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In this paper, an extension of the classification of flipped SUð5Þ heterotic-string vacua from Faraggi,
Rizos and Sonmez [Nucl. Phys. B886, 202 (2014)] with a variation of the SOð10Þ breaking α basis vector is
presented. A statistical sampling in the space of 245 flipped SUð5Þ vacua is explored, where 1011 distinct
GGSO projection configurations are scanned in comparison to the 1012 GGSO distinct coefficients scanned
in the space of 244 vacua in Faraggi, Rizos and Sonmez. A JAVA code, akin to the one used for the
classification in Faraggi, Rizos and Sonmez, was implemented to explore these. Results presented here
indicate that no three-generation exophobic vacua exist, which was also found to be the case in Faraggi,
Rizos and Sonmez as all odd generations were projected out. This paper will also study the details on the
comparison between the two classifications achieved and reflect on the future directions in the quest for
finding three-generation exophobic flipped SUð5Þ heterotic-string models.
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I. INTRODUCTION

To date vast amounts of work have been carried out using
techniques in string model building to construct physical
spectrums consisting of three generations. Concrete exam-
ples of analyzing semirealistic string vacua can be found
in both symmetric and asymmetric Z2 × Z2 orbifold
compactifications, especially using the four-dimensional
free-fermionic construction [1–4] given by a worldsheet
approach in the heterotic-string setting. Initially, the
asymmetric Z2 × Z2 free-fermionic orbifold models cor-
responding to the N ¼ ð2; 0Þ super-conformal worldsheet
symmetry were studied during the late 1980s. The gauge
group was the observable E8 in these cases, which was then
broken to the SOð10Þ symmetry followed by another
breaking to its subgroup in the NAHE-based1 structure
[5]. These subgroups consisted of the flipped SUð5Þ gauge
group [6,7], SUð3Þ × SUð2Þ ×Uð1Þ2 standard-like gauge
group [8–12], SUð3Þ × SUð2Þ2 × Uð1Þ left-right symmet-
ric gauge group [13–15], and the SOð6Þ × SOð4Þ Pati-
Salam gauge group [16,17]. This aided in the development
of the free-fermionic model building contemporary
research on exploring large classes of string vacua. In
the late 1990s, work focused on the symmetric Z2 × Z2

free-fermionic orbifolds. These helped derive tools for the
classifications, such as during the last decade for the type II
superstrings [18] and then extended to the heterotic-string
free-fermionic construction [19–23].
Until now the classifications of the free-fermionic vacua

have extracted many viable phenomenological models at
the string scale. Initially, in the study of E6 and SOð10Þ
GUT symmetries, the existence of a symmetry called the

spinor-vector duality was shown in the space of Z2 and
Z2 × Z2 string models. This symmetry generated the
exchange of the vectorial 10 representations with the
representations of the spinorial 16 plus anti-spinorial 16
under the SOð10Þ gauge group [21–30]. Such findings
motivated further classifications involving SOð10Þ sub-
groups, where the Pati-Salam models were investigated
[31,32]. Here the sectors containing only the massless
states revealed the existence of exophobic string vacua and
therefore leaving the fractionally charged fermions
(exotics) [4,33–40] to exist in the massive spectrum. It
was also shown to generate an abundance of three-
generation models. A detailed example of a phenomeno-
logically viable three-generation Pati-Salam model was
studied in Ref. [41]. Another detailed model was then
studied in Ref. [42], which enhanced the Pati-Salammodels
to the SUð6Þ × SUð2Þ [42] maximal subgroup of the E6

symmetry. It was also observed that an exophobic three-
generation model existed, admitting an anomaly-free fam-
ily universal Uð1Þ symmetry, which was additional to the
Uð1Þ generators of the SOð10Þ GUT symmetry [43–46].
Later, the classifications for the flipped SUð5Þ [4,33] and
the SUð4Þ × SUð2Þ ×Uð1Þ [4,47] SOð10Þ subgroup mod-
els were carried out where it was shown to contain no
exophobic three-generation string vacua. In the flipped
SUð5Þ models only exophobic even generations existed, as
all the exophobic odd generations where projected out. As
for finding three-generation flipped SUð5Þ vacua, models
needed to be exophilic. The SUð4Þ × SUð2Þ ×Uð1Þ mod-
els on the other hand, did not consist of any exophobic
three-generation vacua, since in the massless spectrum all
the right-handed particles were projected out, and therefore
it was not possible to find any generations. In fact, in the
NAHE-based basis vectors in Ref. [48], it was similarly
shown that three-generation models are forbidden for the
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SUð4Þ × SUð2Þ ×Uð1Þ gauge group. For a more detailed
analysis on the free-fermionic landscape, see for example
Refs. [4] and [49].
The free-fermionic classifications carried out in

Refs. [4,18–23,30,32,33,47] have developed the method-
ologies for providing a pivotal tool set, leading to an elegant
way to analyze large sets of string vacua specific to the free-
fermionic construction. The analysis of large sets of string
vacua carried out by other groups can be found in Ref. [50].
In this paper, these techniques are used to analyze a larger
class of string vacua belonging to the new flipped SUð5Þ
models. Here, the SOð10Þ symmetry is constructed as in
Ref. [33] that is then broken to a different flipped SUð5Þ
gauge group given by a variation of the SOð10Þ symmetry
breaking α basis vector. The difference between the flipped
SUð5Þ models given here and those in Ref. [33], is that the
hidden gauge groups are broken differently. After discus-
sing the classification methodology, detailed properties of
the classification of these new flipped SUð5Þ models are
given, followed by the discussion of the results for the
existence of three-generation models in the free-fermionic
landscape. A comparison is then drawn between the two
explaining future directions to be taken.

II. THE FREE-FERMIONIC FLIPPED
SUð5Þ CONSTRUCTION

The four-dimensional free-fermionic construction is
represented in the light-cone gauge; this consists of 20
real left-moving worldsheet fermions ψμ

1;2; χ
1;…;6, y1;…;6,

ω1;…;6 and 44 real right-moving real worldsheet fermions
ȳ1;…;6, ω̄1;…;6, ψ1;…;5, η̄1;2;3, ϕ̄1;…;8. The worldsheet of the
free-fermionic construction is given by a torus, where as the
worldsheet fermions in the vacuum to vacuum amplitude
are parallel transported along the two noncontractible
loops, they acquire a phase. Therefore, under the modular
invariance constraints [1,2,4] imposed, the construction
allows for model building with specifically chosen gauge
groups. This is achieved by assigning particular choices of
boundary conditions to the fermions in each set of basis
vectors. The basis vectors themselves, form an additive
group; this then generates the entire string spectrum
consisting of 2N sectors in the space of Ξ, where N is
the number of basis vectors. Here a sector is defined by a
specific linear combination of the basis vectors and the total
space Ξ is given by a set of all possible linear combinations.
Additionally, the basis vectors also induce a specific
generalized GSO projection on any given string state
jSξ >, performed by an action. This can be written as

eiπvi·Fξ jSξi ¼ δξC
�

ξ

vi

��
jSξi;

where the space-time spin statistics is given by δξ ¼ �1

and the fermion number operator is given by Fξ. The
GGSO projection coefficients Cð ξviÞ ¼ �1, �i in the

equation above, are used to produce distinct string models
by varying the GGSO projection coefficients. In summary,
a model from the free-fermionic construction is given by a
set of basis vectors v1;…; vN , a set of 2NðN−1Þ=2 string
vacua and independent CðvivjÞ, i > j GGSO projection

coefficients.

A. The α basis vector

As highlighted in Ref. [33], the choice of the basis
vectors that breaks the SOð10Þ symmetry to the SUð5Þ ×
Uð1Þ gauge group is not unique. Although, the breaking to
the SUð5Þ × Uð1Þ symmetry is unique, the difference lies
in the breaking of the hidden gauge group. Here, the
boundary condition assignments of the three complex
worldsheet fermions η1;2;3 ¼ 1=2 are constrained by the
term bj · α ¼ 0 mod 1 given by modular invariance,
whereas the boundary condition assignments of the five
complex worldsheet fermions ψ1;…;5 ¼ 1=2 are fixed to
construct the SUð5Þ ×Uð1Þ gauge symmetry. Therefore,
the variation of the α basis vectors exists in the assignment
of the boundary conditions of the remaining eight world-
sheet complex fermions ϕ1;…;8. In this case, modular
invariance restricts the assignment of 1=2 boundary con-
ditions to zero, four or eight worldsheet complex fermions
of ϕ1;…;8. This leads to breaking the hidden gauge group
differently. The case with zero enhances the SUð5Þ ×Uð1Þ
gauge symmetry to SOð10Þ and therefore is of no impor-
tance, the case with four was studied in Ref. [33] and in this
paper, the α basis vector assigned with 1=2 boundary
conditions to the eight ϕ1;…;8 complex worldsheet fermions
is presented, which is given by

α ¼
�
η̄1;2;3 ¼ 1

2
; ψ̄1;…;5 ¼ 1

2
; ϕ̄1;…;8 ¼ 1

2

�
:

B. The flipped SUð5Þ basis vectors
The SUð5Þ ×Uð1Þ models in the free-fermionic con-

struction are obtained by the breaking of the SOð44Þ gauge
group to the SOð10Þ gauge group and then to the flipped
SUð5Þ by a series of basis vectors given below:

v1 ¼ S ¼ fψμ; χ1;…;6g;
v1þi ¼ ei ¼ fyi;ωijȳi; ω̄ig; i ¼ 1;…; 6;

v8 ¼ b1 ¼ fχ34; χ56; y34; y56jȳ34; ȳ56; η̄1; ψ̄1;…;5g;
v9 ¼ b2 ¼ fχ12; χ56; y12; y56jȳ12; ȳ56; η̄2; ψ̄1;…;5g;
v10 ¼ z1 ¼ fϕ̄1;…;4g;
v11 ¼ z2 ¼ fϕ̄5;…;8g;

v12 ¼ α ¼
�
η̄1;2;3 ¼ 1

2
; ψ̄1;…;5 ¼ 1

2
; ϕ̄1;…;8 ¼ 1

2

�
: ð1Þ

HASAN SONMEZ PHYSICAL REVIEW D 93, 125002 (2016)

125002-2



Here, the SOð44Þ gauge symmetry is generated with the
basis vector S that also makes the models N ¼ 4 super-
symmetric. In order to incorporate all the possible sym-
metric shifts from the six internal coordinates, the next six
vectors ei for i ¼ 1;…; 6 are formed, where the N ¼ 4
supersymmetry is left intact together with the breaking of
the SOð44Þ gauge group to the SOð32Þ ×Uð1Þ6 symmetry.
The set fb1; b2g leads to the breaking of N ¼ 4 to N ¼ 1
supersymmetry; these vectors correspond to the Z2 × Z2

orbifold twists that also break the Uð1Þ6 together with
decomposing the SOð32Þ gauge symmetry to
SOð10Þ ×Uð1Þ3 × SOð16Þ. The SOð10Þ ×Uð1Þ3 group
constructed here is defined to represent the observable
symmetry and the other SOð16Þ group is defined to
represent the hidden symmetry. The set fz1; z2g is formed
to further break the SOð16Þ gauge group to the SOð8Þ1 ×
SOð8Þ2 symmetry. Last, as discussed before the α basis
vector breaks the SOð10Þ symmetry to the flipped SUð5Þ
group and then the overall gauge group generated by the
gauge bosons in the untwisted Neveu Schwarz sector is
given by

SUð5Þ×Uð1Þ×Uð1Þ3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Observable

×SUð4Þ1×Uð1Þ1×SUð4Þ2×Uð1Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hidden

:

Additionally, in order to satisfy the ABK2 rules [1–4], the
basis vector 1must consist in the additive group given by the
above basis vectors. This is produced by the following sum:

1 ¼ Sþ
X6
i¼1

ei þ 2α: ð2Þ

III. CLASSIFICATION METHODOLOGY

The scanning of vast amounts of free-fermionic string
vacua is facilitated by an advanced classification method-
ology, where the twisted sectors are identified and then
split into the observable, hidden and exotic sectors. These
sectors are computed by the use of a JAVA code which
checks for viable phenomenological properties. The
observable sectors are scanned for chiral matter and
Higgs states, whereas the hidden sectors only contain
SUð5Þ singlets and therefore are all neutral under all the
observable Uð1Þ’s. However, the exotic sectors all contain
fractionally charged massless fermion states [4,33–39]
under the SUð5Þ ×Uð1Þ symmetry; as these representa-
tions do not fall into the Standard Model [40], they are all
avoided in the scan for viable free-fermionic string models.

A. GGSO projection coefficients

The free-fermionic string vacua are primarily defined by
the GGSO projection coefficients cðvivjÞ contained in the one-
loop partition function; these are all given as free parameters.

In order to extract viable phenomenological models some of
these GGSO projection coefficients are fixed. In total taking
the coefficients as spanning a 12 × 12 matrix and then
imposing modular invariance, only the elements belonging
to i ≥ j are independent. Moreover, the 66 lower triangle
elements are defined by the corresponding 66 upper triangle
elements. Including the remaining 12 diagonal elements,
only 78 independent coefficients are left as free parameters.
Further requirements such as imposing N ¼ 1 space-time
supersymmetry, fix the following 11 coefficients:

C

�
S

S

�
¼ C

�
S

ei

�
¼ C

�
S

bk

�
¼ C

�
S

zk

�
¼ C

�
S

α

�
¼ −1;

i¼ 1;…;5; k¼ 1;2:

This reduces the amount of free parameters to 67. The
diagonal terms are also fixed by modular invariance and are
given as

1 ¼
Y6
j¼1
i≠j

C

�
ei
ej

�
;

C

�
bk
bk

�
¼ −

Y6
i¼1

C

�
bk
ei

�
; k ¼ 1; 2;

C

�
zk
zk

�
¼ −

Y6
i¼1

C

�
zk
ei

�
; k ¼ 1; 2;

C

�
α

α

�
¼ −

Y6
i¼1

C

�
α

ei

�
:

Therefore, this leads to another 11 coefficients being fixed. In
fact, during the developments of the free-fermionic classi-
fications, it was found that additionally coefficients do not
affect the free-fermionic string spectra. Specific to themodels
studied here, these are the following 11 coefficients:

C

�
ei
ei

�
; C

�
e3
b1

�
; C

�
e4
b1

�
; C

�
e1
b2

�
; C

�
e2
b2

�
; C

�
b1
b2

�
;

i¼1;…;6:
As these given coefficients are ineffective on the string
spectrum, they are fixed arbitrarily, which then leaves in
total 45 free parameters defining the full spectrum. This
corresponds to 245 ≈ 3.52 × 1013 vacua in this class of free-
fermionic superstring models.

B. Observable matter spectrum

The matter content arising from the string spectrum in
the free-fermionic models, is from the 27 representation
belonging to the E6 symmetry that is then broken to the
SOð10ÞGUT symmetry at the string scale. This leads to the
particle content of the Standard Model to be found in the 16
spinorial representations, whereas the light Higgs states
are found in the 10 vectorial representations. The specific
sectors containing the chiral matter content in the2Antoniadis, Bachas and Kounnas.
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symmetric free-fermionic constructions are generated from
the following equations:

Bð1Þ
pqrs¼Sþb1þpe3þqe4þre5þse6

¼fψμ;χ12;ð1−pÞy3ȳ3;pω3ω̄3;ð1−qÞy4ȳ4;qω4ω̄4;

ð1−rÞy5ȳ5;rω5ω̄5;ð1−sÞy6ȳ6;sω6ω̄6;η̄1;ψ̄1;::;5g;
Bð2Þ
pqrs¼Sþb2þpe1þqe2þre5þse6;

Bð3Þ
pqrs¼Sþb3þpe1þqe2þre3þse4: ð3Þ

Here p, q, r, s ¼ 0, 1 and b3 ¼ b1 þ b2 þ 2αþ z1 þ z2.
These equations consist of 48 sectors that either produce
the left- and right-handed particles from the 16 or the 16
spinorial representation of the SOð10Þ. For the flipped
SUð5Þ models studied in this paper, the SOð10Þ 16 and 16
representations decompose under the SUð5Þ ×Uð1Þ
symmetry as follows:

16 ¼
�
5̄;−

3

2

�
þ
�
10;þ 1

2

�
þ
�
1;þ 5

2

�
;

16 ¼
�
5;þ 3

2

�
þ
�
10;−

1

2

�
þ
�
1;−

5

2

�
:

In order to extract the Standard Model particles from the
above SUð5Þ representations, the weak hypercharge and
the electromagnetic charge are defined from the following
normalizations:

Y ¼ 1

3
ðQ1 þQ2 þQ3Þ þ

1

2
ðQ4 þQ5Þ;

Qem ¼ Y þ 1

2
ðQ4 −Q5Þ;

where Qi ¼ � 1
2
are the charges arising from the ψ̄ i

complex fermions for i ¼ 1;…; 5. Furthermore, the matter
content in the free-fermionic flipped SUð5Þ models are
summarized in the following table:

Representation ψ̄1;2;3 ψ̄4;5 Y Qem

ðþ;þ;þÞ ðþ;−Þ 1=2 1, 0
ð5;þ 3

2
Þ ðþ;þ;−Þ ðþ;þÞ 2=3 2=3

ðþ;−;−Þ ð−;−Þ −2=3 −2=3
ð5̄;− 3

2
Þ ð−;−;−Þ ðþ;−Þ −1=2 −1, 0

ðþ;þ;þÞ ð−;−Þ 0 0
ð10;þ 1

2
Þ ðþ;−;−Þ ðþ;þÞ 1=3 1=3

ðþ;þ;−Þ ðþ;−Þ 1=6 −1=3, 2=3
ðþ;þ;−Þ ð−;−Þ −1=3 −1=3

ð10;− 1
2
Þ ðþ;−;−Þ ðþ;−Þ −1=6 1=3, −2=3

ð−;−;−Þ ðþ;þÞ 0 0
ð1;þ 5

2
Þ ðþ;þ;þÞ ðþ;þÞ 1 1

ð1;− 5
2
Þ ð−;−;−Þ ð−;−Þ −1 −1

From this table, it is now shown that the Standard
Model particle representations are decomposed to the

SUð3Þ × SUð2Þ ×Uð1Þ gauge group from the flipped
SUð5Þ symmetry as follows:

�
5̄;−

3

2

�
¼

�
3̄; 1;−

2

3

�
uc
þ
�
1; 2;−

1

2

�
L
;

�
10;þ 1

2

�
¼

�
3; 2;þ 1

6

�
Q
þ
�
3̄; 1;þ 1

3

�
dc
þ ð1; 1; 0Þνc ;�

1;þ 5

2

�
¼ ð1; 1;þ1Þec ;

where the subscripts are the standard notations defining the
left-handed quark and lepton doublets as Q and L respec-
tively and the right-handed quark and lepton singlets as dc,
uc, ec and νc respectively.

C. The enhancement sectors

In the free-fermionic construction space-time vector
bosons arise from the untwisted NS sector, which generates
the SOð44Þ gauge group. This group is then broken to the
flipped SUð5Þ symmetry with a series of GGSO projections
with respect to the basis vectors as defined in Eq. (1).
However, the flipped SUð5Þ gauge group can then be
enhanced to another gauge group depending on the GGSO
projection coefficients chosen. This property emerges due
to the extra space-time vector bosons arising from the
following sectors:

G ¼
8<
:

z1; z2; z1 þ z2; z1 þ z2 þ 2α;

α; z1 þ α; z2 þ α; z1 þ z2 þ α;

3α; z1 þ 3α; z2 þ 3α; z1 þ z2 þ 3α

9=
;:

In order to preserve the flipped SUð5Þ symmetry, the
imposed restriction in this paper, is that the only gauge
bosons that remain in the spectrum are those that are
obtained from the untwisted NS sector and the sectors that
only enhance the hidden gauge group. The reason for
allowing the enhancement of the hidden gauge group is to
provide extra freedom to find three-generation exophobic
models which were not found in Ref. [33] as will be
discussed later.

D. Projectors

In Eq. (3), the sectors Bð1;2;3Þ
pqrs produce matter states

subject to surviving the GGSO projection. To decide if the
state is projected in or out, the GGSO projection coef-
ficients in relation to the basis vectors e1, e2, z1 and z2 are
checked. Therefore, generic formulas called the projectors
are defined, where P ¼ 1 is the indicator for surviving
states and P ¼ 0 for projected out states. These projectors
are given as
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Pð1Þ
pqrs ¼ 1

16

�
1 − C

� e1

Bð1Þ
pqrs

��
:

�
1 − C

� e2

Bð1Þ
pqrs

��
:

�
1 − C

� z1

Bð1Þ
pqrs

��
:

�
1 − C

� z2

Bð1Þ
pqrs

��
;

Pð2Þ
pqrs ¼ 1

16

�
1 − C

� e3

Bð2Þ
pqrs

��
:

�
1 − C

� e4

Bð2Þ
pqrs

��
:

�
1 − C

� z1

Bð2Þ
pqrs

��
:

�
1 − C

� z2

Bð2Þ
pqrs

��
;

Pð3Þ
pqrs ¼ 1

16

�
1 − C

� e5

Bð3Þ
pqrs

��
:

�
1 − C

� e6

Bð3Þ
pqrs

��
:

�
1 − C

� z1

Bð3Þ
pqrs

��
:

�
1 − C

� z2

Bð3Þ
pqrs

��
:

In order to incorporate this into a JAVA code, these projectors are given in the form of systems of linear equations, where p,
q, r and s are the unknowns. These systems of linear equations are written as

0
BBBBB@

ðe1je3Þ ðe1je4Þ ðe1je5Þ ðe1je6Þ
ðe2je3Þ ðe2je4Þ ðe2je5Þ ðe2je6Þ
ðz1je3Þ ðz1je4Þ ðz1je5Þ ðz1je6Þ
ðz2je3Þ ðz2je4Þ ðz2je5Þ ðz2je6Þ

1
CCCCCA

0
BBB@

p

q

r

s

1
CCCA ¼

0
BBBBB@

ðe1jb1Þ
ðe2jb1Þ
ðz1jb1Þ
ðz2jb1Þ

1
CCCCCA;

0
BBBBB@

ðe3je1Þ ðe3je2Þ ðe3je5Þ ðe3je6Þ
ðe4je1Þ ðe4je2Þ ðe4je5Þ ðe4je6Þ
ðz1je1Þ ðz1je2Þ ðz1je5Þ ðz1je6Þ
ðz2je1Þ ðz2je2Þ ðz2je5Þ ðz2je6Þ

1
CCCCCA

0
BBB@

p

q

r

s

1
CCCA ¼

0
BBBBB@

ðe3jb2Þ
ðe4jb2Þ
ðz1jb2Þ
ðz2jb2Þ

1
CCCCCA;

0
BBBBB@

ðe5je1Þ ðe5je2Þ ðe5je3Þ ðe5je4Þ
ðe6je1Þ ðe6je2Þ ðe6je3Þ ðe6je4Þ
ðz1je1Þ ðz1je2Þ ðz1je3Þ ðz1je4Þ
ðz2je1Þ ðz2je2Þ ðz2je3Þ ðz2je4Þ

1
CCCCCA

0
BBB@

p

q

r

s

1
CCCA ¼

0
BBBBB@

ðe5jb3Þ
ðe6jb3Þ
ðz1jb3Þ
ðz2jb3Þ

1
CCCCCA:

Using methods developed in linear algebra, the JAVA
code using these equations can easily check the condition
RankðMatrix½Δi�Þ ¼ RankðAugmentedMatrix½Δi; Yi�Þ.
Here when the condition is equal, the computer code would
instantly realize that there are 24−RankðMatrix½Δi�Þ solutions. If
a sufficient amount of solutions were found, the code would
then do more extensive checks to test if the models have
any viable phenomenological properties.

IV. CLASSIFICATION

An elegant technique in the classification, is to use the
algebraic expressions as discussed in the previous section
to analyze the entire massless free-fermionic string spec-
trum. These expressions are then transformed into matrix
equations that are solved by a JAVA code that randomly
selects a configuration of a set of GGSO projection
coefficients. The JAVA code is used to scan models in
the space of 245 ≈ 3.52 × 1013 string vacua. Since the entire
string vacua is a large space, a random generator was used
to scan 1011 vacua that were randomly chosen in the total
space of 245 vacua. However, the classification of flipped

SUð5Þ models in Ref. [33] compared to here was also
accomplished using a JAVA code that scanned 1012 string
vacua in the space of 244 vacua. The reason for having 45
free parameters here compared to the 44 free parameters in
Ref. [33] is due to the GGSO coefficient Cðz2z2Þ being
dependent on the string spectrum unlike before. This is a
property emerging from modular invariance that constrains
every GUT gauge group model different from its given
basis vectors. Therefore, different flipped SUð5Þ SOð10Þ
breaking basis vectors were implemented here, to find
three-generation models that were surprisingly all projected
out in Ref. [33] in exophobic vacua. Furthermore, from
every generated model desired phenomenological criteria
are analyzed. As in the previous classifications, this paper
also considers viable phenomenological criteria such as
finding three-generation models, GUT breaking heavy
Higgs, electroweak breaking light Higgs, exophobic vacua
and an anomaly-free gauge group as its primary aim. For
this reason, the observable sector of a heterotic-string free-
fermionic flipped SUð5Þ model is characterized by the
following 15 integers, ðn1; n1̄; n5s; n5̄s; n10; n1̄0; ng; n10H;
n5̄v; n5v; n5h; n1e; n1̄e; n5e; n5̄eÞ:
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n1 ¼ # of

�
1;þ 5

2

�
;

n1̄ ¼ # of

�
1;−

5

2

�
;

n5s ¼ # of

�
5;þ 3

2

�
;

n5̄s ¼ # of

�
5̄;−

3

2

�
;

n10 ¼ # of

�
10;þ 1

2

�
;

n10 ¼ # of
�
10;−

1

2

�
;

ng ¼ n10 − n10 ¼ n5̄ − n5 ¼ # of generations;

n10H ¼ n10 þ n10 ¼ # of nonchiral heavy Higgs pairs;

n5̄v ¼ # of ð5̄;þ1Þ;
n5v ¼ # of ð5;−1Þ;
n5h ¼ n5v þ n5̄v ¼ # of nonchiral light Higgs pairs;

n1e ¼ # of

�
1;−

5

4

�
ðexoticÞ;

n1̄e ¼ # of

�
1;þ 5

4

�
ðexoticÞ;

n5e ¼ # of

�
5;−

1

4

�
ðexoticÞ;

n5̄e ¼ # of

�
5̄;þ 1

4

�
ðexoticÞ:

These numbers above are also identical to the criteria
used in Ref. [33] that were used for the classification and
to extract viable data for low-energy physics at the string
scale. A unique feature of the α projection is that it
always projects the states n1̄, n5s and n1, n5̄s in or out
together and therefore they are also given as pairs. This
reduces the total number of integers determining viable
vacua from 15 to 13. Additionally, the distinction is made
with the flipped SUð5Þ 5 and 5̄ representations decom-
posing from the SOð10Þ spinorial 16 and vectorial 10

representations, where the Standard Model up-type quark
electroweak singlet and lepton doublet are denoted by
n5s and n5̄s respectively and the light electroweak Higgs
doublets are denoted by the pair n5v, n5̄v. In order for
the models to be semirealistic, further constraints are
imposed on the integers given above; these include
n5̄h ¼ n5h, n1e ¼ n1̄e and n5e ¼ n5̄e. This ensures that
the flipped SUð5Þ models are anomaly free. For the
models to be phenomenologically viable the following
are also imposed:

ng ¼ 3 Three light chiral number of generations:

n10H ≥ 1 At least one heavy Higgs pair to break the SUð5Þ ×Uð1Þ symmetry:

n5h ≥ 1 At least one pair of light minimal SM Higgs doublets:

n1e ¼ n1̄e ≥ 0 Heavy mass can be generated for vector-like exotics:

n5e ¼ n5̄e ≥ 0 Heavy mass can be generated for vector-like exotics:
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This completes all the details necessary for the classifica-
tion of the flipped SUð5Þ models to be carried out and
the methodology being applied. In the next section, the
classification results are given and a discussion is carried
out.

A. Results

In this section, the classification of the free-fermionic
flipped SUð5Þ string vacua is discussed and compared to
the one in Ref. [33]; the classification was carried out by
statistical sampling of 1011 models out of the 245 ≈ 3.52 ×
1013 vacua. In Ref. [33] the scan was carried out for 1012

models out of the 242 ≈ 1.76 × 1013 vacua. The scan was
accomplished here with a JAVA code similarly to Ref. [33],
which essentially solves algebraic equations as discussed in
Sec. III D and then checks for viable phenomenological
data from the 13 integers discussed in the previous section.
The JAVA routine was run using the nodes at the University
of Liverpool, Department of Physics ULGQCD cluster and
several servers in the University of Liverpool, Department
of Mathematics. Results were gained in a week and are
presented in this section with Figs. 1–3 and Table I.
In Fig. 1, the logarithmic distribution of the number of

exophilic flipped SUð5Þ models against the number of
chiral generations in a random sample of 1011 distinct
configurations is displayed. The peak is seen at zero
generations and as the number of generations increases
the number of models decreases logarithmically. The figure
also presents the absences of 7, 9, 11, 13, 14 and 15
generations and it should be noted that there are no models
with more than 16 generations. In comparison to Fig. 1 in
Ref. [33], 16-generation models arise here and were
excluded in Ref. [33]; this is due to the extra freedom
given by the hidden gauge group enhancements. It is
concluded here that no significant changes are observed
with a variation of the flipped SUð5Þ SOð10Þ breaking

basis vector. Additionally, the results here are in agreement
with Refs. [4,19–23,30–33,47,49].
In Fig. 2, the logarithmic distribution of the number of

exophobic flipped SUð5Þ models against the number of
chiral generations in a random sample of 1011 distinct
configurations is displayed. The striking feature given in
this figure is the repeat of the nonexistence of three chiral
generations from Ref. [33]. The figure also presents the
absences of odd generations, in addition to the exclusion of
14 and above 16 generations. In comparison to Fig. 2 in
Ref. [33], 16-generation models again arise here and were
excluded in Ref. [33], due to the extra freedom given by the
hidden gauge group enhancements. It is concluded that no
significant changes are observed with a variation of the
flipped SUð5Þ SOð10Þ breaking basis vector and results are
in agreement with Refs. [4,19–23,30–33,47,49]. It should
be emphasized that these results hold in the space of models
that were explored here and that it does not necessarily
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FIG. 2. Logarithmic distribution of the number of exophobic
flipped SUð5Þmodels against the number of chiral generations in
a random sample of 1011 distinct configurations.
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FIG. 1. Logarithmic distribution of the number of exophilic
flipped SUð5Þmodels against the number of chiral generations in
a random sample of 1011 distinct configurations.
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FIG. 3. Logarithmic distribution of the number of three-chiral-
generation flipped SUð5Þ models against the number of exotic
multiplets in a random sample of 1011 distinct configurations.
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indicate the absence of three-generation exophobic flipped
SUð5Þ models; however it might indicate the difficulty of
finding them if they exist.
In Fig. 3, the logarithmic distribution of the number of

three-chiral-generation flipped SUð5Þ models against the
number of exotic multiplets in a random sample of 1011

distinct configurations is displayed. Similarly to Ref. [33],
the figure shows that the minimal number of exotic
multiplets is four; therefore as three chiral generations
exist in exophilic flipped SUð5Þ vacua and until exper-
imental data can dictate otherwise, all three-chiral-
generation flipped SUð5Þ models will be imposed with a
minimal number of exotic multiplets (which here is four).
In Table I, the total number of viable flipped SUð5Þ

models with respect to the phenomenological constraints
imposed given by a sequence of increasing numbers is
displayed. The column “Constraint” shows the sequence of
low-energy physics constraints imposed. The column “# Of
Models In Sample Scanned” shows the remaining models
in the scanned sample as each constraint is imposed. The
column “Probability” shows the probability of the occur-
rence of models with respect to the imposed constraints in
the sample scanned. The column “Estimated # Of Models
In Class” predicts the number of models in the entire space
with such imposed constraints. The scan was carried out for
a sample of 1011 vacua and the initial tabulation after
imposing that only anomaly-free flipped SUð5Þ models
with no gauge group enhancement of the four-dimensional
gauge symmetry, shows that only approximately 6.59 ×
10−2% of the models remain. Next, imposing the existence
of both the heavy and light Higgs states to break the flipped
SUð5Þ gauge symmetry to the Standard Model gauge group
and the electroweak breaking respectively, leads to a further
reduction to approximately 1.60 × 10−5% of the models.
Additional reduction is achieved by imposing minimal
flipped SUð5Þ heavy Higgs, SM light Higgs and minimal

exotic states, which leaves 9.04 × 10−7% of the models.
These models are believed to be semirealistic models in
nature; an example of such a model is given by the
following matrix of one-loop phases for a minimal three-
generation model:

S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2 α

S

e1
e2
e3
e4
e5
e6
b1
b2
z1
z2
α

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 1 1 −1 −1 −1 1 1 1 −1 −1 −1
−1 1 1 1 1 −1 1 −1 1 −1 −1 −1
−1 −1 1 1 1 1 1 1 1 1 −1 1

−1 −1 1 1 1 1 1 1 1 1 −1 −1
−1 −1 −1 1 1 1 −1 1 −1 −1 −1 −1
−1 −1 1 1 1 −1 1 −1 −1 1 −1 −1
1 1 −1 1 1 1 −1 1 1 −1 −1 i

1 1 1 1 1 −1 −1 1 −1 1 1 i

−1 −1 −1 1 1 −1 1 −1 1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 1 −1 1 −i
−1 −1 −1 1 −1 −1 −1 1 1 1 1 −1

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

The attribute of this model is ng ¼ 3, n5̄s ¼ 3, n5s ¼ 0,
n10 ¼ 4, n10 ¼ 1, n10H ¼ 1, n5h ¼ 4, n1e ¼ 2 and n5e ¼ 0.
In conclusion, unlike the classification of the free-fermionic
Pati-Salam models [32], which contained three-chiral-
generation models free of massless exotic states, the
free-fermionic flipped SUð5Þ models both in Ref. [33]
and in this paper show that no three-chiral-generation
models exist and that they only exist with the inclusion
of four exotic multiplets as given in the model above.
Although this was a surprising feature, it is however in line
with related searches [51].

TABLE I. Table consisting of total number of viable flipped SUð5Þmodels with respect to the phenomenological constraints imposed
given by a sequence of increasing numbers. Details include: constraints imposed with respect to low-energy physics, the remaining
number of models with the imposed constraints, the probability of the number of models occurring with the imposed constraints and the
estimated number of models occurring in the space of 245 vacua.

Constraint
# Of Models In
Sample Scanned Probability

Estimated # Of
Models In Class

Total Models 100000000000 1 3.52 × 1013

(1) + Anomaly-Free Models 8010089227 8.01 × 10−2 2.82 × 1012

(2) + No Enhancements 6590765377 6.59 × 10−2 2.32 × 1012

(3) + Number of Three-Generation Models 20929202 2.09 × 10−4 7.36 × 109

(4) + SM Light Higgs Breaking 20094915 2.09 × 10−4 7.07 × 109

(5) + FSU5 Heavy Higgs Breaking 1677071 1.68 × 10−5 5.90 × 108

(6) + FSU5 Heavy Higgs Breaking & SM Light Higgs Breaking 1597702 1.60 × 10−5 5.62 × 108

(7) + Minimal FSU5 Heavy Higgs Breaking 1550194 1.55 × 10−5 5.45 × 108

(8) + Minimal SMLight Higgs Breaking 831508 8.32 × 10−6 2.93 × 108

(9) + Minimal FSU5 Heavy Higgs & SM Light Higgs Breaking 811564 8.12 × 10−6 2.86 × 108

(10) + Minimal Exotic States 90364 9.04 × 10−7 3.18 × 107
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V. CONCLUSION

TheZ2 × Z2 free-fermionic orbifolds in four dimensions
that are given at special points in the moduli space, have
demonstrated many semirealistic string models constructed
to date [6,8–17]. This has led to the development of the
symmetric Z2 × Z2 free-fermionic orbifold classification
methodology given in Refs. [4,20–23,26–33,41,42,47]. All
these models adapted the classification methodology by
containing the six additional basis vectors ei for i ¼ 1;…; 6
that consist of all the possible symmetric Z2 shifts which
are in the internal compactified directions. Moreover the ei
basis vectors allowed the writing of algebraic equations that
could be computed by a computer code, which inevitably
enabled the scanning of a large number of free-fermionic
string vacua. The first classification in Ref. [19] scanned
the chiral 16 and 16 spinorial SOð10Þ GUT representations
in order to show viable phenomenology. The Higgs states
were then tested in Ref. [21] with the scanning of SOð10Þ
GUT 10 vectorial representations. As more developments
were made the spinor-vector duality [22,23] discrete
symmetry was discovered using the x-map [24,25].
From these developments the classification methodology
was then known to elegantly extract the full massless
spectrum from a set of configurations, with thewriting of the
GGSOprojections in algebraic forms to a computer code. As
a result, the SOð10Þ models [30] were scanned in detail and
became a success, as it was shown to have an abundance of
three-generation models. When the classification was done
for a random sample of 1011 string vacua, discrete properties
began to emerge. Here, it was observed that the odd
generations above five vanished, whereas the even gener-
ations above 12 were incremented by four integers.
The advent of the SOð10Þ models saw the Pati-Salam

models being investigated. The Pati-Salam models [32]
contained identical discrete properties as the SOð10Þ
models, with the exclusion of all the 24 generations, since
they were all projected out. In this case, as the spinorial 16
representation of the SOð10Þ was broken to the 4 and 4̄
representations transforming under the SUð4Þ of the Pati-
Salam, therefore, instead of one, two states were required to
complete the family of generations. However, the Pati-
Salam models also contained many three-generations that
were exophobic. Further, the flipped SUð5Þ models were
then explored both in Ref. [33] and here. Contrary to the
Pati-Salam classification consisting of exophobic three-
generation models, the flipped SUð5Þ models contained
only three-generation models with fractionally charged
exotic states, in a random sample of 1012 and 1011 string
vacua scanned. An additional property of the flipped
SUð5Þ models, is that they were more constrained, as
the generations followed a logarithmic distribution together
with all the odd generations being projected out. In hopes
of finding viable three-generation exophobic flipped SUð5Þ
string vacua, the next and final flipped SUð5Þ breaking

basis vector is under investigation; as discussed in Sec. II,
this basis vector is given in the following form:

α¼
�
η̄1;2;3 ¼ 1

2
; ψ̄1;…;5 ¼ 1

2
; ϕ̄1;2 ¼ 1

2
; ϕ̄5;6 ¼ 1

2
; ϕ̄8 ¼ 1

�
:

Furthermore, in the event of not achieving the desired goal
of finding viable three-generation exophobic flipped SUð5Þ
string vacua, the symmetric Z2 × Z2 free-fermionic orbi-
folds will be reevaluated and a new set of SOð10Þ breaking
basis vectors will be constructed. In this new construction
an additional hidden gauge group breaking basis will be
added to the ones in Eq. (1), which is given by

z3 ¼ fϕ̄1;2; ϕ̄5;6g:

However, it should be noted that models consisting of these
three hidden gauge group breaking basis vectors have not
been studied before and are more complicated, and there-
fore results might take considerably more time to access.
In this paper, the discrete properties that emerged in the

landscape of the free-fermionic heterotic-string classifica-
tions were presented. Emphasis should be put on the fact
that a JAVA routine was used to classify the flipped SUð5Þ
models and that no three-generation exophobic vacua were
found as in Ref. [33]. Therefore, other possibilities are
currently being explored. In the pursuit of finding such
three-generation flipped SUð5Þmodels, two SOð10Þ break-
ing basis vectors are also under investigation. These result
in the SUð4Þ × SUð2Þ ×Uð1Þ, standard-like and left-right
symmetric models. The classification of the SUð4Þ ×
SUð2Þ × Uð1Þ models was in fact explored already and
it was revealed that these models were even more con-
strained than the flipped SUð5Þ models. However, this was
anticipated, due to the presence of two SOð10Þ breaking
basis vectors, which forbid complete generations. In actual
fact, this was a rare occurrence in the free-fermionic
classifications, as the second SOð10Þ breaking basis vector
was unique and the GGSO projection on the 16 of SOð10Þ
projected out all the right-handed particles. Thus, a whole
family of generations was incomplete. The next stage will
be the classification of the standard-like, left-right sym-
metric and the remaining flipped SUð5Þ models in the free-
fermionic construction; these are works in progress and are
being considered extensively for future publications.
To conclude, the current status of the unification of

gravity with the gauge interactions seems to be heavily
motivated by string theory which continues to provide a
viable consistent framework. Consequently, the three-
generation string models need to be obtained for phenom-
enological purposes. Having said that, we are a long way
away from pinning down a detailed example. Nevertheless,
string theory provides a sea of such established semi-
realistic examples which are explored as toy models in the
quest for a theory of everything.
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