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We propose a definition of mass for characteristic hypersurfaces in asymptotically vacuum space-times
with nonvanishing cosmological constant Λ ∈ R�, generalizing the definition of Trautman and Bondi for
Λ ¼ 0. We show that our definition reduces to some standard definitions in several situations. We establish
a balance formula linking the characteristic mass and a suitably defined renormalized volume of the null
hypersurface, generalizing the positivity identity proved by Chruściel and Paetz when Λ ¼ 0.
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I. INTRODUCTION

While the notion of total mass of general relativistic
gravitating systems with Λ ≤ 0 is well understood by now
(cf., e.g., [1] and references therein), the notion of energy in
the radiating regime in the presence of a positive cosmo-
logical constant appears to be largely unexplored (see,
however, [2–4]). The object of this work is to contribute to
filling this gap.
In this paper we address the question of properties of

total mass and energy for radiating systems when Λ ≠ 0.
This will be done in the spirit of the pioneering work by
Bondi et al. [5,6], by analyzing the asymptotic behavior of
the gravitational field on characteristic hypersurfaces
extending to asymptotic regions. Many formal aspects of
the problem turn out to be independent of the sign of the
cosmological constant, and while we are mainly interested
in the case Λ > 0, we allow Λ < 0 wherever relevant as
several results below apply regardless of the sign of Λ. The
case Λ < 0 becomes a useful test bed for the quantities
involved in those aspects, which are well understood. It
should, however, be emphasized that many of our results,
such as, e.g., the balance equation (5.56), are new both for
Λ < 0 and Λ > 0.
It should be kept in mind that an elegant approach to the

definition of energy has been proposed in [7] for field
configurations that asymptotically approach a preferred
background with Killing vectors. This provides a widely
accepted definition of asymptotic charges in the case where
Λ ≤ 0. The approach of [7] does not work for nontrivial
radiating fields with Λ > 0, where no natural asymptotic
background is known to exist. In retrospect, our work
below can be used to provide such a background, namely,
the metric obtained by keeping only the leading-order terms
of g in Bondi coordinates, but the decay rates of the metric
to this background do not appear to be compatible with
what is needed in the Abbott-Deser prescription.

The first issue that one needs to address is that of
boundary conditions satisfied by the fields. A popular
approach is to assume smooth conformal compactifiability
of the space-time, and we develop a framework which
covers such fields. We start by deriving in Sec. II below the
restrictions on the free characteristic initial data that follow
from the existence of smooth conformal compactification.
In particular, in Proposition 2.1 below we generalize to all
Λ ∈ R a result established in [8] for Λ ¼ 0, that existence
of a smooth conformal compactification guarantees the
existence of Bondi coordinates in which the metric coef-
ficients have full asymptotic expansions in terms of inverse
powers of the Bondi coordinate rBo. In Sec. III we review
those aspects of the characteristic Cauchy problem that are
relevant for the issues at hand. In Sec. IV we derive the
asymptotic expansions of the metric along the characteristic
surfaces. Our analysis is similar in spirit to that of [9,10];
however, here the asymptotic expansions have to be carried
out to higher orders because of new Λ-dependent nonlinear
couplings between some asymptotic expansion coeffi-
cients. We also allow matter sources, while vacuum was
assumed in [10]. In particular in Sec. IV H we derive the
conditions (4.43) on the free initial data in Bondi-type
coordinates, which are necessary for absence of log terms
in the metric.
The asymptotic expansions of Sec. IV lead naturally, in

Sec. V, to the definition of a quantity analogous to the
Trautman-Bondimass.Wederive there a key integral identity
expressing this mass in terms of the free initial data and the
renormalized volume of the characteristic surface, Eq. (5.56).
This is one of the main results of this work.
When Λ ¼ 0, our mass identity (5.56) reduces to the one

derived in [11] (compare [12]), giving then an elementary
proof of positivity of the Trautman-Bondi energy for space-
times containing globally smooth light cones extending
smoothly to Iþ. (As is well known the global structure of
such space-times depends crucially upon the sign of Λ; see
Fig. 1.) In addition to the renormalized volume, boundary
terms, and volume integrals involving the free data, the new
formula, for asymptotically empty metrics with Λ ≠ 0,
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involves several terms depending upon coefficients deter-
mined by the asymptotic behavior of the fields multiplied
by Λ. One can think of this equation as a “balance formula”
relating the mass with the remaining quantities at hand.
To get some insight into the formula, in the remaining

sections we turn our attention to the case Λ < 0, where
energy is much better understood. We review the notion of
coordinate mass in Sec. VI. We calculate the various
quantities appearing in the mass identity (5.56) for the
Birmingham metrics and the Horowitz-Myers (HM) metrics
in Sec. VII. In Sec. VIII we derive simple formulas for the
Hamiltonian mass for asymptotically Birmingham and
asymptotically HM metrics, in all space-time dimensions
nþ 1 ≥ 4,1 and for smoothly conformally compactifiable
four-dimensional space-times with an ultrastatic conformal
boundary. These formulas are used to show that the
Hamiltonian mass coincides with the characteristic mass
for a family of null hypersurfaces. In the Appendix we
examine separately various contributions to our “energy
balance” equation for HM metrics.
Unless explicitly indicated otherwise, we assume

throughout that Λ ≠ 0.

II. BOUNDARY CONDITIONS

Consider an (nþ 1)-dimensional smoothly conformally
compactifiable space-time ðM; gÞ, n ≥ 2, solution of the
vacuum Einstein equations with cosmological constant

Λ ≠ 0. By definition, there exists a manifold ðfM; ~gÞ with
boundary ∂fM and a defining function Ω for ∂fM such that

g¼Ω−2 ~g; ∂fM¼fΩ¼ 0g; dΩðpÞ≠ 0 for p∈ ∂fM:

ð2:1Þ

Again by definition, both Ω and ~g are smooth.

A. Bondi coordinates

In the asymptotically flat case, in spacetime dimension 4
and assuming Λ ¼ 0, Bondi et al. have introduced a set of
coordinates convenient for analyzing gravitational radiation
[5]. We will refer to them as Bondi coordinates. In these
coordinates the metric takes the form

ḡ ¼ ḡ00du2 − 2e2ωdrdu − 2r2UAdxAduþ r2hABdxAdxB|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
≕h

;

ð2:2Þ

where the determinant of hAB is r-independent.2

(One further requires the fields g00; UA;ω, and hAB to
fulfill appropriate asymptotic conditions.) When using
Bondi coordinates, we will decorate all fields and
coordinates with a symbol BO. The existence of such
coordinates in asymptotically vacuum space-times with
Λ ¼ 0 and admitting smooth conformal completions has
been established in [8], and in [14] for polyhomoge-
neous I’s.
We wish to prove the existence of such coordinates and

to derive the asymptotic behavior of smoothly compactifi-
able metrics in those coordinates in a neighborhood of
the conformal boundary, with Λ ∈ R�. It turns out that,
similarly to the Λ ¼ 0 case (cf., e.g., [[14], Sec. IV];
compare [10]), smoothness imposes restrictions on some
lower-order coefficients in the asymptotic expansion of the
free data on the null hypersurfaces meeting the conformal
boundary smoothly and transversally.
Let, thus, Λ ∈ R, and let y0∶∂fM → R be a smooth

function defined on an open subset of the conformal

boundary ∂fM, with dy0 without zeros, such that the
level sets

Sc ≔ fy0 ¼ cg ⊂ ∂fM
of y0 form a smooth foliation by spacelike submanifolds.

Passing to a subset of ∂fM if necessary, we can assume that

y0 is defined throughout ∂fM.
So far y0 has only been defined on the conformal

boundary. Note that the gradient of y0 within the boundary

will be necessary timelike when ∂fM is timelike, and

spacelike when ∂fM is spacelike. Nevertheless, we will
extend y0 to a function in space-time so that ∇y0 is null
regardless of the causal character of the conformal
boundary.
Now, at every p ∈ Sc there exists a unique vector X

∘
p

which is null, future directed, outwards pointing, orthogo-
nal to TpSc, and normalized to unit length with respect to

FIG. 1. Globally smooth light cones in space-times with a
smooth conformal completion at a conformal boundary I at
timelike infinity (Λ > 0, left) or spacelike infinity (Λ < 0, right).

1This extends the analysis in [13] and references therein to
higher dimensions with the above boundary conditions.

2We have used the symbol ω ¼ ωðu; r; xAÞ for a function that
is usually denoted by β in the literature to avoid a conflict of
notation with a constant β elsewhere in the paper.
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some smooth auxiliary Riemannian metric. This defines a

smooth vector field X
∘
on ∂fM. We choose time-orientation

so that −Xp points towards the physical space-time.
Let γp denote a maximally extended null geodesic with

initial tangent −X
∘
p at p. Standard transversality and

injectivity-radius arguments show that there exists a

neighborhood O of fM such that for every c ∈ R the
union of the (images of the) null geodesics

N c ≔ ∪p∈Scγp

forms a smooth null hypersurface, with ∪cSc foliating O.
To obtain Bondi-type coordinates we proceed now as

follows:
(1) Let xA denote local coordinates on Sc. In 3þ 1

space-time dimensions we choose the conformal

representative ~g
∘
AB of the metric induced on Sc by ~g

to take a canonical form. For example, if S0 is
diffeomorphic to a two-dimensional sphere, we

choose ~g
∘
AB to be the canonical metric sAB on S2.

In higher dimensions one might wish to require

instead that the volume element
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ~g

∘
AB

q
take a

convenient form, depending upon the geometry of
the conformal boundary.

(2) We extend the local coordinates xA from ∂fM to O
by requiring the xA’s to be constant along the null
geodesics γp.

(3) Let q ∈ O. Then q belongs to some null geodesic γp
defined above. We define the function u by letting
uðqÞ ¼ y0ðpÞ. In other words, u is defined to be
equal to c on N c.

(4) Set x ≔ Ω, the conformal compactifying factor as in
(2.1). Passing to a subset of O if necessary, the
functions ðu; x; xAÞ form a coordinate system on O.
By construction the curves s ↦ ðu; x ¼ s; xAÞ are
null geodesics initially normal to Sc:

~gð∂x; ∂xÞ ¼ 0; ~gð∂x; ∂xAÞjx¼0 ¼ 0: ð2:3Þ

We recall the usual calculation, which uses the fact
that ∂x is tangent to null geodesics,∇∂x∂x ¼ κ∂x, for
some function κ:

∂xð~gð∂A; ∂xÞÞ ¼ ~gð∇∂x∂A; ∂xÞ þ ~gð∂A;∇∂x∂xÞ

¼ ~gð∇∂A∂x; ∂xÞ þ κ ~gð∂A; ∂xÞ ¼
1

2
∂Að~gð∂x; ∂xÞÞ þ κ ~gð∂A; ∂xÞ ¼ κ ~gð∂A; ∂xÞ: ð2:4Þ

Thus

∂xð~gð∂A; ∂xÞÞ ¼ κ ~gð∂A; ∂xÞ;

which provides a linear homogeneous ordinary differ-
ential equation (ODE) in x for ~gð∂A; ∂xÞ, with vanishing
initial data at x ¼ 0. We conclude that

~gð∂x; ∂xÞ ¼ 0; ~gð∂x; ∂xAÞ ¼ 0: ð2:5Þ

Equivalently, the level sets of u are null hypersurfaces
generated by the integral curves of ∂x.

The Bondi radial coordinate rBo is defined by setting

rBo ≔
�
det gAB

det ~g
∘
AB

� 1
2ðn−1Þ ¼ 1

x

�
det ~gAB

det ~g
∘
AB

� 1
2ðn−1Þ

; ð2:6Þ

where n is the space dimension.
The final coordinate system ðuBo; rBo; xABoÞ is obtained

by setting, in addition to (2.6),

uBo ≔ u; xABo ≔ xA⇒∂x ¼
∂rBo
∂x ∂rBo ;

∂xA ¼ ∂xABo
þ ∂x
∂xABo ∂x:

It follows from (2.5) together with the last implication
that

~gð∂rBo ; ∂rBoÞ ¼ 0 ¼ ~gð∂rBo ; ∂xABo
Þ;

~gð∂xA ; ∂xBÞ ¼ ~gð∂xABo
; ∂xBBo

Þ;

which shows that, on O, the metric satisfies indeed the
Bondi conditions

~grBoxABo ¼ 0 ¼ ~grBorBo ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gxABoxBBo

q
¼ rn−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ~g

∘
xABox

B
Bo

r
:

ð2:7Þ

Equation (2.6) implies that rBo has a full asymptotic
expansion in terms of powers of x:

rBo ¼
1

x
þ ðrBoÞ0ðu; xAÞ þ ðrBoÞ1ðu; xAÞxþ…; ð2:8Þ
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where the asymptotic expansion coefficients ðrBoÞn are
functions of ðu; xAÞ. This can be inverted to give a full
asymptotic expansion

x¼ 1

rBo
þðrBoÞ0ðu;xAÞ

r2Bo
þðrBoÞ0ðu;xAÞ2þðrBoÞ1ðu;xAÞ

r3Bo
þ���:

[Indeed, if we set y ≔ 1=rBo, then (2.6) becomes

y ¼ x

�
det ~g

∘
AB

det ~gAB

� 1
2ðn−1Þ

; ð2:9Þ

and the existence of a smooth function x ¼ xðyÞ follows
from the implicit function theorem.]
Since all metric functions are smooth in ðu; xA; xÞ, they

have complete asymptotic expansions in terms of 1=rBo,
with coefficients depending smoothly upon ðuBo; xABoÞ.
As a special case of the construction above, we have

proved:
Proposition 2.1.—Let N be a null hypersurface

intersecting smoothly and transversally a section S of
conformal infinity in a smoothly conformally compacti-
fiable space-time with cosmological constant Λ ∈ R.
There exist adapted coordinates ðr; xAÞ on N in which
the restrictions ḡAB to N of the metric functions gAB take
the form

ḡAB ¼ r2ð~g∘ABðxCÞ þOðr−1ÞÞ; ð2:10Þ

with r−2ḡAB having full asymptotic expansions in
terms of inverse powers of r. These coordinates can
be chosen to satisfy the Bondi conditions (2.7) near N .

In 3þ 1 dimensions the metric ~g
∘
on S can be arbitrarily

chosen; in higher dimensions
ffiffiffiffiffiffiffiffiffi
det ~g

∘q
can be arbitrarily

chosen.

In what follows we wish to address two questions:
(1) Assuming vacuum, can the expansion above be

made more precise?
(2) How can we read off the mass from the above

expansions?
For this, some preliminary results will be needed.
Since the case Λ ¼ 0 has been satisfactorily covered

elsewhere (cf. [11,15] and references therein), from now on
we assume

Λ ≠ 0: ð2:11Þ

B. Fefferman-Graham expansions

Recall that smooth conformal compactifiability of a
metric satisfying the vacuum Einstein equations implies
existence of a coordinate system

ðx; xaÞ≡ ðx; x0; xAÞ

near ∂fM in which the metric admits a Fefferman-Graham
expansion [16,17]. We can write the metric as

g ¼ x−2l2ð�dx2 þ ~gabðx; xcÞdxadxbÞ; ð2:12Þ

where l is a constant related to the cosmological constant,
and where the sign in front of dx2 is the negative of the sign
of Λ. For even values of n we have

~gabðx;xcÞ¼ ~g
∘
abðxcÞþð~g2ÞabðxcÞx2þ���þð~gn−2ÞabðxcÞxn−2

þð~gnÞabðxcÞxnþð~glogÞabðxcÞxn logxþoðxnÞ:
ð2:13Þ

Here ∂fM is the zero-level set of x, the tensor field

~g
∘
≔ ~g

∘
abdxadxb

is a representative of the conformal class of metrics induced

by ~g on ∂fM (Riemannian if Λ > 0, Lorentzian if Λ < 0),
and for i ¼ 1;…n − 1 the smooth tensor fields

~gi ≔ ð~giÞabdxadxb and ~glog ≔ ð~glogÞabdxadxb

on ∂fM are uniquely determined by ~g
∘
and its derivatives,

with ~g2kþ1 ≡ 0 for 2kþ 1 < n. We will interchangeably
write ð~giÞab and ð~gabÞi in what follows.
For odd values of n the expansion reads instead

~gabðx;xcÞ¼ ~g
∘
abðxcÞþð~g2ÞabðxcÞx2þ���þð~gn−1ÞabðxcÞxn−1

þð~gnÞabðxcÞxnþoðxnÞ; ð2:14Þ

with again ~g2kþ1 ≡ 0 for 2kþ 1 < n.
We have, both for even and odd n ≥ 3,

ð~g2Þab ¼ −
1

n − 2

�
R
∘
ab −

R
∘

2ðn − 1Þ ~g
∘
ab

�
; ð2:15Þ

where R
∘
ab is the Ricci tensor of the metric ~g

∘
.

As an example, if g is a Birmingham metric, (6.1) below,
with zero mass, we set

dx
x

¼ −
dr

l
ffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2 þ β
q ⇒ r ¼ l

�
1

x
−
βx
4

�
; ð2:16Þ

where a convenient choice of an integration constant has
been made. The metric becomes

PIOTR T. CHRUŚCIEL and LUKAS IFSITS PHYSICAL REVIEW D 93, 124075 (2016)

124075-4



g ¼ x−2l2

�
dx2 −

�
1þ βx2

4

�
2

l−2dt2 þ
�
1 −

βx2

4

�
2

h
∘�

:

ð2:17Þ

In any case, we are led to consider metrics of the form

g ¼ x−2l2ð�dx2 þ ~g
∘ þ ~g2x2 þOðxpÞÞ; ð2:18Þ

with

~g
∘ð∂x; ·Þ ¼ 0 ¼ ~g2ð∂x; ·Þ ¼ ∂x ~g

∘ ¼ ∂x ~g2; ð2:19Þ

where p ¼ 4 in dimensions n ≥ 5, p ¼ 3 in dimension
n ¼ 3, and p is any number smaller than 4 when n ¼ 4 [in
that last dimension OðxpÞ with p < 4 can in fact be
replaced by Oðx4 ln xÞ].

C. The next term and the geometry of N
∘

We will see below that, in a characteristic-Cauchy-
problem context, the regularity properties of the space-
time metric are determined by the first three coefficients in
the expansion (2.10). This raises the question of whether or
not conformal smoothness implies that some of those
coefficients are zero. The aim of this section is to show
that the next-to-leading term in the expansion (2.10) will
not vanish in general. This will be done by relating this term
to the trace-free part of the extrinsic curvature, within the

conformal boundary, of a section N
∘
of ∂fM.

Consider thus a null hypersurface N with a field of
future-directed null tangents L such that the closure N̄ infM ofN intersects ∂fM transversally in a smooth spacelike

submanifoldN
∘
. Let B denote the “null extrinsic curvature”

of N ,

BðX; YÞ ≔ gð∇XL; YÞ; ð2:20Þ

defined for X, Y tangent to N . We will invoke the
Fefferman-Graham expansions, and the law of conformal
transformations of the objects involved.
In what follows we use the notation of [[18]

Appendix A]. From that last reference we have

Γ̄0
AB ¼ −

1

2
ν0∂1ḡAB: ð2:21Þ

Hence, when L ¼ ∂r,

BAB ¼ gð∇AL; ∂BÞ ¼ −gð∇A∂B; LÞ ¼ −gð∇A∂B; ∂rÞ

¼ −gμrΓ
μ
AB ¼ −g0rΓ0

AB ¼ −ν0Γ0
AB ¼ 1

2
∂1ḡAB

¼ χAB; ð2:22Þ

with χ as in (3.8) below.

Let

~g ¼ Ω2g

be the unphysical conformally rescaled metric. Let I ≡
∂fM be the conformal boundary, which in vacuum is
spacelike if Λ > 0 and timelike if Λ < 0. In what follows
we will assume that Λ < 0; the argument applies to the case
Λ > 0 after obvious modifications.
Let ~N be the inwards-directed ~g-unit normal to I . Let S

be a smooth spacelike hypersurface in fM meeting I

orthogonally at N
∘
. Let ~T denote a future-directed ~g-unit

normal to S. Let ~L be a smooth-up-to-boundary field of
tangents of generators of N̄ . There exists a strictly positive
function ω so that

~L ¼ ωð ~T − ~NÞ at N
∘
: ð2:23Þ

Here N is thought to lie to the past of S and is thus the
boundary of the past domain of dependence of S in the
unphysical, conformally rescaled space-time (and hence
also in the physical space-time).
Let x be a defining function for I, and let the conformal

factor be Ω ¼ x. Using rBo ≈ 1=x [compare (2.8)] as the
parameter along the generators in the physical space-time,
with L ¼ ∂rBo , we see that the function ω in (2.23) can be
chosen so that

L ¼ Ω2 ~L; ð2:24Þ

and note that with this choice the vector field ~L extends
smoothly across the conformal boundary fx ¼ 0g. Letting
~χAB denote the corresponding “unphysical χ-tensor” of N ,
we have

~χAB ¼ ~BAB¼−~gð ~∇A∂B; ~LÞ

¼−Ω2g

�
∇A∂Bþ

1

Ω
ð∇AΩ∂Bþ∇BΩ∂A−gAB∇ΩÞ; ~L

�
¼−g

�
∇A∂Bþ

1

Ω
ð∇AΩ∂Bþ∇BΩ∂A−gAB∇ΩÞ;L

�
¼ χABþ

1

Ω
LðΩÞgAB: ð2:25Þ

On the other hand, on N
∘
it holds that

~χABjN∘ ¼ −~gð ~∇A∂B;ωð ~T − ~NÞÞ ¼ ωð ~KAB − ~HABÞ; ð2:26Þ

where ~H is the extrinsic curvature tensor of I in ðM; ~gÞ,
and ~K is that of S.
The Fefferman-Graham expansion shows that the trace-

free part of ~H vanishes at I , so that
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~χABjN∘ ¼ ω ~KABjfx¼0g: ð2:27Þ

For further reference we note that the trace-free part of ~H is
in fact Oðx2Þ when (a) I is locally conformally flat, or
when (b)

R
∘
AB is proportional to ~g

∘
AB: ð2:28Þ

In order to determine ~K we use the coordinates
of (2.12)–(2.13). In these coordinates let S be given by
the equation

x0 ¼ fðx; xAÞ ¼ f0ðxAÞ þ xf1ðxAÞ þOðx2Þ; ð2:29Þ

with smooth functions f0, f1 (in fact, f1 vanishes if S
meets the boundary orthogonally, but this is not needed for
our conclusions below); then

~T ¼ ε ~α−2ðdx0 − ∂Af0dxA − f1dxþOðxÞÞ;

where ~α is determined by the condition ~gð ~T; ~TÞ ¼
ε ∈ f�1g:

~α2 ¼ εð~g∘00 − 2~g
∘0A∂Af0 þ ~g

∘AB∂Af0∂Bf0 þ f21 þOðxÞÞ:
ð2:30Þ

We emphasize that if the intersection of S with I is a
smooth spacelike submanifold of I , as assumed here, then
both ~α and ~α−1 are smooth.
We will denote by eA the tangential lift of ∂A to the graph

of f:

eA ¼ ∂A þ ∂Af∂0 ≕ eAμ∂μ:

For small x the metric ~g ≔ x2g behaves as

~g→x→0 ~g
∘
≔ l2ðdx2 þ ~g

∘
abðxcÞdxadxbÞ: ð2:31Þ

The Christoffel symbols ~Γ
∘
α
βγ of the asymptotic metric ~g

∘

read

~Γ
∘
c
ab ≡ Γ½~g∘ �cab ≕ Γ

∘
c
ab; ~Γ

∘
1
μν ¼ ~Γ

∘
μ
1ν ¼ 0:

This can be used to determine the asymptotic behavior
of ~KAB:

~KAB ¼ −~gð ~∇eAeB; ~TÞ ¼ −ðeAðeBμÞ þ ~Γμ
αβeA

αeBβÞ ~Tμ

¼ −ε ~α−2ð∂A∂Bf0 − Γ
∘C
AB∂Cf0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕D
∘
AD

∘
Bf0

þ Γ
∘ 0
AB

þ 2ðΓ∘ 00ðA − ∂Cf0Γ
∘C
0ðAÞ∂BÞf0

þ ðΓ∘ 000 − Γ
∘C
00∂Cf0Þ∂Af0∂Bf0Þ þOðxÞ

¼ ~K
∘
AB þOðxÞ; ð2:32Þ

where

~K
∘
AB ≔ ~KABjx¼0: ð2:33Þ

Using (2.25) and (2.27) we obtain

σAB ¼ ω0

�
~K
∘
AB −

~g
∘CD

~K
∘
CD

n − 1
~g
∘
AB

�
þOðxÞ; ð2:34Þ

where ω0 ≔ ωjx¼0.
We conclude that on characteristic hypersurfaces

smoothly meeting I we have σAB ¼ Oð1Þ for large r, with

σjx¼0 being nonzero in general:

As an example, consider the case Λ < 0 with

a metric ~gabjx¼0 which is static up to a conformal factor:

ð2:35Þ

We can then rescale the metric and adjust the x-coordinate
accordingly, so that ~gabjx¼0 is in fact x0-independent. A
further, x0-independent, rescaling can be done so that ~g00 is
constant. We can further choose manifestly static local
coordinates, where by definition ~gA0jx¼0 ¼ 0 (this can be
done globally when ~gA0dxA is exact, which will certainly be

the case if N
∘

is simply connected). Setting X ¼ ∂0 and
using

∂0 ~gab ¼ L∂0 ~gab ¼ ~∇aXb þ ~∇bXa ¼ −2 ~Γ0
ab;

we see that all the Γ
∘ 0
ab’s vanish, and in fact Γ

∘ a
0b ¼ 0. With

these choices we will have

~K
∘
AB ∼ ~g

∘
AB ð2:36Þ

if and only if

D
∘
AD

∘
Bf0 −

D
∘ C

D
∘
Cf0

n − 1
~g
∘
AB ¼ 0: ð2:37Þ
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We conclude that under (2.35) and (2.37) we have

σAB ¼ Oðr−1Þ ⇔ jσj2 ¼ Oðr−6Þ ð2:38Þ

for large r.
We also see that the (2.36) is a necessary and sufficient

condition for (2.38) in any case.

III. CHARACTERISTIC HYPERSURFACES

Throughout this section we allow arbitrary space-time
dimension nþ 1 ≥ 4.
As a first step towards understanding the mass of

characteristic hypersurfaces, a review of the characteristic
Cauchy problem for the Einstein equations is in order.

A. Wave-map gauge

Thus, let N be a characteristic hypersurface. Following
[18], we split the Einstein equations along N into con-
straint and evolution equations using the generalized wave-
map gauge [18,19], which is characterized by the vanishing
of the generalized wave-gauge vector:

Hλ ¼ 0; ð3:1Þ

which is defined as

Hλ ≔ Γλ − Vλ; where Vλ ≔ Γ̂λ þWλ;

Γλ ≔ gαβΓλ
αβ; Γ̂λ ≔ gαβΓ̂λ

αβ: ð3:2Þ

Here Γ̂ are the Christoffel symbols of an auxiliary target
space metric ĝ, which can be chosen as convenient for the
problem at hand. The gauge source functions Wλ ¼
Wλðxμ; gμνÞ can be freely specified and are allowed to
depend upon the coordinates chosen and the metric itself,
but not upon derivatives thereof. In (3.2) and in what
follows we decorate objects associated with the target
metric ĝ with the hat symbol ^.

B. Characteristic surfaces, adapted null
coordinates, and assumptions on the metric

It is convenient to use coordinates adapted to the
characteristic surface, called “adapted null coordinates”
(x0 ¼ u; x1 ¼ r; xA), A ∈ f2;…; ng. The coordinate
r > r0 ≥ 0, where we allow a boundary or a vertex at a
value r ¼ r0 possibly different from zero, parametrizes
the null geodesics issuing from fr0g and generating the
null hypersurface, which coincides with the set fu ¼ 0g.
The xA’s are local coordinates on the level sets
fu ¼ 0; r ¼ constg. The trace of the metric on the
characteristic surface can then be written as (we will
interchangeably use x0 and u)

ḡ ¼ ḡμνdxμdxν ¼ ḡ00ðduÞ2 þ 2ν0dudrþ 2νAdudxA þ ǧ;

ð3:3Þ

where we use the notation

ν0 ≔ ḡ0r; νA ≔ ḡ0A; ǧ ≔ ḡABdxAdxB: ð3:4Þ

Here and throughout an overline denotes the restriction of a
space-time object to N .
Under the hypotheses of Proposition 2.1, for r large we

can write

ḡAB ¼ h
∘
ABr2 þ ðḡABÞ−1rþ ðḡABÞ0 þOðr−1Þ; ð3:5Þ

where we use the symbol h
∘
to denote the standard metric on

the boundary manifold, and ðḡABÞ−i ¼ ðḡABÞ−iðxCÞ, i ∈ N,
are some smooth tensors on that manifold. We also require
that Oðr−1Þ terms remain Oðr−1Þ under xC-differentiation
and become Oðr−2Þ under r-differentiation, and similarly
for Oðr−nÞ.
The restriction of the inverse metric to N takes the form

ḡ# ¼ 2ν0∂u∂r þ ḡrr∂r∂r þ 2ḡrA∂r∂A þ ḡAB∂A∂B; ð3:6Þ

where ḡAB is the inverse of ḡAB and

ν0 ≔ ḡ0r ¼ 1

ν0
; ḡrA ¼ −ν0νA ¼ −ν0ḡABνB;

ḡrr ¼ ðν0Þ2ðνAνA − ḡ00Þ: ð3:7Þ

The null second fundamental form of N is intrinsically
defined and does not depend on transverse derivatives of
the metric; see (2.20). In adapted null coordinates it reads
[compare (2.22)]

χAB ¼ 1

2
∂rḡAB: ð3:8Þ

The expansion, also called divergence, of the characteristic
surface will be denoted by

τ ≔ χA
A ¼ ḡABχAB; ð3:9Þ

while the trace-free part of the null second fundamental
form

σA
B ¼ χA

B −
1

2
τδA

B ð3:10Þ

is called the “shear” of N .
The constraint equations for the characteristic problem

will be referred to as Einstein wave-map gauge constraints.
In space-time dimension nþ 1 ≥ 3 they read [18]
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ð∂r − κÞτ þ 1

n − 1
τ2 ¼ −jσj2 − 8πT̄rr; ð3:11Þ

�
∂r þ

1

2
τ þ κ

�
ν0 ¼ −

1

2
V̄0; ð3:12Þ

ð∂r þ τÞξA ¼ 2∇̌Bσ
B
A − 2

n − 2

n − 1
∂Aτ − 2∂Aκ − 16πT̄rA;

ð3:13Þ�
∂r þ

1

2
ν0V̄0

�
νA ¼ 1

2
ν0ðV̄A − ξA − ḡBCΓ̌A

BCÞ; ð3:14Þ

ð∂r þ τ þ κÞζ ¼ 1

2
jξj2 − ∇̌Aξ

A − Ř

þ 8πðḡABT̄AB − T̄Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≕S

þ 2Λ; ð3:15Þ

�
∂r þ

1

2
τ þ κ

�
ḡrr ¼ 1

2
ζ − V̄r; ð3:16Þ

where

jσj2 ≔ σA
BσB

A; jξj2 ≔ ḡABξAξB;

ξA ≔ ḡABξB; T̄ ≔ ḡμνT̄μν: ð3:17Þ

All objects associated with the one-parameter family
of Riemannian metrics ǧ are decorated with the check
symbol .̌ The boundary conditions needed to integrate
(3.11)–(3.16) starting from a light-cone vertex r0 ¼ 0
follow from the requirement of smoothness of the metric
there; see [[18] Sec. IV. E].
The function κ is defined through the equation

∇∂r∂r ¼ κ∂r ð3:18Þ

and reflects the freedom to choose the coordinate r that
parametrizes the null geodesic generators of N . The
“auxiliary” fields ξA and ζ have been introduced to trans-
form (3.11)–(3.16) into first-order equations. The field
ξA ≡ −2Γ̄r

rA represents connection coefficients, while the
field ζ is the divergence of the family of suitably normal-
ized null generators normal to the spheres of constant
radius r and transverse to the characteristic surface. In
coordinates adapted to the light cone as in [18], the space-
time formula for ζ reads [compare [[18] Eqs. (10.32) and
(10.36)]; note, however, that there is a term τḡ11=2 missing
at the right-hand side of the second equality in (10.36)
there]

ζ ≔ ð2∂r þ 2κ þ τÞḡrr þ 2Γ̄r ≡ 2ḡABΓ̄r
AB þ τḡrr: ð3:19Þ

To integrate the wave-map gauge constraints (3.11)–
(3.16) one also needs the components V̄μ, which are

determined by the wave-map gauge (3.1)–(3.2). We have,
in adapted null coordinates [[18] Appendix A (A29)–
(A31)],

Γ̄0 ≡ ḡλμΓ̄0
λμ ≡ ν0ðν0∂0g11 − τÞ; ð3:20Þ

Γ̄1 ≡ ḡλμΓ̄1
λμ ≡ −∂1ḡ11 þ ḡ11ν0

�
1

2
∂0g11 − ∂1ν0 − τν0

�
þ ν0ḡAB∇̌BνA −

1

2
ν0ḡAB∂0gAB; ð3:21Þ

Γ̄A ≡ ḡλμΓ̄A
λμ ≡ ν0νAðτ − ν0∂0g11Þ

þ ν0ḡABð∂0g1B þ ∂1νB − ∂Bν0Þ
− 2ν0νBχB

A þ Γ̌A: ð3:22Þ

Now, from the restriction to N of (3.1) and together with
the first equation of (3.2) one finds that the choice of the

target metric only redefines the fields ¯̂Γμ and W̄μ entering in

the definition of V̄μ ¼ ¯̂Γμ þ W̄μ without changing V̄μ itself.
Therefore only V̄μ enters in the Einstein wave-map gauge
constraint equations, and so only the explicit form of those
fields is relevant in the equations of interest to us.
An adapted coordinate system on a characteristic surface

N will be called “Bondi type” if the coordinates satisfy
Bondi conditions on N , but not necessarily away from N ,
reserving the name “Bondi coordinates” for coordinate
systems that satisfy Bondi’s condition everywhere.
Wewill start by deriving the asymptotic expansions of all

relevant fields in Bondi-type coordinates on the character-
istic surface; it appears that the calculations are simplest in
those coordinates. We have [[20], Eq. (5.5)]

φBo ¼ rBo; ∂0gBorr ¼ 0; ∂0gBorA ¼ 0; ḡABBo∂0gBoAB ¼ 0;

ð3:23Þ

where φ is defined by τ ¼ 2∂r logφ, as well as

V̄0
Bo ¼ −τBoν0Bo; ð3:24Þ

V̄A
Bo ¼ ḡCDBo ðΓ̌BoÞACD − ν0Bo∇̌AνBo0 þ ν0Boð∂rBo þ τBoÞνABo;

ð3:25Þ

V̄r
Bo ¼ ν0Bo∇̌Aν

A
Bo − ð∂rBo þ τBo þ ν0Bo∂rBoν

Bo
0 ÞḡrrBo: ð3:26Þ

As mentioned previously the Einstein wave-map gauge
constraints form a hierarchical system of ODEs along the
null generators of the characteristic surface that can be
solved step by step.

PIOTR T. CHRUŚCIEL and LUKAS IFSITS PHYSICAL REVIEW D 93, 124075 (2016)

124075-8



IV. ASYMPTOTIC SOLUTIONS OF THE
CHARACTERISTIC WAVE-MAP
GAUGE CONSTRAINTS, Λ ≠ 0

Throughout this section we assume that the space
dimension n ¼ 3.
In [10] asymptotic solutions of the Einstein wave-map

gauge constraints (3.11)–(3.16) with Λ ¼ 0 have been
obtained in the form of polyhomogeneous expansions of
the solution at infinity, i.e., expansions in terms of inverse
powers of r and of powers of log r. Our aim is to obtain
similar expansions when Λ ≠ 0, with the goal to find a
formula for the characteristic mass.
We will assume that for large r

σBoA
B ¼ ðσBoABÞ2r−2Bo þ ðσBoABÞ3r−3Bo þOðr−4BoÞ; ð4:1Þ

which is compatible with, and more general than,
Proposition 2.1. Here σBo is the shear of N in Bondi
coordinates, with σBoA

B ≔ ḡBCσBoð∂A; ∂CÞ. As already
mentioned, wherever needed in the calculations that follow
we will assume that differentiation of error terms OðrαÞ
with respect to angles preserves the OðrαÞ behavior, while
differentiation with respect to r produces terms that
are Oðrα−1Þ.
[It follows from our calculations below that the hypoth-

esis (4.1) is equivalent to

σA
B ¼ ðσABÞ2r−2 þ ðσABÞ3r−3 þOðr−4Þ; ð4:2Þ

where r is an affine coordinate along the generators of N .]

A. Matter fields

We start by analyzing the influence of the matter fields
on the asymptotic expansion of the metric in Bondi-type
coordinates. Our aim is to determine a decay rate of the
energy-momentum tensor which is compatible with finite
total mass. The decay rates for various components of the
energy-momentum tensor will be chosen so that they do not
affect the leading-order behavior, as arising in the vacuum
case, of the solutions of the equations in which they appear.
For the convenience of the reader we repeat here the

relevant equations in Bondi-type gauge [see [20],
Eqs. (5.11)–(5.15)] with the contribution from the cosmo-
logical constant Λ added here]:

κBo −
1

2
rBoðjσBoj2 þ 8πT̄Bo

rr Þ ¼ 0; ð4:3Þ
�
∂rBo þ

rBo
2

ðjσBoj2 þ 8πT̄Bo
rr Þ
�
ν0Bo ¼ 0; ð4:4Þ

ð∂rBoþτBoÞξBoA −2∇̌Bσ
Bo
A

Bþ∂Aτ
BoþrBo∂AðjσBoj2þ8πT̄Bo

rr Þ
¼−16πT̄Bo

rA ; ð4:5Þ

∂rBoν
A
Bo þ ð∇̌A þ ξABoÞνBo0 ¼ 0; ð4:6Þ

�
∂rBo þ τBo þ rBo

2
ðjσBoj2 þ 8πT̄Bo

rr Þ
�
ζBo

þ ŘBo −
jξBoj2
2

þ ∇̌Aξ
A
Bo ¼ 8πðḡABBo T̄Bo

AB − T̄BoÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SBo

þ 2Λ;

ð4:7Þ

ḡrrBo þ ðτBoÞ−1ðζBo − 2ν0Bo∇̌Aν
A
BoÞ ¼ 0: ð4:8Þ

In Bondi-type coordinates, the relation

τBo ¼ 2

rBo

is independent of the cosmological constant and of matter
fields.
It follows from (4.3), which can be solved algebraically

for κBo, that a term Oðr−αrrBo Þ in T̄Bo
rr with αrr > 2 produces

an Oðr−αrrþ1
Bo Þ term in κBo [see also the discussion in

Sec. IV B and Eq. (4.21)]:

T̄Bo
rr ¼Oðr−αrrBo Þ; αrr >2⇒κBo¼ðκBoÞvacuumþOðr−αrrþ1

Bo Þ:
ð4:9Þ

Next, from (4.4) we find

ν0Bo ¼ ðν0BoÞvacuum þOðr−αrrþ2
Bo Þ: ð4:10Þ

In the ξBoA -constraint equation (4.5), the assumption

T̄Bo
rA ¼ Oðr−αrAþ1

Bo Þ; 4 ≠ αrA; 4 ≠ αrr; ð4:11Þ

leads to

ξBoA ¼ ðξBoA Þvacuum þOðr−αrAþ2
Bo Þ þOðr−αrrþ2

Bo Þ; ð4:12Þ

where the values αrA ¼ 4 and αrr ¼ 4 have been excluded
to avoid here a supplementary annoying discussion of
logarithmic terms (note that the logarithmic terms will be
discussed in detail in the sections that follow):

αrA ¼ 4 or αrr ¼ 4 ⇒

ξBoA ¼ ðξBoA Þvacuum þOðr−αrAþ2
Bo Þ þOðr−αrrþ2

Bo Þ
þOðr−2Bo log rBoÞ: ð4:13Þ

From now on we assume (4.11). To preserve the vacuum
asymptotics ξBoA ¼ Oðr−1BoÞ we will moreover require
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αrr > 3; αrA > 3: ð4:14Þ

[Anticipating, we have excluded the case αrr ¼ 3, which
introduces 1=rBo terms in ν0Bo, which lead subsequently to
logarithmically divergent terms in νABo. We further note that
αrA ¼ 3 will produce an additional ðξBoA Þ1-term that would
not integrate away in mTB and would remain as a
supplementary ðT̄Bo

rAÞ2-term in our final mass identity
(5.56) below.]
Integration of (4.6) gives

νABo ¼ ðνABoÞvacuum þOðr−αrAþ1
Bo Þ þOðr−αrrþ1

Bo Þ
⇔ νBoA ¼ ðνBoA Þvacuum þOðr−αrAþ3

Bo Þ þOðr−αrrþ3
Bo Þ: ð4:15Þ

Finally, the asymptotic behavior ξBoA ¼ Oðr−1BoÞ, together
with (4.7) and (4.8), shows that a term Oðr−αSBo Þ in SBo with
αS < 2 would change the leading-order behavior of ζBo,
αS ¼ 2 would change the leading-order term of ζBo, and
αS ¼ 3 would lead to a logarithmic term in ζBo. This
leads to

SBo ¼ Oðr−αSBo Þ; αS > 3; αrr ≠ 5;

⇒ ζBo ¼ ðζBoÞvacuum þOðr−αSþ1
Bo Þ þOðr−αrAþ1

Bo Þ
þOðr−αrrþ3

Bo Þ; ð4:16Þ

ḡrrBo ¼ ðḡrrBoÞvacuum þOðr−αSþ2
Bo Þ þOðr−αrAþ2

Bo Þ þOðr−αrrþ4
Bo Þ;
ð4:17Þ

and note that a factor r2Bo in the Oðr−αrrþ3
Bo Þ terms in ζBo

arises from the 4πrBoT̄Bo
rr ζ

Bo term in (4.7), taking into
account the 2ΛrBo=3 leading behavior of ζBo.
We conclude that the leading order of all quantities of

interest will be preserved if we assume that

αrr > 3; αrA > 3; αS > 3: ð4:18Þ

Keeping in mind our main assumptions, that all fields can
be expanded in terms of inverse powers of rBo to the order
needed to perform our expansions, possibly with some
logarithmic coefficients, we will allow below matter fields
for which (4.18) holds.
In what follows we will actually assume

T̄Bo
rr ¼Oðr−4BoÞ; T̄Bo

rA ¼Oðr−3BoÞ; ḡABBo T̄
Bo
AB− T̄Bo¼Oðr−3BoÞ:

ð4:19Þ

Note that the third equation in (4.19) is less restrictive than
(4.18), allowing a logarithmic term in the asymptotic
expansion of ζBo. This term however will be of the order
log rBo=r2Bo and will not influence our result for the
characteristic mass. It is accounted for in the correction

term in (4.36) below. An analog statement holds for the
falloff behavior and the correction term in (5.16) below in
affine coordinates.
When solving the wave-map gauge constraints we keep

in mind that we eventually want to determine the expansion
coefficient ðḡBo00 Þ1, as needed to calculate the mass. This
determines how far the intermediate asymptotic expansions
need to be carried out.

B. Solving Equation (3.11)

The first equation of (3.23) implies τBo ¼ 2r−1Bo and using
this one directly finds from (3.11) in Bondi-type coordi-
nates [cf. (4.3)]

κBo ¼ 1

2
rBoðjσBoj2 þ 8πT̄Bo

rr Þ: ð4:20Þ

Note for further reference that this means

ðκBoÞn ¼
1

2
½jσBoj2nþ1 þ 8πðT̄Bo

rr Þnþ1� ð4:21Þ

for the expansion coefficients of κBo, where we have
assumed that n is positive.

C. Expansion of ν0Bo
Inserting (3.24) and (4.20) into (3.12) in Bondi-type

coordinates yields [cf. (4.4)]�
∂rBo þ

rBo
2

ðjσBoj2 þ 8πT̄Bo
rr Þ
	
ν0Bo ¼ 0; ð4:22Þ

and from (4.1) we have

jσBoj2 ¼ jσBoj24
r4Bo

þ jσBoj25
r5Bo

þ jσBoj26
r6Bo

þOðr−7BoÞ: ð4:23Þ

Using this and (4.19) we find the solution of (4.22),

ν0Bo ¼ ðν0BoÞ0
�
1þ 1

4
½jσBoj24 þ 8πðT̄Bo

rr Þ4�r−2Bo

þ 1

6
½jσBoj25 þ 8πðT̄Bo

rr Þ5�r−3Bo
�
þOðr−4BoÞ; ð4:24Þ

where ðν0BoÞ0 is a global integration function.

D. Expansion of ξBoA
Using ∂Aτ

Bo ¼ 0, (3.13) in Bondi-type coordinates takes
the form

ð∂rBo þ τBoÞξBoA ¼ 2∇̌Bσ
Bo

A
B − 2∂Aκ

Bo − 16πT̄Bo
rA ð4:25Þ

[cf. (4.5)]. Using again (4.19), (4.23), as well as [[10],
Eqs. (3.24)–(3.26)] (as revisited to include matter fields)
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∇̌Bσ
Bo

A
B ¼ ðΞBoÞð2ÞA r2Bo þ ðΞBoÞð3ÞA r3Bo þOðr−4BoÞ; ð4:26Þ

where

ðΞBoÞð2ÞA ≔ ∇∘ BðσBoABÞ2;

ðΞBoÞð3ÞA ≔ ∇∘ BðσBoABÞ3 þ
1

2
∇∘ AjσBoj24þ4π∇∘ AðT̄Bo

rr Þ4;
ð4:27Þ

the solution of (4.25) reads

ξBoA ¼ 2ðΞBoÞð2ÞA r−1Bo − 2½∇∘ BðσBoABÞ3 − 8πðT̄Bo
rAÞ3�

log rBo
r2Bo

þ CðξBÞ
A r−2Bo þOðr−3BoÞ; ð4:28Þ

where the coefficients CðξBÞ
A ¼ CðξBÞ

A ðxCÞ are global inte-
gration functions.
It follows from Proposition 2.1 that the existence of a

smooth conformal completion at infinity requires the
relation

∇∘ BðσBoABÞ3 ¼ 8πðT̄Bo
rAÞ3: ð4:29Þ

E. Expansion of νABo
Equation (3.14) in Bondi-type coordinates does not

depend upon Λ and reads [cf. (4.6)]

∂rBoν
A
Bo ¼ −ð∇̌A þ ξABoÞνBo0 : ð4:30Þ

Now, the transformation from the affine parameter r,
described in Sec. III B, to rBo is given by [[11], Eq. (51)]

rBo ¼ r − τ2=2þOðr−1Þ: ð4:31Þ

This implies that ḡABBo is of the form

ḡABBo ¼ h
∘AB

r−2Bo þ ðḡABBo Þ3r−3Bo þOðr−4BoÞ: ð4:32Þ

Using the form (4.24) of ν0Bo, keeping in mind the relation
ν0Bo ¼ 1=νBo0 and the form (4.28) of ξBoA , we find the
solution of (4.30),

νABo ¼ ðνABoÞ0 þ h
∘AB∇̌Bðν0BoÞ−10 r−1Bo

þ
�
ðν0BoÞ−10 h

∘AB∇∘ CðσBoCB Þ2 þ
1

2
ðḡABBo Þ3∇̌Bðν0BoÞ−10

	
r−2Bo

þ 2

3
h
∘AB½∇∘ AðσBoAB Þ3 − 8πðT̄Bo

rBÞ3�
log rBo
r2Bo

−
1

3

�
2

3
h
∘ABð−∇∘ AðσBoAB Þ3 þ 8πðT̄Bo

rBÞ3Þ

þ 2ðḡABBo Þ3∇
∘
AðσBoAB Þ2 þ h

∘AB
CðξCÞ
B − ðḡABBo Þ4∇

∘
Bðν0BoÞ−10

þ h
∘ABðν0BoÞ2∇

∘
Bðν0BoÞ−10 þ ðν0BoÞ−10 h

∘AB∇∘ Bðν0BoÞ2
	
r−3Bo

þ oðr−3BoÞ; ð4:33Þ

where ðνABoÞ0 is a global integration function.
Note that the coefficient of the logarithmic term vanishes

when (4.29) holds.

F. Expansion of ζBo

Inserting τBo ¼ 2r−1Bo and (4.20) into (3.15) in Bondi-type
coordinates yields [cf. (4.7)]�
∂rBo þ

2

rBo
þ rBo

2
ðjσBoj2 þ 8πT̄Bo

rr Þ
�
ζBo

¼ −ŘBo þ jξBoj2
2

− ∇̌Aξ
A
Bo þ 8πðḡABBo T̄Bo

AB − T̄BoÞ þ 2Λ:

ð4:34Þ

In order to solve this equation we start by defining

ζBo ≔ ζBoΛ¼0 þ δζBo; ð4:35Þ

where ζBoΛ¼0 is the solution of (4.34) in the case Λ ¼ 0. Its
asymptotic expansion is known: [[[10], Eq. (3.40)] gives

the formula in general coordinates for general R
∘
, while

[[20], Eq. (5.23)] the one in Bondi-type coordinates with

R
∘ ¼ 2] and reads

ζBoΛ¼0 ¼ −
R
∘

rBo
þ ðζBoΛ¼0Þ2r−2Bo þ oðr−2BoÞ; ð4:36Þ

where ðζBoΛ¼0Þ2 is a global integration function and R
∘

denotes the leading-order coefficient of the asymptotic
expansion of Ř in terms of r, which coincides with the Ricci
scalar of the boundary metric limr→∞r−2ḡABdxAdxB. The
expansion of δζBo on the other hand can be calculated by
subtracting (4.34) from the corresponding equation in the
case Λ ¼ 0, leading to

ð∂rBo þ τBo þ κBoÞδζBo ¼ 2Λ: ð4:37Þ
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This equation can be solved by using (4.19), (4.20),
and (4.23), and we end up with

δζBo ¼ 2Λ
3

rBo −
Λ
3
½jσBoj24 þ 8πðT̄Bo

rr Þ4�r−1Bo

þ Λ
3
½jσBoj25 þ 8πðT̄Bo

rr Þ5�
logðrBoÞ

r2Bo

þ ðδζBoÞ2
r2Bo

þ oðr−2BoÞ; ð4:38Þ

where ðδζBoÞ2 is again a global integration function.
Summing up the solution of (4.34) in Bondi-type coor-
dinates reads

ζBo ¼ 2Λ
3

rBo −
�
R
∘ þ 2Λ

3
ðκBoÞ3

�
r−1Bo

þ 2Λ
3
ðκBoÞ4

log rBo
r2Bo

þ ðζBoÞ2
r2Bo

þ oðr−2BoÞ

¼ 2Λ
3

rBo −
�
R
∘ þ Λ

3
½jσBoj24 þ 8πðT̄Bo

rr Þ4�
�
r−1Bo

þ Λ
3
½jσBoj25 þ 8πðT̄Bo

rr Þ5�
log rBo
r2Bo

þ ðζBoÞ2
r2Bo

þ oðr−2BoÞ;

ð4:39Þ

and we have combined both integration functions ðδζBoÞ2
and ðζBoΛ¼0Þ2 into ðζBoÞ2.
In view of the analysis of Sec. II, existence of a smooth

conformal completion leads to the condition

ðκBoÞ4 ¼ 0 ⇔ jσBoj25 þ 8πðT̄Bo
rr Þ5 ¼ 0: ð4:40Þ

G. Analyzing (3.16)

Inserting (3.26) into (3.16) in Bondi-type coordinates
and keeping in mind that, by (4.22), ∂rBoν

0
Bo ¼ −κBo, one

finds [cf. (4.8)]

ḡrrBo þ ðτBoÞ−1ðζBo − 2ν0Bo∇̌Aν
A
BoÞ ¼ 0 ð4:41Þ

for (3.16) in Bondi-type coordinates, which is an algebraic
equation for ḡrrBo. Inserting the asymptotic expansions
(4.24), (4.33), and (4.39) we found for ν0Bo, νABo, and
ζBo, respectively, we obtain the asymptotic expansion

ḡrrBo¼−
Λ
3
r2Boþðν0BoÞ0∇̌AðνABoÞ0rBo

þ
�
R
∘

2
þΛ
3
ðκBoÞ3

�
−
Λ
3
ðκBoÞ4

logrBo
rBo

þ
�
ðν0BoÞ0½∇

∘
AðνABoÞ2þðν0BoÞ2∇

∘
AðνABoÞ0�−

1

2
ðζBoÞ2

�
r−1Bo

þoðr−1BoÞ; ð4:42Þ

where, as before, R
∘
is the Ricci scalar of the boundary

metric limr→∞r−2ḡABdxAdxB and ∇∘ A is the associated
covariant derivative.
Note that the coefficient of the logarithmic term in (4.39)

vanishes if (4.40) holds.

H. No-logs conditions

Consider characteristic initial data on N such that the
functions r−2Bog

Bo
AB have a full asymptotic expansion in terms

of inverse powers of rBo. From what has been said it
follows that the equations

∇∘ BðσBoABÞ3−8πðT̄Bo
rAÞ3¼ 0¼ jσBoj25þ8πðT̄Bo

rr Þ5; ð4:43Þ

[see (4.29) and (4.40)] provide a necessary condition for
conformal smoothness of the associated space-time. It is
likely that an analysis along the lines of [9], using [21–23],
will prove that these equations are also sufficient in
space-times with conformally well-behaved matter fields
(cf. [22,24,25]), but we have not investigated this.
When one, or both, of Eqs. (4.43) fails, the characteristic

initial data set will have a full polyhomogeneous expansion at
infinity. One expects that the evolved metric will similarly
have a polyhomogeneous expansion, but no evolution the-
orems guaranteeing this are available so far even in vacuum.
As such, the no-logs conditions (4.43) require the data to

be transformed to Bondi coordinates, if not already so given.
When Λ ¼ 0, a coordinate-invariant version of the no-logs
conditions has been established by Paetz in [10]. It would be
of interest to find the equivalent of his conditions forΛ ∈ R�.

V. CHARACTERISTIC MASS

Throughout this section we assume that the space-time
dimension is nþ 1 ¼ 4.

A. The Trautman-Bondi mass

In [5,6,26], assuming Λ ¼ 0 and in space-dimension
n ¼ 3, it was proposed how to define the mass of a null
hypersurface N at a given moment of “retarded time” u at

the cross sectionN
∘
where it intersects null infinity Iþ. This

mass, usually referred to as the “Trautman-Bondi mass,” is
defined as

mTB ¼ 1

4π

Z
N
∘ Mdμ

h
∘ ; ð5:1Þ

where3 dμ
h
∘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det h

∘
AB

q
dx2dx3, and where M denotes the

mass aspect function M∶N
∘
→ R (compare, e.g., [5,6]),

3Bondi et al. introduced this formalism in the asymptotically flat
case,whereh

°

AB ≡ sAB, the standardmetric onS2. In anticipation of

other boundary topologies, e.g., a torus, wewill use the symbolh
∘
to

denote the chosen metric on the relevant manifold.
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M ≔
1

2
ðḡBo00 Þ1: ð5:2Þ

The definition uses Bondi coordinates, as seen in Sec. II A,
and recall that ðgBo00 Þk denotes the coefficient in front of
1=rkBo in an asymptotic expansion of gBo00 for large rBo, in
particular,

gBo00 ¼ −1þ ðgBo00 Þ1
rBo

þ oðr−1BoÞ:

Our aim is to obtain an analogue of the Trautman-Bondi
mass in space-times with Λ ≠ 0. We seek to derive a
formula that applies to a class of space-times that includes
vacuum space-times with a smooth conformal completion
at null infinity Iþ, such that the characteristic surface

intersects Iþ in a smooth cross section N
∘
.

From our point of view, the key justification that (5.2)
provides a good candidate for the integrand for a total mass
is the fact that M is one of the nonlocal integration
functions that arise when solving the characteristic equa-
tions when Λ ¼ 0. It turns out that this remains true
for Λ ≠ 0.
Consider, thus, characteristic data in Bondi-type coor-

dinates, defined perhaps only for large values of rBo.
The space-time metric on N ¼ fuBo ¼ 0g can then be
written as

ḡ ¼ ḡBo00 du
2
Bo þ 2νBo0 duBodrBo þ 2νBoA duBodxABo þ ǧBo:

ð5:3Þ

Now, Bondi et al. assume

lim
rBo→∞

νABo¼ 0; lim
rBo→∞

ν0Bo¼ 1; lim
rBo→∞

ðr−2BoḡBoABÞ¼ h
∘
AB:

ð5:4Þ

It follows from Proposition 2.1 that the last equation in
(5.4) is justified under the hypotheses there. However, it is
not clear at all whether the first two can be assumed to hold
for all retarded times in general: when Λ < 0 this is part of
the asymptotic conditions that are usually imposed in this
context, but which one might not want to impose in some
situations. However, when Λ > 0 there is little doubt that
all three conditions in (5.4) can be simultaneously satisfied
for all times by a restricted class of metrics only. For this
reason we have allowed general fields ðνABoÞ0 and
ðν0BoÞ0ðxBÞ when solving the constraint equations so far.
Nevertheless, it is easy to see that the first two equa-

tions (5.4) are determined by the propagation of the
coordinates u and xA away from the initial data surface
N and can always be imposed onN as long as one does not
assume that they hold at later times. In particular, the first
two equations in (5.4) imply no loss of generality as long as
no evolution equations are used. Since we only work atN ,
and use only the constraint equations, we will assume (5.4)
from now on.

B. The characteristic mass in Bondi-type coordinates

The asymptotic expansion of ḡBo00 needed to obtain the
mass aspect function can be calculated using the third
equation in (3.7) in Bondi-type coordinates

ḡBo00 ¼ ḡBoABν
A
Boν

B
Bo − ðνBo0 Þ2ḡrrBo; ð5:5Þ

and we note again [cf. (4.32)] that ḡABBo is of the form

ḡABBo ¼ h
∘AB

r−2Bo þ ðḡABBo Þ3r−3Bo þOðr−4BoÞ: ð5:6Þ

Using this and (4.42) leads us to

ḡBo00 ¼ ðh∘ABðνABoÞ0ðνBBoÞ0 − ðν0BoÞ−20 ðḡrrBoÞ−2Þr2Bo þ ðḡBoABÞ−1ðνABoÞ0ðνBBoÞ0rBo þ ðνABoÞ0½2h
∘
ABðνBBoÞ2 þ ðḡBoABÞ0ðνBBoÞ0�

− ðν0BoÞ−10 ½ðν0BoÞ−10 ðḡrrBoÞ0 þ 2ðḡrrBoÞ−2ðνBo0 Þ2� − ðν0BoÞ−20 ðḡrrBoÞlog;1
log rBo
rBo

þ ððνABoÞ0½2h
∘
ABðνBBoÞ3 þ 2ðḡBoABÞ−1ðνBBoÞ2 þ ðḡBoABÞ1ðνBBoÞ0�

− ðν0BoÞ−10 ½ðν0BoÞ−10 ðḡrrBoÞ1 þ 2ðḡrrBoÞ−1ðνBo0 Þ2 þ 2ðḡrrBoÞ−2ðνBo0 Þ3�Þr−1Bo þ oðr−1BoÞ; ð5:7Þ

where we can directly read off an expression for the mass aspect function M:

M ¼ 1

2
ðḡBo00 Þ1

¼ 1

2

�
ðνABoÞ0½2h

∘
ABðνBBoÞ3 þ 2ðḡBoABÞ−1ðνBBoÞ2 þ ðḡBoABÞ1ðνBBoÞ0� −

ðν0BoÞ−10 ðḡrrBoÞ1 þ 2ðḡrrBoÞ−1ðνBo0 Þ2 þ 2ðḡrrBoÞ−2ðνBo0 Þ3
ðν0BoÞ0

�
:

ð5:8Þ
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Now, using that νBo0 ¼ 1=ν0Bo [cf. (3.7)] and (4.24), we have

νBo0 ¼ ðν0BoÞ−10 ð1 − ðν0BoÞ2r−2Bo − ðν0BoÞ3r−3BoÞ þOðr−4BoÞ

¼ ðν0BoÞ−10
�
1 −

1

4
½jσBoj24 þ 8πðT̄Bo

rr Þ4�r−2Bo

−
1

6
½jσBoj25 þ 8πðT̄Bo

rr Þ5�r−3Bo
�
þOðr−4BoÞ: ð5:9Þ

After inserting this and the expansion coefficients of ḡrrBo
and νABo we calculated before, M reads

M¼ðνABoÞ0
�
h
∘
ABðνBBoÞ3þðḡBoABÞ−1ðνBBoÞ2þ

1

2
ðḡBoABÞ1ðνBBoÞ0

	
þðν0BoÞ−10

1

2

�
1

2
ððζBoÞ2þ ∇̌AðνABoÞ0½jσBoj24þ8πðT̄Bo

rr Þ4�Þ

−∇∘ AðνABoÞ2− ðν0BoÞ−10
Λ
4
½jσBoj25þ8πðT̄Bo

rr Þ5�
�

−
1

8
½jσBoj24þ8πðT̄Bo

rr Þ4�∇
∘
AðνABoÞ0: ð5:10Þ

We return, now, to the definition of the characteristic
mass, (5.1), and assume in the remainder of the present
work that the boundary conditions on ν0Bo and νABo,
introduced in (5.4), hold. With these boundary conditions,

and using the fact that the divergence terms in (5.10) will
integrate out to zero, we find

mTB¼
1

16π

Z
N
∘ ðζBoÞ2dμh∘ þ

Λ
12π

Z
N
∘ ðνBo0 Þ3dμh∘

¼ 1

16π

Z
N
∘ ðζBoÞ2dμh∘ −

Λ
72π

Z
N
∘ ½jσBoj25þ8πðT̄Bo

rr Þ5�dμh∘ :

ð5:11Þ
C. The characteristic mass in terms

of characteristic data

To continue, we want to relate the fields occurring in
Bondi-type coordinates to their representation in coordi-
nates where r is an affine parameter along the radial null
outgoing geodesics of ḡ. We start with ðζBoÞ2 and follow
the argumentation in [[11], leading to Eq. (51) there], which
we repeat here for the convenience of the reader.
First, we have

rBo ¼ r −
τ2
2
þOðr−1Þ: ð5:12Þ

Next, the transformation formulas for τ and ζ [compare
(3.19)] read

τBoðrBoÞ ¼ ∂r
∂rBo τðrðr

BoÞÞ ¼ 2

rBo
; ð5:13Þ

ζBo ¼ 2ðḡBoÞABðΓ̄BoÞrBoAB þ τBoðḡBoÞrBorBo

¼ 2ðḡBoÞAB
�∂rBo
∂xk

∂xi
∂xABo

∂xj
∂xBBo Γ̄

k
ij þ

∂rBo
∂r

∂2r
∂xABo∂xBBo

�
þ τ

∂r
∂rBo

∂rBo
∂xi

∂rBo
∂xj ḡij

¼ 2ḡAB
∂rBo
∂r

∂r
∂xABo

∂r
∂xBBo κ þ 2ḡAB

∂rBo
∂xC

∂r
∂xABo

∂r
∂xBBo Γ̄C

11|{z}
¼0

þ ∂rBo
∂r ζ þ 2ḡAB

∂rBo
∂xC ~ΓC

AB þ 2ḡABχAB|fflfflffl{zfflfflffl}
¼τ

∂rBo
∂xC ν0νC

− 2ḡAB
∂rBo
∂r

∂r
∂xBBo ξA þ 2τḡAB

∂rBo
∂xA

∂r
∂xBBo þ 4ḡAB

∂rBo
∂xC

∂r
∂xBBo σA

C þ 2ḡAB
∂rBo
∂r

∂2r
∂xABo∂xBBo þ τ

∂r
∂rBo

∂rBo
∂xA

∂rBo
∂xB ḡAB

¼ ∂rBo
∂r ζ þ 2

∂rBo
∂r ΔǧrþOðr−3BoÞ; ð5:14Þ

where Δǧ is the Laplace operator of the two-dimensional metric ǧABdxABodx
B
Bo.

To continue we need the asymptotic expansion of ζ and
therefore solve the respective constraint equation (3.15).
Note that we have already done this in Bondi-type
coordinates, but we also need the result in affine
coordinates.
We begin with the same procedure as in Sec. IV F and

define

ζ ≔ ζΛ¼0 þ δζ; ð5:15Þ

where ζΛ¼0 is the solution of (3.15) in the case Λ ¼ 0.
Its asymptotic expansion is known and reads [[10],
Eq. (3.40)]

ζΛ¼0 ¼ −
R
∘

r
þ ðζΛ¼0Þ2r−2 þ oðr−2Þ; ð5:16Þ

with ðζΛ¼0Þ2 being a global integration function. We
assume that the relevant fields satisfy analog falloff
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behavior in affine coordinate r as we assumed in Bondi-
type coordinate rBo [cf. Eqs. (4.1) and (4.19)]. The equation
for δζ reads

ð∂r þ τ þ κÞδζ ¼ 2Λ: ð5:17Þ

From now on we choose the coordinate r so that κ ¼ 0. We
start by solving the Raychaudhuri equation (3.11) in this
gauge and obtain the expansion of τ,

τ¼ 2

r
þτ2
r2
þ2½jσj24þ8πðT̄rrÞ4�þτ22

2r3

þ2½jσj25þ8πðT̄rrÞ5�þ2τ2½jσj24þ8πðT̄rrÞ4�þτ32
4r4

þOðr−5Þ;
ð5:18Þ

where τ2 is a global integration function and jσj2n are the
expansion coefficients of jσj2:

jσj2 ¼ jσj24
r4

þ jσj25
r5

þOðr−6Þ: ð5:19Þ

Using (5.18) we find from (5.17)

δζ ¼ Λ

�
2r
3
−
τ2
3
þ τ22 − 2τ3

3r
þ 3τ2τ3 − τ32 − 2τ4

3

log r
r2

�
þ δζ2

r2
þ oðr−2Þ; ð5:20Þ

where δζ2 is again a global integration function. Summing
and combining the two integration functions ðζΛ¼0Þ2 and
δζ2 into ζ2, the solution of (3.15) gives

ζ ¼ 2Λ
3

r −
Λτ2
3

−
�
R
∘ þ Λð2τ3 − τ22Þ

3

�
r−1

þ Λð3τ2τ3 − τ32 − 2τ4Þ
3

log r
r2

þ ζ2
r2

þ oðr−2Þ: ð5:21Þ

Using this and the asymptotic expansion of Δǧr [compare
[[11], Eq. (51)]]

Δǧr ¼
Δ

h
∘ τ2

2r2
þOðr−3Þ ð5:22Þ

and expressing (5.14) in terms of rBo, one obtains

ðζBoÞ2 ¼ ζ2þ
R
∘

2
τ2þΔ

h
∘ τ2

þΛ
3

�
−
jσBoj25þ 8πðT̄Bo

rr Þ5
3

þ τ2½jσj24þ 8πðT̄rrÞ4�
�
;

ð5:23Þ
ζBolog;2 ¼

Λ
3
ð2τ2½jσj24 þ 8πðT̄rrÞ4� − jσj25 − 8πðT̄rrÞ5Þ:

ð5:24Þ

Inserting (5.23) into (5.10) and using the boundary con-
ditions on ν0Bo and νABo, introduced in (5.4), we find

M ¼ 1

4

�
ζ2 þ

R
∘

2
τ2 þ Δ

h
∘ τ2

�
−
1

2
∇∘ AðνBoA Þ0

−
Λ
12

ðjσBoj25 þ 8πðT̄Bo
rr Þ5 − τ2½jσj24 þ 8πðT̄rrÞ4�Þ:

ð5:25Þ

We now calculate the expansions of jσj2 and jσBoj2 to
insert explicit expressions for the coefficients occurring
in M. Further we want to relate the relevant coefficients of
the energy-momentum tensor in Bondi-type coordinates to
their representation in affine coordinates. For jσj2 one
obviously has

jσj2 ¼ jσj24
r4

þ jσj25
r5

þOðr−6Þ

¼ ðσABÞ2ðσBAÞ2
r4

þ 2
ðσABÞ2ðσBAÞ3

r5
þOðr−6Þ; ð5:26Þ

and performing a coordinate transformation and replacing
the dependence on r with rBo we obtain

jσBoj2 ¼ ðσABÞ2ðσBAÞ2
r4Bo

þ 2
ðσABÞ2ðσBAÞ3 − ðσABÞ2ðσBAÞ2τ2

r5Bo
þOðr−6BoÞ

¼ jσj24
r4Bo

þ jσj25 − 2jσj24τ2
r5Bo

þOðr−6BoÞ: ð5:27Þ

By assumption or by smooth conformal compactifiabil-
ity we can write T̄Bo

rr in the form

T̄Bo
rr ¼ ðT̄Bo

rr Þ4
r4Bo

þ ðT̄Bo
rr Þ5
r5Bo

þOðr−6BoÞ: ð5:28Þ

Performing a coordinate transformation we find an analog
expansion for T̄rr in affine coordinates and replacing again
the dependence on r with rBo we obtain
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T̄Bo
rr ¼ ðT̄rrÞ4

r4Bo
þ ðT̄rrÞ5 − 2ðT̄rrÞ4τ2

r5Bo
þOðr−6BoÞ: ð5:29Þ

Therefore we end up with the following formula for the
mass aspect expressed through characteristic data:

M ¼ 1

4

�
ζ2 þ

R
∘

2
τ2 þ Δ

h
∘ τ2

�
−
1

2
∇∘ AðνBoA Þ0

þ Λ
12

ð3τ2½jσj24 þ 8πðT̄rrÞ4� − ½jσj25 þ 8πðT̄rrÞ5�Þ:
ð5:30Þ

Using again the definition of the characteristic mass and
bearing in mind that the divergence terms will vanish after

integration over N
∘
we find

mTB¼
1

16π

Z
N
∘

�
ζ2þ

R
∘

2
τ2

�
dμ

h
∘

þ Λ
48π

Z
N
∘ ð3τ2½jσj24þ8πðT̄rrÞ4�−½jσj25þ8πðT̄rrÞ5�Þdμh∘ :

ð5:31Þ

D. The characteristic mass and the
renormalized volume

We are ready to prove our final formula for the character-
istic mass, which will be in terms of geometric fields
defined on a characteristic surface parametrized by an
affine parameter r ranging from r0 to infinity. In the case of
a light cone we take r0 ¼ 0, but we allow nonzero r0 to
cover other situations of interest.
We first note the asymptotic expansion of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ḡAB

p
for

large r, which is obtained by using the considerations in
[[10], leading to Eq. (3.13) there] and our result for the
expansion of τ, (5.18):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ḡAB

p
¼ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
deth

∘
AB

q �
1−

τ2
r
þ τ22−2½jσj24þ8πðT̄rrÞ4�

4r2
þ2τ2½jσj24þ8πðT̄rrÞ4�− ½jσj25þ8πðT̄rrÞ5�

6r3
þOðr−4Þ

�
: ð5:32Þ

Using this, dμǧ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ḡAB

p
dx2dx3, and the expansion (5.21) of ζ, we findZ

N
∘ ζdμǧ ¼

2Λ
3

r3
Z
N
∘ dμh∘|fflfflffl{zfflfflffl}

≕μ
h
∘ðN

∘
Þ

− Λr2
Z
N
∘ τ2dμh∘ − r

Z
N
∘ R

∘
dμ

h
∘ − Λr

Z
N
∘

�
½jσj24 þ 8πðT̄rrÞ4� −

1

2
τ22

�
dμ

h
∘

−
Λ
3
log r

Z
N
∘ ð½jσj25 þ 8πðT̄rrÞ5� − 2½jσj24 þ 8πðT̄rrÞ4�τ2Þdμh∘ þ

Z
N
∘ ½ζ2 þ R

∘
τ2�dμh∘ −

Λ
12

Z
N
∘ τ

3
2dμh∘

þ Λ
18

Z
N
∘ ð19τ2½jσj24 þ 8πðT̄rrÞ4� − 2½jσj25 þ 8πðT̄rrÞ5�Þdμh∘ þ oð1Þ: ð5:33Þ

From (3.15) with κ ¼ 0 and the Gauss-Bonnet theorem
we haveZ
N
∘ ð∂r þ τÞζdμǧ ¼ −4πχðN

∘
Þ þ

Z
N
∘

�
1

2
jξj2 þ S

�
dμǧ

þ 2Λ
Z
N
∘ dμǧ; ð5:34Þ

where χðN
∘
Þ is the Euler characteristic ofN

∘
. The integral in

the last term of that equation is the area of the constant-r
sections of N , and we define the volume function VðrÞ to
be its integral

VðrÞ ≔
Z

r

~r¼r0

dVð~rÞ
d~r

d~r ¼
Z

r

~r¼r0

Z
N
∘ dμǧd~r: ð5:35Þ

Remark 5.1.—We note that VðrÞ is uniquely defined up
to the choice r0 of the origin of r and up to scaling on each
generator.
When cross sections of I are negatively curved compact

manifolds, the asymptotic conditions imposed in our
construction define the scaling uniquely.
When cross sections of I are flat compact manifolds,

the asymptotic conditions imposed in our construc-
tion define the scaling up to a constant. This freedom

can be gotten rid of by requiring the h
∘
-volume of

the cross section to take some convenient value, e.g., 1
or ð2πÞ2.
When cross sections of I are two-dimensional

spheres, the asymptotic conditions imposed in our
construction define the scaling uniquely up to the action
of the group of conformal transformations of S2. This
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freedom reflects the fact that in this case mTB is not a
mass but the time component of a covector.
A redefinition of r0 affects the explicit formula for V

as a function of r, and hence the numerical value of the
“renormalized volume,” to be defined shortly. When N
is a globally smooth light cone or a smooth hypersur-
face emitted from a submanifold of codimension larger
than 1, then the origin of the affine parameter r0 ¼ 0 is
determined by the location of the “emitting” submani-
fold, which gets rid of the last ambiguity. □

Using ∂r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ḡAB

p ¼ τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ḡAB

p
we find

∂r

Z
N
∘ ζdμǧ ¼−4πχðN

∘
Þþ2Λ

dVðrÞ
dr

þ
Z
N
∘

�
1

2
jξj2þS

�
dμǧ;

ð5:36Þ
which we can integrate in r starting from r ¼ r0:

lim
r→∞

�Z
N
∘ ζdμǧþ4πχðN

∘
Þr−2ΛVðrÞ

�
¼ lim

r→r0

Z
N
∘ ζdμǧþ4πχðN

∘
Þr0þ

Z
∞

r¼r0

Z
N
∘

�
1

2
jξj2þS

�
dμǧdr:

ð5:37Þ
We leave the symbol limr→r0 in the last equation to
accommodate a vertex at r ¼ r0, where ζ is singular, but
note that light surfaces emanating from smooth space
codimension-2 submanifolds will also be of interest to
us. One needs to make sure to use appropriate boundary
conditions for the lower bound of the integration depending
on what kind of characteristic surface is studied. In the case
of a light cone, i.e., a null hypersurface emanating from a
point at r0 ¼ 0, the necessary boundary conditions follow
from regularity at the tip of the cone as discussed in [[18],
Sec. IV. E].
When the first term in the last line vanishes, we can infer

non-negativity of the left-hand side by assuming the
dominant energy condition for nonvanishing matter fields.
This condition implies then [20]

S ≔ 8πðḡABT̄AB − T̄Þ ≥ 0; ð5:38Þ

which means that the right-hand side of (5.37) is manifestly
non-negative. Assuming that the right-hand side of (5.37)
is finite, we see that the divergent terms in 2ΛVðrÞ and

4πχðN
∘
Þr need to cancel those in the expression on the

right-hand side of (5.33) exactly. To make this precise, we
continue by calculating an explicit expression for the
volume function VðrÞ. We start by using again (5.32)
and find

dVðrÞ
dr

¼
Z
N
∘ dμǧ¼r2μ

h
∘ ðN

∘
Þ−r

Z
N
∘ τ2dμh∘

þ1

2

Z
N
∘

�
1

2
τ22−½jσj24þ8πðT̄rrÞ4�

�
dμ

h
∘

þ 1

6r

Z
N
∘ ð2½jσj24þ8πðT̄rrÞ4�τ2−½jσj25þ8πðT̄rrÞ5�Þdμh∘

þOðr−2Þ: ð5:39Þ

It follows that there exist constants so that the function VðrÞ
has an asymptotic expansion of the form

VðrÞ ¼ 1

3
r3μ

h
∘ ðN

∘
Þ þ V−2r2 þ V−1rþ V log log r

þ V0 þ V1r−1 þ oðr−1Þ:

We define the renormalized volume Vren as “the finite
leftover in the expansion”:

Vren ≔ V0:

One can think of Vren as the global integration function
arising from integrating the equation for dV=dr. The
numerical value of Vren is defined up to the ambiguities
pointed out in Remark 5.1.

Integrating (5.39) we obtain in fact

−2ΛVðrÞ ¼ Λ

�
−
2

3

��
r −

τ2
2

�
3

þ
�
τ2
2

�
3
�
μ
h
∘ ðN

∘
Þ − 2Vren þ r

Z
N
∘ ð½jσj24 þ 8πðT̄rrÞ4�Þdμh∘

þ 1

3
log r

Z
N
∘ ð½jσj25 þ 8πðT̄rrÞ5� − 2½jσj24 þ 8πðT̄rrÞ4�τ2Þdμh∘

	
þOðr−1Þ; ð5:40Þ

and thus

Vren ¼ lim
r→∞

�
VðrÞ − r3

3
μ
h
∘ ðN

∘
Þ þ r2

2

Z
N
∘ τ2dμh∘ þ

r
2

Z
N
∘

�
½jσj24 þ 8πðT̄rrÞ4� −

1

2
τ22

�
dμ

h
∘

þ 1

6
log r

Z
N
∘ ð½jσj25 þ 8πðT̄rrÞ5� − 2½jσj24 þ 8πðT̄rrÞ4�τ2Þdμh∘

	
: ð5:41Þ
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Now, by (5.37) and using (5.33) and (5.40),

lim
r→∞

�Z
N
∘ ζdμǧ þ 4πχðN

∘
Þr − 2ΛVðrÞ

�
¼ lim

r→∞

�
−r
Z
N
∘ R

∘
dμ

h
∘ þ 4πχðN

∘
Þr
�
−

Λ
12

Z
N
∘ τ

3
2dμh∘

þ Λ
18

Z
N
∘ ð19τ2½jσj24 þ 8πðT̄rrÞ4� − 2½jσj25 þ 8πðT̄rrÞ5�Þdμh∘

þ
Z
N
∘ ðζ2 þ R

∘
τ2Þdμh∘ − 2ΛVren

¼ lim
r→r0

Z
N
∘ ζdμǧ þ 4πχðN

∘
Þr0 þ

Z
∞

r¼r0

Z
N
∘

�
1

2
jξj2 þ S

�
dμǧdr: ð5:42Þ

Next we rewrite (5.31) as

16πmTB ¼
Z
N
∘ ðζ2 þ R

∘
τ2Þdμh∘ −

Z
N
∘
R
∘

2
τ2dμh∘ þ

Λ
3

Z
N
∘ ð3τ2½jσj24 þ 8πðT̄rrÞ4� − ½jσj25 þ 8πðT̄rrÞ5�Þdμh∘ ; ð5:43Þ

and find, by (5.42) and (5.43), using
R
N
∘ R

∘
dμ

h
∘ ¼ 4πχðN

∘
Þ,

16πmTB ¼ lim
r→r0

Z
N
∘ ζdμǧ þ 4πχðN

∘
Þr0 þ

Z
∞

r¼r0

Z
N
∘

�
1

2
jξj2 þ S

�
dμǧdr −

Z
N
∘
R
∘

2
τ2dμh∘ þ 2ΛVren þ

Λ
12

Z
N
∘ τ

3
2dμh∘

−
Λ
18

Z
N
∘ ðτ2½jσj24 þ 8πðT̄rrÞ4� þ 4½jσj25 þ 8πðT̄rrÞ5�Þdμh∘ : ð5:44Þ

We continue with a generalization of the arguments
leading to Eq. (43) in [11]. Indeed, we allow the case
r0 ≠ 0. Next, for further reference, we allow an asymptotic
behavior for small r for light cones emanating from a
submanifold of general space codimension d, and not only
a light cone. Finally, for future reference the following
calculations, up to the resulting expansion of τ, (5.53), are
performed for arbitrary space-time dimensions nþ 1 ≥ 3.
Keeping in mind the expansion (2.10) for large r, we

note that

τ ¼

 n−1

r þ τ2
r2 þOðr−3Þ; for large r;

d−1
r þOð1Þ; for small r:

ð5:45Þ

Here the behavior for small r is the one which occurs when
the set fr ¼ 0g has space codimension d (e.g., d ¼ n for a
light cone emanating from a point). If r0 > 0 we assume
that τ is smooth up to boundary when the boundary r ¼ r0
is approached.
Next, let

τ1 ≔
n − 1

r
: ð5:46Þ

This is the value of τ for a light cone in Minkowski space-
time, and it follows from (2.10) that this is the value

approached asymptotically along null hypersurfaces meet-
ing I smoothly and transversally. Let

δτ ≔ τ − τ1

denote the deviation of τ from its asymptotic value for large
r; then

δτ ¼
(

τ2
r2 þOðr−3Þ; for large r;
d−n
r þOð1Þ; for small r:

ð5:47Þ

(Note that δτ is diverging at the same rate as τ for small r
when d ≠ n.) From the Raychaudhuri equation (3.11) with
κ ¼ 0 one finds that δτ satisfies the equation

dδτ
dr

þ
�

δτ

n − 1
þ 2

r

�
δτ ¼ −jσj2 − 8πT̄rr: ð5:48Þ

Define

Ψ≡ r−2Φ ≔ r−2 exp

�Z
r

r�

�
δτ

n − 1
þ 2

~r

�
d~r

�
;

for some r� (possibly depending upon xA), which will be
irrelevant for our final formula (5.53) below except for the
requirement that the integral converge. Thus
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1

Φ
dΦ
dr

¼ δτ

n − 1
þ 2

r
; ð5:49Þ

so that (5.48) is equivalent to

1

Φ
dðΦδτÞ
dr

¼ −jσj2 − 8πT̄rr: ð5:50Þ

Using (5.47), we are led to the following three equivalent expressions for the function Ψ:

Ψðr; xAÞ ¼

8>>>>>>>><>>>>>>>>:

exp

�
−
Z

∞

r

δτ

n − 1
ðs; xAÞdsþ C1ðxAÞ

�
; ð5.51aÞ

exp

�Z
r

r0

δτ

n − 1
ðs; xAÞdsþ C2ðxAÞ

�
; ð5.51bÞ

r
d−n
n−1 exp

�
1

n − 1

Z
r

0

h
δτðs; xAÞ − d − n

s

i
dsþ C3ðxAÞ

�
; ð5.51cÞ

for some functions CiðxAÞ, depending upon the choice of r�. In (5.51b) we have assumed that r0 > 0, while (5.51c) holds
when δτðr; xAÞ ∼ ðd − nÞr−1 for small r; compare (5.47).
We emphasize that both Φ and Ψ are auxiliary functions that are only needed to derive (5.53) below, and there is some

freedom in their definition. In particular either of the functionsCiðxAÞ, i ¼ 1, 2, 3, can be chosen to be zero if convenient for
a specific problem at hand, and we note that the CiðxAÞ’s cancel out in the final expression for τ in any case.
We further stress that in the special case of a light cone we have d ¼ n and treating the case for small r separately is not

necessary. In this case (5.51b) coincides with (5.51c).
Thus, using δτ ¼ τ − τ1 and (5.46),

Ψðr0; xAÞ
Ψðr; xAÞ ¼

8>><>>:
exp

�
−

1

n − 1

Z
r

r0

�
τðs; xAÞ − n − 1

s

�
ds
�
; ð5.52aÞ�r0

r

�d−n
n−1 exp

� 1

n − 1

Z
r0

r

�
δτðs; xAÞ − d − n

s

�
ds
�
; ð5.52bÞ

with both (5.51a) and (5.51b) leading to (5.52a) as long as the right-hand side of (5.52a) converges, and with (5.52b)
holding with r0 ¼ 0 when δτðr; xAÞ ∼ ðd − nÞr−1 for small r.
Integrating (5.50) and using (5.52a), without denoting the dependence on coordinates xA explicitly in what follows,

τ ¼ n − 1

r
− r−2

�
ΨðrÞ−1

Z
r

~r¼r0

ðjσð~rÞj2 þ 8πT̄rrð~rÞÞΨð~rÞ~r2d~r − lim
s→r0

ΨðsÞ
ΨðrÞ

�
τðsÞ − n − 1

s

�
s2
	
: ð5:53Þ

We can directly read off the expression for τ2 from this:

τ2 ¼ − lim
r→∞



ΨðrÞ−1

Z
r

~r¼r0

ðjσð~rÞj2 þ 8πT̄rrð~rÞÞΨð~rÞ~r2d~r
�
−
h
lim
r→∞

ΨðrÞ−1
i
× lim

r→r0

�
ΨðrÞ

�
n − 1

r
− τ

�
r2
	
: ð5:54Þ

From now on we return to space-time dimension 4:

nþ 1 ¼ 4:

Returning to (5.44), inserting the result for τ2 we just found, and using further

dμǧ ¼ e−
R

∞
r

~rτ−2
~r d~rr2dμ

h
∘ ; ð5:55Þ

we obtain our final formula for the characteristic mass mTB of a null hypersurface N ¼ ½r0;∞Þ ×N
∘
:
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mTB ¼ 1

16π

Z
∞

r¼r0

Z
N
∘

�
1

2
jξj2 þ Sþ

�
R
∘

2
þ Λ
18

ðjσj24 þ 8πðT̄rrÞ4Þ
	
ðjσj2 þ 8πT̄rrÞe

R
∞
r

~rτ−2
2~r d~r
�
dμǧdr

þ 1

16π

�
4πχðN

∘
Þr0 þ lim

r→r0

�Z
N
∘

�
ζ þ

�
R
∘

2
þ Λ
18

ðjσj24 þ 8πðT̄rrÞ4Þ
��

2

r
− τ

�
e
R

∞
r0

rτ−2
2r dr
	
dμǧ

�	
þ Λ
192π

Z
N
∘ τ

3
2dμh∘ þ

ΛVren

8π
−

Λ
72π

Z
N
∘ ðjσj25 þ 8πðT̄rrÞ5Þdμh∘ : ð5:56Þ

To obtain this equation, it is irrelevant which form of Ψ in (5.51) we take, provided that the same formula is consistently
used throughout. For example, if ΨðrÞ is given by (5.51a) with C1ðxAÞ ¼ 0, then limr→∞ΨðrÞ equals 1, independently of
whether r0 ¼ 0 (so that the null hypersurface is singular at r0) or r0 ≠ 0 (in which case the set fr ¼ r0g has space
codimension 1).
In the special case of a light cone, where d ¼ n ¼ 3, R

∘ ¼ 2, and r0 ¼ 0,4 (5.56) simplifies to

mTB ¼ 1

16π

Z
∞

0

Z
N
∘

�
1

2
jξj2 þ Sþ

�
1þ Λ

18
ðjσj24 þ 8πðT̄rrÞ4Þ

	
ðjσj2 þ 8πT̄rrÞe

R
∞
r

~rτ−2
2~r d~r
�
dμǧdr

þ Λ
192π

Z
N
∘ τ

3
2dμh∘ þ

ΛVren

8π
−

Λ
72π

Z
N
∘ ðjσj25 þ 8πðT̄rrÞ5Þdμh∘ : ð5:57Þ

Assuming further a conformally smooth compactification and vacuum we have jσj25 ¼ 0, and after some rearrangements we
obtain the striking identity

mTB ¼ 1

16π

Z
∞

0

Z
N
∘

�
1

2
jξj2 þ jσj2e

R
∞
r

~rτ−2
2~r d~r
�
dμǧdr

þ Λ
8π

�
Vren þ

1

12

Z
N
∘ τ2

�
τ22
2
−
jσj24
3

�
dμ

h
∘

�
; ð5:58Þ

with τ2 ≤ 0 given by

τ2 ¼ −
Z

∞

0

jσj2e−
R

∞
r

~rτ−2
2~r d~rr2dr: ð5:59Þ

(Recall that τ2 ¼ 0 if and only if the metric to the future of
N is, at least locally, the de Sitter or anti–de Sitter
metric [27].)

VI. COORDINATE MASS

In this section we assume that Λ < 0 and we allow
arbitrary space-time dimension nþ 1 ≥ 4.
There exist several well-defined notions of mass for

asymptotically hyperbolic initial data sets (cf., e.g., [7,28–
31]), which typically coincide whenever simultaneously
defined, some of them defined so forth only in dimension
3þ 1. Our aim, in this and in the next section, is to show
that the characteristic mass coincides with those alternative

definitions in some cases of interest. To set the stage, in this
section we introduce the notion of “coordinate mass” for
two classes of metrics. (Compare [[30] Sec. V] for a similar
treatment in dimension 3þ 1.)

A. Birmingham metrics

Consider an (nþ 1)-dimensional metric, n ≥ 3, of the
form

g ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2h
∘
ABðxCÞdxAdxB|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

≕h
∘

; ð6:1Þ

where h
∘
is a Riemannian Einstein metric on the compact

manifold which, to avoid a proliferation of notation, wewill

denote as N
∘
; we denote by xA the local coordinates on N

∘
.

As discussed in [32], for anym ∈ R and l > 0 the function

f¼ R
∘

ðn−1Þðn−2Þ−
2m
rn−2

− ε
r2

l2
; ε∈ f0;�1g; ð6:2Þ

where R
∘
is the (constant) scalar curvature of h

∘
, leads to a

vacuum metric,

Rμν ¼ ε
n
l2

gμν; ð6:3Þ

where the positive constant l is related to the cosmological
constant as

4Recall that R
∘ ¼ 2 when N

∘
is a two-sphere, R

∘ ¼ 0 for a torus,

and R
∘
< 0 for higher genus topologies of I ≈ R ×N

∘
. In the case

of a smooth light cone the cross sections are spherical for small r,

and therefore everywhere, so R
∘ ¼ 2.
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1

l2
¼ ε

2Λ
nðn − 1Þ : ð6:4Þ

Clearly, n is not allowed to equal 2 in (6.2), and we
therefore exclude this dimension in what follows.
The multiplicative factor 2 in front of m is convenient in

dimension 3 when h
∘
is a unit round metric on S2, and we

will keep this form regardless of the topology and dimen-

sion of N
∘
.

There is a rescaling of the coordinate r ¼ br̄, with
b ∈ R�, that leaves (6.1)–(6.2) unchanged if moreover

¯
h
∘ ¼ b2h

∘
; m̄ ¼ b−nm; t̄ ¼ bt: ð6:5Þ

We can use this to achieve

β ≔
R
∘

ðn − 1Þðn − 2Þ ∈ f0;�1g; ð6:6Þ

which will be assumed from now on. The set fr ¼ 0g
corresponds to a singularity whenm ≠ 0. Except in the case
m ¼ 0 and β ¼ −1, by an appropriate choice of the sign of
b we can always achieve r > 0 in the regions of interest.
This will also be assumed from now on.
We define the coordinate mass of the metric (6.1) with f

given by (6.2) to be m.
Similarly, we define the coordinate mass of any metric

that asymptotes to (6.1)–(6.2) to be m.
Here, “asymptotes to” can, e.g., be understood as

g ¼ −ðfmðRÞ þ oðR2−nÞÞdT2 þ dR2

ðfmðRÞ þ oðR2−nÞÞ
þ R2ðh∘ABðxCÞ þ oð1ÞÞdxAdxB; ð6:7Þ

for large R, at fixed T, with fm ¼ f given by (6.2).

B. HM-type metrics

1. The metric

Consider an (nþ 1)-dimensional metric, n ≥ 3, of the
form

g ¼ fðrÞdψ2 þ dr2

fðrÞ þ r2h
∘
ABðxCÞdxAdxB|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

≕h
∘

; ð6:8Þ

where now h
∘

is a Riemannian or pseudo-Riemannian

Einstein metric on an (n − 1)-dimensional manifold N
∘

with constant scalar curvature R
∘
and, similarly to the last

section, the xA’s are local coordinates on N
∘
.5 This metric

can be formally obtained from (6.1) by changing t to iψ . It
therefore follows from the discussion of Sec. VI A that for
m ∈ R and l ∈ R� the function

f¼ β−
2m
rn−2

− ε
r2

l2
; ε∈ f0;�1g; β¼ R

∘

ðn−1Þðn−2Þ ;

ð6:9Þ

leads to a metric satisfying (6.3). Rescaling the coordinate r

and the metric h
∘
by a suitable constant if necessary, we can

without loss of generality assume that

β ∈ f0;�1g:

Suppose that f has zeros, and let us denote by r0 the
largest zero of f. We assume that r0 is of first order, and we
restrict attention to r ≥ r0. Imposing a suitable ψ0-
periodicity condition on ψ ∈ ½0;ψ0�, the usual arguments
imply that the set fr ¼ r0g is a rotation axis in a plane on
which

ffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p
and ψ are coordinates of polar type. Indeed,

if we set

ρ ¼ FðrÞ; with

F ¼
Z

r

r0

1ffiffiffiffiffiffiffiffiffi
fðrÞp dr ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p

2
ffiffiffiffiffiffiffiffiffiffiffiffi
f0ðr0Þ

p ð1þOðr − r0ÞÞ;

we find

dr2

f
þ fdψ2 ¼ dρ2 þ fðF−1ðρÞÞdψ2

¼ dρ2 þ ð2f0ðr0ÞÞ2ð1þOðρ2ÞÞρ2dψ2;

which defines a smooth metric near ρ ¼ 0 if and only if

ψ ¼ λlα; ð6:10Þ

where α is a new 2π-periodic coordinate, and

λ ¼ 1

2lf0ðr0Þ
: ð6:11Þ

In the case where

ε ¼ −1;

5To avoid a proliferation of notation we use the symbol h
∘
both

for the metric on N
∘
appearing in (6.1) and for the metric on the

manifold N
∘
relevant for (6.8). Typically ðN

∘
; h
∘ Þ is a compact

Riemannian manifold, while ðN∘ ; h∘Þ in (6.8) will be Lorentzian

with N
∘
noncompact.
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one obtains Einstein metrics with a negative cosmological
constant.
Whatever ε is, a conformal completion at spacelike

infinity can be obtained by introducing a new coordinate
x ¼ l=r, bringing g to the form

g ¼ fðlx−1Þl2λ2dα2 þ l2dx2

x4fðlx−1Þ þ l2x−2h
∘

¼ x−2l2ð−ðε − βx2 þOðxnÞÞλ2dα2

− ðεþ βx2 þOðxnÞÞdx2 þ h
∘Þ: ð6:12Þ

We see explicitly that the conformal class of metrics
induced by x2g on the boundary at infinity,

I ¼ fx ¼ 0g ≈ S1 × N
∘
;

is Lorentzian if h
∘
is Lorentzian and if ε ¼ −1.

2. β = 0, n = 3

In [33] Horowitz andMyers consider the case nþ 1 ¼ 4,

ε ¼ −1,6 and choose h
∘ ¼ −l−2dt2 þ dφ2, with φ being a

2π-periodic coordinate on S1. Thus

g ¼ −
r2

l2
dt2 þ fðrÞl2λ2dα2 þ dr2

fðrÞ þ r2dφ2: ð6:13Þ

Equation (6.12) shows that timelike infinity I ≈R × S1 ×
S1 is conformally flat:

x2g→r→∞ −dt2 þ l2ðλ2dα2 þ dx2 þ dφ2Þ: ð6:14Þ

Some comments about factors of l are in order: if
we think of r as having a dimension of length, then l, t,
and ψ also have dimensions of length, m has dimension
length n−1, while f, x, and the xA’s (and thus φ) are
dimensionless.
A uniqueness theorem for the metrics (6.13) has been

established in [34].

3. β= � 1, n = 3

We consider the metric (6.8) with6 ε ¼ −1 and h
∘
of the

form

h
∘ ¼



dθ2 þ sin2ðθÞdφ2; β ¼ 1;

dθ2 þ sinh2ðθÞdφ2; β ¼ −1:
ð6:15Þ

In regions where f is positive, one obtains a Lorentzian
metric after a “double Wick rotation”

θ ¼ il−1t; φ ¼ iϕ;

resulting in

g ¼ −
r2

l2
dt2 þ dr2

fðrÞ þ fðrÞl2λ2dα2

þ r2


sinh2ðl−1tÞdϕ2; β ¼ 1;

sin2ðl−1tÞdϕ2; β ¼ −1:
ð6:16Þ

Taking α and ϕ periodic one obtains again a conformal
infinity diffeomorphic to R × T2. Note that the conformal
metric at the conformal boundary is not conformally
stationary anymore, as opposed to the HM metrics
(6.14). We have not attempted to study the nature of the
singularities of g at sinhðl−1tÞ ¼ 0 or at sinðl−1tÞ ¼ 0.

4. Negative coordinate mass

For completeness, we show that the metric (6.8) has the
striking property that its total coordinate mass is negative
when m is positive; the latter is needed for regularity of the
metric. This has already been observed in [33] in space-
dimension 3 with a toroidal Scri. Here we check that this
remains correct in higher dimensions, for a large class of
topologies of Scri.
Before continuing, we note that Lorentzian HM-type

metrics with a smooth conformal compactification at
infinity exist only with negative Λ: indeed, to obtain the
right signature for large r when ϵ > 0, one needs to
multiply the metric by −1. But then the resulting metric
has a negative Ricci scalar and hence solves Einstein
equations with a negative cosmological constant.
Somewhat more generally, consider those metrics of the

form (6.8) for which

N
∘ ¼ Rt × Ň;

where ðŇ; ȟÞ is a compact Riemannian manifold, and
where

h
∘ ¼ −l−2dt2 þ ȟ; ð6:17Þ

so that

g ¼ fðrÞdψ2 þ dr2

fðrÞ þ r2ð−l−2dt2 þ ȟÞ: ð6:18Þ

The question arises, how to define the mass of such a
metric.
To avoid ambiguities, let us write fm for the function f

of (6.9).
To assign a coordinate mass to a metric (6.18), we need

to check whether metrics satisfying (6.8)–(6.9) and (6.17)
can be written in the form (6.7) by setting r ¼ rðρÞ:

6The case β ¼ 0 and ε ¼ 1 leads to a signature ðþ − −−Þ for
large r; our signature ð−þþþÞ is recovered by multiplying the
metric by −1, but then one is back in the case ε ¼ −1 after
renaming m to −m.
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g ¼ fmðrÞl2λ2dα2 þ dr2

fmðrÞ
þ r2

l2
ð−dt2 þ l2ȟÞ

¼ −
r2

l2
dt2 þ

�
dr
dρ

�
2 dρ2

fmðrÞ
þ r2ðð1þOðβr−2Þ þOðmr−nÞÞλ2dα2 þ ȟÞ; ð6:19Þ

where the error terms have to be understood for large r. We
will have

g ≈ −fMðρÞdt2 þ
dρ2

fMðρÞ
þ ρ2ðλ2dα2 þ ȟÞ;

for some parameter M possibly different from m, provided
that

r2 ¼ l2fMðρÞð1þ oðρ−nÞÞ;�
dρ
dr

�
2

fmðrÞ ¼ fMðρÞð1þ oðρ−nÞÞ; ð6:20Þ

The first equation determines r as a function of ρ up to
correction terms oðρ−nÞ. Inserting the result into the second
equation determines M, provided that the asymptotic
expansion of the left-hand side is compatible with that
of the right-hand side. However, it is straightforward to
check that these equations are compatible if and only if

β ¼ 0: ð6:21Þ

We conclude that for metrics satisfying (6.8)–(6.9)
and (6.17) the coordinate mass is only defined if β ¼ 0.
Assuming (6.21), after asymptotically solving the first

equation in (6.20) and inserting the result into the second
one, we find that

ρ ¼ rþ l2M
rn−1

þOðr−ð2n−1ÞÞ; ð6:22Þ

and that the coordinate mass equals

M ¼ −
m

n − 1
: ð6:23Þ

In particular M is negative for positive m.

VII. EXAMPLES

Throughout this section we allow arbitrary space-time
dimension nþ 1 ≥ 4. We show that the numerical value of
the Trautman-Bondi mass, as generalized to higher dimen-
sions below, and which coincides with the characteristic
mass defined in Sec. V in dimension 3þ 1, is proportional
to the “coordinate mass” for the metrics considered in
Sec. VI. This, in itself, is not surprising, since these metrics
have only the mass parameter m as a free parameter, so
whatever we will calculate must be a function of m. The

main conclusion here appears to be that mTB is a linear
function ofm, with a strictly positive proportionality factor.
A full agreement will be obtained in the analysis of the
Hamiltonian mass in Sec. VIII below, where the propor-
tionality factors will also be matched.
In what follows, we seek to write the metrics under

consideration in the form (2.2),

g ¼ guudu2 − 2e2ωdrdu − 2r2UAdxAduþ r2hABdxAdxB|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
≕h

;

ð7:1Þ

where the determinant of hAB is r-independent. By analogy
with (5.1)–(5.2), in space-time dimension nþ 1 we set

mTB ¼ 1

8π
lim
r→∞

Z
N
∘ ðguuÞn−2dμh: ð7:2Þ

This definition is motivated by the fact that, when solving
the characteristic constraint equations on a null hypersur-
face, the ðguuÞn−2-coefficient in the expansion of guu arises
as a global integration function.

A. Birmingham metrics

Consider, first, the original Birmingham metrics (6.1),

g ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2h
∘
; ð7:3Þ

with f given by (6.2). Introducing a new coordinate
u ¼ t −

R
r
r� f

−1ðsÞds, for some conveniently chosen r�,
brings g to the desired form

g ¼ −fðrÞ
�
duþ dr

fðrÞ
�

2

þ dr2

fðrÞ þ r2h
∘

¼ −
�

R
∘

ðn − 1Þðn − 2Þ −
2m
rn−2

− ε
r2

l2

�
du2 − 2dudrþ r2h

∘
;

ð7:4Þ

where ε ∈ f�1g is the sign of the cosmological constant
Λ ¼ εjΛj, which we allow to be either positive or negative.

1. Mass and volume

The coordinate r provides obviously a radial Bondi
coordinate. Moreover, the equality ∂r ¼ −∇u implies that r
is also an affine parameter along the radial null outgoing
geodesics of g. When m ¼ 0 we have the explicit formulas
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u ¼ t −

8>>>>>>>>>>><>>>>>>>>>>>:

ltan−1
�
r
l

�
; ε ¼ −1;

ltanh−1
�
r
l

�
; ε ¼ 1;

)
β ¼ 1;

−ε l2
r ; β ¼ 0;

−ltanh−1
�
r
l

�
; ε ¼ −1;

−ltan−1
�
r
l

�
; ε ¼ 1;

)
β ¼ −1:

Equation (7.2) leads to a Bondi-Trautman-type mass

mTB ¼ m
4π

Z
N
∘ dμh∘ ≡m

μ
h
∘ ðN

∘
Þ

4π
: ð7:5Þ

[Here the normalization factor 8π in (7.2) is clearly

convenient only when N
∘
is a unit round two-dimensional

sphere, but this issue will be of no concern to us here.] We
conclude that the characteristic mass of null hypersurfaces
asymptotic to the level sets of t is indeed proportional to the
coordinate mass, with a positive proportionality factor. We
will see in Sec. VIII A that the proportionality factor is the
same as the one occurring in the Hamiltonian definition of
mass; see (8.34) below.

2. The balance equation for Birmingham metrics

Consider metrics of the form

g ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2h
∘
ABdxAdxB|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

≕h
∘

: ð7:6Þ

Recall (7.4): setting u ¼ t −
R
r
r� f

−1ðsÞds, for some con-
veniently chosen r�, brings g to a Bondi form provided that

det h
∘
is r-independent:

g ¼ −fdu2 − 2dudrþ r2h
∘
:

The inverse metric reads

g♯ ≡ gμν∂μ∂ν ¼ f∂2
r − 2∂u∂r þ r−2h

∘ ♯
;

where h
∘ ♯ ¼ h

∘AB∂A∂B is the metric inverse to h
∘
.

Similarly to the previous section, the integral curves of
the vector field

−∇u ¼ ∂r ð7:7Þ

are affinely parametrized geodesics. Whenever det h
∘
is r-

independent, the function r is therefore both an area
coordinate and an affine parameter along the generators
of the null hypersurfaces fu ¼ constg.

Recall that Vren is defined as the limit, as r approaches
infinity, of the volume VðrÞ of the light cone minus all
diverging terms in an asymptotic expansion of VðrÞ:

Vren ¼ lim
r→∞



VðrÞ þ 1

2

�
−
2

3
r3
Z
N
∘ dμh∘ þ r2

Z
N
∘ τ2dμh∘

þ r
Z
N
∘

�
jσj24 −

1

2
τ22

�
dμ

h
∘

þ 1

3
log r

Z
N
∘ ðjσj25 − 2jσj24τ2Þdμh∘

	�
< ∞ ð7:8Þ

[for simplicity, a metric vacuum to sufficiently high order
has been assumed in (7.8)].
For the Birmingham metrics (6.13) we have

Trr ≡ 0≡ S≡ σ ≡ ξ≡ τ2, R
∘ ¼ 2, and the volume func-

tion is straightforward:

VðrÞ ¼
Z

r

r�

Z
N
∘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gAB

p
d2xds

¼
μ
h
∘ ðN

∘
Þ

3
ðr3 − r3�Þ ⇒ Vren ¼ −

μ
h
∘ ðN

∘
Þr3�

3
:

The mass formula (5.10) reduces to

mTB ¼ 1

16π

�
4πχðN

∘
Þr�þ lim

r→r�

Z
N
∘ ζdμǧ

�
þ ΛVren

8π
:

Note that this holds for any value of r�. A natural choice
would be to choose r� to be the location of the outermost
past horizon, but we allow r� to be arbitrary.
Specializing to the Birmingham metrics we find, in

space-time dimension nþ 1 ¼ 4,

16πmTB ¼ 4πχðN
∘
Þr�þ lim

r→r�
μ
h
∘ ðN

∘
Þ

×

�
−2r2

�
β

r
−
2m
r2

þ r
l2

�
−
2Λr3

3

�
¼ 4πχðN

∘
Þr�þμ

h
∘ ðN

∘
Þð−2r�β þ 4mÞ

¼ 4μ
h
∘ ðN

∘
Þm; ð7:9Þ

where we have used the Gauss-Bonnet theorem to cancel

the term containing the Euler characteristic χðN
∘
Þ of N

∘

with the term involving β.

B. HM-type metrics

We pass now to the metrics (6.8) with h
∘
given by (6.17)

and ψ replaced by λlα, with λ given by (6.11), and where α
is 2π-periodic:
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g ¼ −
r2

l2
dt2 þ dr2

f
þ fl2λ2dα2 þ r2ȟ

¼ −
r2

l2
dt2 þ dr2

f
þ r

2ðn−2Þ
n−1 ðfl2Þ 1

n−1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≕r2Bo

�
fl2λ2

r2Bo
dα2 þ r2

r2Bo
ȟ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

r-independent determinant

:

ð7:10Þ

We want f to be positive for large r, and hence we need to
assume that Λ < 0.

1. Bondi coordinates, characteristic mass

Setting du ¼ dt − lf−1=2r−1dr we obtain

g ¼ −
r2

l2
du2 −

2r

f1=2l
dudrþ r2Bo

�
fl2λ2

r2Bo
dα2 þ r2

r2Bo
ȟ

�
¼ −

r2

l2
du2 −

2r

f1=2l

�
dr
drBo

�
dudrBo

þ r2Bo

�
fl2λ2

r2Bo
dα2 þ r2

r2Bo
ȟ

�
: ð7:11Þ

Note that we have obtained Bondi coordinates only if
the determinant ȟ is t-independent, as otherwise the
replacement of t by its expression in terms of u and r
introduces back r-dependence in the determinant of gAB.
Equation (6.16) clearly shows that this requires β ¼ 0 in
dimension nþ 1 ¼ 4. Nevertheless we continue our cal-
culations without assuming the vanishing of β.
In space-time dimension nþ 1 ¼ 4 we find

rBo ¼ rþ βl2

4r
−
l2m
2r2

þOðr−3Þ

⇔ r ¼ rBo −
βl2

4rBo
þ l2m
2r2Bo

þOðr−3BoÞ; ð7:12Þ

leading to

guu ¼ −
�
r2Bo
l2

−
β

2
þ m
rBo

þ β2l2

16r2Bo

�
þOðr−3BoÞ: ð7:13Þ

Equation (7.2) gives

mTB ¼ −
mμĥðS1 × ŇÞ

8π
; ð7:14Þ

where μĥ is the measure induced on S1 × Ň by the metric

ĥ ≔ lim
r→∞

�
fl2λ2

r2Bo
dα2 þ r2

r2Bo
ȟ

�
¼ λ2dα2 þ ȟ: ð7:15Þ

In all dimensions, when β vanishes we find

mTB ¼ −
mμĥðS1 × ŇÞ
4ðn − 1Þπ ; ð7:16Þ

and the above remains true whether or not β vanishes in odd
space-dimensions n. We see that in these cases the
characteristic mass coincides with the coordinate mass,
up to a volume normalization factor related to the integrals
involved. We will see in Sec. VIII B that, similarly to the
Birmingham metrics, in space-time dimension 4 the pro-
portionality coefficient is the same as that for the
Hamiltonian mass; see (8.51) below.
In even space-dimensions n ¼ 2k, when β does not

vanish, a calculation shows that the definition (7.2) gives
instead the curious formula

mTB ¼ −
ðmþ ckβkln−2ÞμĥðS1 × ŇÞ

4ðn − 1Þπ ; ð7:17Þ

where ck ∈ R� is a numerical coefficient depending upon k.
For example, we have

c2 ¼
1

6
; c3 ¼ −

2

25
; c4 ¼

33

686
;

c5 ¼ −
644

19683
; c6 ¼

7735

322102
: ð7:18Þ

2. Renormalized volume

With the choice

ψ0 ¼ 2πlλ; ð7:19Þ

where λ is given by (6.11), the curves obtained by letting ψ
vary from zero to ψ0 while keeping t fixed and r ¼ r0,
where fðr0Þ ¼ 0 with f given by (6.9), are closed geo-
desics for the metric (6.8): this follows from the fact that the
manifold fr ¼ r0g is the fixed-point set of the group of
isometries generated by the Killing vector field ∂ψ and is
therefore totally geodesic. Those geodesics will be referred
to as “core geodesics” or “emission curves.”
From the definition of r0 we have

r20
l2

¼ 2m
r0

⇔ r0 ¼ ð2ml2Þ13: ð7:20Þ

It is remarkable that the null surfaces issuing normally
from those geodesics are smooth away from the emission
curves, and their union covers the whole space-time.
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The contravariant metric g♯ associated to (7.11) equals

g♯ ¼ f∂2
r −

2l
ffiffiffiffiffiffiffiffiffi
fðrÞp
r

∂u∂r þ f−1l−2λ−2∂2
α þ r−2∂2

φ:

The vector field

−∇u ¼ l
ffiffiffiffiffiffiffiffiffi
fðrÞp
r

∂r ð7:21Þ

has vanishing Lorentzian length, and a standard argument
shows that its integral curves are affinely parametrized
geodesics. Hence the parameter s defined as

ds
dr

¼ r

l
ffiffiffiffiffiffiffiffiffi
fðrÞp ⇔ ∂s ¼

l
ffiffiffiffiffiffiffiffiffi
fðrÞp
r

∂r ð7:22Þ

is an affine parameter along the generators of the null
hypersurfaces fu ¼ constg. (An explicit expression for s in
terms of elliptic integrals in space-time dimension nþ 1 ¼
4 can be given, which again does not appear to be very
useful.)
We are ready to calculate the renormalized volume Vren.

We have

Vðs0Þ ¼
Z

s0

s¼0

Z
N
∘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detgAB

p
d2xds

¼
Z

s0

s¼0

Z
N
∘ lλ

ffiffiffi
f

p
rdαdφ

ds
dr|{z}
r

l
ffiffiffiffiffi
fðrÞ

p

dr

¼ μĥðN
∘
Þ
Z

rðs0Þ

rð0Þ
r2dr¼ 1

3
μĥðN

∘
Þðr3ðs0Þ− r30Þ: ð7:23Þ

Here one should keep in mind that r3ðs0Þ needs to be
reexpressed in terms of the affine parameter s0 before
removing the singular part of Vðs0Þ. For this, integration of
(7.22) gives, for large r,

s¼ r− r0þ
Z

∞

r0

�
r

l
ffiffiffi
f

p −1

�
dr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕s�

−
l2m
2r2

−
3l4m2

10r5
þOðr−8Þ;

ð7:24Þ

with 0 < s� < ∞ for m > 0.
It is convenient to introduce a dimensionless variable x

through the formula s ¼ r0x ¼ ð2ml2Þ1=3x and set
s� ¼ ð2ml2Þ1=3x�. After inverting (7.24) one obtains

r3 − r30 ¼
1

2
l2mð4x3 − 12x2ðx� − 1Þ þ 12xðx� − 1Þ2 − 4x3�

þ 12x2� − 12x� þ 3Þ: ð7:25Þ

Inserting into (7.23) leads to

Vren ¼
1

6
l2mð−4x3� þ 12x2� − 12x� þ 3ÞμĥðN

∘
Þ

¼ 1

6
l2mð4ð1 − x�Þ3 − 1Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

≈−0.6793

μĥðN
∘
Þ; ð7:26Þ

where we have used

x� ¼
Z

∞

1

0@ 1ffiffiffiffiffiffiffiffiffiffiffi
1 − 1

x3

q − 1

1Adx ≈ 0.568815: ð7:27Þ

More information on the null geometry of HM metrics,
as well as a term-by-term analysis of the balance equation,
can be found in the Appendix.

VIII. HAMILTONIAN MASS, Λ < 0

Until specified otherwise, we allow arbitrary space-time
dimension nþ 1 ≥ 4.
The calculations of the mass so far might appear to be

ad hoc. In particular one wonders why the coordinates
approach of Sec. VI B 4 appears to allow only the β ¼ 0
case for HM-type metrics. As such, a systematic way of
obtaining an expression for the energy of a field configu-
ration is to use a Hamiltonian approach. Now, both families
of metrics (6.1) and (6.18), with f given by (6.2), are
asymptotic, as r → ∞, to a background metric b obtained
by setting m ¼ 0 in f (with different backgrounds for each
family). When Λ < 0 one can therefore use,7 in each case,
the formalism of [36] (as already done in [30] for (3þ 1)-
dimensional asymptotically Kottler metrics), to define the
mass of g relative to b. Indeed, the Hamiltonian analysis in
[36] shows that to every spacelike hypersurface S and b-
Killing vector X one can associate a Hamiltonian mass
HðX;SÞ through the formula

HðX;SÞ ¼ 1

2

Z
∂S

UαβdSαβ; ð8:1Þ

where the integral over ∂S is understood as the limit of
integrals over a family of well-behaved boundaries
of sets that exhaust S. Here dSαβ is defined as
∂
∂xα ⌟

∂
∂xβ ⌟ dx

0∧ � � �∧dxn, with ⌟ denoting contraction,
and Uαβ is given by

Uνλ ¼ Uνλ
βXβ þ 1

8π
Δα½νXλ�

;α; ð8:2Þ

Uνλ
β ¼

2j det bμνj
16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det gρσj
p gβγðe2gγ½νgλ�κÞ;κ; ð8:3Þ

7When Λ > 0, a Hamiltonian definition of mass requires
somewhat different considerations; see [35].
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where a semicolon denotes covariant differentiation with
respect to the background metric b, while

e ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det gρσj

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det bμνj
p ; ð8:4Þ

Δαν ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det gρσj

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det bαβj
p gαν − bαν: ð8:5Þ

A. Asymptotically Birmingham metrics

We wish, first, to calculate (8.1) for (nþ 1)-dimensional
metrics with Birmingham asymptotics, with a negative
cosmological constant Λ [equivalently, in (6.2) we take
ε ¼ −1], with the Killing vector ∂0 and with
Σ ¼ ft ¼ constg. For this, it is useful to introduce the
following b-orthonormal frame:

e0̂ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
βþ r2

l2

q ∂0; e1̂¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
βþ r2

l2

s
∂r; eÂ¼

1

r
ιÂ; ð8:6Þ

where ιÂ is an orthonormal (ON) frame for the metric h
∘
. To

avoid ambiguities, we state that the contravariant form of
the background metric is, by definition,

bμν∂μ ⊗ ∂ν ≔ −e0̂ ⊗ e0̂ þ e1̂ ⊗ e1̂ þ
Xn
A¼2

eÂ ⊗ eÂ: ð8:7Þ

Here and in what follows in the current section
we use

A ∈ f2; 3;…; ng;

and we shall use hatted indices to denote the components of
a tensor field in the frame eμ̂ defined in (8.6). The
connection coefficients, defined as ∇eμ̂eν̂ ¼ ωρ̂

ν̂ μ̂eρ̂ with
∇ associated with b, read

ω0̂ 1̂ 0̂ ¼ −
r

l2

ffiffiffiffiffiffiffiffiffiffiffiffi
β þ r2

l2

q ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β l4

r2 þ l2

q ¼ −
1

l
þOðr−2Þ;

ω1̂ Â B̂ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
β þ r2

l2

q
r

bÂ B̂ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

r2
þ 1

l2

r
bÂ B̂

¼
�
−
1

l
þOðr−2Þ

�
bÂ B̂: ð8:8Þ

The remaining possibly nonvanishing connection coeffi-
cients, not obtained from the above by permutations of
indices, are the ωÂ B̂ Ĉ’s, with Â ≠ B̂. For example, in space-
time dimension 3þ 1, if we use a coordinate system θ, φ on

N
∘
in which h

∘
takes, locally, the form dθ2 þ sinh2 θdφ2 for

k ¼ −1, dθ2 þ dφ2 for k ¼ 0, and dθ2 þ sin2 θdφ2 for
k ¼ 1, we find

ω2̂ 3̂ 3̂ ¼

8>><>>:
− coth θ

r ; k ¼ −1;
0; k ¼ 0;

− cot θ
r ; k ¼ 1:

ð8:9Þ

However, the exact form above, and the one of ωÂ B̂ Ĉ in
general, is not needed for what follows.
We further have

X0̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β þ r2

l2

s
¼ r

l
þOðr−1Þ; ð8:10Þ

e1̂ðX0̂Þ ¼ ðX0̂Þ;1̂ ¼ −X0̂;1̂ ¼ X1̂;0̂ ¼
r
l2

; ð8:11Þ

with the third equality in (8.11) following from the Killing
equations Xμ;ν þ Xν;μ ¼ 0; all the remaining Xμ̂’s and
Xμ̂;ν̂’s are zero.
Let the tensor field eμν be defined by the formula

eμν ≔ gμν − bμν: ð8:12Þ

As already mentioned, we use hatted indices to denote the
components of a tensor field in the frame eμ̂; e.g., eμ̂ ν̂

denotes the coefficients of eμν with respect to that frame:

eμν∂μ ⊗ ∂ν ¼ eμ̂ ν̂eμ̂ ⊗ eν̂:

Let the θÂ’s form a coframe dual to the eÂ’s. Then

θ0̂∧…∧θn̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det bαβj

q
dx0∧…∧dxn;

and so on the level sets of t intersected with those of r we
have

UαβdSαβjr¼R ¼ Uα̂ β̂eα̂⌋eβ̂⌋ðdx0∧…∧dxnÞjr¼R

¼ Uα̂ β̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det bαβj
p eα̂⌋eβ̂⌋ðθ0̂∧…∧θn̂Þjr¼R

¼ 2U1̂ 0̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det bαβj
p θ2̂∧…∧θn̂jr¼R:

From (8.1) we thus find

HðX;SÞ ¼ lim
R→∞

Z
S∩fr¼Rg

U1̂ 0̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det bαβj
p θ2̂∧…∧θn̂: ð8:13Þ

Wewish to analyze when the above limit exists. Since every
θÂ comes with a multiplicative factor of r in local
coordinates on the level sets of R within S, again in local
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coordinates the integrand in (8.13) behaves as rn−1U1̂ 0̂.
Now,

rn−1U1̂ 0̂
βXβ ¼ rn−1U1̂ 0̂

0̂X
0̂ ≈

rn

l
U1̂ 0̂

0̂;

and hence in the calculations we only need to keep track of
those terms in U1̂ 0̂

0̂=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det bαβj

p
that decay slower than r−n,

or at that rate. Similarly one sees from (8.10)–(8.11) that
only those terms in

Δα̂ ν̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gρ̂ σ̂j

q
gα̂ ν̂ − bα̂ ν̂

[compare (8.5)] that are Oðr−nÞ, or that are decaying
slower, will give a nonvanishing contribution to the term
involving the derivatives of X in the integral (8.13).
We will say that a metric is “asymptotically

Birmingham” if there exists ϵ > 0 such that in the frame
(8.6) it holds

eμ̂ ν̂ ¼ Oðr−n=2−ϵÞ; eρ̂ðeμ̂ ν̂Þ ¼ Oðr−n=2−ϵÞ;
detðeμ̂ ν̂Þ − 1 ¼ Oðr−n−ϵÞ: ð8:14Þ

We note that we have imposed the volume-element con-
dition to guarantee convergence of mass integrals; see
(8.16)–(8.17) below.
Recall that we only consider vector fields X which are b-

Killing vector fields, and therefore their tetrad components
satisfy

jXν̂j þ j∇∘ μ̂Xν̂j ≤ Cr: ð8:15Þ

We claim that Eqs. (8.14) guarantee a finite total energy
in vacuum. Indeed, this follows from the standard integral
identity (cf., e.g., [36]),

Z
fx0¼0;r¼Rg

UαβdSαβ ¼ 2

Z
fx0¼0;R0≤r≤Rg

∇∘ βUαβdSα þ
Z
fx0¼0;r¼R0g

UαβdSαβ; ð8:16Þ

with

16π∇∘ βUαβ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
gαγ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det bj

p
bαγÞbγβXβ þ ðT∘ α

κ − T α
κÞXκ þ 2Λð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det bj

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
ÞXβ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det bj

p
ðQα

βXβ þQα
βγ∇

∘ β
XγÞ; ð8:17Þ

where Qα
β is a quadratic form in eaðebcÞ, and Qα

βγ is
bilinear in eaðebcÞ and eab, both with bounded coefficients.
Finally,

8πT λ
κ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p �
Rλ

κ −
1

2
gαβRαβδ

λ
κ þ Λδλκ

�
; ð8:18Þ

with T
∘ λ

κ defined as in (8.18), with g replaced by b.
Passing with R to infinity in (8.16), under (8.14) the

right-hand side converges to a finite limit in vacuum, and
one finds indeed that the resulting Hamiltonians are finite.
If the metric is not vacuum, the same argument applies if

one moreover assumes that there exists ϵ > 0 such that

jT μ
ν − T

∘ μ
νj ≤ Cð1þ rÞ−1−ϵ: ð8:19Þ

We note that for the calculations of the boundary term the
following, slightly weaker, conditions suffice:

eμ̂ ν̂ ¼ oðr−n=2Þ; eρ̂ðeμ̂ ν̂Þ ¼ oðr−n=2Þ: ð8:20Þ

The boundary conditions (8.20) ensure that one needs to
keep track only of those terms in U1̂ 0̂ that are linear

in eμ̂ ν̂ and eρ̂ðeμ̂ ν̂Þ, when U1̂ 0̂ is Taylor-expanded
around b.
For example, if g has the same leading-order terms as a

Birmingham metric (6.1)–(6.2), we find, writing f0 for
fjm¼0 and using (8.6),

g♯ ≔ gμ̂ ν̂eμ̂eν̂¼−
f0
f
ðe0̂Þ2þ

f
f0

ðe1̂Þ2þ
Xn−1
Â¼2

ðeÂÞ2; ð8:21Þ

which yields

e0̂ 0̂ ¼ −
f0
f
þ 1 ¼ f − f0

f
¼ −

2ml2

rn
ð1þOðr−2ÞÞ;

e1̂ 1̂ ¼ f0 − f
f0

¼ −
2ml2

rn
ð1þOðr−2ÞÞ;

e1̂ðe0̂ 0̂Þ ¼ f0∂r

�
f − f0
f0

�
¼ 2nml

rn
ð1þOðr−2ÞÞ;

e1̂ðe1̂ 1̂Þ ¼ f0∂r

�
f − f0
f0

�
¼ 2nml

rn
ð1þOðr−2ÞÞ; ð8:22Þ
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with the remaining eμ̂ ν̂’s and eσ̂ðeμ̂ ν̂Þ’s vanishing, so that Eqs. (8.20) are satisfied for metrics with leading Birmingham
asymptotics.
Rather generally, under (8.20) one obtains, using bμ̂ ν̂ ¼ diagð−1;þ1;…;þ1Þ,

gμ̂ ν̂ ¼ bμ̂ ν̂ − bμ̂ α̂bν̂ β̂e
α̂ β̂ þ oðr−nÞ; ð8:23Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gμνj

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det bμνj

q �
1þ 1

2
ðe0̂ 0̂ − e1̂ 1̂ − bÂ B̂eÂ B̂Þ þ oðr−nÞ

�
; ð8:24Þ

16πU1̂ 0̂
0̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det bαβj

p ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det bμνj

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det gρσj
p g0̂ γ̂ðe2gγ̂½1̂g0̂�κ̂Þ;κ̂

¼ 4g0̂ γ̂g
γ̂½1̂g0̂�κ̂e;κ̂ þ 2eg0̂ γ̂ðgγ̂½1̂g0̂�κ̂Þ;κ̂

¼ −2g1κ̂e;κ̂ þ 2eg0̂ γ̂ððbγ̂½1̂ þ eγ̂½1̂Þðb0̂�κ̂ þ e0̂�κ̂ÞÞ;κ̂
¼ −2e;1̂ þ 2b0̂ γ̂ðbγ̂½1̂b0̂�κ̂ þ bγ̂½1̂e0̂�κ̂ þ eγ̂½1̂b0̂�κ̂ þ eγ̂½1̂e0̂�κ̂Þ;κ̂ þ oðr−nÞ
¼ −2e;1̂ þ 2b0̂ 0̂ðb0̂½1̂e0̂�κ̂ þ e0̂½1̂b0̂�κ̂Þ;κ̂ þ oðr−nÞ
¼ −2e;1̂ − ð−b0̂ 0̂e1̂ κ̂ þ e0̂ 1̂b0̂ κ̂ − e0̂ 0̂b1̂ κ̂Þ;κ̂ þ oðr−nÞ
¼ −2e;1̂ − e1̂ κ̂ ;κ̂ þ e0̂ 1̂;0̂ þ e0̂ 0̂;1̂ þ oðr−nÞ: ð8:25Þ

This can be further rewritten as

16πU1̂ 0̂
0̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det bαβj

p ¼ −2e;1̂ − e1̂ 1̂;1̂ − e1̂ Â;Â þ e0̂ 0̂;1̂ þ oðr−nÞ

¼ e1̂ðbÂ B̂eÂ B̂Þ þ ωÂ 1̂ B̂eÂ B̂ − ωÂ
1̂ Âe1̂ 1̂ −

1

r
D
∘
Âe1̂ Â þ oðr−nÞ

¼ e1̂ðbÂ B̂eÂ B̂Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

r2
þ 1

l2

r
ðbÂ B̂eÂ B̂ − ðn − 1Þe1̂ 1̂Þ −

1

r
D
∘
Âe1̂ Â þ oðr−nÞ; ð8:26Þ

Here D
∘
Â denotes the covariant derivative on ðN

∘
; h
∘Þ, with e1̂ Â being understood as a vector field on N

∘
, with Â, B̂ running

from 2 to n.
We also have

1

8π
Δα̂½1̂ðX0̂�Þ;α̂ ¼

1

16π
ðΔ1̂ 1̂ − Δ0̂ 0̂ÞðX0̂Þ;1̂ ¼

r
16πl2

ðΔ1̂ 1̂ − Δ0̂ 0̂Þ

¼ −
r

16πl2
bÂ B̂e

Â B̂ þ oðr−nÞ: ð8:27Þ

Inserting all this into (8.13) one is finally led to the following simple expression for theHamiltonian mass of asymptotically
Birmingham metrics:

mHam ¼ lim
R→∞

rn

16π

Z
S∩fr¼Rg

��
1

l2
þ β

r2

��
r∂ðbÂ B̂e

Â B̂Þ
∂r − ðn − 1Þe1̂ 1̂

�
þ β

r2
bÂ B̂e

Â B̂

	
dn−1μ

h
∘ : ð8:28Þ

In space-time dimension nþ 1 ¼ 4 this simplifies to the expression given in [30]:

mHam ¼ lim
R→∞

R3

16πl2

Z
S∩fr¼Rg

�
r
∂e2̂ 2̂
∂r þ r

∂e3̂ 3̂
∂r − 2e1̂ 1̂

	
dn−1μ

h
∘ : ð8:29Þ

If in addition to (8.14) we assume that
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eμ̂ ν̂ ¼ Oðr−nÞ; eρ̂ðeμ̂ ν̂Þ ¼ Oðr−nÞ ð8:30Þ

(this is actually the falloff rate for Birmingham metrics),
then (8.28) can be rewritten in a form similar to (8.29) in
higher dimensions as well:

mHam ¼ lim
R→∞

rn

16πl2

×
Z
S∩fr¼Rg

��
r∂ðbÂ B̂e

Â B̂Þ
∂r − ðn− 1Þe1̂ 1̂

�	
dn−1μ

h
∘ :

ð8:31Þ

As an example, if g is the (3þ 1)-dimensional
Birmingham metric (6.1), we find

mHam ¼
μ
h
∘ ðN

∘
Þm

4π
; ð8:32Þ

where

μ
h
∘ ðN

∘
Þ ≔

Z
N
∘ d

n−1μ
h
∘ : ð8:33Þ

We conclude that the Hamiltonian mass is proportional to
m, with the same proportionality factor as the characteristic
mass of null hypersurfaces asymptotic to level sets of
t [see (7.5)]:

mTB ¼ mHam: ð8:34Þ

When N
∘
¼ T2 (equivalently, β ¼ 0) with area normal-

ized to 4π, we obtain mHam ¼ m. For β ¼ �1 it follows

from the Gauss-Bonnet theorem that μȟðN
∘
Þ ¼ 4πj1 − g∞j,

where g∞ is the genus of N
∘
, and hence

mHam ¼ j1 − g∞jm: ð8:35Þ

One recovers mHam ¼ m for N
∘
¼ S2, but this will be true

only up to a positive proportionality factor for N
∘
’s of

higher genus.

B. Asymptotically HM-type metrics

The aim of this section is to derive a formula analogous
to (8.31) for metrics with HM-type asymptotics. For this
consider, as before, the background metric

b ≔ −e0̂ ⊗ e0̂ þ e1̂ ⊗ e1̂ þ
Xn
A¼2

eÂ ⊗ eÂ;

where now instead of (8.6) we set

e0̂ ¼
l
r
∂0; e1̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β þ r2

l2

s
∂r;

eÂ ¼ 1

r
ιÂ; en̂ ¼

1

lλ
ffiffiffiffiffiffiffiffiffiffiffiffi
β þ r2

l2

q ∂α: ð8:36Þ

Here ιÂ is an ON frame for the metric ȟ as in the first line of
(7.10), and in this section we let

A;B ∈ f2; 3;…; n − 1g; ð8:37Þ

and similarly for hatted indices.
A metric g will be said to be “asymptotically HM along

S,” or simply “asymptotically HM,” if there exists a
coordinate system ðt; r; xAÞ and ϵ > 0 such that at S ≔
ft ¼ 0g we have

det gμν
det bμν

¼ 1þOðr−n−ϵÞ; ð8:38Þ

and if the frame components of g with respect to the frame
(8.36) satisfy

eα̂ β̂ ≔ gα̂ β̂ − bα̂ β̂ ¼ oðr−n=2−ϵÞ; eμ̂ðeα̂ β̂Þ ¼ oðr−n=2−ϵÞ:
ð8:39Þ

This is formally the same as (8.14), but both the frame and
the background metric are different. (As before, the
volume-element condition is added to guarantee conver-
gence of mass integrals.)
The identity (8.16) shows as before that conditions

(8.38)–(8.39) guarantee a finite Hamiltonian mass in
vacuum. We expect that the arguments of [37] can be
adapted to this case to show that the mass is independent of
the freedom of choice of coordinates and frames satisfying
our conditions above, but we have not attempted to
check this.
Similarly to the Birmingham case, our calculations of the

boundary integral will be done with (8.39) replaced by the
slightly weaker conditions

eα̂ β̂ ¼ oðr−n=2Þ; eμ̂ðeα̂ β̂Þ ¼ oðr−n=2Þ; e ¼ 1þ oðr−n=2Þ.
ð8:40Þ

The connection coefficients ωμ̂ ν̂ ρ̂ of the background
metric b read
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ω0̂ 1̂ 0̂ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
β þ r2

l2

q
r

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

r2
þ 1

l2

r
¼ −

1

l
þOðr−2Þ;

ω1̂ Â B̂ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
β þ r2

l2

q
r

bÂ B̂;

ω1̂ n̂ n̂ ¼ −
r

l2

ffiffiffiffiffiffiffiffiffiffiffiffi
β þ r2

l2

q ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β l4

r2 þ l2

q ¼ −
1

l
þOðr−2Þ:

ð8:41Þ

The remaining possibly nonvanishing connection coeffi-
cients, which are not obtained from the above by permu-
tations of indices, are the ωÂ B̂ Ĉ’s, with A ≠ B. As in the
previous section, the exact values of the ωÂ B̂ Ĉ’s are not
needed in what follows. We further have

X0̂ ¼ r
l
; ð8:42Þ

e1̂ðX0̂Þ¼ðX0̂Þ;1̂¼−X0̂;1̂¼X1̂;0̂¼
1

l

ffiffiffiffiffiffiffiffiffiffiffiffi
βþ r2

l2

s
¼ r
l2

þOðr−1Þ;

ð8:43Þ
where all the remaining Xμ̂’s and Xμ̂;ν̂’s are zero.
Writing f0 for fjm¼0, from (8.6) we see that the HM-type

metrics can be written as

g♯ ¼ −e0̂ ⊗ e0̂ þ
f
f0

e1̂ ⊗ e1̂ þ
Xn−1
Â¼2

eÂ ⊗ eÂ þ f0
f
en̂ ⊗ en̂:

ð8:44Þ

This leads to

e1̂ 1̂ ¼ g1̂ 1̂ − b1̂ 1̂ ¼ f
f0

− 1 ¼ f − f0
f0

¼ −
2ml2

rn
ð1þOðr−2ÞÞ;

e0̂ 0̂ ¼ 0 ¼ eÂ B̂; eμ̂ ν̂ ¼ 0 for μ ≠ ν;

en̂ n̂ ¼ f0 − f
f

¼ 2ml2

rn
ð1þOðr−2ÞÞ; ð8:45Þ

which satisfies the decay conditions set forth above.
Quite generally, for metrics satisfying (8.40), we find as

before

e ¼ 1þ 1

2
ðe0̂ 0̂ − e1̂ 1̂ − bÂ B̂e

Â B̂ − en̂ n̂|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Þ þ oðr−nÞ; ð8:46Þ

and note that (8.38) implies that the underbraced term is
also oðr−nÞ. Equation (8.25) still applies and, taking into
account (8.37), gives

16πU1̂ 0̂
0̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det bαβj

p ¼ −2e;1̂ − e1̂ 1̂;1̂ − e1̂ Â;Â − e1̂ n̂;n̂ þ e0̂ 0̂;1̂ þ oðr−nÞ

¼ e1̂ðbÂ B̂e
Â B̂ þ en̂ n̂Þ − en̂ðe1̂ n̂Þ þ ωÂ 1̂ B̂e

Â B̂ − ωÂ
1̂ Âe

1̂ 1̂ þ ωn̂ 1̂ n̂ðen̂ n̂ − e1̂ 1̂Þ − 1

r
ĎÂe

1̂ Â þ oðr−nÞ

¼ e1̂ðbÂ B̂e
Â B̂ þ en̂ n̂Þ − en̂ðe1̂ n̂Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β

r2
þ 1

l2

r
ðbÂ B̂e

Â B̂ − ðn − 2Þe1̂ 1̂Þ

þ
�
β
l4

r2
þ l2

�
−1=2

ðen̂ n̂ − e1̂ 1̂Þ − 1

r
ĎÂe

1̂ Â þ oðr−nÞ: ð8:47Þ

Here ĎÂe
1̂ Â is understood as the covariant divergence of the vector field e1̂ ÂeÂ with respect to the metric ȟ.

Furthermore,

1

8π
Δα̂½1̂ðX0̂�Þ;α̂ ¼

1

16π
ðΔ1̂ 1̂ − Δ0̂ 0̂ÞðX0̂Þ;1̂

¼ 1

16πl
ðΔ1̂ 1̂ − Δ0̂ 0̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β þ r2

l2

s
þ oðr−nÞ ¼ −

1

16πl
ðbÂ B̂e

Â B̂ þ en̂ n̂Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β þ r2

l2

s
þ oðr−nÞ: ð8:48Þ

Inserting all the results into (8.13) we finally find the following expression for the Hamiltonian mass for asymptotically
HM metrics, where we have used the fact that some terms integrate out to zero:

COSMOLOGICAL CONSTANT AND THE ENERGY OF … PHYSICAL REVIEW D 93, 124075 (2016)

124075-31



mHam ¼ lim
R→∞

rn

16πl2

Z
S∩fr¼Rg

264en̂ n̂ − e1̂ 1̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βl2

r2 þ 1

q þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βl2

r2

r �
r∂ðbÂ B̂e

Â B̂ þ en̂ n̂Þ
∂r − ðn − 2Þe1̂ 1̂ − en̂ n̂

�375dn−1μĥ; ð8:49Þ

where dn−1μĥ is the measure element associated with the metric (7.15). In space-time dimension nþ 1 ¼ 4, this coincides
formally with (8.29):

mHam ¼ lim
R→∞

r3

16πl2
×
Z
S∩fr¼Rg

�
r∂ðe2̂ 2̂ þ e3̂ 3̂Þ

∂r − 2e1̂ 1̂
	
dn−1μĥ: ð8:50Þ

As an example, if g is the (3þ 1)-dimensional HM
metric, we find

mHam ¼ −
μĥðN

∘
Þm

8π
; ð8:51Þ

where

μĥðN
∘
Þ ≔ lim

R→∞

Z
S∩fr¼Rg

dn−1μĥ: ð8:52Þ

This coincides with what we found for the coordinate mass
of HM metrics, where however we had to restrict ourselves
to the case β ¼ 0. We see that no such restriction arises for
the Hamiltonian mass.

C. Fefferman-Graham asymptotics with
an ultrastatic conformal infinity

In this section we assume that n ¼ 3 and Λ < 0, unless
explicitly indicated otherwise. We consider a vacuum
space-time with a smooth conformal completion; thus both
the background metric b and g have a Fefferman-Graham
expansion as in (2.12) in a suitable coordinate system such
that x ¼ 0 at I :

b ¼ x−2l2ðdx2 þ ~babðx; xcÞdxadxbÞ;
g ¼ x−2l2ðdx2 þ ~gabðx; xcÞdxadxbÞ; ð8:53Þ

where ðxaÞ ¼ ðt; xAÞ, and with the coordinate components
~bab asymptotic to ~gab as Oðx3Þ. Here we have used the
same compactifying factor

Ω ¼ x=l

to pass from g to ~g ¼ Ω2g as from b to ~b ¼ Ω2b.
For simplicity we will assume an ultrastatic form of the

conformal-boundary metric

~b
∘
≡ ~b

∘
abdxadxb ≔ ~babjx¼0dx

adxb

¼ ~gabjx¼0dx
adxb ≕ ~g

∘
abdxadxb ≡ ~g

∘
; ð8:54Þ

namely,

~b0Að0;xcÞ¼ 0; ∂a
~b00ð0;xcÞ¼ 0; ∂0

~bABð0;xcÞ¼ 0

ð8:55Þ

[compare the discussion after (2.35)]. Note that this is
compatible both with asymptotically Birmingham and
asymptotically HM metrics. More general metrics and
sections of I will be considered in future work.
Let ð ~babÞn denote the coefficient of xn in a Taylor

expansion of ~bab at x ¼ 0, and similarly for ð~gabÞn. [The
reader is warned that these coefficients do not translate as
such to expansion coefficients in, e.g., Bondi coordinates,
as rBo ≠ 1=x in general even if l ¼ 1; see (8.78) below.] It
follows from Sec. II B that

ð ~babÞn ¼ ð~gabÞn; n ∈ f0; 1; 2g and ð ~babÞ1 ¼ 0:

ð8:56Þ

In the calculations below we will assume that

ð ~babÞ3 ¼ 0: ð8:57Þ

If this is not the case, in all the formulas below it suffices to
replace ð~gabÞ3 by ð~gabÞ3 − ð ~babÞ3.
We wish to determine the characteristic mass of a null

hypersurface asymptotic to a section of I with constant x0,
and compare it with the Hamiltonian mass mHam. Without
loss of generality, after choosing a conformal gauge
appropriately, we can assume that ~bABjx¼0dx

AdxB has
constant scalar curvature β. It then follows from (2.15) that
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ð ~b0AÞ2 ¼ 0 ⇔ ~b0A ¼ Oðx3Þ: ð8:58Þ

We pass now to the calculation of the Hamiltonian mass of g. Using e11 ¼ 0 ¼ e1̂ 1̂ and the first line of (8.26) (which
applies here), we find quite generally in dimension n, without assuming (8.55),

16πU1̂ 0̂
0̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det bαβj

p ¼ e1̂ðbÂ B̂e
Â B̂Þ þ ð2ω0̂

Â 1̂ − ω1̂
0̂ ÂÞe0̂ Â − ω1̂

Â B̂e
Â B̂ þ oðxnÞ: ð8:59Þ

Returning to the three-dimensional ultrastatic case, we choose the b-orthonormal frame eα̂ as

e1̂ ¼
x
l
∂x; e0̂ ¼

x

l
ffiffiffiffiffiffiffiffiffi
j ~b00j

q ∂0; eÂ ¼ x
l
ðψ Â þOðx2Þ∂B þOðx3Þ∂0Þ; ð8:60Þ

where fψ ÂgÂ¼2;…;n is an ON frame for ~b
∘
ABdxAdxB. Let us denote by θμ̂ the coframe dual to eν̂; then

θ1̂ ¼ l
x
dx; θ0̂ ¼

l
ffiffiffiffiffiffiffiffiffi
j ~b00j

q
x

dx0 þOðx2ÞdxA; θÂ ¼ l
x
ðιÂ þOðx2ÞdxaÞ; ð8:61Þ

where ιÂ is a coframe dual to ψ Â. The components gμ̂ ν̂ of the metric g with respect to this frame read

g1̂ 1̂ ¼ 1; g1̂ â ¼ 0; g0̂ 0̂ ¼ −1þ ð~g00Þ3
j ~b00j

x3 þ oðx3Þ; ð8:62Þ

g0̂ Â ¼ ð~g0ÂÞ3ffiffiffiffiffiffiffiffiffi
j ~b00j

q x3 þ oðx3Þ; gÂ B̂ ¼ bÂ B̂ þ ð~gÂ B̂Þ3x3 þ oðx3Þ; ð8:63Þ

where ð~g0ÂÞ3 denotes the ι-component of ð~g0AÞ3dxA, as defined through the formula

ð~g0AÞ3dxA ¼ ð~g0ÂÞ3ιÂ; similarly ð~gABÞ3dxAdxB ¼ ð~gÂ B̂Þ3ιÂιB̂:

This leads to

eÂ B̂ ¼ −bÂ ĈbB̂ D̂ð~gĈ D̂Þ3x3 þ oðx3Þ ¼ −ð~gÂ B̂Þ3x3 þ oðx3Þ; ð8:64Þ

e1̂ μ̂ ¼ 0; e0̂ 0̂ ¼ −
ð~g00Þ3
j ~b00j

x3 þ oðx3Þ; e0̂ Â ¼ ð~g0ÂÞ3ffiffiffiffiffiffiffiffiffi
j ~b00j

q x3 þ oðx3Þ; ð8:65Þ

where, of course, bÂ B̂ ¼ bÂ B̂ ¼ δÂ
B̂
. Note that the condition e ¼ 1þ oðx3Þ, which is equivalent to the ~b

∘
ab-tracelessness of

ð~gabÞ3, reads

−
ð~g00Þ3
j ~b00j

þ bÂ B̂ð~gÂ B̂Þ3 ≡ −
ð~g00Þ3
j ~b00j

þ ~b
∘AB

ð~gABÞ3 ¼ 0: ð8:66Þ

Setting ~b
∘
AB ≔ ~bABjx¼0, and using ωα̂

μ̂ ν̂ ¼ θα̂ðeμ̂;ν̂Þ, we find
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Γ1
AB ¼

~b
∘
AB

x
þOðx2Þ; ω1̂

Â B̂ ¼ 1

l
bÂ B̂ þOðx3Þ; ω0̂

Â 1̂ ¼ Oðx2Þ; ð8:67Þ

ωÂ
0̂ Â ¼ Oðx4Þ; ω1̂

0̂ Â ¼ Oðx4Þ: ð8:68Þ

This leads to the following rewriting of (8.59):

16πU1̂ 0̂
0̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det bαβj

p ¼ x
l
∂xðbÂ B̂e

Â B̂Þ − 1

l
bÂ B̂e

Â B̂ þ oðx3Þ ¼ −
2

l
bÂ B̂ð~gÂ B̂Þ3x3 þ oðx3Þ: ð8:69Þ

Next, we choose X to be ∂0, so that

X ¼ ∂0 ¼
l

ffiffiffiffiffiffiffiffiffi
j ~b00j

q
x

e0̂ ≡ X0̂e0̂; X0̂
;1̂ ¼ −

ffiffiffiffiffiffiffiffiffi
j ~b00j

q
lx

þOðxÞ ¼ X1̂
;0̂; ð8:70Þ

X1̂
;â ¼ Oðx3Þ; X0̂

;â ¼ Oðx2Þ; Δ1̂ 1̂ ¼ oðx3Þ; Δ1̂ â ¼ 0; ð8:71Þ

Δ0̂ 0̂ ¼ e0̂ 0̂ þ oðx3Þ; Δ0̂ Â ¼ e0̂ Â þ oðx3Þ; ð8:72Þ

1

8π
Δα̂½1̂X0̂�

;α̂ ¼
ffiffiffiffiffiffiffiffiffi
j ~b00j

q
16πlx

e0̂ 0̂ þ oðx2Þ ¼ −

ffiffiffiffiffiffiffiffiffi
j ~b00j

q
16π

×
ð~g00Þ3
j ~b00jl

x2 þ oðx2Þ: ð8:73Þ

Hence, using (8.1)–(8.3), for any hypersurface S intersecting I in a section fx0 ¼ constg, after taking into account an
overall minus sign because of the change of orientation when replacing r by x ¼ l=rþ � � �,

mHam ¼ −lim
x→0

l2

x2

Z
U1̂ 0̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ~b

∘
AB

r
d2x ¼

l
ffiffiffiffiffiffiffiffiffi
j ~b00j

q
16π

Z �
2bÂ B̂ð~gÂ B̂Þ3 þ

ð~g00Þ3
j ~b00j

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ~b

∘
AB

r
d2x

¼
3l

ffiffiffiffiffiffiffiffiffi
j ~b00j

q
16π

Z
bÂ B̂ð~gÂ B̂Þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ~b

∘
AB

r
d2x: ð8:74Þ

It is clearly convenient to normalize the asymptotic time coordinate x0 so that [compare (2.17)]

~g
∘
00 ≡ ~b00jx¼0 ¼ −l−2 ⇔ ~g

∘00 ¼ −l2; ð8:75Þ

leading finally to

mHam ¼ 3

16π

Z
bÂ B̂ð~gÂ B̂Þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ~b

∘
AB

r
d2x: ð8:76Þ

Note that this coincides formally with both (8.31) and (8.49), but it was not a priori clear to us that it should.
We wish to compare (8.74) with the characteristic mass as defined by (5.1)–(5.2). For this, we need to determine the mass

aspect functionM of (5.2). If the zero-level set of uBo is asymptotic to the zero-level set of t, an asymptotic expansion of the
solutions of the equations which determine the Bondi coordinates shows that

t ¼ uBo − lx −
1

6l3
ð~g00Þ2x3 þOðx4Þ; xA ¼ xABo þ

1

3
lð ~b0AÞ2x3 þOðx4Þ:

The above solution is obtained after imposing the condition that u is a retarded null coordinate; hence t is an increasing
function of r at fixed u, and hence decreasing in x at fixed u.
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Changing coordinates, one finds

guBouBo ¼ x−2ð−1þ l2ð~g00Þ2x2 þ l2ð~g00Þ3x3 þOðx4ÞÞ:
ð8:77Þ

It remains to replace x by a Bondi coordinate, defined
through the formula

rBo ¼
 
det gAB

det ~b
∘
AB

!
1=4

:

A MATHEMATICA calculation gives

1

x
¼ rBo

l
−
l ~b
∘AB

ð~gABÞ2
4rBo

−
l3 ~b

∘AB
ð~gABÞ3

4r2Bo
þOðr−3BoÞ: ð8:78Þ

Inserting into (8.77), one finds that the mass aspect is

M≡ ðguBouBoÞ1
2

¼ 1

2

�
l3ð~g00Þ3 þ

1

2
bÂ B̂ð~gÂ B̂Þ3

�
¼ 3l

4
bÂ B̂ð~gÂ B̂Þ3; ð8:79Þ

where we have used (8.65). Comparing (8.76) and (5.1), we
conclude that

mHam ¼ mTB;

as desired.

IX. CONCLUSIONS

We have introduced a natural notion of total mass for
characteristic hypersurfaces in space-times with nonvanish-
ing cosmological constant. The mass is a natural gener-
alization of the Trautman-Bondi mass, as defined for
Λ ¼ 0. We have proved a generalization of the positivity
identity of [11]. The identity introduces the renormalized
volume as a new global quantity associated to characteristic
initial data sets. In the simplest case of light cones in
vacuum this is the identity (5.58), which we rewrite as

mTB −
Λ
8π

�
1

12

Z
N
∘ τ2

�
τ22
2
−
jσj24
3

�
dμ

h
∘ þ Vren

�
¼ 1

16π

Z
∞

0

Z
N
∘

�
1

2
jξj2 þ jσj2e

R
∞
r

~rτ−2
2~r d~r
�
dμǧdr: ð9:1Þ

The left-hand side involves the renormalized volume
together with objects that can be determined by looking
at the asymptotic behavior of the fields. This provides a
new global positivity statement, proving indeed that the
left-hand side of (9.1) is positive. It follows from [27] that
the left-hand side vanishes if and only if the space-time is
de Sitter or anti–de Sitter to the future of the light cone.

The balance formula (9.1) raises the question of the right
definition of mass when Λ ≠ 0. Recall that we used (5.1)–
(5.2) to define mTB:

mTB ¼ 1

8π

Z
N
∘ ðḡBo00 Þ1dμh∘ : ð9:2Þ

A first naive idea would be to define instead the left-hand
side of (9.1) as the mass, obtaining positivity as a corollary
of (9.1). But the calculations in the Appendix strongly
suggest that a splitting of the left-hand side of (9.1) in a
renormalized-volume contribution and a mass contribution
is meaningful.
The next idea would be to define the characteristic

mass as

mc ¼ mTB −
Λ
8π

�
1

12

Z
N
∘ τ2

�
τ22
2
−
jσj24
3

�
dμ

h
∘

�
; ð9:3Þ

leading to the more elegant identity

mc −
Λ
8π

Vren ¼
1

16π

Z
∞

0

Z
N
∘

�
1

2
jξj2 þ jσj2e

R
∞
r

~rτ−2
2~r d~r
�
dμǧdr:

ð9:4Þ

Alternatively, one could add an integral expression
involving τ2 and jσj4 to the definition of mTB, adjusting
(9.1) accordingly. Recall that (9.2) is equivalent to (5.11),
which for a smooth conformal completion reads

mTB ¼ 1

16π

Z
N
∘ ðζBoÞ2dμh∘ : ð9:5Þ

In the asymptotically flat case and with spherical cross
sections of I , the gauge-invariant version of this
formula is [11]

1

16π

Z
N
∘ ðζ2 þ τ2Þdμh∘ ; ð9:6Þ

and one could use this formula as a definition of character-
istic mass. (Whether or not, and in which sense, this is
gauge invariant whenΛ ≠ 0 remains to be seen.) Recall that
we have seen [cf. (5.31) in vacuum and with a smooth
conformal completion] that (9.5) translates instead into

mTB ¼ 1

16π

Z
N
∘ ðζ2 þ τ2Þdμh∘ þ

Λ
16π

Z
N
∘ τ2jσj24dμh∘ ð9:7Þ

(note that the multiplicative factor R
∘
=2 in front of τ2 in our

formula equals 1 for a sphere), when Λ ≠ 0 and an affine
parameter r is used.
As seen in the Appendix, we have τ2 ≠ 0 for asymp-

totically HM metrics, which suggests strongly that using
τ32-terms to redefine the mass is not a good idea. Whether or
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not adding some τ2jσj24-terms is meaningful requires further
analysis. We plan to return to this question in the future.
Yet another alternative is to define the renormalized

volume as the whole expression in brackets in the left-hand
side of (9.1),

Vren ↦ ~Vren ≔ Vren þ
1

12

Z
N
∘ τ2

�
τ22
2
−
jσj24
3

�
dμ

h
∘ ; ð9:8Þ

leading similarly to a nicer identity:

mTB−
Λ
8π

~Vren ¼
1

16π

Z
∞

0

Z
N
∘

�
1

2
jξj2þjσj2e

R
∞
r

~rτ−2
2~r d~r
�
dμǧdr:

ð9:9Þ

Possibly, a mixture of the above will provide the most
meaningful definitions.
Incidentally, ~Vren can be obtained by replacing r in the

original definition of VðrÞ, where r is the affine coordinate
normalized as before, by

r ¼ ~rþ τ2
2
þ a

~r2
−
2τ2jσj24
9~r2

; ð9:10Þ

where a is any function of the angular coordinates. In other
words, set

~Vð~rÞ ≔ V

�
~rþ τ2

2
þ a

~r2
−
2τ2jσj24
9~r2

�
:

Then ~Vren is the limit, as ~r goes to infinity, of ~Vð~rÞ minus
the sum of the terms with positive powers of ~r and the ln ~r
term. In fact, a change of variables of the form

r ¼ ~rþ τ2
2
þ jσj24

2~r
−
2τ2jσj24
9~r2

þ τ2jσj24
3~r2

ln ~rþ oð~r−2Þ ð9:11Þ

gives

VðrÞ ¼ 4π

3
~r3 þ Vren þ oð~r−1Þ: ð9:12Þ

One wonders about the nature of (9.11). The naive guess
would be that ~r is the Bondi coordinate. However, in our
case we have (in vacuum, but allowing jσj5 ≠ 0)

rBo ¼ r −
τ2
2
þ jσj24

4r
þ 1

6

jσj25 − 1
4
jσj24τ2

r2
þO

�
1

r3

�
; ð9:13Þ

with inverse transformation

r ¼ rBo þ
τ2
2
−

jσj24
4rBo

þ jσj24τ2 − jσj25
6r2Bo

þO

�
1

r3Bo

�
: ð9:14Þ

We see that ~r coincides with the Bondi coordinate at order
zero, but differs at the next order.
Which definition is most relevant, or indeed whether

there exists a most relevant definition at all, requires
further study.
In any case, we have shown in some well-understood

general cases with Λ ≤ 0, as well as in specific examples,
that the characteristic mass mTB defined by (9.7) coincides
with previously accepted definitions of mass.
We emphasize that both the definition of mass and the

balance formula (9.1) have a clear, geometric, and gauge-
independent meaning; compare Remark 5.1.

ACKNOWLEDGMENTS

Supported in part by the Austrian Science Fund (FWF):
P 23719-N16. P. T. C. is grateful to the Center for
Mathematical Sciences and Applications, Harvard, and
to Monash University for hospitality and support during
part of the work on this paper.

APPENDIX: NULL GEOMETRY OF
HM METRICS AND

THE BALANCE EQUATION

The mass identity (5.56) can be viewed as a balance
formula. It is instructive to work out the contribution of
each of the terms appearing there to the total mass for the
HM metrics. For this we need to derive the asymptotics
both for small and large r of the fields appearing there. We
consider the metric (6.8) with f given by (6.9) and β ¼ 0 in
space-dimension equal to 3.
Choosing sðr0Þ ¼ 0, where r0 is the largest zero of f,

from (7.22) we obtain a small-r expansion, for r ≥ r0:

s¼ 2r0
l

ffiffiffiffiffiffiffiffiffiffiffiffi
f0ðr0Þ

p ffiffiffiffiffiffiffiffiffiffiffi
r− r0

p þOððr−r0Þ32Þ for r−r0 > 0 small;

ðA1Þ

where we have assumed that f0ðr0Þ ≠ 0. This implies, for
small s,

r − r0 ¼
l2f0ðr0Þ

4r20
s2 þOðs4Þ; ðA2Þ

fðrÞ ¼ ðlf0ðr0ÞÞ2
4r20

s2 þOðs4Þ: ðA3Þ

Recall that the large-s behavior of r has been derived in
(7.24)–(7.25).
As in Sec. III, we denote by ǧ the metric induced by g on

the level sets of u and r:

ǧ ¼ fðrÞl2λ2dα2 þ r2dφ2: ðA4Þ
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Let xA denote the coordinates α and φ. In the affine
parametrization and in the region where f is non-negative
it holds that8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ǧAB

p
¼ rlλ

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
¼ λ

l2f0ðr0Þ
2

ðsþOðs3ÞÞ for smalls;

ðA5Þ

νA ¼ 0; ðA6Þ

ξA ¼ 0; ðA7Þ

χ ≔
1

2
∂sǧ ¼

l
ffiffiffiffiffiffiffiffiffi
fðrÞp
2r

∂rðfðrÞλ2l2dα2 þ r2dφ2Þ

¼ l
ffiffiffiffiffiffiffiffiffi
fðrÞ

p �∂rfðrÞ
2r

λ2l2dα2 þ dφ2

�
ðA8Þ

≈
l2f0ðr0ÞsþOðs3Þ

2r0

�
f0ðr0Þ
2r0

λ2l2dα2þdφ2

�
for smalls;

ðA9Þ

τ ≔ gABχAB ¼ l
� ∂rfðrÞ
2r

ffiffiffiffiffiffiffiffiffi
fðrÞp þ r−2

ffiffiffiffiffiffiffiffiffi
fðrÞ

p �
ðA10Þ

¼


s−1þOðsÞ; for smalls;

2s−1þ2ðs�− r0Þs−2þOðs−3Þ; for larges;
ðA11Þ

with s� ¼ ð2mlÞ1=3x�, where x� is given by (7.27). Further

σ∶¼ χ−
1

2
τgABdxAdxB¼l

ffiffiffiffiffiffiffiffiffi
fðrÞ

p �∂rfðrÞ
2r

λ2l2dα2þdφ2

�
−
1

2
l
� ∂rfðrÞ
2r

ffiffiffiffiffiffiffiffiffi
fðrÞp þr−2

ffiffiffiffiffiffiffiffiffi
fðrÞ

p �
ðfλ2l2dα2þr2dφ2Þ

ðA12Þ

¼ l
2

� ∂rfðrÞ
2r

ffiffiffiffiffiffiffiffiffi
fðrÞp − r−2

ffiffiffiffiffiffiffiffiffi
fðrÞ

p �
ðfλ2l2dα2 − r2dφ2Þ;

ðA13Þ

σ♯ ≔ gACσCB∂A ⊗ dxB

¼ l
2

� ∂rfðrÞ
2r

ffiffiffiffiffiffiffiffiffi
fðrÞp − r−2

ffiffiffiffiffiffiffiffiffi
fðrÞ

p �
ð∂α ⊗ dα − ∂φ ⊗ dφÞ

ðA14Þ

¼
( ð1þOðs2ÞÞ

2s ð∂α ⊗ dα − ∂φ ⊗ dφÞ; for small s;

ð3l2mþOðs−1ÞÞ
2s4 ð∂α ⊗ dα − ∂φ ⊗ dφÞ; for large s;

ðA15Þ

jσ2j ¼ 2 ×
l2

4

� ∂rfðrÞ
2r

ffiffiffiffiffiffiffiffiffi
fðrÞp − r−2

ffiffiffiffiffiffiffiffiffi
fðrÞ

p �
2

ðA16Þ

¼
( ð1þOðs2ÞÞ

2s2 ; for small s;

ð9l4m2þOðs−1ÞÞ
2s8 ; for large s;

ðA17Þ

gss ¼ gμν
∂s
∂xμ

∂s
∂xν¼ grr

�
ds
dr

�
2

¼ f

�
r

l
ffiffiffi
f

p
�

2

¼ r2

l2
: ðA18Þ

Wewill also need the following objects from [18], denoting
by ∇̌ the derivative operator associated with ǧ, when ǧ is
viewed as a metric on the level sets of u and r:

Γ̄1 ≔ ν0ḡAB∇̌BνA −
∂1ðν0ḡ11

ffiffiffiffiffiffiffiffiffi
det ǧ

p Þ
ν0

ffiffiffiffiffiffiffiffiffi
det ǧ

p −
1

2
ν0ḡAB∂0gAB

þ 1

2
ν0ḡ11∂0g11;

ν0 ≔ gus ¼ gur
dr
ds

¼ −
r

l
ffiffiffiffiffiffiffiffiffi
fðrÞp dr

ds

¼ −
r

l
ffiffiffiffiffiffiffiffiffi
fðrÞp l

ffiffiffiffiffiffiffiffiffi
fðrÞp
r

¼ −1; ðA19Þ

ν0 ≔
1

ν0
¼ −1; ðA20Þ

Γ̄s ¼ −
∂sðν0ḡss

ffiffiffiffiffiffiffiffiffi
det ǧ

p Þ
ν0

ffiffiffiffiffiffiffiffiffi
det ǧ

p ¼ −τḡss − ∂sḡss: ðA21Þ

From the definition of ζ [compare [[18], Eqs. (10.33) and
(10.36)],9 and note that κ ≡ Γ̄s

ss ≡ Γ̄1
11 vanishes in affine

parametrization] we have

ζ ≔ ð2∂s þ 2Γ̄s
ss þ τÞḡss þ 2Γ̄s ¼ −τḡss

¼ −l−1
�
r∂rfðrÞ
2
ffiffiffiffiffiffiffiffiffi
fðrÞp þ

ffiffiffiffiffiffiffiffiffi
fðrÞ

p �
ðA22Þ

¼

8>><>>:
−r20l−2s−1þOðsÞ; for smalls;

−2rl−2−mr−2þOðr−5Þ
¼−2ðsþ r0− s�Þl−2−2ms−2þOðs−5Þ; for larges:

ðA23Þ

8We use the notation of [18], except that we denote here by ǧ
the tensor field denoted by ~g there.

9Note a missing term τḡ11=2 in the right-most term of
[[18], Eq. (10.36)], which however does not affect the formula
we use.
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Recall that the vacuum Raychaudhuri equation with
affine parameter s,

∂sτ þ
τ2

2
þ jσj2 ¼ 0; ðA24Þ

can be solved as

τðsÞ ¼ 2

s
− s−2Ψ−1

Z
s

0

jσj2Ψs2ds; ðA25Þ

where

Ψðs;ψ ;φÞ ¼ exp
�
−
Z

∞

s

~sτð~s;ψ ;φÞ − 2

2~s
d~s
�
: ðA26Þ

As s tends to zero, the integral in (A26) approaches infinity
as 1

2
ln s; hence the weight-factor Ψ behaves as a constant

times s−1=2. This, together with the 1=ð2s2Þ-behavior of
jσj2 for small s, leads in (A25) to the required 1=s-behavior
of τ for s approaching zero.
An alternative derivation of (A22) proceeds by solving

(3.15) directly:

ð∂s þ τÞζ ¼ 1

2
jξj2 − ∇̌Aξ

A − Řþ 8πðḡABT̄AB − T̄Þ þ 2Λ:

ðA27Þ

In the current case (A27) reads

�
dr
ds

∂r þ τ

�
ζ ¼ 2Λ: ðA28Þ

It follows from (A28) that

dðζ ffiffiffiffiffiffiffiffiffi
det ǧ

p Þ
ds

¼ 2Λ
ffiffiffiffiffiffiffiffiffi
det ǧ

p
: ðA29Þ

Integrating in s, we find

ðζ
ffiffiffiffiffiffiffiffiffi
det ǧ

p
ÞðsÞ ¼ lim

s→0
ðζ

ffiffiffiffiffiffiffiffiffi
det ǧ

p
ÞðsÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

−3mλ

þ 2Λ
Z

s

0

ffiffiffiffiffiffiffiffiffi
det ǧ

p
ds

¼ λ

�
−3mþ 2Λ

3
ðr3 − r30Þ

�
¼ λ

�
−3mþ 2Λ

3
ðr3 − 2ml2Þ

�
; ðA30Þ

which coincides indeed with (A22):

ζ
ffiffiffiffiffiffiffiffiffi
det ǧ

p
¼ λ

�
m −

2r3

l2

�
¼ λ

�
mþ 2Λr3

3

�
:

We are ready now to check the contribution of various
terms to the mass identity (5.56) for the Horowitz-
Myers metrics (6.13). For these metrics we have Tμν ≡
0≡ R

∘ ≡ ξ≡ jσj24 ≡ jσj25 [compare Eq. (A17)], and from
(7.14) and (5.56) we find

−2mμĥðN
∘
Þ ¼ 16πmTB

¼ lim
s→0

Z
N
∘ ζdμǧ þ

Λ
12

Z
N
∘ τ

3
2dμĥ þ 2ΛVren:

ðA31Þ

Recall that ǧ is defined as the angular part of the metric on
the light cone,

ǧ ¼ ḡABdxAdxB ¼ fλ2l2dα2 þ r2dφ2;

and that the limiting metric ĥ defined in (7.15) is

ĥ ¼ lim
r→∞

r−2ǧ ¼ λ2dα2 þ dφ2:

Keeping in mind that the measure associated with ĥ is

dμĥ ¼ λdαdφ;

(A5) and (A23) lead to

lim
r→r0

Z
N
∘ ζdμǧ ¼ −

r20
l2

×
l2f0ðr0Þ

2
× μĥðN

∘
Þ

¼ −
r20
l2

×
l2f0ðr0Þ

2
×

�
1

2lf0ðr0Þ
× ð2πÞ2

�
:

ðA32Þ

Equation (7.20) gives

f0ðr0Þ ¼
1

r0

�
2
r20
l2

þ 2m
r0

�
¼ 6m

r20
¼ 3ð2ml2Þ13

l2
: ðA33Þ

We can thus rewrite (A32) as

lim
r→r0

Z
N
∘ ζdμǧ ¼ −3m × μĥðN

∘
Þ

¼ −3m ×
2π2l

3ð2ml2Þ13 ¼ −3m ×
2π2

3

�
l
2m

�1
3

:

ðA34Þ

The relation Λ ¼ −3=l2 and (A31) give the balance
formula
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2ml2μĥðN
∘
Þ¼ 3ml2μĥðN

∘
Þþ6Vrenþ

1

4

Z
N
∘ τ

3
2dμĥ: ðA35Þ

We note that (A11) gives τ2 ¼ 2ðs� − r0Þ and that (7.26)
can be rewritten as

Vren ¼ −
1

6

�
ml2μĥðN

∘
Þ þ 2

Z
N
∘ ðs� − r0Þ3dμĥ

�
; ðA36Þ

in agreement with (A35).
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