (and we do so for the deconfining black

hole in the next subsection) that the boundary expansion of
the X-field is of the form

L3=2X0 ¼ cmr3 ln ð ffiffiffi
c

p
rÞ þmrþ σr3 þOðr5Þ; ð5:4Þ

where m is the bare quark mass. We demonstrate in
Appendix E that the actual (single flavor) condensate is
related to the coefficient σ in the following sense:

hψ̄ψiB;T − hψ̄ψiB¼0;T¼0

¼ Nc

2π2
ðσðB; TÞ − σðB ¼ 0; T ¼ 0ÞÞ: ð5:5Þ

The lhs of the above equation is, by construction, finite.
Numerically, we shoot from the boundary until a normal-

izable solution is found, which fixes σ. In Fig. 10, we show
the resulting condensate σ (actually σ

cm) as a function of the
external magnetic field for different values of lc.

13 The
behavior changes quite drastically. Note that for lc

ffiffiffi
c

p ¼ 2,
one finds singular behavior around B

1.6c ≈ 1. This is indeed
expected, as this thermal magnetized AdS background
develops horizons at

B
1.6

>

ffiffiffiffiffi
6e

p

l2
c

≈ 1.01c ð5:6Þ

for lc
ffiffiffi
c

p ¼ 2. This again shows that one must choose lc
not too large to have a trustworthy model. It is clear that one
needs to have lc not too small since the condensate would

drop with increasing magnetic field then,14 but also not too
large since horizons in the geometry might develop. To
determine a suitable value for lc, we compare the results
here to those given by the lattice computation of [60]. In the
latter reference, one actually computes the renormalized
condensate15 as

ΔΣ ¼ 2m
M2

πf2π
ðhψ̄ψiB;T¼0 − hψ̄ψiB¼0;T¼0Þ: ð5:7Þ

Using the previous formula (5.5), one can write this as

ΔΣ ¼ m2cNc

M2
πf2ππ2

�
σðB; 0Þ
cm

−
σð0; 0Þ
cm

�
: ð5:8Þ

Just plugging in the real bare quark mass in this formula
results in a gross underestimation of the chiral condensate.
This is a general property of the soft wall model: hψ̄ψi ∼m,
and hence, a small bare quark mass leads to a small
condensate. We remedy this situation by artificially choos-
ing a much higher value of the bare quark massm to obtain
a reasonable behavior for the chiral condensate at B ¼ 0
but T ≠ 0. This is detailed in Appendix F, where we obtain
m ¼ 2.967 GeV. Note that this is roughly a factor of 1000
larger than the actual bare quark mass.
With this value of the bare quark mass, and the

experimental values of the pion mass and decay constant,
one computes the prefactor of (5.8) to be 2997.60, which is
gigantic compared to the actual QCD value of this prefactor
(0.0085).16 Since this means that the curves in Fig. 10 are

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.2 0.4 0.6 0.8 1.0

cm

1.6c

FIG. 10. The σ
cm as a function of applied magnetic field B for

various values of lc. From bottom to top: lc
ffiffiffi
c

p ¼ 0.1 (red),
lc

ffiffiffi
c

p ¼ 0.5 (green), lc
ffiffiffi
c

p ¼ 1 (blue), lc
ffiffiffi
c

p ¼ 2 (orange).

13Since the differential equation contains singular points, we
need to perform a Frobenius series expansion near these points.
This is presented in the next subsection for the black hole case.

14And as such, be in contrast with the expected magnetic chiral
catalysis at zero temperature.

15To be more precise, the condensate averaged over up and
down flavor. Since we still have a degenerate condensate, the ΔΣ
of [60] does correspond to our hψ̄ψi without the need to worry
about factors of 2.

16To get these numbers, we used Mπ ≈ 135 MeV and
fπ ≈ 86 MeV, and we took the actual QCD bare quark mass
to be m ≈ 5 MeV.
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blown up tremendously compared to QCD, the suitable
window of lc shrinks substantially. Hence, the value of lc
that we should take is almost uniquely determined by the
condition that the curve as drawn above is almost flat.17

Closer scrutiny and comparison with the lattice results
for very small applied magnetic field leads to a suitable
value of lc ¼ 0.4ffiffi

c
p ≈ 1.03 GeV−1 (close to the green curve of

Fig. 10).18 This value of lc is also in reasonable unison with
the Hawking-Page analysis performed above.
If one would compute the relative condensate for higher

values of B, one would find a discrepancy with the lattice
results for any lc: The curve here roughly follows a
parabolic shape, whereas one should obtain linear behavior
for larger magnetic fields. But, of course, for larger
magnetic fields, we should not trust the background in
the first place.
We would like to emphasize here that in our setup we

have fixed several holographic parameters for the B ¼ 0
case (the quark mass m and the 5D Newton constant G5).
We hence have absolutely no predictability in this case. The
value of the additional length scale lc in the confining
phase was determined using the T ¼ 0 and B ≠ 0 regime of
the theory. However, once these are all fixed, the most
interesting T ≠ 0 and B ≠ 0 regime is fully determined by
our model, and it is here (and only here) that we predict the
behavior of the dual QCD-like theory. One might think that
all of these additional parameters that require experimental
or lattice results to fix them is a serious flaw of our
approach. In general, this is true, but since we constrain our
model to fit the data in several explored regions of the
(T, B) parameter space, it is hence more likely to find the
best possible result of these kinds of models for the final
remaining parameter region (T ≠ 0 and B ≠ 0) as well.

B. Chiral condensate in the deconfined phase

For the black hole case, we are required to solve the
differential equation between the boundary (r ¼ 0) and
the black hole horizon (r ¼ RH). Whereas for pure AdS the
integration region stretched all the way to r → ∞, here we
are solving the differential equation on a finite interval. It
actually turns out to be easier if we numerically integrate
the differential equation from the horizon of the black hole
to the boundary (so we reverse the integration direction
compared to the previous subsection). The major benefit
from doing this is that we do not have to employ a shooting
method. The same problem was studied for the B ¼ 0 case
by [91] where the authors did utilize a shooting method to
integrate from boundary to horizon. Both methods obvi-
ously agree in the end.

Since the differential equation contains singular points, a
Frobenius analysis is required again.

1. Frobenius analysis

The near-boundary limit.—In the zeroth order expansion
around r ≈ 0, the first coefficient of the differential
equation (5.2) behaves like ∼ − 3

r and the second one like
∼ 3

r2. Utilizing the ansatz X0 ∼ rα, we obtain the indicial
equation,

α2 − 4αþ 3 ¼ 0; ð5:9Þ

with solutions: α1 ¼ 3 and α2 ¼ 1. From the general
Frobenius method, this gives us two solutions:

X01 ¼ r3
X∞
k¼0

akrk; ð5:10Þ

X02 ¼ n ln rX01 þ
X∞
k¼0

bkrkþ1: ð5:11Þ

Proceeding one level further with the Frobenius analysis,
one obtains a1 ¼ 0 and

cb0 ¼ na0;

b1 ¼ b3 ¼ 0;

b2 ¼ arbitrary: ð5:12Þ

Choosing b2 ¼ 0 and a0 ¼ b0 ¼ 1 as the overall normali-
zation, we find n ¼ c such that

X01 ¼ r3 þOðr5Þ; ð5:13Þ

X02 ¼ cr3 ln rþ rþOðr5Þ: ð5:14Þ

The field in the boundary limit is a superposition of these
solutions,

L3=2X0 ¼ AX02 þ CX01; ð5:15Þ

where the condition

L3=2X0

r

����
r→0

¼ m ð5:16Þ

fixes the coefficient of (5.13) to A ¼ m. Therefore, we have

L3=2X0 ¼ cmr3 ln rþmrþ Cr3 þOðr5Þ
¼ cmr3 ln ð ffiffiffi

c
p

rÞ þmrþ σr3 þOðr5Þ; ð5:17Þ

where we choose to absorb a part of C into the logarithmic
term and define σ as the remainder. This number σ is

17In effect, this is a shooting method to determine lc.
18This value was determined by matching the lattice value of

ΔΣ at B ¼ 0.024 GeV2 with the behavior above determined
numerically by the shooting method.
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directly related to the hψ̄ψi condensate: The link between
this coefficient of the boundary expansion and the actual
QCD quark condensate is made clear in Appendix E.19

Clearly, there is no influence of the magnetic field on the
near-boundary limit. It is the same analysis as in the case
B ¼ 0 found in [91].

The near-horizon limit.—In the near-horizon (r→RH) limit,
we can expand the horizon function (A1) generically as

fðrÞ ¼ A

�
1 −

r
RH

�
þOðr − RHÞ2; ð5:18Þ

for some constant A. Substituting the ansatz X0 ∼ ð1 − r
RH
Þα

in the differential equation, we obtain the following indicial
equation:

αðα − 1Þ − α

�
RH

A
dfðrÞ
dr

����
r¼RH

�
¼ 0; ð5:19Þ

whose solutions are

α1 ¼ 0 and α2 ¼ 1þ RH

A
dfðrÞ
dr

����
r¼RH

¼ 0; ð5:20Þ

where the second equality in α2 follows directly from the
general expansion of fðrÞ around the horizon (5.18). At the
next order, X0 ∼ 1þDð1 − r

RH
Þ and the series expansion

yields

D ¼ −
3

4 − 2
3

B2R4
H

L2

; ð5:21Þ

where we used the condition fðr ¼ RHÞ≡ 0 to get the
result. Therefore, the solution in the near-horizon limit
reads

L3=2X0ðrÞ ¼ 1 −
3

4 − 2
3

B2R4
H

L2

�
1 −

r
RH

�

þOðr − RHÞ2: ð5:22Þ

In the case B ¼ 0, we recover the solution found in [91].
Using the solutions (5.22) and (5.17), we can numerically
integrate the differential equation and determine the
dependence of the chiral condensate on the applied
magnetic field B and the temperature T.

4. The results

The quantity σ
cm as a function of the dimensionless

temperature Tffiffi
c

p is shown in Fig. 11 for different value of

the magnetic field.
The actual condensate hψ̄ψi can then be found as

hψ̄ψiB;T − hψ̄ψiB¼0;T¼0

¼ Ncmc
2π2

�
σðB; TÞ
mc

−
σðB ¼ 0; T ¼ 0Þ

mc

�
: ð5:23Þ

The value of the quark mass m was determined above
precisely such that at B ¼ 0; the critical temperature is
about 210 MeV. Hence, all parameters are known in the
above equation, and we can readily plot the resulting total
chiral condensate (i.e. the sum of up and down conden-
sates) as a function of the applied magnetic field (Fig. 12).
Our main interest in this work lies of course in finding

how the critical chiral temperature evolves as the magnetic
field is turned on. One can readily distill this relation using

0.0 0.1 0.2 0.3 0.4 0.5

T

c
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FIG. 12. Total 2-flavor condensate hQ̄Qi in terms of Tffiffi
c

p for
various values of B

c. From bottom to top: Blue: B
c ¼ 0, red:

B
c ¼ 0.1, black: B

c ¼ 0.2, green: B
c ¼ 0.5, purple: B

c ¼ 1.0.
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FIG. 11. The dimensionless quantity σ
cm in terms of Tffiffi

c
p for

various values of B
c. From bottom to top: Blue: B

c ¼ 0, red:
B
c ¼ 0.1, black: B

c ¼ 0.2, green: B
c ¼ 0.5, purple: B

c ¼ 1.0.

19The number σ on its own is ambiguous to define as one can
freely absorb portions of it into the logarithmic term. The quark
condensate on the other hand luckily does not share this
ambiguity and is perfectly well defined, which we explain in
Appendix E.
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the above numerical work, and we find the result of Fig. 13.
Quite surprisingly, the numerical data lie almost perfectly
on a parabola of the form Tcffiffi

c
p ¼ 0.002 B2

c2 þ 0.5396.
For the reader’s convenience, we draw the same relation

again but this time with the phenomenological value of
c ¼ 0.151 GeV2 in Fig. 14.
Clearly, these figures show that one finds magnetic

catalysis for the chiral phase transition.
As we are working with the black hole geometry (the

deconfined phase), we should, in principle, only trust these
results for T > THP, with THP the Hawking-Page temper-
ature determined in Sec. III B as a function of B. In the
confined phase geometry (thermal magnetized AdS), the
temperature does not in the geometry itself. This makes all
computations manifestly independent of the temperature,
and the chiral condensate would be constant as a function
of T all the way up to THP.
This property is a generic feature of holographic classical

backgrounds (large N approximation) since the only way to
properly introduce the temperature into the geometry is by
including a black hole horizon.

A somewhat uncomfortable consequence here is that the
chiral condensate would exhibit a discontinuous jump at
THP where it suddenly starts following the above decon-
fined curves. Lattice results show no sign of any jump
whatsoever. This is a nuisance inherent to holographic
QCDmodels and something we have to live with here. This
happens for any value of B and was discussed in [91] as
well. Note though that this complication happens at a lower
temperature than Tc, and hence, its effect for our purposes
is not really visible.20

Perhaps the critical transition temperatures will develop a
different behavior if the magnetic field keeps growing, but
we refrain from speculating about this. As we do know our
results are exact at leading order in B2, they are trustworthy
for sufficiently small values of the magnetic field, and
already in this region, our holographic predictions are at
odds with the lattice predictions for the chiral transition.
Another limit that could be probed semianalytically is the
B → ∞ case; the corresponding metric is also known
analytically and presented in the appendix of [32]. The
deconfinement transition in the hard wall model in this
extreme limit was analyzed in [34]. We do not generalize
that analysis to our current soft wall setting, as the
phenomenologically interesting region, potentially realiz-
able during a heavy ion collision, is not that of a very large
magnetic field.

C. Revisiting the chiral transition in the hard wall
model at zero magnetic field

To clear out some misconceptions about the chiral
transition in the hard wall model for B ¼ 0, let us again
go through the analysis here. The relevant equation of
motion can be extracted from the one of (5.2) by sending
c → 0, while keeping in mind that at r ¼ r0, a hard wall is
placed. In the confinement phase, corresponding to
fðrÞ → 1, the relevant solution in the hard wall setting
is provided by

L3=2X0ðrÞ ¼ mrþ σr3: ð5:24Þ

In this case, the quark mass m and chiral condensate σ can
both be chosen at will. In the seminal work [10], these and
other parameters were fixed by matching a few quantities
on top of a preselection of QCD observables.
As soon as a horizon forms, i.e. when deconfinement sets

in, one finds a solution for (5.2) [still with c → 0, but now
keeping fðrÞ] in terms of hypergeometric functions (see
also [99]),

0.2 0.4 0.6 0.8 1.0 c
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c

FIG. 13. Chiral phase transition temperature Tcffiffi
c

p as a function of
applied magnetic field B

c. The green curve represents a parabolic
fit to the data.
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FIG. 14. Chiral phase transition temperature Tc (GeV) as a
function of applied magnetic field B (GeV2) for c ¼ 0.151 GeV2.

20One could object here and say that we chose Tc to be larger
than THP. This is indeed true, and this is necessary to have any
sensible result at all. If one would not do this, and the chiral
temperature Tc would be reached before the deconfinement
temperature THP, the condensate would suddenly jump to zero
(where we interpret negative values of the condensate to mean
that it vanishes).
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L3=2X0ðrÞ ¼ mr2F1ð1=4; 1=4; 1=2; r4=r4hÞ
þ σr32F1ð3=4; 3=4; 3=2; r4=r4hÞ: ð5:25Þ

In [100], it was then concluded that m ¼ 0 and σ ¼ 0 as
both hypergeometric functions are singular at the horizon
r ¼ rh. This means that chiral symmetry is restored
maximally (even no quark mass allowed) as soon as the
deconfinement phase is considered in the hard wall, though
this reasoning is mathematically flawed. Based on general
Frobenius analysis arguments, we expect that by taking a
suitable linear combination of the foregoing hypergeomet-
ric solutions a regular solution at r ¼ rh can be obtained.
Indeed, one verifies that

L3=2X0ðrÞ ∝ rPð−1=2; r2=r2hÞ; ð5:26Þ

in terms of the Legendre function, Pðl; xÞ renders us
with a solution that is nonetheless regular at the horizon.
Expanding the solution (5.26) around r ¼ 0, we find

L3=2X0ðrÞ ¼ mrþm
Γ4ð3=4Þ
π2r2h

r3 þOðr5Þ ð5:27Þ

after a suitable normalization.
Thus, the chiral condensate in the deconfined hard wall

model can be read from expression (5.27) to be

σ ¼ m
Γ4ð3=4Þ
π2r2h

∝ mT2: ð5:28Þ

In the last step, we filled in the Hawking temperature
related to the horizon at r ¼ rh.
Here, we clearly observe the somewhat pathological

behavior of the chiral dynamics in the deconfined hard wall
model: The chiral condensate grows quadratically with the
temperature for nonvanishing quark mass. There is thus no
obvious chiral restoration in the hard wall model. It thus
also makes no sense to identify the deconfinement and
chiral transition. Evidently, this is the reason why we chose
the soft wall model to begin with to study the possibility of
a dynamical chiral transition. Only with m≡ 0, meaning in
the chiral limit, the chiral transition makes sense in the hard
wall model. Though, as soon as an even infinitesimal bare
quark mass is coupled on, the unwanted behavior (5.28)
gives problems for sufficiently large T. In the soft wall case,
it even makes no sense to work in the chiral limit m≡ 0,
as otherwise all chiral dynamics would be lost (i.e. no
surviving chiral condensate, even in the confined phase).
We end this short digression on chiral dynamics in the hard
wall model by noticing that the ensuing conclusion of [100]
can no longer hold: the soft wall chiral dynamics cannot be
the same as that of the hard wall case since the hard wall
discussion of [100] needs to be adapted anyhow.

VI. CONCLUSIONS

On general grounds [39], it is expected that a magnetic
field promotes chiral symmetry breaking, said otherwise, it
acts as a catalyst. Naively, one would thus also expect that
the chiral transition temperature, at which chiral symmetry
is restored,21 increases. Nonetheless, state-of-the-art lattice
QCD revealed at sufficiently high temperature an inverse
magnetic catalysis in the chiral sector [59,60,67]. This has
stimulated a lot of research, see e.g. [81–90].
As we are to consider QCD around the deconfinement

transition, at which instance it is still strongly coupled, we
need a suitable tool to access this regime; this is in addition
to a magnetic field that further complicates matters. One
such tool is based on the AdS=CFT correspondence,
adapted to the study of strongly coupled QCD questions.
In recent AdS/QCD papers [31,34], the inverse catalysis

was reported, though we must remark that these papers
solely studied the deconfinement temperature, using differ-
ent setups per paper. No chiral physics was directly
included, and the faith of a genuine (inverse) magnetic
catalysis remained a bit mystified. To our knowledge,
there are presently no AdS/QCD papers, be it top-down
or bottom-up, on the market that can accommodate for a
chiral transition temperature dropping with increasing
magnetic field. In this work, we investigated this question
into more depth for the first time by employing a phe-
nomenological hard and soft wall AdS/QCD model sup-
plemented with a magnetic field in the bulk and with an
appropriate asymptotic AdS behavior of the 5D magnetic
field-dependent bulk metric [32,33].
Throughout the course of the paper, we obtained several

interesting results: We studied the black hole horizon
structure of the D’Hoker-Kraus solution [32,33]. We
analyzed the thermodynamic stability of our model in
the region of interest. We corroborated on how to introduce
a finite chiral condensate. We elaborated on how, at
nonzero magnetic field, the AdS length L is no longer
completely decoupling from physically relevant quantities.
The main outcome of our work we wish to report is

however that, for reasonable values of lc, there is indeed
“inverse magnetic catalysis” for the deconfinement tran-
sition as found before in [34], but more importantly, that
there is no trace of inverse magnetic catalysis observed in
the corresponding chiral transition, which is the appropriate
quantity to look for it after all. We are thus not able to
confirm, within this model at least, the comment of [31],
based on [81,82], that inverse magnetic catalysis is related
more to a decent description of confinement rather than to a
decent description of chiral dynamics since in the soft wall
model both transitions display the opposite behavior.
This being said, our work is evidently not the final word

on this. Two major improvements are in order: We should

21Suitably defined in the presence of massive dynamical
quarks.
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develop a self-consistent22 dynamical wall model whereby
the magnetic field is taken into account à la D’Hoker-
Kraus, and also, we need to circumvent the undesired chiral
condensate properties of the soft wall models (vanishing
condensate at vanishing current quark mass). The proceed-
ing goals can, in principle, be achieved by allowing for
appropriate potentials for both dilaton ϕ that models
confinement and the scalar field X that models the chiral
condensate. Of course, those will bring gross computa-
tional effort with them. We hope to come back to this in
future work.
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APPENDIX A: BLACK HOLE GEOMETRY

In this appendix, we analyze the black hole geometry
(2.7) that we utilize in the remainder of this work. Since it
has some very peculiar properties from the gravity point of
view, we take the time here to perform an elaborate
analysis. To appreciate the effects the magnetic field can
have on the black hole horizon structure, we for the
moment ignore the fact that B should be sufficiently small,
but we rather consider the black hole metric (2.7) for
arbitrary B for the time being.

1. Locations of the event horizons

The horizon function is given by

fðrÞ ¼ 1 −
r4

r4h
þ 2

3

B2r4

L2
ln

r
ld

; ðA1Þ

where fðRHÞ ¼ 0 determines the horizon(s). This equation
can be solved analytically in terms of the Lambert W-
functions, where one readily shows that there exist at most
two real (physical) solutions given by

R4
H1 ¼ l4

d exp

�
6L2

B2r4h

�
exp

0
B@W0

0
B@−6L2

e
− 6L2

B2r4
h

B2l4
d

1
CA
1
CA; ðA2Þ

R4
H2 ¼ l4

d exp

�
6L2

B2r4h

�
exp

0
B@W−1

0
B@−6L2

e
− 6L2

B2r4
h

B2l4
d

1
CA
1
CA: ðA3Þ

For these solutions to exist, the Lambert W-functions have
to be real, which is only satisfied if their argument is larger
than −1=e. This constraint leads to

B2

6L2
<

B2

6L2
ln

�
B2l4

d

6L2

�
þ 1

r4h
: ðA4Þ

At B ¼ 0, one finds RH1 → ∞ and RH2 → rh, using the
expansions for x ≪ 1,

W0ðxÞ≈ x and W−1ðxÞ≈ lnð−xÞ− lnð− lnð−xÞÞ: ðA5Þ

As B → ∞, one can use the same series expansion, and
one finds RH1 → L and RH2 → 0. Numerically, one can
check that this procedure of turning on B causes this
transition monotonically. Since the lower RH is, the larger
the horizon radius is, we find that both outer and inner
horizons expand as B is turned on. In the case where
rh < ld, the situation is shown in Figs. 15 and 16.
Of course, in the case where rh > ld, the locations of

both horizons have the possibility to join somewhere as
shown in Fig. 17. Numerically, it can be checked that in this
case there always exists an intermediate range for B where
no horizon is present at all, and the singularity is exposed in
Fig. 18. The full story is quite a bit more complicated in this
case, as the horizons no longer move in a monotonic
fashion.

FIG. 15. Locations of horizons as B is increased.

FIG. 16. Size of the horizons of the black hole as B is changed.
Both horizons grow monotonically.

22That is, at least solving the Einstein gravitational equations
of motion. Possibly the tools of [101] can be useful in this
context.
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2. Hawking temperature of the black hole

The Hawking temperature can be readily computed and
is given by

TH ¼ 1

4π

���� 4

RH
−
2

3

B2R3
H

L2

����: ðA6Þ

It is shown as a function of RH in Fig. 19. The Hawking
temperature vanishes at a critical value of RH that we
henceforth call Rc

H.
As a sidenote, we remark that in comparing the free

energy as computed in the bulk with that of the boundary in
the large temperature limit one should reproduce the free
energy of a weakly interacting gluon gas. We use this in
Appendix B to find the 5D Newton constant in terms of the
AdS length L.
Turning on a magnetic field, the large T-limit can be

found by taking RH → 0. After some straightforward
computations with the on-shell action

F ¼ L3

8πG5

�
e−cR

2
H

�
−

1

R4
H
þ c
R2
H

�

þ
�
B2

3L2
þ c2

�
Eið−cR2

HÞ þ
1

2r4h

�
; ðA7Þ

one finds that all B-dependent terms are subdominant, and
the large T asymptotics follows the same Stefan-Boltzmann
F ∼ T4 result.23 This is expected, since at high temperatures
the average kinetic energy of the particles is high enough
such that the influence of the B-field becomes negligible.

3. Inequality on the horizon radius
and extremal black holes

In our case, we start with the temperature T and the
physical magnetic field B as imposed by the boundary
QCD-like theory. The above temperature relation (A6) then
allows us to distill two possible values of RH. The horizon
condition fðRHÞ ¼ 0 on its turn then gives us a unique
value of the parameter rh. Having determined all of the
parameters, we must finally check that our RH is indeed
the outer horizon of the black hole by determining both
solutions of fðrÞ ¼ 0 with the now known value of rh.
The order of determining the black hole parameters

given above is very important for discerning the dependent
from the independent variables in our story.
It turns out that if one should choose the lowest value of

RH in the first step, this always leads to an outer horizon.
Conversely, choosing the highest value of RH always leads
to an inner horizon. So we can only use the first descending
part of the TðRHÞ curve.24 This immediately imposes an
upper bound on RH for a given B as

RHðBÞ ≤ Rc
HðBÞ; ðA9Þ

FIG. 19. TH as a function of horizon radius RH for
B ¼ 0.8 GeV2.

FIG. 17. Locations of horizons as B is increased. If rh > ld, the
possibility exists that both horizons coincide at some values of B.
This happens at B1 and B2. The red zones indicate values of B for
which no horizon is present at all.

FIG. 18. Size of the horizons of the black hole as B is changed.
If rh > ld, there always exists a range for B where no horizons
are present at all and the singularity becomes naked.

23We discarded temperature-independent terms when writing
this expression.

24This solves an initial worry one might have in that large T
could also imply large RH . In that case, one would have found
instead for the free energy at high temperatures,

F ∼
L
G5

B2 ln

�
6πTL2

B2l3
d

�
; ðA8Þ

which is unphysical, as it disagrees with the Stefan-Boltzmann
prediction. Fortunately, this regime is absent altogether.
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which implies that small black holes are incompatible with
turning on a B-field. We see below that it is possible to
saturate this bound.
Some conclusions:
(i) For both cases, Figs. 15 and 17 demonstrate that for

any given value of R there exists at most one value of
B for which this R is a horizon.

(ii) Both horizons coincide when

B2

6L2
¼ B2

6L2
ln

�
B2l4

d

6L2

�
þ 1

r4h
: ðA10Þ

This equation has two solutions when rh > ld,
which we call B1 and B2 with associated physical
magnetic fields B1 and B2. For these values of B,
the horizon locations are, respectively, Rc

HðB1Þ and
Rc
HðB2Þ, saturating the inequality

RHðBÞ ≤ Rc
HðBÞ: ðA11Þ

Hence, at these values of B, both horizons coincide,
and the Hawking temperature becomes zero.

(iii) The converse statement is also true. If T ¼ 0, then
both horizons should coincide, and the black hole
becomes extremal. One can easily demonstrate this
by substituting B2 ¼ 6L2=R4

H into the horizon con-
dition fðRHÞ ¼ 0. Rewriting this in terms of B, one
finds

B2

6L2
¼ B2

6L2
ln

�
B2l4

d

6L2

�
þ 1

r4h
; ðA12Þ

precisely the condition for a doubly degenerate
horizon.

(iv) From the previous remark, it is clear that taking
T → 0 does not yield thermal AdS but instead the
extremal versions of these black holes. This is, of
course, a general property of charged black holes.

4. Thermal AdS

Thermal AdS can be obtained by letting rh → ∞. Hence,

fðrÞ ¼ 1þ 2

3

B2r4

L2
ln

r
lc

: ðA13Þ

Curiously, this background can also develop horizons if B
is too large. For B ¼ 0, there are obviously no horizons
present. However, for B large enough, i.e.

B >

ffiffiffiffiffi
6e

p
L

l2
c

; ðA14Þ

a degenerate horizon forms that immediately splits into an
inner and outer horizon. As B increases further, the inner

horizon moves inwards and the outer horizon moves
outwards in a monotonic fashion.
If we want to interpret this as a confining background,

we are hence restricted to studying this space for suffi-
ciently small values of B, which is indeed the range of
validity of the solution in the first place.

APPENDIX B: ON THE NORMALIZATION
OF THE MAGNETIC FIELD B

In the N ¼ 4 SYM theory studied by D’Hoker and
Kraus [33], the relation between the physical magnetic
field, qB, and the magnetic field in their action, B, can be
found by matching R-current anomalies in bulk and
boundary. In the bulk, this is given by the contribution
of a Chern-Simons term whose prefactor is fully fixed from
supersymmetry. On the boundary, one relies on the triangle
anomaly computed between R-current operators. Upon
reinstating units of the AdS length, they obtain

qB ¼
ffiffiffi
3

p

L
B ≈

1.73
L

B: ðB1Þ

For QCD, or at least the AdS/QCD wall models under
consideration, we cannot follow the same logic, as the
normalization of the Chern-Simons term in the bulk is not
fixed by supersymmetry and in fact is determined by
demanding equality between the anomalies in bulk and
boundary. This leaves no further information to be distilled
from this, and one hence cannot fix the normalization of the
magnetic field using this method.
Instead, we rely on the normalization of the gauge term

in the bulk. The action of the gauge fields in the soft wall
model, normalized by comparing with the QCD flavor-
flavor correlators, is given by [92,93]

S ¼ −
Nc

48π2L

Z
d5xe−ϕ

ffiffiffiffiffiffi
−g

p
Tr½F2

L þ F2
R�: ðB2Þ

This gauge field is holographically dual to the conserved
SUðNfÞ flavor currents of the boundary QCD-like theory.
A background magnetic field is modeled by turning on a
vacuum expectation value for the vector part of the gauge
fields by setting

V ¼ AL ¼ AR ðB3Þ

and choosing F12 ¼ QqB, where Q is the 2 × 2 diagonal
matrix in flavor space with entries ðþ 2

3
;− 1

3
Þ representing

the electric charges of the u and d quark. Here, q denotes
the elementary electric charge.
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Plugging this ansatz into the action, we obtain

S ¼ −
Nc

12π2L

Z
d5xe−ϕ

ffiffiffiffiffiffi
−g

p
Tr½Q2�ðqBÞ2gxxgyy: ðB4Þ

In [33], D’Hoker and Kraus choose a different normali-
zation of the Maxwell part of their action, consistent with
D ¼ 5 gauged supergravity. Their Maxwell action is
normalized as25

S ¼ −
1

16πG5

Z
d5xe−ϕ

ffiffiffiffiffiffi
−g

p
F2: ðB5Þ

The magnetic field introduced by D’Hoker and Kraus is
simply the magnitude of the nonzero component of F and
leads to

S ¼ −
1

8πG5

Z
d5xe−ϕ

ffiffiffiffiffiffi
−g

p
B2gxxgyy: ðB6Þ

Comparing the actions (B4) and (B6), one can find the
rescaling of B necessary to obtain the physical magnetic
field B,

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG5NcTr½Q2�

12π2L

s
qB: ðB7Þ

To proceed, we need the relation between the 5D Newton
constant and the AdS length L determined previously. The
ratio L3=G5 can be found by demanding that the high
temperature limit of the free energy approaches the Stefan-
Boltzmann result and hence matches between the bulk and
the boundary gluon gas, see e.g. [14,102]. Comparing these
expressions, one readily finds

G5 ¼
45πL3

16ðN2
c − 1Þ : ðB8Þ

Finally, inserting this expression in Eq. (B7) and setting
Nc ¼ 3 and Tr½Q2� ¼ 5

9
, we obtain

B ¼ 5

8
LqB ¼ 0.625LqB; ðB9Þ

or

qB ¼ 1.6
L

B: ðB10Þ

One can readily compare the N ¼ 4 result (B1) (obtained
through anomaly matching) and the QCD result (B10)
(obtained by matching the normalization of the action using
flavor-flavor correlators), which are remarkably close.
Clearly, the obtained 4D physical magnetic field qB has

the correct dimension of GeV2. In all remaining sections of
this work, we omit writing the elementary charge q.

APPENDIX C: COMPUTATIONAL DETAILS
ON THE HAWKING-PAGE TRANSITION

FOR THE HARD WALL MODEL

We collect the details to determine the on-shell actions
for the hard wall model.

1. Black hole—deconfined phase

a. Bulk action

Using the Euclidean version of the black hole metric
(2.7), we can compute the black hole bulk action,

Sbhbulk ¼
V3

8πG5

Z
β

0

dtE

Z
RH

rλ

dr
ffiffiffi
g

p �
4

L2
þ 2

3
B2gxxgyy

�

¼ V3L3

8πG5

β

Z
RH

rλ

dr

�
4

r5
þ 2B2

3L2r

�
þOðB4Þ; ðC1Þ

where RH is the horizon location, rλ is the UV cutoff,
β ¼ 1

T, V3 ¼
R
d3x and

ffiffiffi
g

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gμν

p ¼ L5

r5
þOðB4Þ.

Computing the integral we get

Sbhbulk ¼
V3L3

8πG5

β

�
−

1

R4
H
þ 1

r4λ
þ 2B2

3L2
ln

�
RH

rλ

��
: ðC2Þ

For B ¼ 0, we have

Sbhbulk ¼
V3L3

8πG5

β

�
−

1

R4
H
þ 1

r4λ

�
; ðC3Þ

which is the same result obtained by [96].

b. Boundary action

From (3.2), we have

Sbhbndy ¼
−V3

8πG5

Z
β

0

dtE
ffiffiffi
γ

p �
−

ffiffiffiffiffiffi
grr

p ∂r
ffiffiffi
γ

pffiffiffi
γ

p −
3

L
− LB2gxxgyy ln

�
r
L

������
rλ

¼ −V3L3

8πG5

β

�
1

r4
−

1

2r4h
−

B2

3L2
þ 1

3

B2

L2
ln

�
r
ld

�
−
B2

L2
ln

�
r
L

������
rλ

þOðB4Þ: ðC4Þ

25We have inserted the contribution from the dilaton here, even though it is turned off in the solution obtained in [33].
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For B ¼ 0, we have

Sbhbndy ¼
−V3L3

8πG5

β

�
1

r4
−

1

2r4h

�����
rλ

; ðC5Þ

which is the same result found in [96].

2. Thermal AdS—confined phase

a. Bulk action

Sthbulk ¼
V3

8πG5

Z
β

0

dtE

Z
r0

rλ

dr
ffiffiffi
g

p �
4

L2
þ 2B2

3
gxxgyy

�

¼ V3L3

8πG5

β

Z
r0

rλ

dr

�
4

r5
þ 2B2

3L2r

�
þOðB4Þ

¼ V3L3

8πG5

β

�
1

r4λ
−

1

r40
þ 2B2

3L2
ln

�
r0
rλ

��
þOðB4Þ; ðC6Þ

where β is the periodicity of the compactified time direction.

b. Boundary action

Sthbndy ¼ −
V3

8πG5

Z
β

0

dtE
ffiffiffi
γ

p �
−

ffiffiffiffiffiffi
grr

p ∂r
ffiffiffi
γ

pffiffiffi
γ

p −
3

L
− LB2gxxgyy ln

�
r
L

������
rλ

¼ V3L3

8πG5

β

�
−

1

r4λ
þ B2

3L2
−

B2

3L2
ln

�
rλ
lc

�
þ B2

L2
ln

�
rλ
L

��
þOðB4Þ: ðC7Þ

APPENDIX D: COMPUTATIONAL DETAILS ON THE HAWKING-PAGE TRANSITION
IN THE SOFT WALL MODEL

Here, we present some computational details to determine the on-shell actions for the soft wall model.

1. Black hole—deconfined phase

a. Bulk action

Using the Euclidean version of the black hole metric (2.7), we can compute the black hole bulk action,

Sbhbulk ¼
V3

8πG5

Z
β

0

dtE

Z
RH

rλ

dr
ffiffiffi
g

p �
4

L2
þ 2

3
B2gxxgyy

�
e−cr

2

¼ V3L3

8πG5

β

Z
RH

rλ

dre−cr
2

�
4

r5
þ 2B2

3L2r

�
þOðB4Þ; ðD1Þ

where RH is the horizon location, rλ is the UV cutoff, β ¼ 1
T and

ffiffiffi
g

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gμν

p ¼ L5

r5
þOðB4Þ. Solving the integral, we get

Sbhbulk ¼
V3L3

8πG5

β

�
e−cr

2

�
−1
r4

þ c
r2

�
þ
�
B2

3L2
þ c2

�
Eið−cr2Þ

�����RH

rλ

þOðB4Þ; ðD2Þ

where EiðxÞ≡ −
R∞
−x

e−t
t dt. For B ¼ 0, we have
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Sbhbulk ¼
V3L3

8πG5

β

�
e−cr

2

�
−1
r4

þ c
r2

�
þ c2Eið−cr2Þ

�����RH
rλ

; ðD3Þ

which is the same result obtained by [96].

b. Boundary action

From (3.2), we have

Sbhbndy ¼ −
V3

8πG5

Z
β

0

dtE
ffiffiffi
γ

p �
−

ffiffiffiffiffiffi
grr

p ∂r
ffiffiffi
γ

pffiffiffi
γ

p −
3

L
− LB2gxxgyy ln

�
r
L

������
rλ

¼ −V3L3

8πG5

β

�
1

r4
−

1

2r4h
−

B2

3L2
þ 1

3

B2

L2
ln

�
r
ld

�
−
B2

L2
ln

�
r
L

������
rλ

þOðB4Þ: ðD4Þ

For B ¼ 0, we have

Sbhbndy ¼ −
V3L3

8πG5

β

�
1

r4
−

1

2r4h

�����
rλ

; ðD5Þ

which is the same result found in [96].

2. Thermal AdS—confined phase

a. Bulk action

Sthbulk ¼
V3

8πG5

Z
β

0

dtE

Z
∞

rλ

dr
ffiffiffi
g

p �
4

L2
þ 2

3
B2gxxgyy

�
e−cr

2

¼ V3L3

8πG5

β

Z
∞

rλ

dre−cr
2

�
4

r5
þ 2B2

3L2r

�
þOðB4Þ

¼ V3L3

8πG5

β

�
e−cr

2

�
−1
r4

þ c
r2

�
þ
�
B2

3L2
þ c2

�
Eið−cr2Þ

�����∞
rλ

þOðB4Þ; ðD6Þ

where β is the periodicity of the compactified time direction.

b. Boundary action

Sthbndy ¼ −
V3

8πG5

Z
β

0

dtE
ffiffiffi
γ

p �
−

ffiffiffiffiffiffi
grr

p ∂r
ffiffiffi
γ

pffiffiffi
γ

p −
3

L
− LB2gxxgyy ln

�
r
L

������
rλ

¼ V3L3

8πG5

β

�
−

1

r4λ
þ B2

3L2
þ B2

3L2
ln

�
rλ
lc

�
−
B2

L2
ln

�
rλ
L

��
þOðB4Þ: ðD7Þ

APPENDIX E: CHIRAL CONDENSATE IN HOLOGRAPHY

The hψ̄ψi condensate can be determined by differentiating W ¼ logðZÞ with respect to m, the bare quark mass, as26

1

Z
dZ
dm

¼
R ½DψDψ̄ �ðR d4xψ̄ψÞe−

R
d4xLR ½DψDψ̄ �e−

R
d4xL

: ðE1Þ

26For clarity, we focus on a single quark flavor at this time. The final result has to be taken twice to account for both degenerate up and
down quarks. The field theory Lagrangian is given by L ¼ ψ̄ðγμ∂μ −mÞψ.
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Since in holography the path integrals are identified in bulk
and boundary, one actually obtains

V4hψ̄ψi

¼ −
d
dm

�
Nc

16π2

Z
d5x

ffiffiffiffiffiffi
−g

p
e−Φðgμν∂μX∂νX þm2X2Þ

�
:

ðE2Þ

Restricting to a homogeneous condensate requires in the
bulk Xðr; xμÞ ¼ XðrÞ. A partial integration in the kinetic
term and using the equations of motion of XðrÞ, one
retrieves

hψ̄ψi ¼ −
Nc

16π2
d
dm

ð ffiffiffiffiffiffi
−g

p
e−Φgrr∂rXXjr¼RH

r¼0 Þ; ðE3Þ

when considering the black hole (deconfining) case.
Since grr ¼ r2

L2 fðrÞ and fðRHÞ ¼ 0 by definition, the
horizon contribution vanishes.27 Moreover,m is determined
by the boundary expansion of X as

L3=2XðrÞ ¼ mrþ cmr3 logð ffiffiffi
c

p
rÞ þ σr3 þ…: ðE5Þ

A closer look at the differential equation shows that the
full solution X ∼m as an overall prefactor.28 Hence the
derivative w.r.t. m is readily performed, and one finds

hψ̄ψi ¼ Nc

16π2
2

m
ffiffiffiffiffiffi
−g

p
e−Φgrr∂rXXjr¼0: ðE6Þ

Inserting the explicit expansion, one obtains

16π2

Nc

m
2
hψ̄ψi ¼ 1

r3
ðmþ 3mcr2 logð ffiffiffi

c
p

rÞ þmcr2 þ 3σr2 þ…Þðmrþmcr3 logð ffiffiffi
c

p
rÞ þ σr3 þ…Þj

r¼0

¼ 1

r3
ðm2rþm2cr3 logð ffiffiffi

c
p

rÞ þmσr3 þ 3m2cr3 logð ffiffiffi
c

p
rÞ þm2cr3 þ 3mσr3 þ…Þj

r¼0

¼
�
m2

1

ϵ2
þ 4m2c logð ffiffiffi

c
p

ϵÞ þm2cþ 4mσ

�
: ðE7Þ

Clearly, one needs holographic renormalization to proceed.
We however consider only differences between the T ≠ 0
and the T ¼ 0 condensate, for which these divergent terms
cancel out. Indeed, in thermal field theory one encounters
no additional UV divergences besides those already present
at T ¼ 0. The same is true when including nonzero B: All
divergences remain the same. One finds

hψ̄ψiB;T − hψ̄ψiB¼0;T¼0

¼ Nc

2π2
ðσðB; TÞ − σðB ¼ 0; T ¼ 0ÞÞ: ðE8Þ

The expression in the lhs is completely similar to the
subtracted definition of the B-dependent chiral condensate
on the lattice, see e. g. [59,60].

APPENDIX F: NUMERICAL VALUE OF m

In the soft wall model, one of the major disadvantages is
that hψ̄ψi ∼m, and hence, as the bare quark mass vanishes,
so does the condensate, in direct opposition to QCD. The
Gell-Mann-Oakes-Renner relation [103],29

m2
π ≈ −ðmu þmdÞ

hQ̄Qi
f2π

; ðF1Þ

while keeping the pion mass mπ and decay constant fπ
fixed at their experimental values, dictates, with
mu ¼ md ¼ m, that hQ̄Qi ∼ 1=m which conceivably leads
to a large quark condensate. Roughly speaking, we might
then also expect that, since m in real life is quite small, the
value of the condensate will get grossly underestimated in
the soft wall model. This is indeed the case here.

27In the confining phase, one would have instead

hψ̄ψi ¼ −
Nc

16π2
d
dm

ð ffiffiffiffiffiffi
−g

p
e−Φgrr∂rXXjr¼þ∞

r¼0 Þ; ðE4Þ

where the contribution from the upper value r ¼ þ∞ vanishes

also here due to e−Φgrr
ffiffiffiffiffiffi−gp ∼ e−cr

2

r3 and X is assumed finite as
r → ∞. The argument also holds for the deconfining phase of the
hard wall model. But note that making this argument in the
confining phase of the hard wall model seems more subtle.
Luckily, we do not need this in this work.

28This is also true for the deconfining phase in the hard wall
model, as we make explicit in Sec. V C. In fact, it is true as long
as the differential equation is linear, as it simply represents an
overall scaling of the solution. One would need to add terms of
cubic or higher order in X in the action to break this (unwanted)
property. But then of course, the analysis presented here would
have to be redone as evaluating the derivative w.r.t. m might not
be so simple anymore. As far as we know, cf. [35,37,38], the
precise connection between the chiral condensate hψ̄ψi and σ is
not considered in case higher-order terms in X are added, and the
chiral symmetry is primarily probed via σ itself. 29Remember that hQ̄Qi ¼ 2hψ̄ψi.
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To get a handle on this issue, we artificially impose a
very high bare quark mass to get a realistic value of the
quark condensate. We determine this artificial bare quark
mass by comparing with known lattice results at B ¼ 0.
After this, we use this same value of m to look at the
B ≠ 0 case.
The real quark condensate at finite temperature T and

B ¼ 0 is given by [Eq. (5.5)]

hψ̄ψiT ¼ hψ̄ψiT¼0 þ
Ncmc
2π2

�
σ

mc

����
T
−

σ

mc

����
T¼0

�
: ðF2Þ

The authors of [91] showed that the dimensionless combi-
nation σ

mc vanishes at a temperature T ≈ 210 MeV. As this
is a physically reasonable value, we impose this value as the
critical temperature for the real condensate as well. Note

that this is an external and somewhat arbitrary choice that is
used as further input in our model to constrain the
parameters. Plugging in the numerical values of the
quantities appearing here,30 we get

0.013 GeV3 ¼ 3 · 0.151 · 2m
2π2

0.095 GeV2; ðF3Þ

which leads to m ¼ 2.967 GeV. The factor of 2 in the
above expression originates from comparing with the full
condensate (i.e. sum of up and down condensates).
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