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A direct correspondence of quantum mechanics as a minisuperspace model for a self-interacting scalar
quantum-field theory is established by computing, in several models, the infrared contributions to 1-loop
effective potentials of Coleman-Weinberg type. A minisuperspace approximation rather than truncation is
thereby obtained. By this approximation, the spatial averaging scale of minisuperspace models is identified
with an infrared scale (but not a regulator or cutoff) delimiting the modes included in the minisuperspace
model. Some versions of the models studied here have discrete space or modifications of the Hamiltonian
expected from proposals of loop quantum gravity. They shed light on the question of how minisuperspace
models of quantum cosmology can capture features of full quantum gravity. While it is shown that
modifications of the Hamiltonian can be well described by minisuperspace truncations, some related
phenomena such as signature change, confirmed and clarified here for modified scalar field theories,
require at least a perturbative treatment of inhomogeneity beyond a strict minisuperspace model. The new
methods suggest a systematic extension of minisuperspace models by a canonical effective formulation of
perturbative inhomogeneity.
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I. INTRODUCTION

Quantum mechanics can be seen as a “minisuperspace
model” of quantum-field theory obtained by restricting the
latter to spatially constant fields. Standard derivations in
these frameworks, interpreted appropriately, can therefore
shed light on the question of howminisuperspace models of
quantum cosmology [1] might be related to some putative
full theory of quantum gravity, and what physical infor-
mation they can be able to capture. Here, we initiate a
detailed treatment of this form by comparing semiclassical
contributions to effective potentials in quantum mechanics
with different versions of the Coleman-Weinberg potential
of self-interacting scalar quantum-field theories [2].
At first glance, these two potentials look very different

from each other, suggesting that a relationship between the
quantum-mechanical result, as our minisuperspace model,
and full quantum-field theory may not be obvious. A
quantum-mechanical system with Hamiltonian ĤQM ¼
1
2
p̂2 þ Vðq̂Þ has, to first order in ℏ, a semiclassical con-

tribution to its effective potential given by

VeffðqÞ ¼ VðqÞ þ 1

2
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VqqðqÞ

q
; ð1Þ

as it can be derived by path-integral methods [3] or
canonically [4]. (Subscripts indicate the order of derivatives
by the argument of a function, here the potential. Note that
we assume a kinetic term 1

2
p̂2 without mass in order to

facilitate the following comparison with scalar quantum-
field theory, where the mass appears in the quadratic

contribution to the potential. In standard quantum mechan-
ics, the effective potential would be 1

2
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VqqðqÞ=m

p
.)

The Coleman-Weinberg potential, on the other hand, can
be expressed in various versions, none of which suggest a
clear comparison. With a covariant cutoff and a quartic
potential in the scalar field ϕðxÞ, the renormalized potential
given in [2] is

Wrenormðϕ0Þ ¼ λϕ4
0 þ

9λ2

4π2
ϕ4
0ðlogðϕ2

0=M
2Þ − 25=6Þ ð2Þ

with the renormalization scale M and ϕ0 the spatially
constant background value chosen for ϕðxÞ. Before a
cutoff and renormalization are employed, the potential is
expressed as an integral over modes of the quantum field,

Weffðϕ0Þ ¼ λϕ4
0 þ

1

2
iℏ
Z

d4k
ð2πÞ4 log

�
1þ 12λϕ2

0

∥k∥2

�
ð3Þ

or, performing the integration over the time component k0,

Weffðϕ0Þ ¼ λϕ4
0 þ

1

2
ℏ
Z

d3k
ð2πÞ3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~kj2 þ 12λϕ2

0

q
− j~kj

�
:

ð4Þ

In this last form, the effective potential is directly
obtained by canonical methods [5], briefly reviewed below.
Being canonical, the derivation does not make covariance
manifest, and accordingly only the spatial wave vector ~k
appears. The formal derivation from (3) indeed shows that
one cannot directly use a covariant cutoff in this setting
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because k0 must be integrated over its whole infinite range
for (4) to result. The remaining integral is still divergent,
so that it can only be treated by a noncovariant cutoff

limiting the range of j~kj2, rather than the range of ∥k∥2.
Nevertheless, the expression (4) has advantages in our
present context because it makes a comparison with (1)
more clear. Indeed, just as (1), the square root in (4)
contains the term 12λϕ2

0 ¼ Wϕϕðϕ0Þ, the second derivative
of the self-interacting potential WðϕÞ ¼ λϕ4 of the
Coleman-Weinberg model.
As we will demonstrate in what follows, the quantum-

mechanical effective potential can be extracted as the
infrared contribution to the Coleman-Weinberg potential
of the corresponding quantum-field theory. In this way, a
direct relation between a minisuperspace model and its full
theory can be established, providing useful insights about
the related question in quantum gravity, where not much is
known about concrete results in a possible full theory. We
will also be led to a systematic formulation of a minisuper-
space approximation as an expansion of the infrared
contribution by orders of kIR=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
with the wave

number kIR corresponding to the infrared scale.
Perturbative inhomogeneity will be shown to combine
quantum mechanics as a minisuperspace model with a
quantum-field theory of modes coupled to it, providing a
manageable setting situated between a strict minisuper-
space model and the corresponding full theory.

II. QUANTUM MECHANICS AS
A MINISUPERSPACE MODEL

We first have to make the minisuperspace picture of
quantum mechanics more precise. It should be a model of
quantum-field theory seen as the full theory, obtained by
performing a spatial averaging of the fields. The traditional
construction of minisuperspace models starts at the classical
level where the averaging is performed and then applies
quantization methods to the resulting model. The relation-
ship between the quantum-mechanics model constructed in
this way and the full quantum-field theory has remained
obscure. Wewill arrive at a clear link by comparing effective
potentials in both settings.

A. Quantum mechanics as 0þ 1-dimensional
field theory

A seemingly related question has already been studied in
quite some detail, applying methods from quantum-field
theory to quantum mechanics [3,6,7]. To leading order in a
derivative expansion, the low-energy effective action then
produces an effective potential of the form (1). However,
this result presents a formal analogy and does not illumi-
nate the question of how specific properties of quantum
mechanics could be recognized in quantum-field theory or
how quantum-mechanics derivations could be used to
learn something about quantum-field theory. In standard

situations, the last question may not be very relevant since
many calculations can be done directly in quantum-field
theory. But this is no longer true in some approaches to
quantum gravity, where models with spatially nonconstant
fields are usually hard to evaluate, owing for instance to the
absence of a background space-time. The proposal [1] to
use tractable minisuperspace models in order to gain
information about potential full theories of quantum gravity
is still one of the most actively used. The question of what
such a model can tell us about a full theory then becomes
crucial, but it has not been systematically analyzed yet.
A detailed look at the classical relation between a field

theory and a corresponding mechanical system of homo-
geneous fields shows why the models studied for instance
in [3,6,7] provide analogies rather than strict relationships
between quantum mechanics and quantum-field theory.
The dynamics of a homogeneous mode q ¼ ϕ0 can be
derived by inserting ϕðxÞ ¼ ϕ0 in the field-theory
Lagrangian. Taken at face value, the result is infinite
because it is a homogeneous function of fields integrated
over all of space. However, the fields being the same at all
points in space, we may restrict the spatial integration to a
finite region. If we know the dynamics in this region, we
know it everywhere thanks to homogeneity. A finite
Lagrangian is then obtained which can be used to derive
equations of motion or the Hamiltonian of this minisuper-
space model, but it differs from the usual models of
classical mechanics in that it depends on a new parameter,
the volume V0 of the finite region selected for spatial
integrations. This new parameter, which will be exhibited
more fully in the detailed derivations of the next subsection,
turns out to be crucial for a relationship between quantum
mechanics and quantum-field theory. It has not appeared in
papers that studied the formal relationship between effec-
tive potentials based on analogies.
The parameter V0 has, however, appeared in quantum

cosmology as a minisuperspace model of quantum gravity.
Its role in this context has remained unclear. One of the main
results of this paper, in addition to the relationship between
minisuperspace models and quantum-field theories, is an
explanation of this parameter as the infrared scale of an
approximation used to implement homogeneous fields. In
fact, our considerations will lead us to a minisuperspace
approximation as opposed to the minisuperspace truncations
used so far.We broadly define the former as a set of equations
that provides some information about themagnitude of terms
that are ignored in aminisuperspace truncation, togetherwith
a prescription of how to include higher-order terms. More
details will be provided below once the relationship between
minisuperspace models and quantum-field theory has
been found.

B. Minisuperspace model

Our classical full theory is a scalar field theory on
Minkowski space-time with Lagrangian
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L ¼
Z

d3x

�
1

2
_ϕ2 −

1

2
j∇ϕj2 −WðϕÞ

�
ð5Þ

with some potential WðϕÞ. The integral is performed over
all of space up to infinity. In order to obtain a finite
Lagrangian after averaging the field (setting it to a spatially
constant value ϕ0), we have to choose a bounded region of
coordinate volume

R
d3x ¼ V0, so that the averaged,

minisuperspace Lagrangian is

Lmini ¼ V0

�
1

2
_ϕ2 −WðϕÞ

�
: ð6Þ

(At the minisuperspace level, we drop the subscript “0” of
ϕ or its momentum introduced below.) The choice of the
integration region and its volume does not matter for the
classical theory because we can evaluate a constant field
anywhere we like. However, as we will see now, the value
of V0 does affect some quantum properties, which has been
a constant source of puzzlement in recent investigations of
(especially loop) quantum cosmology. (For instance, it has
been suggested that one should take a limit V0 → ∞ in
these models, interpreting V0 as an infrared cutoff [8].
However, the value of V0 does not affect the classical
dynamics at all, unlike what a cutoff would do. Changing
V0 rather corresponds to a symmetry of the classical
minisuperspace theory, which seems broken by quantum
effects, but this would mean that quantization introduces a
new kind of coordinate dependence. Moreover, if one does
take the limit V0 → ∞, the effective potential is identical
with the classical potential and, as claimed in [8], the states
no longer obey uncertainty relations. Quantized minisuper-
space models then do not seem to follow the usual rules of
quantum mechanics. In our conclusions we will present an
interpretation of V0 free of such problems.)
We switch to the Hamiltonian picture by introducing

the momentum p ¼ ∂Lmini=∂ _ϕ ¼ V0
_ϕ. The classical

Hamiltonian is

Hmini ¼
1

2

p2

V0

þ V0WðϕÞ: ð7Þ

At this stage, we can easily quantize the minisuperspace
model, giving us the Hamiltonian operator

Ĥmini ¼
1

2

p̂2

V0

þ V0Wðϕ̂Þ: ð8Þ

Our minisuperspace model differs from standard quantum
mechanics only in the presence of coefficients depending
on V0. Nevertheless, the usual methods can, of course, be
applied.
We use the canonical effective methods of [4,9] and

derive the effective Hamiltonian by expanding the expect-
ation value hĤminii in a generic semiclassical state in terms
of moments of the state. We will only use second-order
moments appropriate for a semiclassical expansion to first
order in ℏ: we have the two fluctuations Δðϕ2Þ ¼ ðΔϕÞ2

and Δðp2Þ ¼ ðΔpÞ2, as well as the covariance ΔðϕpÞ ¼
1
2
hϕ̂ p̂þp̂ ϕ̂i − ϕp. Here and in what follows, we simplify

the notation by dropping brackets around expectation
values of basic operators, hϕ̂i ¼ ϕ and hp̂i ¼ p.
Following this procedure, we obtain the effective

Hamiltonian

Heff ¼
1

2

p2

V0

þ V0WðϕÞ þ 1

2V0

Δðp2Þ

þ 1

2
V0WϕϕðϕÞΔðϕ2Þ þ � � � ; ð9Þ

where the dots indicate higher-moment terms, resulting
from an expansion of the potential. The effective
Hamiltonian provides Hamiltonian equations of motion
for expectation values and moments, which can be derived
from a Poisson bracket defined using commutators:
fhÂi; hB̂ig ≔ h½Â; B̂�i=iℏ (extended to products of expect-
ation values by the Leibniz rule). For second-order
moments, we obtain

_Δðϕ2Þ ¼ 2

V0

ΔðϕpÞ ð10Þ

_ΔðϕpÞ ¼ 1

V0

Δðp2Þ − V0WϕϕðϕÞΔðϕ2Þ ð11Þ

_Δðp2Þ ¼ −2V0WϕϕðϕÞΔðϕpÞ: ð12Þ
The effective potential is well defined if the moments

behave adiabatically, corresponding to a derivative expan-
sion in time [10]. To lowest order in an adiabatic expansion,
we ignore the time derivatives on the left-hand sides of
(10)–(12) and solve the resulting linear equations for
the moments. We obtain Δ0ðϕpÞ ¼ 0 and Δ0ðp2Þ ¼
V2
0WϕϕðϕÞΔ0ðϕ2Þ. Saturating the uncertainty relation

Δðϕ2ÞΔðp2Þ − ΔðϕpÞ2 ≥ ℏ2=4 in order to minimize fluc-
tuations, we determine all the second-order moments:

Δ0ðϕ2Þ ¼ 1

2

ℏ

V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WϕϕðϕÞ

p ;

Δ0ðp2Þ ¼ 1

2
ℏV0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WϕϕðϕÞ

q
: ð13Þ

The effective potential in (9) can then be expressed solely in
terms of ϕ:

VeffðϕÞ ¼ V0WðϕÞ þ 1

2V0

Δ0ðp2Þ þ 1

2
V0WϕϕðϕÞΔ0ðϕ2Þ

¼ V0WðϕÞ þ 1

2
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WϕϕðϕÞ

q
: ð14Þ

In order to arrive at this result of the effective potential
expressed solely in terms of ϕ, eliminating the moments in
(9), two assumptions were necessary: the validity of an
adiabatic approximation for the moments and the saturation
condition of uncertainty relations. Both assumptions have
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been shown to lead to correct results for anharmonic
oscillators in quantum mechanics [4,10] and, in the context
of the Coleman-Weinberg potential, for quartic self-
interactions of a scalar field [5]. In the rest of this paper,
we work with general potentials WðϕÞ but assume that
approximations as in the preceding brief derivation are
valid both in the (full) quantum-field theory and the
minisuperspace quantum-mechanics model. Our main
interest here lies in relating these two frameworks, not
in probing the range of semiclassical methods.
We divide by V0 in order to extract the effective version

of the original potential WðϕÞ of the scalar theory before
averaging:

WeffðϕÞ ¼ WðϕÞ þ ℏ
2V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WϕϕðϕÞ

q
: ð15Þ

As promised, while the classical potential does not depend
on the averaging volume V0, its first-order quantum
correction does. The meaning of this parameter cannot
be understood within the minisuperspace model. The
classical reduction would suggest that the value of V0

should not play any role in physical results because the
physics of an exactly constant field should not depend on
the volume of the region in which the field is constant,
provided the theory is local. Indeed, results in the classical
model do not depend on the value of V0. Quantum effects,

however, are known to be nonlocal, which might explain
the presence of V0 in the correction term of (15). Still, this
general observation does not elucidate the physical mean-
ing of V0. In order to understand this issue, we now relate
the minisuperspace result to a calculation in the corre-
sponding full theory.

C. Effective potential in the infrared

If we consider the integral in (4) only for small values of
k that are in the infrared, we obtain an effective potential of
the form (15), up to numerical factors. Indeed, if we include

modes with j~kj between zero and 2π=R0, with a large R0 for
the maximum wavelength allowed, we can approximate
the integral as the volume 4

3
πð2π=R0Þ3 times the integrand

evaluated at j~kj ¼ 0. The result, 2
3
πℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
=R3

0, agrees
with (15) up to a numerical factor if we identify 4

3
πR3

0

with the averaging volume V0.
More accurately, we can write the infrared contribution

to the effective potential as

WIRðϕ0Þ ¼ Wðϕ0Þ

þ 1

4π2
ℏ
Z

2π=R0

0

dkk2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þWϕϕðϕ0Þ
q

− k
�
ð16Þ

¼ Wðϕ0Þ þ
1

32π2
ℏ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2π=R0Þ2 þWϕϕðϕ0Þ

q �
2

�
2π

R0

�
3

þ 2πWϕϕðϕ0Þ
R0

�
− 2

�
2π

R0

�
4

−Wϕϕðϕ0Þ2 log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2π=R0Þ2 þWϕϕðϕ0Þ

q
þ 2π=R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wϕϕðϕ0Þ
p

!
ð17Þ

≈ Wðϕ0Þ þ
5

29π2
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
R3
0

: ð18Þ

As before, identifying V0 ¼ 4
3
πR3

0 gives us (15) up to
numerical factors. In the last step, we have kept only
the leading term in an expansion by ðR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p Þ−1, so
that we require the second derivative of the potential to be
much larger than the largest wave number squared,
Wϕϕðϕ0Þ ≫ R−2

0 . This approximation means that we re-
strict ϕ0 to values such that the potential dominates the
spatial-derivative term in the field-theory Hamiltonian: in

1

2
j∇ϕj2 þWðϕÞ ≈ 1

2
ð−k2 þWϕϕðϕ0ÞÞδϕ2; ð19Þ

using an expansion ϕðxÞ ¼ ϕ0 þ δϕðxÞ around the mini-
mum ϕ0 of WðϕÞ, the potential term is then dominant.

We are now in a position to specify our minisuperspace
approximation, as opposed to a truncation.Bothgive the same
leading corrections at least qualitatively, but the former also
specifies the range of validity. In the present example,
the minisuperspace approximation is defined as the infrared
contribution to a field theory and is valid as long as
Wϕϕðϕ0Þ ≫ R−2

0 . The minisuperspace truncation, on its
own, could be used to conclude that R0 should be large for
homogeneous fields to capture the relevant physics at this
scale, but without any known relation with a full effective
potential, it would not prevent one from applying it to values
ϕ0 forwhichWϕϕðϕ0Þ ≫ R−2

0 is violated and the relationship
with a full theory breaks down. The minisuperspace trunca-
tion would formally be valid for all ϕ0 if the limit R0 → ∞ is
taken, but then there are no quantum corrections in (15) and
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the truncation does not tell us anything about quantum-field
theory.
We recall that our main motivation comes from quantum

gravity, where an open question is to see how minisuper-
space results can find a home in some corresponding full
theory. Depending on the specific application of such
models, additional effects may have to be included. An
example would be microscopic properties, transported to a
minisuperspace model by a detailed procedure of coarse
graining. Such a procedure would replace our simpler
posing of an infrared scale, but it is outside the scope not
only of this article but also of most approaches to quantum
gravity, at least at present. Nevertheless, some of the
detailed models presented in the next section show that
certain microscopic features suggested by quantum gravity
can leave a trace in minisuperspace models even if a simple
infrared scale is posed.

III. INFRARED CONTRIBUTIONS
TO ONE-DIMENSIONAL FIELD

THEORIES

The results presented so far show that the low-energy
effective potential in quantum mechanics agrees, up to
numerical factors, with the infrared contribution to a related
quantum-field theory. The averaging volume V0 of the
minisuperspace model corresponds to the infrared scale
used in the quantum-field theory. In this section, we explore
how different choices of full theories with the same
potential, which therefore produce the same minisuper-
space result, affect the infrared contribution. Although we
focus on effective potentials, similar correspondences can
be established between two-point functions of quantum-
field theories and quantum-mechanical fluctuations.

A. One-dimensional field theory

We begin by providing a more detailed derivation of the
field-theory effective potential with a one-dimensional
spatial manifold, following [5]. We take this opportunity
to show more details of the derivation that leads to the
integral used in (16), but at the same time give an example
that demonstrates the dependence of the infrared contri-
bution on the spatial dimension.
The quantum Hamiltonian, formally expanded to sec-

ond-order moments, is

HQ ¼ 1

2

Z
dxðπðxÞ2 þϕ0ðxÞ2 þ 2WðϕðxÞÞ

þG2;0ðx; xÞ þD2G0;2ðx; xÞ þWϕϕðϕðxÞÞG0;2ðx; xÞÞ:
ð20Þ

The derivative D2G0;2ðx; xÞ is defined as limy→xd2G0;2

ðx; yÞ=dxdy. For the moments, we have equations of
motion

_G0;2ðy; zÞ ¼ G1;1ðy; zÞ þ G1;1ðz; yÞ ð21Þ

_G1;1ðy; zÞ ¼ G2;0ðy; zÞ −
�
WϕϕðϕÞ −

d2

dy2

�
G0;2ðy; zÞ

ð22Þ

_G2;0ðy; zÞ ¼ −
�
WϕϕðϕÞ −

d2

dz2

�
G1;1ðy; zÞ

−
�
WϕϕðϕÞ −

d2

dy2

�
G1;1ðz; yÞ: ð23Þ

To leading order in an adiabatic expansion, the first
equation implies G1;1ðz; yÞ ¼ −G1;1ðy; zÞ, from which
the last one implies that G1;1 ¼ 0 using standard boundary
conditions.
We solve (22) by using a Fourier decomposition

G0;2ðx; yÞ ¼
Z

dkxdkyfðkx; kyÞeiðkxxþkyyÞ: ð24Þ

For a translation-invariant theory, fðky; kyÞ must be of the
form gðkÞδðkx þ kyÞ, so that

G0;2ðx; yÞ ¼
Z

dkgðkÞeikðx−yÞ: ð25Þ

By (22), we then have

G2;0ðx; yÞ ¼
Z

dkðWϕϕðϕÞ þ k2ÞgðkÞeikðx−yÞ: ð26Þ

The momentsG0;2 andG2;0 (withG1;1 ¼ 0) appear in the
uncertainty relation

G0;2ðx1; x2ÞG2;0ðy1; y2Þ ≥
ℏ2

8
ðδðx1 − y1Þδðx2 − y2Þ

þ δðx1 − y2Þδðx2 − y1ÞÞ: ð27Þ

The saturation condition is singular for moments such as
(25) and (26), but it can nevertheless be evaluated in order
to restrict the values. If we set x1 ¼ x2 in the saturated
uncertainty relation and integrate over this value, we can
see that the free function gðkÞ must be

gðkÞ ¼ ℏ
2π

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WϕϕðϕÞ þ k2

q ð28Þ

if the theory is reflection symmetric, gð−kÞ ¼ gðkÞ.
Therefore,

G0;2ðx; yÞ ¼ ℏ
2π

Z
dk

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WϕϕðϕÞ þ k2

q eikðx−yÞ ð29Þ
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G2;0ðx; yÞ ¼ ℏ
2π

Z
dk

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WϕϕðϕÞ þ k2

q
eikðx−yÞ: ð30Þ

We insert these moments in the effective Hamiltonian and
arrive at the Coleman-Weinberg potential

Weffðϕ0Þ ¼ Wðϕ0Þ þ
ℏ
4π

Z
dk
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wϕϕðϕ0Þ þ k2
q

− jkj
�

¼ Wðϕ0Þ þ
ℏ
2π

Z
k

0

dk
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wϕϕðϕ0Þ þ k2
q

− k
�
ð31Þ

with a spatially constant ϕ0. [In the integrand, we subtract
jkj in order to ensure that there is no contribution in the
free case when W ¼ 0. This term amounts to an infinite
subtraction of the diverging moments Ga;bðx; xÞ.]
The integral in Weff can be evaluated explicitly, but we

are interested only in the infrared contribution given by
modes up to some scale 2π=L0. Using the additional
assumption of potential dominance at the chosen value
of ϕ0, Wϕϕðϕ0Þ ≫ ð2π=L0Þ2, we obtain

WIRðϕ0Þ ¼ Wðϕ0Þ þ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
L0

: ð32Þ

The result differs from the minisuperspace model by a
factor of 2.

B. Discrete space

We now modify our one-dimensional field theory by
putting it on a discrete space. The classical Hamiltonian is

H ¼
X∞
n¼−∞

�
1

2
π2n þ

1

8l2
0

ðϕnþ1 − ϕn−1Þ2 þWðϕnÞ
�
: ð33Þ

We have chosen a symmetric discretization of the spatial
derivative and denoted the discreteness scale by l0.
Accordingly, there will be a maximal wave number kmax ¼
2π=l0 in Fourier decompositions.
We obtain the quantum Hamiltonian, as before to

second-order moments, given by

HQ ¼ 1

2

X∞
n¼−∞

�
π2n þ

1

4l2
0

ðϕnþ1 − ϕn−1Þ2 þ 2WðϕnÞ

þ G2;0
n;n þ 1

4l2
0

ðG0;2
nþ1;nþ1 − 2G0;2

nþ1;n−1

þ G0;2
n−1;n−1Þ þWϕϕðϕnÞG0;2

n;n

�
: ð34Þ

It is slightly easier to compute equations of motion for the
moments if we first rearrange the spatial difference term by
a suitable shift of the summation labels:

HQ ¼ 1

2

X∞
n¼−∞

�
π2n þ

1

4l2
0

ðϕnþ1 − ϕn−1Þ2 þ 2WðϕnÞ

þG2;0
n;n þ 1

2l2
0

ðG0;2
n;n − G0;2

nþ1;n−1Þ þWϕϕðϕnÞG0;2
n;n

�
:

ð35Þ

Equations of motion are

_G0;2
n;m ¼ G1;1

n;m þG1;1
m;n ð36Þ

_G1;1
n;m ¼ G2;0

n;m −WϕϕðϕnÞG0;2
n;m

−
1

4l2
0

ð2G0;2
n;m − G0;2

n;m−2 − G0;2
n;mþ2Þ ð37Þ

_G2;0
n;m ¼ −

1

4l2
0

ð2G1;1
n;m −G1;1

n−2;m −G1;1
nþ2;m þ 2G1;1

m;n

− G1;1
m−2;n − G1;1

mþ2;nÞ: ð38Þ

In an adiabatic approximation, the first equation implies
G1;1

n;m ¼ −G1;1
m;n, from which the last equation gives

G1;1
n−2;m þG1;1

nþ2;m ¼ G1;1
n;m−2 þG1;1

n;mþ2: ð39Þ

Boundary conditions are now more complicated, but we
may use G1;1

n;m ¼ 0 in order to realize the correct continuum
limit of the preceding subsection.
In order to solve (37), we write

G0;2
n;m ¼

Z
kmax

0

dkgðkÞeikl0ðn−mÞ ð40Þ

as a Fourier decomposition in the required k-range.
Equation (37) then implies

G2;0
n;m ¼

�
WϕϕðϕnÞ þ

1

2l2
0

�
G0;2

n;m −
1

4l2
0

ðG0;2
n;m−2 þ G0;2

n;mþ2Þ

ð41Þ

¼
Z

kmax

0

dkgðkÞ
�
WϕϕðϕnÞ −

1

4l2
0

ðe2ikl0

þ e−2ikl0 − 2Þ
�
eikl0ðn−mÞ ð42Þ

¼
Z

kmax

0

dkgðkÞ
�
WϕϕðϕnÞ þ

sin2ðl0kÞ
l2
0

�
eikl0ðn−mÞ:

ð43Þ

We saturate the uncertainty relation in the formP
nG

0;2
n;mG2;0

n;m0 ¼ 1
4
ℏ2δm;m0 and obtain the effective potential
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Weffðϕ0Þ ¼ Wðϕ0Þ

þ ℏ
2π

Z
kmax

0

dk
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wϕϕðϕ0Þ þ sin2ðl0kÞ=l2
0

q
− sinðl0kÞ=l0

�
: ð44Þ

The integral can again be evaluated. For an infrared
scale of 2π=L0 ≪ 2π=l0 and potential domination,
Wϕϕðϕ0Þ ≫ ð2π=L0Þ2, we have

WIRðϕ0Þ ¼ Wðϕ0Þ þ ℏ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
L0

þ 8

3
π2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
L3
0

−
2

15
π4

4Wϕϕðϕ0Þl2
0 þ 3

Wϕϕðϕ0Þ3=2L5
0

þWϕϕðϕ0ÞOðL−6
0 Wϕϕðϕ0Þ−3Þ

�
: ð45Þ

As the expansion to higher orders in ðL0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p Þ−1
shows, one has to go well beyond the leading result of the
infrared expansion in order to see the discreteness scale l0.
Moreover, the fifth-order term depends significantly on l0

only if Wϕϕðϕ0Þl2
0 ≈ 1 or larger, so that the second

derivative of the potential must be huge for a small
discreteness scale.

C. Periodic space

In our next model, we assume that the spatial manifold is
a circle with coordinate radius L. The Hamiltonian is

H ¼
Z

L

0

dx

�
1

2
πðxÞ2 þ 1

2
ϕ0ðxÞ2 þWðϕÞ

�
; ð46Þ

and we impose periodic boundary conditions ϕðLÞ ¼ ϕð0Þ,
ϕ0ðLÞ ¼ ϕ0ð0Þ. All our local equations of motion are as in
the continuum model we started with, but Fourier decom-
positions are discrete. We therefore write

G0;2ðy; zÞ ¼
X∞
j¼−∞

gje2πijðy−zÞ=L ð47Þ

and the leading-order adiabatic equations imply that

G2;0ðy; zÞ ¼
X∞
j¼−∞

gj

�
WϕϕðϕÞ þ

�
2π

L

�
2

j2
�
e2πijðy−zÞ=L:

ð48Þ

Upon saturating the uncertainty relation, the Fourier
coefficients are determined by

gj ¼
ℏ
L

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕ þ ð2π=LÞ2j2

q : ð49Þ

The effective potential is

Weffðϕ0Þ ¼ Wðϕ0Þ

þ ℏ
2L

X∞
j¼−∞

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ þ

�
2π

L

�
2

j2

s
−
2πj
L

!

¼ Wðϕ0Þ þ
1

2
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
L

þ ℏ
L

X∞
j¼1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ þ

�
2π

L

�
2

j2

s
−
2πj
L

!
:

ð50Þ
We choose a length L0 ≤ L as the infrared scale that

determines the infrared contribution

WIR ¼ Wðϕ0Þ þ
1

2
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
L

þ ℏ
L

XL=L0−1

j¼1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ þ

�
2π

L

�
2

j2

s
−
2πj
L

!
:

ð51Þ
We have assumed that L=L0 ¼ N is an integer, so that
averaging over the infrared scale eliminates all modes with
j ¼ N or higher. The value N ¼ 1 is allowed, in which case
the averaging is complete and only homogeneous modes
are left. There remains an infrared contribution to the
classical potential, given by

WL0¼L
IR ðϕ0Þ ¼ Wðϕ0Þ þ

1

2
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
L0

: ð52Þ

In this case, the infrared contribution agrees exactly with
the quantum-mechanical effective potential (15), even in its
numerical factor.
We are not restricted to N ¼ 1 as long as N is a positive

integer. For N > 1, the infrared contribution (51) is a finite
sum with contributions in addition to the quantum-
mechanical one. If we assume potential domination, as
before, we have Wϕϕðϕ0Þ ≫ ð2π=L0Þ2 ≥ ð2π=LÞ2, and we
can expand the square root in order to evaluate the sums:

WIRðϕ0Þ ¼ Wðϕ0Þ þ
1

2
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
L

þ
XL=L0−1

j¼1

�
Wϕϕðϕ0Þ

�
1þ 1

2

�
2π

L

�
2

×
1

Wϕϕðϕ0Þ
j2 þ � � �

�
−
2πj
L

�
ð53Þ
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¼ Wðϕ0Þ þ
1

2
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
L

− π
ℏ
L2

L
L0

�
L
L0

− 1

�

þ π2

3

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
L3

L
L0

�
L
L0

− 1

��
2
L
L0

− 1

�
þ � � � :

ð54Þ

For large N ¼ L=L0 ≫ 1,

WIRðϕ0Þ ¼ Wðϕ0Þ þ
1

2N
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
L0

− π
ℏ
L2
0

þ π2

3

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
L3
0

: ð55Þ

D. Scalar field on a homogeneous metric background

If the background space-time of the scalar field theory is
not Minkowskian, the spatial metric q and lapse function N
(distinct from the mode number in the preceding subsec-
tion) appear in the Hamiltonian

H ¼
Z

dxNðxÞ ffiffiffi
q

p �
1

2

πðxÞ2
q

þ ϕ0ðxÞ2
q

þWðϕÞ
�
: ð56Þ

The momentum is now related to the time derivative of ϕ by
π ¼ ffiffiffi

q
p _ϕ. In one dimension the metric is just a function,

given by qðxÞ ¼ a2 for a homogeneous background with
the cosmological scale factor a. For our purposes, the lapse
function can be ignored, and we may absorb the factor offfiffiffi
q

p ¼ a in the spatial coordinate x. The only effect of the
spatial metric is then to write the entire Hamiltonian,
including the spatial derivative of ϕ, in terms of ax instead
of x. Accordingly, mode expansions are formulated with
respect to the physical wave number k=a instead of the
comoving one, k. Similarly, if we use the discrete model,
the discreteness parameter in the spatial difference operator
is the geometrical distance al0 rather than the coordinate
distance l0.
In the corresponding minisuperspace model the coor-

dinate value L0 of the infrared scale is replaced by the
geometrical distance aL0 in all equations, including the
resulting effective potential. The dependence of the effec-
tive potential on the infrared scale is therefore coordinate
invariant. It only depends on the physical scale used to
average fields.

E. Quantum-geometry modifications

Models of loop quantum gravity have been used to
suggest two types of modifications which turn out to
deform the classical notion of covariance. Accordingly,
the kinetic term of a scalar Hamiltonian is modified by
inserting different types of functions. These functions, in
canonical form, may depend on the spatial metric or

extrinsic curvature, which in our context would be treated
as background fields, but they can also depend on the scalar
field or its momentum and then change the quadratic form
of kinetic terms. There are two important forms of
modifications, inverse-triad corrections first introduced in
loop quantum cosmology in [11], and holonomy correc-
tions introduced in [12–14].

1. Inverse-triad corrections

Inverse-triad corrections result from a quantization of the
inverse metric factors in a Hamiltonian such as (56), in
which the kinetic and spatial-derivative term are divided by
metric components. Loop quantizations (using a densitized
triad instead of the spatial metric) lead to discrete metric
operators with zero in their discrete spectra, so that no
direct inverse exists. Nevertheless, as proposed in [15,16],
an inverse can be quantized in an indirect way, schemati-
cally writing q−1=2 ¼ 2fq1=2; pqg and replacing the
Poisson bracket by a commutator divided by iℏ. A densely
defined operator results, but its spectrum differs from the
expected q−1=2n for small values of qn [17,18].
One can model this effect of discrete quantum geometry

by changing the q-dependence of a Hamiltonian (56) on a
classical background. With two given positive functions ν
and σ, a scalar Hamiltonian modified by inverse-triad
corrections has the form

H ¼
Z

dx

�
1

2
νπðxÞ2 þ 1

2
σϕ0ðxÞ2 þWðϕÞ

�
: ð57Þ

For simplicity, we will assume ν and σ to depend only on
time, perhaps implicitly, but not on x. The time dependence
of the modification functions could result from an expand-
ing cosmological background, but we omit corresponding
factors of q ¼ a2. Such modified Hamiltonians have been
derived for instance via inhomogeneous (but still tractable)
quantum-gravity models such as [19,20], or by perturbative
treatments of inhomogeneity in lattice models [21].
We can eliminate the function σ by employing a

canonical transformation ~ϕ ≔
ffiffiffi
σ

p
ϕ and ~π ≔ π=

ffiffiffi
σ

p
. The

only modification in the kinetic term is then a factor of
β ≔ νσ multiplying the momentum squared, and there is a
substitution of ~ϕ=

ffiffiffi
σ

p
for ϕ in the potential. We will

therefore assume the Hamiltonian to be of the form

H ¼
Z

dx

�
1

2
β ~πðxÞ2 þ 1

2
~ϕ0ðxÞ2 þWð ~ϕ= ffiffiffi

σ
p Þ

�
ð58Þ

without changing our notation for the fields.
With our new Hamiltonian, the equation of motion for

G2;0, after transitioning to an expanded quantum
Hamiltonian, is unchanged, while

_G0;2ðy; zÞ ¼ βðG1;1ðy; zÞ þ G1;1ðz; yÞÞ: ð59Þ
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To leading adiabatic order, the conclusion that G1;1 ¼ 0 is
therefore unchanged. For G1;1, we have the equation of
motion

_G1;1ðy;zÞ¼βG2;0ðy;zÞ−
�
Wϕϕð ~ϕ=

ffiffiffi
σ

p Þ
σ

−
d2

dy2

�
G0;2ðy;zÞ:

ð60Þ

Upon Fourier decomposition and saturating the uncertainty
relation, we obtain coefficients

gðkÞ ¼ ℏ
2π

ffiffiffi
β

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕð ~ϕ=

ffiffiffi
σ

p Þ=σ þ k2
q : ð61Þ

For potential domination, the infrared contribution to the
effective potential now reads

WIRðϕ0Þ ¼ Wð ~ϕ0=
ffiffiffi
σ

p Þ þ ℏ

ffiffiffi
β

σ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕð ~ϕ0=

ffiffiffi
σ

p Þ
q

L0

¼ Wðϕ0Þ þ ℏ

ffiffiffi
β

σ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
L0

; ð62Þ

which differs from the quantum-mechanical result by an
additional factor

ffiffiffiffiffiffiffiffi
β=σ

p ¼ ffiffiffi
ν

p
depending on the modifica-

tion functions. The same factor is obtained if one imple-
ments the modification in the quantum-mechanical
Hamiltonian

Ĥ ¼ 1

2
νp̂2 þWðq̂Þ ð63Þ

and follows the derivations leading up to (1). The modi-
fication by ν follows from a direct reduction of (57) to
homogeneity.

2. Holonomy corrections

Holonomy modifications are motivated by the use of
holonomies of a gravitational connection as basic operators
in loop quantum gravity, while connection components
cannot be quantized directly. Any object, such as a
Hamiltonian, which depends on the connection in its
classical expression, must therefore be modified for it to
be quantized on the kinematical Hilbert space of loop
quantum gravity. The form of holonomies (or their matrix
elements) of compact groups suggests that polynomial
dependences on the connection are replaced by bounded
and periodic functions.

a.Modified spatial-derivative term.—Similarly, a scalar
field is not represented directly on the kinematical
Hilbert space of loop quantum gravity, but only through
its exponentials hxðϕÞ ≔ expðiϕðxÞÞ. In our context, this

modification would be similar to inverse-triad corrections
with ν ¼ 1 and σ related to a derivative of the modification
function. However, in this case we can no longer assume
that the modification function depends only on time, so that
a more detailed analysis is required. (The final result will
nevertheless turn out to be closely related to the one for
inverse-triad corrections because the effective potentials to
orders considered here depend on the field expectation
value only via its spatially constant average.)
In the presence of scalar holonomy modifications, the

discrete model used in Sec. III B is more suitable. We now
use a classical Hamiltonian

H ¼
X∞
n¼−∞

�
1

2
π2n þ

1

4l2
0

ðgðϕnÞ2

− gðϕnþ1Þgðϕn−1ÞÞ þWðgðϕnÞÞ
�

ð64Þ

with some local function gðϕnÞ, which is nonlinear in the
presence of scalar holonomy modifications. We compute
the quantum Hamiltonian

HQ ¼ 1

2

X∞
n¼−∞

�
π2n þ

1

2l2
0

ðgðϕnÞ2 − gðϕnþ1Þgðϕn−1ÞÞ

þ 2WðgðϕnÞÞ

þ G2;0
n;n þ 1

2l2
0

ðΔ1g½ϕn�G0;2
n;n − Δ2g½ϕn�G0;2

nþ1;n−1Þ

þWϕnϕn
ðgðϕnÞÞG0;2

n;n

�
; ð65Þ

where we introduced the nonlocal functions

Δ1g½ϕn� ≔ gϕn
ðϕnÞ2 −

1

2
gϕnϕn

ðϕnÞðgðϕnþ2Þ
− 2gðϕnÞ þ gðϕn−1ÞÞ ð66Þ

Δ2g½ϕn� ≔ gϕnþ1
ðϕnþ1Þgϕn−1

ðϕn−1Þ: ð67Þ

Both functions are equal to 1 in the unmodified case.
The equation of motion for G0;2

n;m is unchanged compared
to the case with gðϕnÞ ¼ ϕn, and while the equation for
G2;0

n;m has coefficients depending on Δ1g½ϕn� and Δ2g½ϕn�,
the leading adiabatic solutions are still consistent with
G1;1

n;m ¼ 0. The remaining equation is

_G1;1
n;m ¼ G2;0

n;m −
�
Wϕnϕn

ðgðϕnÞÞ þ
1

2l2
0

Δ1g½ϕn�
�
G0;2

n;m

−
1

4l2
0

Δ2g½ϕn�ðG0;2
n;m−2 þG0;2

n;mþ2Þ: ð68Þ

Using the same Fourier decomposition as before, we
solve this equation by
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G2;0
n;m ¼

Z
kmax

0

dkgðkÞ
�
Wϕnϕn

ðgðϕnÞÞ þ
1

2l2
0

ðΔ1g½ϕn� − Δ2g½ϕn�Þ − Δ2g½ϕn�
sin2ðl0kÞ

l2
0

�
eikl0ðn−mÞ ð69Þ

where gðkÞ appears in
G0;2

n;m ¼
Z

kmax

0

dkgðkÞeikl0ðn−mÞ: ð70Þ

Saturating the uncertainty relation leads to the effective potential

Weffðϕ0Þ ¼ Wðgðϕ0ÞÞ þ
ℏ
2π

Z
kmax

0

dk
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wϕϕðgðϕ0ÞÞ þ gϕðϕ0Þ2sin2ðl0kÞ=l2
0

q
− sinðl0kÞ=l0

�
: ð71Þ

Here, we have used the fact that for constant ϕn ¼ ϕ0

(slightly abusing the subscript notation), as assumed in
effective potentials of Coleman-Weinberg type, Δ1g½ϕn� ¼
gϕðϕ0Þ2 ¼ Δ2g½ϕn�. The subtraction is chosen in such a
way that it removes the contribution only when WðϕÞ ¼ 0
and gϕðϕÞ ¼ 1, because nonlinear gðϕÞ implies nonqua-
dratic derivative terms in the Hamiltonian and therefore
interactions even if the classical potential vanishes. The
leading-order infrared contribution depends on gðϕÞ only
through the potential. The same modification is obtained in
the minisuperspace model of (64).

b.Modified momentum dependence.—Alternatively, in
order to model the formal dependence of gravitational
Hamiltonians on connection components, it is instructive to
modify the quadratic dependence of our scalar Hamiltonian
on πðxÞ. The momentum of the scalar field would then be
represented by its exponentials of integrated fields,
hx0;δðπÞ ≔ exp ðR x0þδ

x0
dxπðxÞÞ. (Written on a metric back-

ground, the momentum has a density weight and can
therefore be integrated directly without any additional
measure factors.) Using hx0;δðπÞ instead of π in the
Hamiltonian leads to a nonlocal expression, but as is often
done, here we model the effect by replacing πðxÞ2 by a local
function fðπðxÞÞ:

H ¼
Z

dx

�
1

2
fðπðxÞÞ þ 1

2
ϕ0ðxÞ2 þWðϕÞ

�
: ð72Þ

In this form, the scalar model resembles the three-
dimensional version proposed in [22,23] and further
evaluated in [24–27].
The quantum Hamiltonian

HQ ¼ 1

2

Z
dxðfðπðxÞÞ þ ϕ0ðxÞ2 þ 2WðϕÞ

þ fππðπÞG2;0ðx; xÞ þ D2G0;2ðx; xÞ
þWϕϕðϕÞG0;2ðx; xÞÞ; ð73Þ

expanded to second order in moments, implies equations of
motion

_G0;2ðy; zÞ ¼ 1

2
fππðπÞðG1;1ðy; zÞ þ G1;1ðz; yÞÞ ð74Þ

and an unchanged equation for _G2;0, so that we conclude
G1;1 ¼ 0 as before, using the leading adiabatic approxi-
mation. The remaining equation to be solved is

_G1;1ðy; zÞ ¼ 1

2
fππðπÞG2;0ðy; zÞ

−
�
WϕϕðϕÞ −

d2

dy2

�
G0;2ðy; zÞ: ð75Þ

A Fourier decomposition can be done as before, just with
additional factors of fππðπÞ=2 in some solutions. We arrive
at the effective potential

Weffðϕ0Þ ¼ Wðϕ0Þ þ
ℏ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fππðπ0Þ

2

r

×
Z

dk
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wϕϕðϕ0Þ þ k2
q

− jkj
�

ð76Þ

with a spatially constant π0, and the infrared contribution is

WIRðϕ0Þ ¼ Wðϕ0Þ þ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fππðπ0Þ

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
L0

: ð77Þ

The same modification by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fππðπ0Þ=2

p
is

obtained in the minisuperspace model if its quadratic
dependence on the momentum p is replaced using the
same function fðpÞ.
In holonomy-modified models of gravity, in which the

quadratic momentum dependence is replaced by a bounded
function f just as in the model used here, signature change
is an interesting consequence [28–30]. This phenomenon
was first noticed by an analysis of space-time structures in
the presence of a modified kinetic term, as well as in
equations of motion derived from such Hamiltonians [31].
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In these models, a signature change to four-dimensional
Euclidean space happens whenever the second derivative of
the modification function is negative, or around local
maxima of the function. Instead of a discrete classical
signature parameter ϵ ¼ �1, the modified space(-time)
structures have signatures given by βðpÞ ¼ 1

2
fppðpÞ, which

appears in the new coefficient in (77). When β < 0, the
infrared contribution to the effective potential is imaginary,
indicating an instability. An instability is, in fact, the main
consequence of modified space-time structures with sig-
nature change, as analyzed in the cosmological [30,32] and
black-hole context [33].
While the full space-time structure cannot be seen in

homogeneous minisuperspace models, it is interesting to
note that a minisuperspace model of holonomy corrections
is able to reproduce the correct factor in (77). However, the
imaginary contribution to the potential means that we have
reached the limits of the adiabatic approximation, making it
difficult to interpret the complex value within the minis-
uperspace setting. Nevertheless, the same conclusion of
instabilities is then confirmed by an analysis of equations of
motion in the corresponding field theory, which are elliptic
rather than hyperbolic when fppðpÞ=2 < 0. We note that
the minisuperspace Hamiltonian is positive definite for any
positive function fðpÞ, even around a local maximum
where fppðpÞ < 0. We will discuss signature change in
more detail after we have developed further techniques in
the next section.

IV. BETWEEN MINISUPERSPACE
AND THE FULL THEORY

The controlled setting of scalar (field) theories has
allowed us to introduce a minisuperspace approximation
instead of just a truncation of degrees of freedom: the
quantum-mechanical effective potential can, up to a
numerical factor, be obtained from the field-theoretical
Coleman-Weinberg potential by restricting the latter to its
infrared contribution and expanding the resulting integral
by ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wϕϕðϕ0Þ
p

L0Þ−1, corresponding to a potential term
dominating the spatial-derivative term in the Hamiltonian.
One could use higher-order terms of such an expansion, as
for instance in (55), in order to go beyond the minisuper-
space result. However, one would have to begin with the
full field-theory calculation, so that this kind of approxi-
mation does not seem to lead to strong simplifications. In
this section, we explore the possibility of introducing
models that are simpler than the full theory but still capture
quantum terms that cannot be seen in a strict minisuper-
space setting.

A. Perturbative inhomogeneity

Instead of truncating the canonical fields ϕðxÞ and πðxÞ
to their average values, as the starting point of a minisuper-
space quantization, we decompose the fields into their

average values ϕ̄ and π̄, as well as their zero-average
variations δϕ and δπ. (The average values ϕ̄ and π̄ will
appear in some expressions in a form very similar to ϕ0 and
π0 previously. We use a different notation for them in order
to highlight their different origin in a perturbative expan-
sion, rather than just constant field values.) Such decom-
positions have been used in canonical cosmological models
going back to [34], and more recently in [35,36]; see also
[32]. Formally, this decomposition can be introduced by
defining

ϕ̄ ≔
1

L0

Z
L0

0

dxϕðxÞ; π̄ ≔
Z

L0

0

dxπðxÞ; ð78Þ

with integrations over the averaging volume of length L0,
and the variations

δϕðxÞ ≔ ϕðxÞ − ϕ̄; δπðxÞ ≔ πðxÞ − 1

L0

π̄: ð79Þ

(Anticipating the Poisson brackets derived below, we
absorb a factor of L0 in π̄ in order to have canonical fields.
Absorbing L0 in π̄, rather than ϕ̄, mimics the density weight
of the corresponding field.) By definition, the variations
satisfy the conditionsZ

L0

0

dxδϕðxÞ ¼ 0 ¼
Z

L0

0

dxδπðxÞ: ð80Þ

They ensure that we do not double-count the average
degrees of freedom, which have been separated off as ϕ̄
and π̄.
The canonical structure of decomposed fields follows

from the original one, for instance by pulling back the
symplectic or Liouville form. For the average values,
computingZ

L0

0

dx _ϕðxÞπðxÞ ¼ _̄ϕ π̄þ
Z

L0

0

dxδ _ϕðxÞδπðxÞ ð81Þ

using (80), one sees that π̄ is indeed the momentum of ϕ̄,
so that

fϕ̄; π̄g ¼ 1 ð82Þ

for the average values. The variations are canonically
conjugate, but also subject to the second-class constraints
(80). Therefore, we switch from the direct result of (81) to
their Dirac brackets

fδϕðxÞ; δπðyÞg ¼ δðx; yÞ − L−1
0 : ð83Þ

[With two second-class constraints C1 and C2 given
in (80), the Dirac bracket is obtained by subtracting
from the original Poisson bracket the term 1=fC1; C2g ¼
1=
R
dx
R
dyδðx; yÞ ¼ 1=L0.]
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The Poisson brackets can be used to compute
Hamiltonian equations of motion from the decomposed
Hamiltonian

H ¼
Z

L0

0

dx

�
1

2
πðxÞ2 þ 1

2
ϕ0ðxÞ2 þWðϕÞ

�

¼ π̄2

2L0

þ L0Wðϕ̄Þ þ 1

2

Z
L0

0

dxðδπðxÞ2 þ δϕ0ðxÞ2

þWϕϕðϕ̄ÞδϕðxÞ2 þ � � �Þ; ð84Þ

where the dots now indicate terms of higher than second
order in the variations. By the decomposition of canonical
fields and the expansion of H to the given order, the
original interacting field theory is converted into a non-
harmonic mechanical system coupled to a free field theory.
Extending the minisuperspace quantization, we can now
quantize this system and obtain nonharmonic quantum
mechanics coupled to a free quantum-field theory. Such a
system is simpler than the full interacting quantum-field
theory. Even if one expands the Hamiltonian to higher
orders in the variations, there may be simplifications
because a possibly nonpolynomial field-theory potential
would be converted into a polynomial expansion.
Effective potentials of the decomposed theory can be

computed using moments of the two subsystems, Gc;d for
the quantum-mechanics part and Ga;bðx1;…; xb; y1;…; yaÞ
for the field-theory part. As a consequence of (80), the
field-theory moments are subject to the conditionsZ

L0

0

dxGa;bð…; x;…Þ ¼ 0: ð85Þ

Their Poisson brackets follow using the Dirac bracket for
variations, for instance,

fG0;2ðx1; x2Þ; G2;0ðy1; y2Þg
¼ G1;1ðx2; y2Þðδðx1; y1Þ − L−1

0 Þ
þG1;1ðx1; y1Þðδðx2; y2Þ − L−1

0 Þ
þG1;1ðx2; y1Þðδðx1; y2Þ − L−1

0 Þ
þG1;1ðx1; y2Þðδðx2; y1Þ − L−1

0 Þ: ð86Þ

Equations of motion for second-order moments take the
same form as those obtained for the full field theory.
Therefore, the effective potential is the same, except that
the restricted space of the averaging volume requires us to
limit the wave numbers to be larger than kmin ¼ 2π=L0.
Wavelengths larger than the averaging volume are therefore
excluded from the remaining Coleman-Weinberg potential
for the quantum field theory of variations, but they are
included in the effective potential of the quantum-mechanics
part. Up to numerical factors, the full Coleman-Weinberg
potential is therefore split correctly into the infrared con-
tribution as in (1), plus the remainder.

As before, the numerical factors can be matched exactly
in a periodic model with its clearer separation of discrete
modes. We have already seen that the minisuperspace
model produces exactly the infrared contribution to the
Coleman-Weinberg potential if we choose the averaging
volume to equal the length of the periodic space. The same
term is now produced by the quantum-mechanics part of
our extended model. The field-theory part is almost
identical to the previous model, except that the conditions
(80) for variations remove the zero mode from the Fourier
sum in (50). But the zero mode, split off explicitly in (51),
is just the quantum-mechanics contribution, so that the
infrared contribution of our decomposed model is identical
with the infrared contribution in the full quantum-field
theory, to the orders considered.

B. Application: Signature change

As a simple application of the perturbed model in the
context of effective potentials, we now revisit the question
of signature change in holonomy-modified theories. The
quantum-mechanical minisuperspace model gives a hint of
signature change because the ℏ-correction to its effective
potential, with a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fppðpÞ=2

p
if the quadratic

momentum dependence of the classical Hamiltonian is
replaced by some function fðpÞ, is imaginary around a
local maximum of f, where fpp < 0. However, the
adiabatic approximation used to derive the effective poten-
tial breaks down in this regime, so that the conclusion of
unstable behavior is not reliable in this setting. The
minisuperspace model has a nonstandard but positive
Hamiltonian and is well defined. Moreover, the instability
by itself does not directly indicate signature change, even
though field theories on Euclidean space lead to instabil-
ities of initial-value problems.
The perturbed model allows us to address the question

without having to go to the full field theory. We write the
holonomy-modified Hamiltonian as

H ¼
Z

L0

0

dx

�
fðπðxÞÞ þ 1

2
ϕ0ðxÞ2 þWðϕÞ

�

¼ π̄2

2L0

þ L0Wðϕ̄Þ þ 1

2

Z
L0

0

dxðfπ̄ π̄ðπ̄ÞδπðxÞ2

þ δϕ0ðxÞ2 þWϕϕðϕ̄ÞδϕðxÞ2 þ � � �Þ: ð87Þ

It is now clear that the field-theory Hamiltonian of
perturbative inhomogeneity is not positive definite when
fπ̄ π̄ðπ̄Þ < 0. Already at the classical level, the Hamiltonian
equations

δ _ϕ ¼ fπ̄ π̄ðπ̄Þδπ; δ _π ¼ δϕ00 −Wϕϕðϕ̄Þδϕ ð88Þ

imply as a second-order field equation the mixed-type
partial differential equation
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−δϕ̈þ fπ̄ π̄ðπ̄Þδϕ00 ¼ fπ̄ π̄ðπ̄ÞWϕϕðϕ̄Þδϕ −
fπ̄ π̄ π̄ðπ̄Þ
fπ̄ π̄ðπ̄Þ

_̄πδ _ϕ:

ð89Þ
For fπ̄ π̄ðπ̄Þ < 0, the equation is elliptic and is well posed
with a two-dimensional boundary-value problem instead of
an initial-value problem.
It is not necessary to include moment terms or consider a

quantum-field theory in order to see signature change, in
contrast to the minisuperspace model. If we include
moments and compute the Coleman-Weinberg potential
of the modified (perturbed or full) theory, we obtain (76).
For fπ̄ π̄ðπ̄Þ < 0, the ℏ-correction to the classical potential
has an imaginary factor, as it does for a Euclidean quantum-
field theory with the same potential. Regarding signature
change, the classical perturbed model and the quantized
perturbed or full theory therefore agree. This observation
supports the conclusions about signature change in models
of loop quantum gravity [28–30], which have been made by
considering spherically symmetric or perturbed cosmologi-
cal models without including moment terms [31,37].

1. Avoiding an adiabatic approximation

In order to discuss signature change in more detail, we go
back to our derivation of effective potentials in holonomy-
modified models. In particular, we should revisit the
adiabatic assumption in this case because it is tied to an
evolution picture or initial-value problem, which is avail-
able only in the Lorentzian regime but not in the Euclidean
one if there is signature change. It turns out that our
previous Lorentzian solutions can be recovered without
using an adiabatic approximation, but they still rely on the
presence of a well-posed initial-value problem.
The three equations of motion for the second-order

moments are given by (25), (75), and (23). Instead of
applying the adiabatic approximation, we eliminate G1;1 to
get the two equations

G̈0;2ðy; z; tÞ ¼ 1

2
fππ

�
fππG0;2ðy; z; tÞ

−
�
2Wϕϕ −

d2

dy2
−

d2

dz2

��
G0;2ðy; z; tÞ ð90Þ

G̈2;0ðy; z; tÞ ¼ −
�
Wϕϕ −

d2

dz2

��
fππ
2

G2;0ðy; z; tÞ

−
�
Wϕϕ −

d2

dy2

�
G0;2ðy; z; yÞ

�
þ ðy ↔ zÞ:

ð91Þ
We further assume that π0 and ϕ0 in the coefficients
fππðπ0Þ and Wϕϕðϕ0Þ are spatially constant. Then elimi-
nating G2;0 from (91), we obtain a fourth-order differential
equation for G0;2:

�
d4

dt4
− fππ

d2

dt2

�
d2

dy2
þ d2

dz2
− 2Wϕϕ

�

þ 1

4
f2ππ

�
d2

dy2
−

d2

dz2

�
2
�
G0;2ðy; z; tÞ ¼ 0: ð92Þ

For fππ < 0, the principal symbol of this equation is
positive semidefinite, and therefore the equation is elliptic,
while the equation has characteristics for fππ > 0. In the
latter case, it is therefore meaningful to look for solutions
determined by initial values at some fixed t, which by
Fourier decomposition can be written as

G0;2ðy; z; tÞ ¼
Z

dky

Z
dkz½g1ðky; kzÞeiðkyyþkzz−ωktÞ

þ g�1ðky; kzÞe−iðkyyþkzz−ωktÞ�; ð93Þ

with ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
fππ=2

p ðωy − ωzÞ, where ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕ þ k2i

q
.

Here we are choosing the minus sign so that we get the
correct limit for the usual Minkowski case, on which we
will comment further below. (Solutions to the fourth-order
differential equation would be consistent with a sum
ωy þ ωz as well.) Since we assume fππ > 0 for now, ωk

is real. For fππ < 0, only imaginary solutions for ωk exist,
consistent with the absence of characteristics in this
elliptic case.
The arbitrariness of the state about which these functions

are evaluated is captured by the function g1ðky; kzÞ and its
conjugate. These can be fixed by specifying the initial
conditions for the moments through the relations

g1ðky; kzÞ ¼
1

2

�
G0;2ðky; kzÞ þ

i
ωk

_G0;2ðky; kzÞ
�

ð94Þ

g�1ðky; kzÞ ¼
1

2

�
G0;2ð−ky;−kzÞ −

i
ωk

_G0;2ð−ky;−kzÞ
�
;

ð95Þ

where the newly introduced function G0;2ðky; kzÞ and its
time derivative are defined as

G0;2ðky; kzÞ ≔
Z

dy
Z

dzG0;2ðy; z; t ¼ 0Þe−i½kyyþkzz�

ð96Þ

_G0;2ðky; kzÞ ≔
Z

dy
Z

dz _G0;2ðy; z; t ¼ 0Þe−i½kyyþkzz�:

ð97Þ

Further, if the theory is assumed to have translational
invariance in space,we can use g1ðky; kzÞ ¼ ~gðkyÞδðky þ kzÞ
to get
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G0;2ðy; z; tÞ ¼
Z

dk½~gðkÞeikðy−zÞ þ ~g�ðkÞe−ikðy−zÞ�: ð98Þ

We can immediately see that these moments do not depend
on time explicitly, evenwithout using an adiabatic approxi-
mation. Having a (spatially) translationally invariant
theory is sufficient to imply time translation invariance
in the Lorentzian case. Physically, translation invariance in
space implies the absence of propagating modes in initial
values, so that time translation invariance of solutions is
implied on a static background. While this heuristic
interpretation justifies the conclusion about symmetric
solutions, it follows only because ωk has the form given
after Eq. (93), which is a direct consequence of the form of
the equations of motion, together with the sign choice
commented on above. One could therefore invert these
arguments and fix the sign choiceωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
fππ=2

p ðωy − ωzÞ,
as opposed to ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
fππ=2

p ðωy þ ωzÞ, avoiding a com-
parison with the usual Minkowski solutions.
If we further demand that the theory have reflection

symmetry, that is, ~gð−kÞ ¼ ~gðkÞ, it is evident that we can
write the solution of G0;2ðy; zÞ as

G0;2ðy; zÞ ¼
Z

dkgðkÞeikðy−zÞ; ð99Þ

where we have absorbed a factor of 2 in the function gðkÞ
and have hence dropped the tilde. Thus we have the same
solution for the moments, even without the adiabatic
approximation, as long as we have spatial translational
invariance and reflection symmetry. Both of these proper-
ties are expected to be realized even with modified
momentum dependence (motivated by some kind of spatial
quantum geometry) in a continuum effective theory.
For fππ < 0, the initial-value formulation based on (93)

with g1ðky; kzÞ related to the values of G0;2 at some fixed
time should be replaced by a boundary-value problem in
the t-direction. We then have to prescribe G0;2ðy; z; tÞ at
two fixed values of t ¼ t1 and t ¼ t2. It is then clear
that time translation invariance can be respected by
solutions only in the special case in which we choose
G0;2ðy; z; t1Þ ¼ G0;2ðy; z; t2Þ. There seems to be no inde-
pendent physical condition that justifies such a choice,
which is consistent with the formal result that the adiabatic
approximation breaks down for fππ < 0: in this case, using
the adiabatic approximation results in imaginary contribu-
tions to the effective potential. While a complex potential,
or complex moments obtained in the derivation of such a
potential, are not meaningful, imaginary contributions can
be interpreted as indications of instabilities that occur when
one attempts to solve elliptic partial differential equations
by initial-value problems.

2. Euclidean theories

In our discussion of holonomy modifications, we have
seen that a change of sign in fππ implies that second-order

moments and the effective potential acquire an imaginary
factor. However, G0;2 and G2;0 are fluctuations and should
never be negative, let alone imaginary. We can resolve
this apparent inconsistency by comparing the effective
holonomy-modified theory with standard Euclidean field
theory, motivated by the observations made elsewhere that
a change of sign in fππ indicates a signature change. Such a
comparison will allow us to elucidate the role of signature
change further.
We begin by recalling that the Coleman-Weinberg poten-

tial takes the same form in Lorentzian and Euclidean
quantum-field theory, as stated already in [2]. Some details
leading to this resultwill be relevant for our further comments
on signature change: the Euclidean action (with one spatial
dimension as before) is traditionally defined as

SE ¼
Z

dtdx

�
1

2

�
dϕ
dt

�
2

þ 1

2

�
dϕ
dx

�
2

þWðϕÞ
�

ð100Þ

with a positive potential term.With this choice, the Euclidean
Hamiltonian

HE ¼
Z

dx

�
1

2
π2 −

1

2

�
dϕ
dx

�
2

−WðϕÞ
�

ð101Þ

is transformed to the positive-definite energy functional

−HEW ¼
Z

dx

�
1

2

�
dϕ
dτ

�
2

þ 1

2

�
dϕ
dx

�
2

þWðϕÞ
�

ð102Þ

after a Wick rotation from t to τ ¼ it (so that π ¼
dϕ=dt ¼ idϕ=dτ). The weight expðiSÞ of a Lorentzian path
integral then becomes the correct weight expðR dτHEWÞ ¼
expð− R dβEÞ of the partition function of statistical mechan-
ics, with the energy E (and a periodic range for β). Since
HEW is, up to a total minus sign and the use of τ instead of t,
the same as the Hamiltonian of the Lorentzian theory,
our canonical methods imply the same Coleman-Weinberg
potential independently of the signature, in agreement
with [2].
Signature change in models of loop quantum gravity

leads to different results because it is not accompanied by a
Wick rotation. The momentum term in the Hamiltonian
changes sign, which leads to elliptic field equations as in
Euclidean space, but all coordinates remain real. The
Hamiltonian obtained with holonomy modifications has
a nonquadratic kinetic term fðπðxÞÞ, which remains pos-
itive so that in this form we do not see directly what role the
sign of fππ should play. We can make this coefficient
appear explicitly if we consider a Hamiltonian expanded
for small variations δϕ and δπ around some background
fields ϕ0 and π0, which would be constant when used in the
Coleman-Weinberg potential:
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H ¼
Z

dx

�
fðπ0Þ þ

1

2
ðϕ0

0Þ2 þWðϕ0Þ
�

þ
Z

dx

�
1

2
fππðπ0ÞδπðxÞ2 þ

1

2
δϕ0ðxÞ2

þ 1

2
Wϕϕðϕ0ÞδϕðxÞ2 þ � � �

�
: ð103Þ

Up to a total minus sign, the Hamiltonian for perturbations,
with fππðπ0Þ ¼ −1 < 0, is identical to the Euclidean
Hamiltonian HE, but without any Wick rotation the
Hamiltonian remains of indefinite sign and is unbounded
from above and below.
Perturbative modes evolve according to a Hamiltonian in

which the sign of the kinetic term is given by the sign of
fππ . Signature change is implied because the kinetic
and spatial-derivative terms have different relative signs
depending on the sign of fππ , and correspondingly, second-
order field equations for δϕ are hyperbolic partial differ-
ential equations for a positive fππ , but elliptic ones for a
negative fππ . The relative signs of these two terms therefore
agree with what one obtains for field theories on Lorentzian
(positive fππ) and Euclidean space-times (negative fππ),
respectively, provided these space-times are kept real
and not modified by Wick rotations. The nonpositive
Hamiltonian then leads to instabilities, as shown by
imaginary quantum corrections to effective potentials.

V. CONCLUSIONS

In a variety of scalar field theories, we have found good
qualitative agreement between infrared contributions to
their Coleman-Weinberg-type potentials and effective
potentials in quantum-mechanical systems. With simple
periodic spaces, quantitative agreement was found. These
models provide several instructive conclusions about the
question of how minisuperspace truncations can be related
to field theories, and how to go beyond the minisuperspace
setting in a controlled way.

A. Minisuperspace truncation vs approximation

In quantum cosmology, minisuperspace models have
been studied for decades, after their introduction in [1]; see
also [38]. While their relation to some putative full theory
remains weak, it has been known for some time that certain
dynamical properties of the full theory cannot be captured
in this setting [39]. More recently, signature change has
joined the list of concrete phenomena which, at high
density or large momenta, can have important implications
not seen in minisuperspace truncations.
Loop quantum cosmology [40,41] was initially moti-

vated by the hope that the controlled kinematical setting of
loop quantum gravity might make it possible to derive
some aspects of reduced models [42]. However, also in this
context, not much progress on strict derivations of the

dynamics has been made, even setting aside the problem
that the dynamics of full loop quantum gravity remains
poorly controlled, owing to quantization ambiguities and
possible anomalies. (Some progress on the latter question
has recently been made [43–45], but so far without
indications on the minisuperspace question.) The kinemati-
cal side of a possible reduction of loop quantum cosmology
from loop quantum gravity is still being analyzed [46–53],
and possible dynamical relations between minisuperspace
models and the full theory are tentative. A recent idea uses
condensate states in order to describe homogeneous space-
times, either as an approximation [54] or as a reduction
from a full theory defined by group-field theories [55–61].
Symmetry reduction of standard quantum-field theories has
been used in [62] in order to understand minisuperspace
truncations in a controlled setting, but so far only for free
theories in which the conclusions of [62] appear to be
restricted. In the present paper, we have provided results for
interacting quantum-field theories, focusing on effective
potentials in order to overcome the more complicated
questions of how to relate states.
In our models, a quantum-mechanical system does not

just appear as a minisuperspace truncation of a field
theory with a reduced number of degrees of freedom,
but can be embedded in a controlled approximation. The
infrared contribution to a Coleman-Weinberg potential is
seen to agree, up to a numerical factor, with the quantum-
mechanical effective potential to leading order in an
expansion by ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

WϕϕðϕÞ
p

L0Þ−1 ¼ ð2πÞ−1kIR=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WϕϕðϕÞ

p
with the infrared scale L0 or wave number kIR. (For a
periodic space with discrete wave numbers, we have found
exact agreement with the quantum-mechanics result.)
Taken to higher orders, this expansion corresponds to an

approximation with controlled correction terms, valid as
long as the potential dominates the spatial-derivative term in
the Hamiltonian. There is an important difference between
traditional minisuperspace truncations and the minisuper-
space approximation provided here: while truncations are
usually performed at the kinematical level, introducing the
dynamics by formulating a quantum Hamiltonian on the
state space of the reduced model, our minisuperspace
approximation is dynamical in a crucial way. We need to
solve some of the field-theory equations of motion for
moments in order to obtain the effective potential whose
infrared contribution we expand. The leading order of this
expansion can be derived in a truncated model, just using
the classical potential and moment equations of quantum
mechanics. Going to the next orders is then not just a matter
of computing a higher-order term, but requires more
detailed information about the full dynamics. In this sense,
there is a big leap between minisuperspace truncations and
the approximations developed here.
It might seem pointless to compute a minisuperspace

approximation if it requires one to solve the full dynamical
equations first. At this stage, it is important that, at least to
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first order in ℏ, we can derive the expanded infrared
contribution to the effective potential by combining the
semiclassical approximation with an expansion in terms of
perturbative inhomogeneity as shown in Sec. IV. The
resulting models between minisuperspaces and the full
theory take the form of quantum mechanics coupled to a
free quantum-field theory (again, to first order in ℏ), in
which semiclassical equations of motion for moments are
manageable. The formal setting is closely related to
canonical cosmological perturbation theory.

B. Infrared scale

The minisuperspace correspondence found here explains
the meaning of the dependence of quantum corrections on
the averaging volume V0, or the averaging distance L0 in
our one-dimensional models. The situation within minis-
uperspace models has been very unclear in the context of
quantum cosmology, in which the physical meaning of L0

is hard to see. Moreover, while physical results in the
classical theory do not depend on the value of L0, quantum
corrections usually do. In quantum cosmology, it has
sometimes been suggested that one can make quantum
corrections arbitrarily small by choosing a large averaging
scale L0, which indeed appears with a negative power in
our effective potential. But while it is true that quantum
corrections in our minisuperspace model can be made
arbitrarily small in this way, at the same time the minisuper-
space approximation becomes worse: fewer modes are then
included in the infrared contribution of the field-theory
effective potential corresponding to the minisuperspace
effective potential. Averaging over a larger L0 eliminates
more quantum corrections, which are no longer being
considered in the minisuperspace model but remain a
significant part of corrections in the field theory. If quantum
corrections are small only by virtue of choosing a large
averaging distance, this property would be a minisuper-
space artifact, lacking physical meaning.
We have explained the discrepancy between the classical

independence and quantum dependence on the averaging
scale by the fact that classical theories are local, while
quantum theories have nonlocal features so that they can be
sensitive to averaging volumes via the number of modes
included in quantum corrections. Moreover, we have given
the parameter L0 a direct physical meaning as the infrared
scale of quantum-field theory. Contributions to effective
potentials depend on the number of modes included in their
derivation, so that a dependence of quantum corrections on
L0 is nothing but the well-known running of coupling
constants in quantum-field theory.
Our results also show that L0 is not an infrared cutoff or a

regulator, as sometimes suggested in loop quantum cos-
mology; see for instance [8]. The limit L0 → ∞ is not
required in order to have qualitative agreement of minis-
uperspace and quantum-field theory results; this limit
would just eliminate all modes considered for the effective

potential and therefore lead to a vanishing contribution
without any qualitative comparison. In fact, in the models
considered, no infrared cutoff is required because the
effective potentials are infrared finite. If one computes
the Coleman-Weinberg potential by summing up 1-loop
Feynman diagrams with a free number of external lines, as
introduced in [2], one may encounter infrared divergences:
for the original λϕ4-potential,

WeffðϕÞ ¼ λϕ4 þ ℏ
ð2πÞ4

Z
d4k
X∞
n¼1

1

2n

�
12λϕ2

k2 þ iϵ

�
n

ð104Þ

has infinite contributions if each term in the sum (for n > 1)
is integrated individually at small k. However, these
infrared divergences disappear in the final effective poten-
tial if the sum is performed before integrating, giving rise to
(3). While the ultraviolet divergence remains, the infrared
one is replaced by a logarithmic divergence of the effective
potential at ϕ0 ¼ 0. The infrared contributions used here
do not encounter this last divergence because it is outside
of the range of the expansion by ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wϕϕðϕ0Þ
p

L0Þ−1.
Therefore, a minisuperspace approximation of scalar
quantum-field theory does not require an infrared cutoff.
Unlike an ultraviolet cutoff, the infrared scale used here

does not depend on unknown physics. It has a clear physical
meaning as a selection of modes included in the averaged
effective potential. Therefore, it is sufficient to work with a
given scale L0, once selected, and no renormalization is
required. One could try to absorb L0 completely in renor-
malized coupling constants, as done for renormalizable
theories with the ultraviolet cutoff. However, it is easy to
see that this can be possible only for a few special potentials.
To first order in ℏ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
would have to be of the same

functional form as Wðϕ0Þ if a combined coupling constant
could be used in Wðϕ0Þ þ 1

2
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wϕϕðϕ0Þ

p
=L0 that absorbs

L0. The potential would have to satisfy the differential
equation WϕϕðϕÞ ¼ AWðϕÞ2 with an arbitrary constant A.
This nonlinear second-order equation can be transformed to
two coupled first-order ones by introducing U ≔ Wϕ,
so that UdU=dW ¼ WϕdU=dW ¼ Uϕ ¼ Wϕϕ ¼ AW2 or,

solving UdU ¼ AW2dW,Wϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
AW3 þ c

q
with another

constant c. The remaining equation can be integrated by
separation, but the resulting expression for W has a closed
inverseonly in thecasec ¼ 0, forwhichWðϕÞ ¼ aϕ−2witha
constanta. In this case, theeffectivepotential canbewrittenas

Weffðϕ0Þ ¼
aþ ffiffiffiffiffiffi

6a
p

ℏ=L0

ϕ2
0

≕
aren
ϕ2
0

ð105Þ

with a renormalized aren. If the bare coupling constant a is
allowed to depend on L0, aren may be assumed to be
independent of L0 and a scale-free theory is obtained.
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However, potentials not obeying the equationWϕϕ ∝ W2 do
not give rise to scale-free effective potentials.

C. Quantum-geometry modifications

Although we did not consider quantum gravity, our
models can be used to show that modifications suggested
by quantum geometry, mainly loop quantum gravity in the
canonical setting used here, can be captured by correspond-
ing modifications in the minisuperspace models. The field-
theory modifications modeling discrete quantum space
usually depend on microscopic parameters, for instance
the discreteness scale l0. The minisuperspace result
matches the infrared contribution to the field-theory effec-
tive potential if the same scale is used in minisuperspace
modifications (rather than the only scale, L0, present in the
minisuperspace model). In loop quantum cosmology, such
a dependence has been recognized in the context of lattice
refinement [63,64].
We have even seen hints of signature change in a

minisuperspace model by way of an instability implied
by a complex effective potential. However, the phenome-
non itself lies outside of the range of validity of the
adiabatic approximations used. In order to make the effect
reliable, one has to go beyond the minisuperspace setting,
as done in Sec. IV by introducing perturbative inhomoge-
neity as it has been used in cosmological models of
loop quantum gravity as well. We have further elucidated
signature change in models of loop quantum gravity
by contrasting the Euclidean versions implied by this

phenomenon with the usual notion of Euclidean quantum-
field theory. A crucial difference is the absence of a Wick
rotation in the former case, so that instabilities cannot be
fully removed.
The scalar field theories studied here can model several

aspects of features expected for quantum gravity and
cosmology. Since our new minisuperspace approximation
makes use of infrared contributions to effective potentials,
the nonrenormalizability of perturbative quantum gravity is
not an issue. However, new ingredients would have to be
included for a direct application to quantum cosmology:
first, gravitational models are necessarily constrained
systems, which requires an extension of the canonical
effective framework used here. Methods for effective
constraints have been developed in [65,66]. Secondly, in
the absence of an absolute time parameter, it is not clear
how the adiabatic expansion can be formulated. This
question can be circumvented by considering moment
couplings to expectation values without trying to solve
for the moments separately. The emphasis would then not
be on effective potentials but on other suitable properties
referring more directly to the dynamics of moments.
Finally, one must address the question of how an infrared
scale can meaningfully be fixed in a diffeomorphism-
covariant theory.
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