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The cosmological constant and the energy of gravitational radiation
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We propose a definition of mass for characteristic hypersurfaces in asymptotically vacuum space-times
with nonvanishing cosmological constant A € R*, generalizing the definition of Trautman and Bondi for
A = 0. We show that our definition reduces to some standard definitions in several situations. We establish
a balance formula linking the characteristic mass and a suitably defined renormalized volume of the null
hypersurface, generalizing the positivity identity proved by Chrusciel and Paetz when A = 0.
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I. INTRODUCTION

While the notion of total mass of general relativistic
gravitating systems with A < 0 is well understood by now
(cf., e.g., [1] and references therein), the notion of energy in
the radiating regime in the presence of a positive cosmo-
logical constant appears to be largely unexplored (see,
however, [2—4]). The object of this work is to contribute to
filling this gap.

In this paper we address the question of properties of
total mass and energy for radiating systems when A # 0.
This will be done in the spirit of the pioneering work by
Bondi et al. [5,6], by analyzing the asymptotic behavior of
the gravitational field on characteristic hypersurfaces
extending to asymptotic regions. Many formal aspects of
the problem turn out to be independent of the sign of the
cosmological constant, and while we are mainly interested
in the case A > 0, we allow A < 0 wherever relevant as
several results below apply regardless of the sign of A. The
case A < 0 becomes a useful test bed for the quantities
involved in those aspects, which are well understood. It
should, however, be emphasized that many of our results,
such as, e.g., the balance equation (5.56), are new both for
A <0Oand A > 0.

It should be kept in mind that an elegant approach to the
definition of energy has been proposed in [7] for field
configurations that asymptotically approach a preferred
background with Killing vectors. This provides a widely
accepted definition of asymptotic charges in the case where
A <0. The approach of [7] does not work for nontrivial
radiating fields with A > 0, where no natural asymptotic
background is known to exist. In retrospect, our work
below can be used to provide such a background, namely,
the metric obtained by keeping only the leading-order terms
of g in Bondi coordinates, but the decay rates of the metric
to this background do not appear to be compatible with
what is needed in the Abbott-Deser prescription.
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The first issue that one needs to address is that of
boundary conditions satisfied by the fields. A popular
approach is to assume smooth conformal compactifiability
of the space-time, and we develop a framework which
covers such fields. We start by deriving in Sec. II below the
restrictions on the free characteristic initial data that follow
from the existence of smooth conformal compactification.
In particular, in Proposition 2.1 below we generalize to all
A € R a result established in [8] for A = 0, that existence
of a smooth conformal compactification guarantees the
existence of Bondi coordinates in which the metric coef-
ficients have full asymptotic expansions in terms of inverse
powers of the Bondi coordinate rg,. In Sec. III we review
those aspects of the characteristic Cauchy problem that are
relevant for the issues at hand. In Sec. IV we derive the
asymptotic expansions of the metric along the characteristic
surfaces. Our analysis is similar in spirit to that of [9,10];
however, here the asymptotic expansions have to be carried
out to higher orders because of new A-dependent nonlinear
couplings between some asymptotic expansion coeffi-
cients. We also allow matter sources, while vacuum was
assumed in [10]. In particular in Sec. IV H we derive the
conditions (4.43) on the free initial data in Bondi-type
coordinates, which are necessary for absence of log terms
in the metric.

The asymptotic expansions of Sec. IV lead naturally, in
Sec. V, to the definition of a quantity analogous to the
Trautman-Bondi mass. We derive there a key integral identity
expressing this mass in terms of the free initial data and the
renormalized volume of the characteristic surface, Eq. (5.56).
This is one of the main results of this work.

When A = 0, our mass identity (5.56) reduces to the one
derived in [11] (compare [12]), giving then an elementary
proof of positivity of the Trautman-Bondi energy for space-
times containing globally smooth light cones extending
smoothly to Z". (As is well known the global structure of
such space-times depends crucially upon the sign of A; see
Fig. 1.) In addition to the renormalized volume, boundary
terms, and volume integrals involving the free data, the new
formula, for asymptotically empty metrics with A # 0,
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FIG. 1. Globally smooth light cones in space-times with a
smooth conformal completion at a conformal boundary Z at
timelike infinity (A > 0, left) or spacelike infinity (A < 0, right).

involves several terms depending upon coefficients deter-
mined by the asymptotic behavior of the fields multiplied
by A. One can think of this equation as a “balance formula”
relating the mass with the remaining quantities at hand.

To get some insight into the formula, in the remaining
sections we turn our attention to the case A < 0, where
energy is much better understood. We review the notion of
coordinate mass in Sec. VI. We calculate the various
quantities appearing in the mass identity (5.56) for the
Birmingham metrics and the Horowitz-Myers (HM) metrics
in Sec. VIIL. In Sec. VIII we derive simple formulas for the
Hamiltonian mass for asymptotically Birmingham and
asymptotically HM metrics, in all space-time dimensions
n+1>4," and for smoothly conformally compactifiable
four-dimensional space-times with an ultrastatic conformal
boundary. These formulas are used to show that the
Hamiltonian mass coincides with the characteristic mass
for a family of null hypersurfaces. In the Appendix we
examine separately various contributions to our ‘“energy
balance” equation for HM metrics.

Unless explicitly indicated otherwise,
throughout that A # 0.

we assume

II. BOUNDARY CONDITIONS

Consider an (n + 1)-dimensional smoothly conformally
compactifiable space-time (M, g), n > 2, solution of the
vacuum Einstein equations with cosmological constant

A # 0. By definition, there exists a manifold (M, g) with
boundary OM and a defining function Q for M such that

dQ(p)#0 forp oM.
(2.1)

g=Q725, OM={Q=0},

Again by definition, both Q and g are smooth.

'This extends the analysis in [13] and references therein to
higher dimensions with the above boundary conditions.
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A. Bondi coordinates

In the asymptotically flat case, in spacetime dimension 4
and assuming A = 0, Bondi et al. have introduced a set of
coordinates convenient for analyzing gravitational radiation
[5]. We will refer to them as Bondi coordinates. In these
coordinates the metric takes the form

G = Joodu* —2e**drdu — 2r*U 4dx"du + r* hygdx* dx®,
e —
=:h
(2.2)

where the determinant of hyup is r—independent.2
(One further requires the fields gy, Uy, ®, and hyp to
fulfill appropriate asymptotic conditions.) When using
Bondi coordinates, we will decorate all fields and
coordinates with a symbol Bo. The existence of such
coordinates in asymptotically vacuum space-times with
A = 0 and admitting smooth conformal completions has
been established in [8], and in [14] for polyhomoge-
neous Z’s.

We wish to prove the existence of such coordinates and
to derive the asymptotic behavior of smoothly compactifi-
able metrics in those coordinates in a neighborhood of
the conformal boundary, with A € R*. It turns out that,
similarly to the A =0 case (cf, e.g., [[14], Sec. IV];
compare [10]), smoothness imposes restrictions on some
lower-order coefficients in the asymptotic expansion of the
free data on the null hypersurfaces meeting the conformal
boundary smoothly and transversally.

Let, thus, A € R, and let yotaj\N/l — R be a smooth
function defined on an open subset of the conformal

boundary aM with dy without zeros, such that the
level sets

S, =0 =cl coM

of y° form a smooth foliation by spacelike submanifolds.
Passing to a subset of 0 M if necessary, we can assume that

1 is defined throughout OM.
So far y has only been defined on the conformal
boundary. Note that the gradient of y* within the boundary

will be necessary timelike when 87\71 is timelike, and

spacelike when OM is spacelike. Nevertheless, we will
extend y° to a function in space-time so that Vy° is null
regardless of the causal character of the conformal
boundary. 3
Now, at every p € S, there exists a unique vector X,
which is null, future directed, outwards pointing, orthogo-
nal to 7,8, and normalized to unit length with respect to

*We have used the symbol @ = @ (u, r, x*) for a function that
is usually denoted by f in the literature to avoid a conflict of
notation with a constant  elsewhere in the paper.
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some smooth auxiliary Riemannian metric. This defines a

smooth vector field X on M. We choose time-orientation
so that —X, points towards the physical space-time.
Let y,, denote a maximally extended null geodesic with

initial tangent —X, at p. Standard transversality and
injectivity-radius arguments show that there exists a

neighborhood O of M such that for every ¢ € R the
union of the (images of the) null geodesics

Ne=Upes,¥p

forms a smooth null hypersurface, with U.S, foliating O.
To obtain Bondi-type coordinates we proceed now as
follows:
(1) Let x* denote local coordinates on S.. In 3+ 1
space-time dimensions we choose the conformal

representative g,p of the metric induced on S, by ¢
to take a canonical form. For example, if S, is
diffeomorphic to a two-dimensional sphere, we

choose g5 to be the canonical metric s45 on S°.
In higher dimensions one might wish to require
|

8x(§(8A7 ax)) = §<v918A’ ax) + g(aA’ vaﬁx)
. . 1, . . -
= g(v(")Aax’ ax) + Kg(aAv ax) = EaA(g(axv ax)) + Kg(aAv 8)() = Kg(aAv 8)6)

Thus

8)5(?1(8/47 ax)) = Kg(aAv ax)?

which provides a linear homogeneous ordinary differ-
ential equation (ODE) in x for g(d,, 0, ), with vanishing
initial data at x = 0. We conclude that

7000 =0, §(0.0,)=0. (25

Equivalently, the level sets of u are null hypersurfaces
generated by the integral curves of J,.

The Bondi radial coordinate rg, is defined by setting

detgup\mm 1 [detup\mn
FBO = 5 — 5 ,
det gap * \det g5

where 7 is the space dimension.
The final coordinate system (up,, 'go, Xp,) iS obtained
by setting, in addition to (2.6),

(2.6)
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instead that the volume element 4/ detéAB take a
convenient form, depending upon the geometry of
the conformal boundary. N

(2) We extend the local coordinates x4 from OM to O
by requiring the x*’s to be constant along the null
geodesics 7.

(3) Letg € O. Then q belongs to some null geodesic y,,
defined above. We define the function u by letting
u(q) = y°(p). In other words, u is defined to be
equal to ¢ on V.

(4) Set x := Q, the conformal compactifying factor as in
(2.1). Passing to a subset of O if necessary, the
functions (u, x, x*) form a coordinate system on O.
By construction the curves s — (u,x = s,x*) are
null geodesics initially normal to S..:

g(ax’ ax) =0, g(am ax/‘)|x:0 =0. (23)
‘We recall the usual calculation, which uses the fact
that 0, is tangent to null geodesics, V5 9, = kd,, for

some function «:

(2.4)

Org,
Uugy = U, Bo =XA:8)C — ai arBo’
Ox
axA axgo +a—xgoax

It follows from (2.5) together with the last implication
that

3(0,,.0,) = 0= (D, 00 ).

TBo”?

é(ax“" ax3> = g(axgo’axgo),

which shows that, on O, the metric satisfies indeed the
Bondi conditions

ganxgo =0= grBurBo’ \/ det gxguxgo =l \/ det éxguxgo-
(2.7)

Equation (2.6) implies that rg, has a full asymptotic
expansion in terms of powers of x:

1

o =+ (o)ol16:7) + (o), (0,63 + s (28)
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where the asymptotic expansion coefficients (rg,), are
functions of (u,x*). This can be inverted to give a full
asymptotic expansion

1 r u,x*) (r u,x*) 2+ (r u,x4
o () (i) ()
IBo I'Bo o

[Indeed, if we set y := 1/rg,, then (2.6) becomes

1

det éAB 0
e (det §AB> 7
and the existence of a smooth function x = x(y) follows
from the implicit function theorem.]

Since all metric functions are smooth in (u, x4, x), they
have complete asymptotic expansions in terms of 1/rg,,
with coefficients depending smoothly upon (ug,, X3, )-

As a special case of the construction above, we have
proved:

Proposition 2.1.—Let N be a null hypersurface
intersecting smoothly and transversally a section S of
conformal infinity in a smoothly conformally compacti-
fiable space-time with cosmological constant A € R.
There exist adapted coordinates (r,x*) on N in which

the restrictions g, to N of the metric functions g, take
the form

(2.9)

gap = " (9as(x€) + O(r™")), (2.10)
with r72g,; having full asymptotic expansions in
terms of inverse powers of r. These coordinates can
be chosen to satisfy the Bondi conditions (2.7) near N.

In 3 + 1 dimensions the metric ;} on S can be arbitrarily

chosen; in higher dimensions \/detg can be arbitrarily
chosen.

In what follows we wish to address two questions:
(1) Assuming vacuum, can the expansion above be
made more precise?
(2) How can we read off the mass from the above
expansions?
For this, some preliminary results will be needed.
Since the case A =0 has been satisfactorily covered
elsewhere (cf. [11,15] and references therein), from now on
we assume

A#0. (2.11)

B. Fefferman-Graham expansions

Recall that smooth conformal compactifiability of a
metric satisfying the vacuum FEinstein equations implies
existence of a coordinate system

PHYSICAL REVIEW D 93, 124075 (2016)
(x, x%) = (x, x0, x4)

near OM in which the metric admits a F. efferman-Graham
expansion [16,17]. We can write the metric as

g = X202 (E£dx* + Gop(x, x)dxdx"),  (2.12)

where £ is a constant related to the cosmological constant,
and where the sign in front of dx? is the negative of the sign
of A. For even values of n we have

T (6:5) = G (X) A+ (52)  (¥) 22 A4+ (G2 (x) 22
() (KX + (Fiog ) (¥) ¥ Tog X+ 0(x").
(2.13)

Here 8//\71 is the zero-level set of x, the tensor field

.& = .aabdxadxb

is a representative of the conformal class of metrics induced

by g on oM (Riemannian if A > 0, Lorentzian if A < 0),
and for i = 1,...n — 1 the smooth tensor fields

g; = (gi)abdx"dx” and  gop = (f]log)abdx“dxb

on OM are uniquely determined by 5 and its derivatives,
with gp;,1 =0 for 2k + 1 < n. We will interchangeably
write (g;),, and (g,;); in what follows.

For odd values of n the expansion reads instead

.aab(x’xc) :éab(xc) + <§2)ab(xc)x2 +oeet (gn—l)ab(xc>xn_1

+ (Gn)ap (x)x" + 0(x"), (2.14)
with again gy, =0 for 2k + 1 < n.
We have, both for even and odd n > 3,
1 /e R
Vi = — R,———q., |, 2.15
@ == (R =gy )+ (219

where R, is the Ricci tensor of the metric g.
As an example, if ¢ is a Birmingham metric, (6.1) below,
with zero mass, we set

1
S (S R
Y6548 *

where a convenient choice of an integration constant has
been made. The metric becomes

124075-4
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2\ 2
g=x2" (dx2 - (1 +ﬁ%) 24 + (1 —%) h).

(2.17)

In any case, we are led to consider metrics of the form

9= x22(2dx® + G+ i + O(xP)),  (2.18)

with

9(0x.7) =0=35(0y.-) = 0xg = 0:3p.  (2.19)
where p =4 in dimensions n > 5, p =3 in dimension
n = 3, and p is any number smaller than 4 when n = 4 [in
that last dimension O(x?) with p <4 can in fact be

replaced by O(x*Inx)].

C. The next term and the geometry of N

We will see below that, in a characteristic-Cauchy-
problem context, the regularity properties of the space-
time metric are determined by the first three coefficients in
the expansion (2.10). This raises the question of whether or
not conformal smoothness implies that some of those
coefficients are zero. The aim of this section is to show
that the next-to-leading term in the expansion (2.10) will
not vanish in general. This will be done by relating this term
to the trace-free part of the extrinsic curvature, within the

conformal boundary, of a section N/ of OM.

Consider thus a null hypersurface A" with a field of
future-directed null tangents L such that the closure A in
M of N intersects M transversally in a smooth spacelike

submanifold V. Let B denote the “null extrinsic curvature”

of NV,

B(X,Y):=g(VxL,Y), (2.20)
defined for X, Y tangent to A. We will invoke the
Fefferman-Graham expansions, and the law of conformal
transformations of the objects involved.

In what follows we use the notation of [[18]
Appendix A]. From that last reference we have

_ 1

;= —Eyoa,gAB. (2.21)
Hence, when L = 0,,
Byg = g(V4L,0p) = —g(Va0p,L) = —=g(Va03.0,)
_gyrrl,:xB = gOrFAB = —VOFAB = la19AB
= XAB> (2.22)

with y as in (3.8) below.

PHYSICAL REVIEW D 93, 124075 (2016)
Let

g=Q%

be the unphysical conformally rescaled metric. Let 7 =

OM be the conformal boundary, which in vacuum is
spacelike if A > 0 and timelike if A < 0. In what follows
we will assume that A < 0; the argument applies to the case
A > 0 after obvious modifications.

Let N be the inwards-directed j-unit normal to Z. Let S

be a smooth spacelike hypersurface in M meeting 7

orthogonally at N. Let T denote a future-directed g-unit
normal to S. Let L be a smooth-up-to-boundary field of
tangents of generators of . There exists a strictly positive
function @ so that

L=w(T-N) at\. (2.23)
Here N is thought to lie to the past of S and is thus the
boundary of the past domain of dependence of S in the
unphysical, conformally rescaled space-time (and hence
also in the physical space-time).

Let x be a defining function for Z, and let the conformal
factor be Q = x. Using rg, ~ 1/x [compare (2.8)] as the
parameter along the generators in the physical space-time,
with L = 0,, , we see that the function  in (2.23) can be
chosen so that

L=QL, (2.24)
and note that with this choice the vector field L extends
smoothly across the conformal boundary {x = 0}. Letting
Jap denote the corresponding “unphysical y-tensor” of N,
we have

_g(ﬁAaB’Z‘)

)?AB :EAB =

:_QZ (VAaB—i— (VA983+VB£28A gABVQ) )

——g(VAag-l- (VAQaB+vBQaA gABVQ) )

1
=)XAB +§L(Q)9AB- (2.25)
On the other hand, on /(/ it holds that
)?A3|j{, = _g(ﬁAaBJ‘)(T - N)) = a)(i(AB - I:IAB)v (2-26)

where H is the extrinsic curvature tensor of Z in (M, 9),
and K is that of S.

The Fefferman-Graham expansion shows that the trace-
free part of H vanishes at 7 , so that
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)?AB|J§[ = wi{AB|{x:0}' (2.27)

For further reference we note that the trace-free part of H is

in fact O(x?) when (a) Z is locally conformally flat, or
when (b)

IOQAB is proportional to éAB. (2.28)

In order to determine K we use the coordinates
of (2.12)—(2.13). In these coordinates let S be given by
the equation

X0 = flx.xt) = folx) +xf1(x*) + O(x%),  (2.29)

with smooth functions f,, f; (in fact, f, vanishes if S
meets the boundary orthogonally, but this is not needed for
our conclusions below); then

T = ea2(dx® — D, fodx® — fidx + O(x)),

where & is determined by the condition F(T,T)=
ee{xl}:

- 200 20A °AB
a?=¢e(g —29 Oafo+7 OafoOpfo+f1+O0(x)).
(2.30)

We emphasize that if the intersection of & with Z is a
smooth spacelike submanifold of Z, as assumed here, then
both @ and @' are smooth.

We will denote by e, the tangential lift of J, to the graph

of f:
€y = 6A + 8Afao = eA/‘aM.
For small x the metric §:= x*>g behaves as

=120 1= (X + Gy (x)dxdx?).  (231)

The Christoffel symbols r 5, of the asymptotic metric 3
read

o o

ab = F[?J]Zb =10

o

o
rlo_
I, =

’110

o
1w =0.

This can be used to determine the asymptotic behavior
of K AB-

PHYSICAL REVIEW D 93, 124075 (2016)
i(AB = —§(V6Aeg, T) = —(eA(eB”> + fgﬂeAaeBﬂ>Tﬂ

- o(C °(
= —ea2(0,0pf0 — TapOcfo + Tap

::f)AbeO
o0 oC
+2(Toa = Icfoloa)I8)fo
o) oC
+ (Too = To00cf0)9af008f0) + O(x)

— K + O(x), (2.32)
where
IS{AB = i(AB|x:0' (2.33)
Using (2.25) and (2.27) we obtain
R °oCD =
OaB = g (i(AB - gn ffD EAB> + O(x), (2.34)

where @) = o|,_.
We conclude that on characteristic hypersurfaces
smoothly meeting Z we have 6,5 = O(1) for large r, with

6|,_o being nonzero in general.
As an example, consider the case A < 0 with

a metric g,;|,_o Which is static up to a conformal factor.
(2.35)

We can then rescale the metric and adjust the x-coordinate
accordingly, so that g,|,_ is in fact x-independent. A
further, x°-independent, rescaling can be done so that g, is
constant. We can further choose manifestly static local
coordinates, where by definition g4o|,_, = O (this can be
done globally when §,,dx" is exact, which will certainly be

the case if A is simply connected). Setting X = 9, and
using

00Gab = LoyJap = VaXp + VX, = —21%,,

°0 . . © .
we see that all the I',,’s vanish, and in fact ng = 0. With
these choices we will have

Kup ~ 9ap (2.36)
if and only if
D Def
DyDpfo——— " Gan = (2:37)
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We conclude that under (2.35) and (2.37) we have

oap = 07" & |o> = 0(r°) (2.38)

for large r.
We also see that the (2.36) is a necessary and sufficient
condition for (2.38) in any case.

III. CHARACTERISTIC HYPERSURFACES

Throughout this section we allow arbitrary space-time
dimension n + 1 > 4.

As a first step towards understanding the mass of
characteristic hypersurfaces, a review of the characteristic
Cauchy problem for the Einstein equations is in order.

A. Wave-map gauge

Thus, let A/ be a characteristic hypersurface. Following
[18], we split the Einstein equations along A into con-
straint and evolution equations using the generalized wave-
map gauge [18,19], which is characterized by the vanishing
of the generalized wave-gauge vector:

H" =0, (3.1)
which is defined as
H*:=T*—V*  where V4 :=* + W*,
Ih= g, = g1, (3.2)

Here " are the Christoffel symbols of an auxiliary target
space metric g, which can be chosen as convenient for the
problem at hand. The gauge source functions W* =
WA(x*, g,,) can be freely specified and are allowed to
depend upon the coordinates chosen and the metric itself,
but not upon derivatives thereof. In (3.2) and in what
follows we decorate objects associated with the target
metric § with the hat symbol .

B. Characteristic surfaces, adapted null
coordinates, and assumptions on the metric

It is convenient to use coordinates adapted to the
characteristic surface, called “adapted null coordinates”
" =u,x'=r,x", A€{2,..,n}. The coordinate
r > rq > 0, where we allow a boundary or a vertex at a
value r = ry possibly different from zero, parametrizes
the null geodesics issuing from {ry} and generating the
null hypersurface, which coincides with the set {u = 0}.
The x4’s are local coordinates on the level sets
{u=0,r =const}. The trace of the metric on the
characteristic surface can then be written as (we will
interchangeably use x° and u)

PHYSICAL REVIEW D 93, 124075 (2016)
§ = Gudx*dx’ = goo(du)? + 2vodudr + 2v,dudx* + §,
(3.3)

where we use the notation

v = Jor Va = Joas = gapdx*dx®.  (3.4)
Here and throughout an overline denotes the restriction of a
space-time object to N.

Under the hypotheses of Proposition 2.1, for r large we

can write

Gap = hapr® + (Gap) 17 + (Gap)o + O(r™"),  (3.5)

where we use the symbol I to denote the standard metric on
the boundary manifold, and (g45)_; = (9ag)_;(x¢), i €N,
are some smooth tensors on that manifold. We also require
that O(r~") terms remain O(r~!) under x¢-differentiation
and become O(r~2) under r-differentiation, and similarly
for O(r ™).

The restriction of the inverse metric to N\ takes the form

g# = 2yoauar + grrarar + 2grAaraA + .@ABaAaB’ (36)
where 2 is the inverse of g,z and
0._-or_ L —rA 0,A 0-AB
U= = —, g° =-Uvv Z—IJQAI/B,
Yo
g7 = () (" va = Goo)- (3.7)

The null second fundamental form of N is intrinsically
defined and does not depend on transverse derivatives of
the metric; see (2.20). In adapted null coordinates it reads
[compare (2.22)]

1

Xa8 = 50,ap-

: (3.8)

The expansion, also called divergence, of the characteristic
surface will be denoted by

v:= 4% = 7 xas, (3.9)
while the trace-free part of the null second fundamental
form

1
GAB = )(AB - —T5AB

5 (3.10)

is called the “shear” of N\.

The constraint equations for the characteristic problem
will be referred to as Einstein wave-map gauge constraints.
In space-time dimension n + 1 > 3 they read [18]
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(8,—K)T+ni 112 = —|o|* = 8xT,,, (3.11)
o) +l + 0o _Lpo (3.12)
, 21 K|V = >V .
< p -2
(5,+T)§A :2VBO'A ]aAT—ZaAK— ]6ﬂTrA,
(3.13)
1 o 1 A _ =BCToA
8,+51/0V IJA :Eyo( 5 —g F ) (314)
1 2\ £A
(8,+r—|—l<)é_,’z§|§| -V, & —
+ 877(§ABTAB - T) + 2A, (3.15)
=5
0, + 1t + ‘”—lg—f/f (3.16)
. 21 K|g'" = > , .
where
|0|2 = GABGBAv |§|2 = LE]ABfAf&
5A = LE]ABva T:= gny/w' (317)

All objects associated with the one-parameter family
of Riemannian metrics § are decorated with the check
symbol . The boundary conditions needed to integrate
(3.11)—(3.16) starting from a light-cone vertex ro =0
follow from the requirement of smoothness of the metric
there; see [[18] Sec. IV.E].
The function « is defined through the equation
Vy,0, = k0, (3.18)
and reflects the freedom to choose the coordinate r that
parametrizes the null geodesic generators of N. The
“auxiliary” fields £, and ¢ have been introduced to trans-
form (3.11)—(3.16) into first-order equations. The field
&, = =217, represents connection coefficients, while the
field ¢ is the divergence of the family of suitably normal-
ized null generators normal to the spheres of constant
radius r and transverse to the characteristic surface. In
coordinates adapted to the light cone as in [18], the space-
time formula for ¢ reads [compare [[18] Egs. (10.32) and
(10.36)]; note, however, that there is a term zg'! /2 missing
at the right-hand side of the second equality in (10.36)
there]
(= (20, + 2+ 1)g" + 20" =291, + 73", (3.19)
To integrate the wave-map gauge constraints (3.11)—
(3.16) one also needs the components V¥, which are
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determined by the wave-map gauge (3.1)-(3.2). We have,
in adapted null coordinates [[18] Appendix A (A29)-
(A3D)],

f‘O = glﬂl_*gy = I/O(I/ang“ - T), (320)
u g 4 "0 lo—
glrz =-0,9 230911 — 0y — 11
AR 1 o _ipm—
+ 7BV, — EVOQABGOQAB, (3.21)
FA = gﬂﬂf‘fﬂ = IJOI/A(T - 1/080911)

+ 12548 (0pg15 + O1vp — Oprp)
— 20008y ph T (3.22)

Now, from the restriction to A/ of (3.1) and together with
the first equation of (3.2) one finds that the choice of the

target metric only redefines the fields * and W entering in

the definition of V# = [ + W without changing V* itself.
Therefore only V* enters in the Einstein wave-map gauge
constraint equations, and so only the explicit form of those
fields is relevant in the equations of interest to us.

An adapted coordinate system on a characteristic surface
N will be called “Bondi type” if the coordinates satisfy
Bondi conditions on N, but not necessarily away from A/,
reserving the name “Bondi coordinates” for coordinate
systems that satisfy Bondi’s condition everywhere.

We will start by deriving the asymptotic expansions of all
relevant fields in Bondi-type coordinates on the character-
istic surface; it appears that the calculations are simplest in
those coordinates. We have [[20], Eq. (5.5)]

§0B0 = I'Bo> 60950 = 0’ 309]3,3) = O? @ggaogg% = O?
(3.23)
where ¢ is defined by 7 = 20, log ¢, as well as
VO, = —7Boul | (3.24)
Vo = 360 (T%)2p — VBOVA ® + UBo (O, + 7)o
(3.25)
Ve, = ygﬁAugo — (O, + 7% + 18,0, 18°)75,-  (3.26)

As mentioned previously the Einstein wave-map gauge
constraints form a hierarchical system of ODEs along the
null generators of the characteristic surface that can be
solved step by step.
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IV. ASYMPTOTIC SOLUTIONS OF THE
CHARACTERISTIC WAVE-MAP
GAUGE CONSTRAINTS, A #0

Throughout this section we assume that the space
dimension n = 3.

In [10] asymptotic solutions of the Einstein wave-map
gauge constraints (3.11)—(3.16) with A =0 have been
obtained in the form of polyhomogeneous expansions of
the solution at infinity, i.e., expansions in terms of inverse
powers of r and of powers of log r. Our aim is to obtain
similar expansions when A # 0, with the goal to find a
formula for the characteristic mass.

We will assume that for large r

0P0P = (604P)yr55 + (6%°4")3155 + O(rgg).

(4.1)
which is compatible with, and more general than,
Proposition 2.1. Here 6®° is the shear of A/ in Bondi
coordinates, with ¢2°,8 = gBC6B°(9,,0,). As already
mentioned, wherever needed in the calculations that follow
we will assume that differentiation of error terms O(r%)
with respect to angles preserves the O(r*) behavior, while
differentiation with respect to r produces terms that
are O(r*™1).

[It follows from our calculations below that the hypoth-
esis (4.1) is equivalent to
24+ 0(r ),

04% = (064%),r7 + (04%); (4.2)

where r is an affine coordinate along the generators of V]

A. Matter fields

We start by analyzing the influence of the matter fields
on the asymptotic expansion of the metric in Bondi-type
coordinates. Our aim is to determine a decay rate of the
energy-momentum tensor which is compatible with finite
total mass. The decay rates for various components of the
energy-momentum tensor will be chosen so that they do not
affect the leading-order behavior, as arising in the vacuum
case, of the solutions of the equations in which they appear.

For the convenience of the reader we repeat here the
relevant equations in Bondi-type gauge [see [20],
Egs. (5.11)—(5.15)] with the contribution from the cosmo-
logical constant A added here]:

1 -
0 =5 ol j0™ + 8T8) = 0,

(87‘30 +

(0, +7%°)85°

=— 1671'7_"13/?,

(4.3)
B (o 8T) ), = 0. (44

—2V 50688 49,780 4 1 D, (|82 +82TB0)
(4.5)

PHYSICAL REVIEW D 93, 124075 (2016)

a’BoIféo + (éA + é:go)Ugo =0, (46)
(B, + 7% + 22 (%P + 82T8) ) £
W s o
HRY =S VA& = 8u(GAETRY — T°) + 24,
SBO
(4.7)
Ty + (18) 71 (B0 — 208 Vi) = 0. (4.8)

In Bondi-type coordinates, the relation

is independent of the cosmological constant and of matter
fields.

It follows from (4.3), which can be solved algebraically
for kB, that a term O(rgo™) in T8 with a,, > 2 produces

an O(rg ") term in kB [see also the discussion in
Sec. IVB and Eq. (4.21)]:

rr 1
(KBO)Vacuum+0(ng * )

(4.9)

T8°=0(rgo"), a,>2=kB=

Next, from (4.4) we find

a,,+2

V%o = (V%o)vacuum + O(rBo ) (410)

In the £BO-constraint equation (4.5), the assumption
T8 = 0(rg?* ™Y, 4#an, 4#a, (411
leads to
% 2 rr 2
1 = (8 vacuum + O(rge™ ") + O(rge™). (4.12)

where the values a,4, = 4 and a,, = 4 have been excluded
to avoid here a supplementary annoying discussion of
logarithmic terms (note that the logarithmic terms will be
discussed in detail in the sections that follow):
a,,=4=

rs 2 rr 2
1 = () vacuum + O(rge™ ") + O(rgg™ )

+ O(rg2log rg,).

a, =4 or

(4.13)

From now on we assume (4.11). To preserve the vacuum
asymptotics £8° = O(rg!) we will moreover require
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.. >3, Ay > 3. (4.14)

[Anticipating, we have excluded the case a,, = 3, which
introduces 1/rg, terms in 1/%0, which lead subsequently to
logarithmically divergent terms in v4,. We further note that
a,4 = 3 will produce an additional (£5°),-term that would
not integrate away in myg and would remain as a
supplementary (7B9),-term in our final mass identity
(5.56) below.]
Integration of (4.6) gives

a4+1 —a,,+1
I/]go = (I/]go)vacuum + O(ngAJr ) + 0( S )

& 180 = (1U8°) youum + O(r5e™ ™) + O(rgar ™). (4.15)

Finally, the asymptotic behavior £8° = O(rg!), together
with (4.7) and (4.8), shows that a term O(rgo®) in SB° with
ag < 2 would change the leading-order behavior of ¢B°,
ag = 2 would change the leading-order term of ¢B°, and
ag =3 would lead to a logarithmic term in ¢B°. This
leads to

SBo = O(rg™), a, #5,
= £5 = (®)yueuum + O ™) + Orgs ™)
+0(rgg),

a5>3

(4.16)

T = (T8 vacuum + 01505 %) + O (rge ™) 4+ O(rgar ),
(4.17)

and note that a factor 13, in the O(rg" ") terms in ¢B°

arises from the 4zrg,TB°¢B° term in (4.7), taking into
account the 2Arg,/3 leading behavior of ¢B°,

We conclude that the leading order of all quantities of
interest will be preserved if we assume that

a.,. >3, Ay >3, ag > 3. (4.18)

Keeping in mind our main assumptions, that all fields can
be expanded in terms of inverse powers of rg, to the order
needed to perform our expansions, possibly with some
logarithmic coefficients, we will allow below matter fields
for which (4.18) holds.

In what follows we will actually assume
T30 =0(rgy). o Lap—T"=

TIEXZO(rBO) 0(”33)

(4.19)

Note that the third equation in (4.19) is less restrictive than
(4.18), allowing a logarithmic term in the asymptotic
expansion of ¢B°. This term however will be of the order
log rg,/r, and will not influence our result for the
characteristic mass. It is accounted for in the correction
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term in (4.36) below. An analog statement holds for the
falloff behavior and the correction term in (5.16) below in
affine coordinates.

When solving the wave-map gauge constraints we keep
in mind that we eventually want to determine the expansion
coefficient (g5),, as needed to calculate the mass. This
determines how far the intermediate asymptotic expansions
need to be carried out.

B. Solving Equation (3.11)

The first equation of (3.23) implies 78° = 25! and using
this one directly finds from (3.11) in Bondi-type coordi-
nates [cf. (4.3)]

1 _
xBo — 3 rgo(|oB° + 87TB°). (4.20)
Note for further reference that this means
Bo 1 Bo|2
(&) =5 [l0% 1 + 8a(TP)u1]  (421)

for the expansion coefficients of xB°, where we have
assumed that n is positive.

; 0
C. Expansion of v},

Inserting (3.24) and (4.20) into (3.12) in Bondi-type
coordinates yields [cf. (4.4)]

Ore 4 [Bo 5 B0 (|6B0|2 + 82TB) |18, =0,  (4.22)
and from (4.1) we have
o O'BO O.Bo
6B = L - i " 5 " - s +0(rgl).  (4.23)
"Bo rBo TBo

Using this and (4.19) we find the solution of (4.22),

1
o = hlo (143 108 + 85T 53

O'\I'—‘

+ o™ B + 82T ) + Oz, (424
where (1), is a global integration function.
D. Expansion of £5°

Using 9,78°
the form

= 0, (3.13) in Bondi-type coordinates takes

(8,, + 7B0)EBe = 2V B0, B —20,kBO — 167TBY

"Bo

(4.25)

[cf. (4.5)]. Using again (4.19), (4.23), as well as [[10],
Egs. (3.24)—(3.26)] (as revisited to include matter fields)
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V0P = (EP) o + (B3 o + OUd). (4:26)

where
(25) = Va(0¥4"),.
(EB0)<A3) =%B(GB0 By, 4= VA‘6B0|2+47TVA(T )4

(4.27)

the solution of (4.25) reads

—=Bo — o TBo logr o
g0 = 2(=80) P 51— 2[Vp(0B0,B), — Bar(TBY) ] —op 20

+ Crgd + 0(rg)),

where the coefficients Cf”) = Cl(f'g)

gration functions.

It follows from Proposition 2.1 that the existence of a
smooth conformal completion at infinity requires the
relation

(x€) are global inte-

o

Vi(004"); = 87(T7%)s. (4.29)

E. Expansion of v,

Equation (3.14) in Bondi-type coordinates does not
depend upon A and reads [cf. (4.6)]

9,

Bo

Yo = —(V*

o

+ &80 (4.30)

Now, the transformation from the affine parameter r,
described in Sec. III B, to rg, is given by [[11], Eq. (51)]

rgo = r—1,/2+ O(r ). (4.31)
This implies that ga2 is of the form
ggg = h rBo + (ggo) rBo + O(rBo) (432)

Using the form (4.24) of 13, keeping in mind the relation
vy, = 1/18° and the form (4.28) of £B°, we find the
solution of (4.30),
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Vgo = (UBo)o +h VB(VBO) g

|05 Tl + 5 00 R | 5
2 9AB 0 BoA —Bo log rg,
+§h [V ( Op )3_8”(Tr3)3] 7’123
(6]
1

20AB ° -
S AR N

o

+ 2(785);Va(054), +h C — (982), Vel )o"
+ (W05 V8, [ 53

(4.33)

°AB o
+h (Vo) Ve (B!
+ O(rBo)

where (14,), is a global integration function.
Note that the coefficient of the logarithmic term vanishes
when (4.29) holds.

F. Expansion of ¢B°

Inserting 72° = 2r5! and (4.20) into (3.15) in Bondi-type
coordinates yields [cf. (4.7)]

2 _
(a +—+ r§° (lo®* + SnT?;’)>gB°
TBo

Bo
»B |'§BO|2 T A —ABTB 7B
—RP 4+ 20—V, + 8a(gii TRy - T) + 24,

(4.34)

In order to solve this equation we start by defining

gBo = R0, + o, (4.35)

where CRO:O is the solution of (4.34) in the case A = 0. Its
asymptotic expansion is known: [[[10], Eq. (3.40)] gives

the formula in general coordinates for general IO?, while
[[20], Eq. (5.23)] the one in Bondi-type coordinates with

IO€ = 2] and reads

o

R
Ao = e + (ER%), 80 + 0(r52),

[3)

(4.36)

where (£8°,), is a global integration function and R
denotes the leading-order coefficient of the asymptotic
expansion of R in terms of r, which coincides with the Ricci
scalar of the boundary metric lim,_ 7 2g,5dx"dx®. The
expansion of 6¢B° on the other hand can be calculated by
subtracting (4.34) from the corresponding equation in the
case A = 0, leading to

(8, + 75 + KBO)SLBO = 2N (4.37)
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This equation can be solved by using (4.19), (4.20),
and (4.23), and we end up with

2A A
= SR ST

=50y 1108(7B0)
+3 2 10" + 82(72%),] o
Bo

(4.38)

where (6¢B°), is again a global integration function.
Summing up the solution of (4.34) in Bondi-type coor-
dinates reads

2A o 2A
gBe = 3 Bo~ <R + (KBO)3> "o

3
2A 1 Bo
—(KBO>4 0gero (c )
3 "Bo "o
2A

A
=2 o= (R 1o+ 8700 )

3
logrg, = (£B9)
(165012 + 8a(TB0)s] =522 + =522 + o(rg2).

TBo IBo

+ O(rBo)

U)|I>

(4.39)

and we have combined both integration functions (5¢8°),
and (£82,), into (%),

In view of the analysis of Sec. II, existence of a smooth
conformal completion leads to the condition

(K%)4 =0 & |05 + 8(T7°)s = 0. (4.40)

G. Analyzing (3.16)
Inserting (3.26) into (3.16) in Bondi-type coordinates

and keeping in mind that, by (4.22), 9,, 1§, = —«®°, one
finds [cf. (4.8)]
i+ (2%0) (B0 — 208 Varg,) = (4.41)

for (3.16) in Bondi-type coordinates, which is an algebraic
equation for gg.. Inserting the asymptotic expansions
(4.24), (4.33), and (4.39) we found for 1/%0, 1/{3‘0, and

B0 respectively, we obtain the asymptotic expansion
arr A, 0 )V, (LA
9Bo = _SrBo + (UB())OVA( Bo)OrBo
R A A logrg
Bo _ "~ (.Bo o
+ (G500, ) =300 2B

+<<vBo> V4 ()s (02 Va (1) 1—<¢B°>2)

+0o(rg,). (4.42)
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where, as before, i? is the Ricci scalar of the boundary

metric lim,_, 7 2gpdx*dx? and V, is the associated
covariant derivative.
Note that the coefficient of the logarithmic term in (4.39)

vanishes if (4.40) holds.

H. No-logs conditions

Consider characteristic initial data on A/ such that the
functions r52¢5% have a full asymptotic expansion in terms
of inverse powers of rg,. From what has been said it

follows that the equations

V(0P47)y ~ 82(T5), = 0= |o% [} + 82(T5)s,  (4.43)
[see (4.29) and (4.40)] provide a necessary condition for
conformal smoothness of the associated space-time. It is
likely that an analysis along the lines of [9], using [21-23],
will prove that these equations are also sufficient in
space-times with conformally well-behaved matter fields
(cf. [22,24,25]), but we have not investigated this.

When one, or both, of Egs. (4.43) fails, the characteristic
initial data set will have a full polyhomogeneous expansion at
infinity. One expects that the evolved metric will similarly
have a polyhomogeneous expansion, but no evolution the-
orems guaranteeing this are available so far even in vacuum.

As such, the no-logs conditions (4.43) require the data to
be transformed to Bondi coordinates, if not already so given.
When A = 0, a coordinate-invariant version of the no-logs
conditions has been established by Paetz in [10]. It would be
of interest to find the equivalent of his conditions for A € R*,

V. CHARACTERISTIC MASS

Throughout this section we assume that the space-time
dimension is n 4+ 1 = 4.

A. The Trautman-Bondi mass

In [5,6,26], assuming A =0 and in space-dimension
n = 3, it was proposed how to define the mass of a null
hypersurface A at a given moment of “retarded time” u at

the cross section A/ where it intersects null infinity Z . This
mass, usually referred to as the “Trautman-Bondi mass,” is
defined as

1
_— _E/fvmﬂ;l, (5.1)

\/det h1,gdx2dx?, and where M denotes the
mass aspect function M: N — R (compare, e.g., [5,6]),

where’ du Q=

*Bondi eral. introduced this formalism in the asymptotically flat
case, where /145 = 545, the standard metric on S2. In anticipation of

other boundary topologies, e.g., a torus, we will use the symbol £ to
denote the chosen metric on the relevant manifold.
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1

M = (60) -

: (5.2)

The definition uses Bondi coordinates, as seen in Sec. IT A,
and recall that (g5g), denotes the coefficient in front of
l/rﬁ0 in an asymptotic expansion of gb¢ for large rg,, in
particular,

(ggé’ )i
Bo

900 = —1+ + o(rgs)-

Our aim is to obtain an analogue of the Trautman-Bondi
mass in space-times with A # 0. We seek to derive a
formula that applies to a class of space-times that includes
vacuum space-times with a smooth conformal completion
at null infinity Z*, such that the characteristic surface

intersects Z in a smooth cross section N

From our point of view, the key justification that (5.2)
provides a good candidate for the integrand for a total mass
is the fact that M is one of the nonlocal integration
functions that arise when solving the characteristic equa-
tions when A =0. It turns out that this remains true
for A # 0.

Consider, thus, characteristic data in Bondi-type coor-
dinates, defined perhaps only for large values of rg,.
The space-time metric on N = {uB° = 0} can then be
written as

9= g50dud + 2u8°dug,drg, + 208°dug,dxy, + 5.

(5.3)
Now, Bondi et al. assume
r,al(,i?ooyg":o’ rBloiLnooz/%O: 1, ralolm (rg2gBs) = hyp.
(5.4)

(v8o

B9 = (hap(V80)o(W0)o — (Bo);

— (80)0 [(130)5" (G80)0 + 2(F80) -2 (16°)2) =

(gBo) )rzBo + (ﬁ%)—l

(UBO) 2(gBo)log 1
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It follows from Proposition 2.1 that the last equation in
(5.4) is justified under the hypotheses there. However, it is
not clear at all whether the first two can be assumed to hold
for all retarded times in general: when A < 0 this is part of
the asymptotic conditions that are usually imposed in this
context, but which one might not want to impose in some
situations. However, when A > 0 there is little doubt that
all three conditions in (5.4) can be simultaneously satisfied
for all times by a restricted class of metrics only. For this
reason we have allowed general fields (vf,), and
(19,)o(x®) when solving the constraint equations so far.

Nevertheless, it is easy to see that the first two equa-
tions (5.4) are determined by the propagation of the
coordinates u and x4 away from the initial data surface
N and can always be imposed on A as long as one does not
assume that they hold at later times. In particular, the first
two equations in (5.4) imply no loss of generality as long as
no evolution equations are used. Since we only work at \V,
and use only the constraint equations, we will assume (5.4)
from now on.

B. The characteristic mass in Bondi-type coordinates

The asymptotic expansion of gbe needed to obtain the
mass aspect function can be calculated using the third
equation in (3.7) in Bondi-type coordinates

900 = TanvBovio — (15°) Tio. (5.5)

and we note again [cf. (4.32)] that g2 is of the form

+ ((180)o [ZhAB(DBo) + 2(73%) 1 (UBo)2 + (G23)1 (R o]

— (85 [(V30)5" (F8u)1 + 2(T80) 1 (v5°

)2+ 2(F80) 2 (16°)3]) rga + 0(r50),

§‘§§ = h rBo (9§o) rBo + O(rB()) (5.6)
Using this and (4.42) leads us to
)O(Vgo)o’"Bo + (vﬁ0)0[2hAB(1/§0)2 + (gﬁg')o(l/go)o}
log g,
Bo
(5.7)

where we can directly read off an expression for the mass aspect function M:

1 -Bo
Mzi(ggo)l

— 5 (A hl2han ), + 28) 10 + @) ()] -

(U80)0

(Tho)1 + 2(980) 1 (16°), + 2(9132,)_2@03")3)
(D%O)O .

(5.8)
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Now, using that §° = 1/18, [cf. (3.7)] and (4.24), we have

(02758 — (Uo)37Ba) + O(rge)

1 _
= 0R)5" (1= 108 + 85253

I/OBO = (D%o)al(l -

- loME + 8a TR ) + 005 (59

After inserting this and the expansion coefficients of gy,
and 14, we calculated before, M reads

M= )y s )+ (B)-1 O+ 05, 0|
#0375 (5(E)2+ 94 llo™ B + 8a(TE2L)
~ Va5 o™+ 8T

(5.10)

1 B .
—§[|UBO|421 +87(T2°) 4]V a (1)

We return, now, to the definition of the characteristic
mass, (5.1), and assume in the remainder of the present
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and using the fact that the divergence terms in (5.10) will
integrate out to zero, we find

1 A
MTB = T (CBO)z Hit oa /(80)3‘1/1;[

1

167r ()4, Hi—

7o . [ 8a(TE) s

(5.11)

C. The characteristic mass in terms
of characteristic data

To continue, we want to relate the fields occurring in
Bondi-type coordinates to their representation in coordi-
nates where r is an affine parameter along the radial null
outgoing geodesics of . We start with ({B°), and follow
the argumentation in [[11], leading to Eq. (51) there], which
we repeat here for the convenience of the reader.

First, we have

FBo = r—T—2+ o(r ).

5 (5.12)

Next, the transformation formulas for z and { [compare
(3.19)] read

work that the boundary conditions on 13, and uj,, 7Bo(yBo) = or (r(rB°)) :i7 (5.13)
introduced in (5.4), hold. With these boundary conditions, orde Bo
|
CB() — 2(9B0)AB(fBO)rBo —|—TB0( Bo)rBorB0
_ o(goys Org, Ox' Ox/ i Org, O°r Y. Or Org, Org, _ i
Ox* Oxp OxB Y Or Oxp 0xB, Org, Ox' Ox/
_,pOrg, Or Or _pOrg, Or Or _ (9rB 8 s Org,
=278 — = — 2948 —=2 — I +—== 2948 °F 2 —20C
7 Or Oxj, 8x§0K+ 7 OxC Oxpy, OxB b P et 7 As + wﬁxcy g
=0 =7
Org, Or 5‘r or (9r or or, Pr Or Org, Or
— 25 B Bo B Bo B Bo C 2 B Bo Bo Bo _AB
e S e M v AN A e e R
8 ar
rBf’g 2 aB"A r+0(r5d). (5.14)

where A; is the Laplace operator of the two-dimensional metric Gapdxa dxb .

To continue we need the asymptotic expansion of { and
therefore solve the respective constraint equation (3.15).
Note that we have already done this in Bondi-type
coordinates, but we also need the result in affine
coordinates.

We begin with the same procedure as in Sec. IV F and
define

§=Cp—0 + 6C, (5.15)

where {,_ is the solution of (3.15) in the case A = 0.
Its asymptotic expansion is known and reads [[10],
Eq. (3.40)]

o

R
Ca—0 = -t (Caz0)ar™ +0(r7?), (5.16)

with ({y—g), being a global integration function. We
assume that the relevant fields satisfy analog falloff
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behavior in affine coordinate r as we assumed in Bondi-
type coordinate rg, [cf. Egs. (4.1) and (4.19)]. The equation
for 6 reads

(8, + 7+ K)5¢ = 2A. (5.17)

From now on we choose the coordinate r so that k = 0. We
start by solving the Raychaudhuri equation (3.11) in this
gauge and obtain the expansion of z,

_ 2.0 2lefi+8x(T,)i+7
o2 23
2oz +8#(T 2 24 8x(T 3
+ [|6|5+ 77( rr)5]+ 724[|G|4+ ”( rr>4]+72+0(r—5)’
4r
(5.18)

where 7, is a global integration function and |o|? are the
expansion coefficients of |o|*:

lo]? = '”J(‘ 4105 ""5 +0(r9). (5.19)

Using (5.18) we find from (5.17)

2 3
T, Ty —213 3113 — 715 —2t4logr
=ANl—-=
¢= ( 3 + 3r + 3 r

552

+—="+o0(r2), (5.20)

where 6, is again a global integration function. Summing
and combining the two integration functions ({,_g), and
0, into ¢, the solution of (3.15) gives

2A Ar, o A(213 —13)
—_—— - —= = R N D el —1
¢=37773 ( T3 ]
A3tyrs — 73 — 27,) 1
| ABnr — i) Org2r+%+o(r-2)_ (5.21)

Using this and the asymptotic expansion of A;r [compare
[[11], Eq. GDI]

(5.22)

and expressing (5.14) in terms of rg,, one obtains

PHYSICAL REVIEW D 93, 124075 (2016)

o

R
(B =0+ 5% + A;lfz

A[ [oBo2 4 8(TB ]
2 (I o487,
(5.23)
A - -
802 =2 el + 8(7,, )] - lof - 82(T.,)y).
(5.24)

Inserting (5.23) into (5.10) and using the boundary con-
ditions on 1, and v4,, introduced in (5.4), we find

O 1 R
(Cz =7+ A Tz) EV (V3%
-1 (|0B°|§ +82(T7)s — ollol; + 8a(T,)4)).

(5.25)

We now calculate the expansions of |¢]> and |65°|? to
insert explicit expressions for the coefficients occurring
in M. Further we want to relate the relevant coefficients of
the energy-momentum tensor in Bondi-type coordinates to
their representation in affine coordinates. For |o|> one

obviously has

|0|5

o =12 J;‘+—+ o(r~*)
:(GAB)iEGBA)Z+2(6A3)i§GBA>3 0(r ), (5.26)

and performing a coordinate transformation and replacing
the dependence on r with rg, we obtain

Bol2 _ (O'AB)z(O'BA)z (JAB)z(UBA)3 - (UAB)z(GBA)ﬂz
|o5°* = I +2 <
Bo rBo
+ O(FBO)
—2lol?
:@ ols : lolaz2 0(r59). (5.27)
rBo rBo

By assumption or by smooth conformal compactifiabil-
ity we can write TB° in the form

oo (), (T)
rr T 4 + ’5
TBo B

S+ 0(r5d). (5.28)

o

Performing a coordinate transformation we find an analog
expansion for 7, in affine coordinates and replacing again
the dependence on r with rg, we obtain
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_ T T.)s—2(T
T]rgro _ ( :r)4 =+ ( rr)S - ( rr)472 + 0(@2) (529)
TBo TBo

Therefore we end up with the following formula for the
mass aspect expressed through characteristic data:

o

R oA
M= Cz+§1’2+A;ﬂ'z> v' 3o

l\.)l'—*

N

1
4

N|>

15 3eallold +82(T,)y] = [loff + 82(T,)s))-

(5.30)

Using again the definition of the characteristic mass and
bearing in mind that the divergence terms will vanish after

integration over A/ we find

272“6'421 + 87[<Trr)4] -

PHYSICAL REVIEW D 93, 124075 (2016)

1 R
mrg = 167 / <§2+ Tz)dﬂ

LA [ (3eslol-+8(T,, )] - o3+ 85(7, )

48
(5.31)

D. The characteristic mass and the
renormalized volume

We are ready to prove our final formula for the character-
istic mass, which will be in terms of geometric fields
defined on a characteristic surface parametrized by an
affine parameter r ranging from r to infinity. In the case of
a light cone we take ro = 0, but we allow nonzero r; to
cover other situations of interest.

We first note the asymptotic expansion of \/det g, for
large r, which is obtained by using the considerations in
[[10], leading to Eq. (3.13) there] and our result for the
expansion of z, (5.18):

[lo|% + 8= (T

; 3—2||of3 +82(T
\/@ZFMO_EJFQ [|0|Z+2 2(T,)d |
r r

= /det g,zdx*dx?, and the expansion (5.21) of £, we find

o = 1
—r3/o dp; —Ar2/ Tydp; — r/o Rdy: —Ar/a <[|o|ﬁ +8x(T,,),) —;r%)d,u;l
N N N N
—

Using this, du,

dus —
/&Cug

==ﬂ;(/:/)

rr)S] —4
6,3 +O(r )) (5.32)

A - - A
~ 107 [ (ot +85(T,)5 = 2ol + 8a(T, ), + [ 162+ Res, = | e
3 N 12 I h

18 (1972[|‘7|4+8”( +)al

From (3.15) with xk = 0 and the Gauss-Bonnet theorem
we have

_ N 1.
[0+ e = =m0+ [ (G145

+2A / dus, (5.34)
[

o

where y () is the Euler characteristic of A/. The integral in
the last term of that equation is the area of the constant-r
sections of A/, and we define the volume function V(r) to

be its integral
D gy — / / duydF.
=ryg JN

V(r) = / ead

(5.35)

—2[|o|2 + 8=(T

)sl)du; + o(1). (5.33)

Remark 5.1.—We note that V(r) is uniquely defined up
to the choice r( of the origin of r and up to scaling on each
generator.

When cross sections of Z are negatively curved compact
manifolds, the asymptotic conditions imposed in our
construction define the scaling uniquely.

When cross sections of Z are flat compact manifolds,
the asymptotic conditions imposed in our construc-
tion define the scaling up to a constant. This freedom

can be gotten rid of by requiring the h-volume of
the cross section to take some convenient value, e.g., 1
or (27)%

When cross sections of 7 are two-dimensional
spheres, the asymptotic conditions imposed in our
construction define the scaling uniquely up to the action
of the group of conformal transformations of S2. This
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freedom reflects the fact that in this case mrg is not a
mass but the time component of a covector.

A redefinition of r( affects the explicit formula for V
as a function of r, and hence the numerical value of the
“renormalized volume,” to be defined shortly. When N
is a globally smooth light cone or a smooth hypersur-
face emitted from a submanifold of codimension larger
than 1, then the origin of the affine parameter ry =0 is
determined by the location of the “emitting” submani-
fold, which gets rid of the last ambiguity. O

Using 0,+/det g,z = 7+/det g4z we find

dv(r) 1
o /N <5|§|2+s) duy.

0, [ cduy=—4mr(N)
N

(5.36)
which we can integrate in r starting from r = ry:
lim (/ é’d/l§+4ﬂ)((./(\3/’)r—2AV(}")>
r—0o0 N
. o © 1
—hm/o Cdu§+4ﬂ)((./\/')r0+/ / <—|§|2—|—S)d,ugdr.
=T JN r=ro JN 2
(5.37)

We leave the symbol lim,_, in the last equation to
accommodate a vertex at r = ry, where ( is singular, but
note that light surfaces emanating from smooth space
codimension-2 submanifolds will also be of interest to
us. One needs to make sure to use appropriate boundary
conditions for the lower bound of the integration depending
on what kind of characteristic surface is studied. In the case
of a light cone, i.e., a null hypersurface emanating from a
point at r, = 0, the necessary boundary conditions follow
from regularity at the tip of the cone as discussed in [[18],
Sec. IV. E].

When the first term in the last line vanishes, we can infer
non-negativity of the left-hand side by assuming the
dominant energy condition for nonvanishing matter fields.
This condition implies then [20]

Integrating (5.39) we obtain in fact

PHYSICAL REVIEW D 93, 124075 (2016)
S =8n(g"8Tys—T) > 0, (5.38)
which means that the right-hand side of (5.37) is manifestly

non-negative. Assuming that the right-hand side of (5.37)
is finite, we see that the divergent terms in 2AV(r) and

47y (N)r need to cancel those in the expression on the
right-hand side of (5.33) exactly. To make this precise, we
continue by calculating an explicit expression for the
volume function V(r). We start by using again (5.32)
dv(r)

and find
_ IV ‘
dr —/j:[dﬂg—” ﬂ;,(N) r/ﬂffzdﬂ;,

% / (112 llol2+87(T,), ])dﬂz

—/ o3+ 82(T, ), Jea—llo2+ 8 (T, )]l
(5.39)

It follows that there exist constants so that the function V (r)
has an asymptotic expansion of the form

1 o
V(r) = §r3/4];(./\/) + Voo + V_jr+ Vi logr
+Vo+Virt +o(r ™).

We define the renormalized volume V., as “the finite
leftover in the expansion”:

Vien = Vo.

One can think of V, as the global integration function
arising from integrating the equation for dV/dr. The
numerical value of V., is defined up to the ambiguities
pointed out in Remark 5.1.

2400 = A3 ((r=2) 4 (2) )i =2Vt [ (o4 85T, ) D

+y10gr [ (o +80(7,,)5] =2 + 82(T, ) ey + 00,

and thus

(5.40)

r ° r? r 1
_1; _ __ 72
Vren - ;ﬂll»n; |:V(}") 3 ”E(N) + 2 /{,[TZdﬂZ + 2/ <[|0|4 + 8”( ) ] 2T2> d/l;l

1 _
+ —log r/) (llof3 + 8z(T,,)s] — 2[Jo]; + 8(T
6 N

T,
] (5.41)
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Now, by (5.37) and using (5.33) and (5.40),

lim </ {duy + 47[)((/</)r - 2AV(r)> = lim (—
r—o0 N h r—00
A

18 /5

r/o Ry +4ﬂ;((/€/')r
o

PHYSICAL REVIEW D 93, 124075 (2016)

(192, |03 + 87(T ;)] = 2[|o[3 + 82(T,,)s))du;

+ /o (C2 + I%TZ)d/'{;l - 2AVren
N

. o o 1
— lim / Z_,'d,u_(v} + 477.')((./\/)1’0 + / / <§ ‘§|2 + S) dﬂgd}’.
r=ry JAf r=rg JN

Next we rewrite (5.31) as

o R A B} _
16mmyg = / ($> + Rry)dp: —/o = Todu; +—/o (31a[|ol3 + 82(T,,),] — [|0l3 + 8x(T,,)s])du. .
N h 2 b3 n h

and find, by (5.42) and (5.43), using fﬁf ii’d/t;l = 471')((]0),

(5.42)

(5.43)

o

o o0 1 R A
16zmg = lim [, Cduy + 4my(N)rg + A =1EP+ S )dugdr — | —tadu: + 20V +— [, Ddu:
r=ro JN . r=rg JN 2 . h 12 Jn h

_1_8/\7

We continue with a generalization of the arguments
leading to Eq. (43) in [11]. Indeed, we allow the case
ro # 0. Next, for further reference, we allow an asymptotic
behavior for small r for light cones emanating from a
submanifold of general space codimension d, and not only
a light cone. Finally, for future reference the following
calculations, up to the resulting expansion of z, (5.53), are
performed for arbitrary space-time dimensions n + 1 > 3.

Keeping in mind the expansion (2.10) for large r, we
note that

n—1 ) -3
=4+ 24 0(r), for larger,
_ { P HEEorT) (5.45)

=14 0(1), for small r.
Here the behavior for small r is the one which occurs when
the set {r = 0} has space codimension d (e.g., d = n for a
light cone emanating from a point). If r, > 0 we assume
that 7 is smooth up to boundary when the boundary r = r
is approached.

Next, let

n—1

T =

(5.46)

r

This is the value of 7 for a light cone in Minkowski space-
time, and it follows from (2.10) that this is the value

5 [ G2l + 82T, + 411 + 8(T,,) s,

N

(5.44)

approached asymptotically along null hypersurfaces meet-
ing Z smoothly and transversally. Let

ot:=7—1

denote the deviation of z from its asymptotic value for large

r; then
5+ 0(),
Sr=<"
o),

for large r;
(5.47)
for small r.

(Note that d7 is diverging at the same rate as 7z for small r
when d # n.) From the Raychaudhuri equation (3.11) with
k = 0 one finds that oz satisfies the equation

dé st 2
‘ ( ‘ (5.48)

ot Z)6r = —|of2 - 8aT,,.
ar n—1+r>T o whr

Define

rf o 2
U=r20:= r‘zexp</ ( Tl—l-:)d?),
. \n—1 "7

for some r, (possibly depending upon x*), which will be
irrelevant for our final formula (5.53) below except for the
requirement that the integral converge. Thus
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1d® ot 2
T aoi (349)

so that (5.48) is equivalent to

ld(q)&)
o dr

= —|o|? — 8T ,,. (5.50)

Using (5.47), we are led to the following three equivalent expressions for the function W:

exp <— /r°° n‘s_fl (5, x4)ds + Cl(xA)>; (5.51a)
U(r,x4) =< exp </,Orn5—11 (s,x)ds + Cz(xA)>; (5.51b)
rit exp (n 1 1 /0 [5T(s,xA) _4 - ”} ds + c3<xA)), (551¢)

for some functions C;(x*), depending upon the choice of r,. In (5.51b) we have assumed that r, > 0, while (5.51c) holds
when 87(r, x4) ~ (d — n)r~! for small r; compare (5.47).

We emphasize that both ® and W are auxiliary functions that are only needed to derive (5.53) below, and there is some
freedom in their definition. In particular either of the functions C;(x), i = 1, 2, 3, can be chosen to be zero if convenient for
a specific problem at hand, and we note that the C;(x*)’s cancel out in the final expression for 7 in any case.

We further stress that in the special case of a light cone we have d = n and treating the case for small r separately is not
necessary. In this case (5.51b) coincides with (5.51c).

Thus, using 67 = 7 — 7; and (5.46),

U(rpxt) | P (_nljlor (5.0 == 1)“’3)? (5.52a)
T(r.xt) (r_ro)%exp ( /ro (se(s.9) - d:n) ). 55

with both (5.51a) and (5.51b) leading to (5.52a) as long as the right-hand side of (5.52a) converges, and with (5.52b)
holding with ry = 0 when &z(r, x*) ~ (d — n)r~! for small r.
Integrating (5.50) and using (5.52a), without denoting the dependence on coordinates x* explicitly in what follows,

n—1

o_n - L = {\If(r)‘1 /_ (Io(P)P + 82T ..(7))¥(7)7dF - lim igi; (T(S) - %) SZ} : (5.53)

=7y

We can directly read off the expression for 7, from this:

7, = —lim {\I/(r)‘l /;_rro(|o(;)|2 n SnTr,(?))\I/(?)?zd?} - [hm\p(r)—l] x lim [\I/(r) (” L 1> r2]. (5.54)

r—co r—oo r=ry r
From now on we return to space-time dimension 4:
n+1=4.
Returning to (5.44), inserting the result for 7, we just found, and using further

Fr=2 A7

dpy = e 75 = (5.55)

o

we obtain our final formula for the characteristic mass mrg of a null hypersurface N = [ry, o0) x N:
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R A . = [E2dr
= [ ( 45+ [+ 15 2+ 85(7,)0)] (o + 8T, )el 5 ) s
r=ry

lé wt N+ Jim ([ §% ol2 H(T,,)4)><;—T>er?"fd’]dﬂgﬂ

AVren A ) -
- T .
8” 72” Aﬂ/<|6|5+8”( rr)S)dﬂh

To obtain this equation, it is irrelevant which form of W in (5.51) we take, provided that the same formula is consistently
used throughout. For example, if W(r) is given by (5.51a) with C;(x*) = 0, then lim,_,.,¥(r) equals 1, independently of
whether ry = 0 (so that the null hypersurface is singular at ry) or ry # 0 (in which case the set {r = ry} has space
codimension 1).

In the special case of a light cone, where d = n = 3, R= 2, and ry = 0,* (5.56) simplifies to

_ L fe L .n Ao = 2 7\ [ I
mrg = 1677.'% //\Q[ (2 |§| + S + |:1 + ﬁ (|0|4 + Sﬂ(Trr)4):| (|6| + 877'-Trr)e " d/”f]dr
AV, A

8 2

sdu; +

1927 /5 2 (Icr\5 +87(T,,)s5)dp .

(5.57)

Assuming further a conformally smooth compactification and vacuum we have |o|§ = 0, and after some rearrangements we

obtain the striking identity

rrZr
s = 167:/ /( & + Jof2e)” d)"ﬂzzdf
1 3 o]
+§<Vre“+12/ (52_74>d”2>’ (5:58)

with 7, < 0 given by

T = _/°° |6|2e_frmhff2
0

(Recall that 7, = 0 if and only if the metric to the future of
N s, at least locally, the de Sitter or anti-de Sitter
metric [27].)

(5.59)

VI. COORDINATE MASS

In this section we assume that A < 0 and we allow
arbitrary space-time dimension n + 1 > 4.

There exist several well-defined notions of mass for
asymptotically hyperbolic initial data sets (cf., e.g., [7,28—
31]), which typically coincide whenever simultaneously
defined, some of them defined so forth only in dimension
3 4 1. Our aim, in this and in the next section, is to show
that the characteristic mass coincides with those alternative

“Recall that R = 2 when N is a two-sphere, R=0fora torus,

and R < 0 for higher genus topologies of Z ~ R x /\f In the case
of a smooth light cone the cross sections are spherical for small 7,

and therefore everywhere, so R = 2.

definitions in some cases of interest. To set the stage, in this
section we introduce the notion of “coordinate mass” for
two classes of metrics. (Compare [[30] Sec. V] for a similar
treatment in dimension 3 + 1.)

A. Birmingham metrics

Consider an (n + 1)-dimensional metric, n > 3, of the
form

dr? °
g=—f(ryde* + a + P2 hyp(x€

dxAdxB,
) Jdxdx

6.1)

where h is a Riemannian Einstein metric on the compact
manifold which, to avoid a proliferation of notation, we will

denote as N'; we denote by x* the local coordinates on N
As discussed in [32], for any m € R and £ > 0 the function

—_— —, 0,£1},
n-2) r? 'z e€d J

;3( 2m r? (6.2)

where R is the (constant) scalar curvature of 4, leads to a
vacuum metric,

R (6.3)

w — eﬁgﬂlﬂ

where the positive constant # is related to the cosmological
constant as

124075-20



COSMOLOGICAL CONSTANT AND THE ENERGY OF ...

1 2A
— =&—. 6.4
72 ¢ nn—1) (64)
Clearly, n is not allowed to equal 2 in (6.2), and we
therefore exclude this dimension in what follows.
The multiplicative factor 2 in front of m is convenient in

dimension 3 when h is a unit round metric on S2, and we
will keep this form regardless of the topology and dimen-

sion of V.
There is a rescaling of the coordinate r = b7, with
b € R*, that leaves (6.1)—(6.2) unchanged if moreover

h=0bh,  wm=b"m  i=bt. (6.5
We can use this to achieve
ﬂ'—LE{O +1} (6.6)
- (n—1)(n-2) ’ ’ '

which will be assumed from now on. The set {r =0}
corresponds to a singularity when m # 0. Except in the case
m = 0 and # = —1, by an appropriate choice of the sign of
b we can always achieve r > 0 in the regions of interest.
This will also be assumed from now on.

We define the coordinate mass of the metric (6.1) with f
given by (6.2) to be m.

Similarly, we define the coordinate mass of any metric
that asymptotes to (6.1)—(6.2) to be m.

Here, “asymptotes to” can, e.g., be understood as

dR?
(fm(R) + o(R*™))
+ R2(hap(xC) + o(1))dxAdx®,

g=—(fu(R) +o(R*™))dT* +
(6.7)

for large R, at fixed T, with f,, = f given by (6.2).

B. HM-type metrics

1. The metric

Consider an (n + 1)-dimensional metric, n > 3, of the
form

ar
g = f(r)dy* + JT};) + PPhyp(xC)dx dxB,  (6.8)
e —_—

=:h

o
where now A is a Riemannian or pseudo-Riemannian
o
Einstein metric on an (n — 1)-dimensional manifold N

with constant scalar curvature R and, similarly to the last

PHYSICAL REVIEW D 93, 124075 (2016)

section, the x4’s are local coordinates on ]i/.5 This metric
can be formally obtained from (6.1) by changing ¢ to iy It
therefore follows from the discussion of Sec. VI A that for
m € R and 7 € R* the function

o

2m r? R
Fop e O P

(6.9)

leads to a metric satisfying (6.3). Rescaling the coordinate r

and the metric 4 by a suitable constant if necessary, we can
without loss of generality assume that

B € {0, +1}.

Suppose that f has zeros, and let us denote by r, the
largest zero of f. We assume that ry is of first order, and we
restrict attention to r > ry. Imposing a suitable -
periodicity condition on y € [0, ], the usual arguments
imply that the set {r = ry} is a rotation axis in a plane on
which /r =7, and y are coordinates of polar type. Indeed,
if we set

p=F(r), with
rol N
F= dr=————=(1+0(r-r)),
[0 o T g o)
we find
dr?

N + fdy? = dp* + f(F~(p))dy?
= dp* + (2f'(r0))*(1 4 O(p?))p*dy?,

which defines a smooth metric near p = 0 if and only if

v = Ala, (6.10)
where a is a new 2z-periodic coordinate, and
PR (6.11)
22f"(ro)
In the case where
e=—1,

>To avoid a proliferation of notation we use the symbol J both
for the metric on /C/' appearing in (6.1) and for the metric on the
manifold N relevant for (6.8). Typically (N , ;t) is a compact
Riemannian manifold, while (]OV , ;1) in (6.8) will be Lorentzian

with N noncompact.
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one obtains Einstein metrics with a negative cosmological
constant.

Whatever ¢ is, a conformal completion at spacelike
infinity can be obtained by introducing a new coordinate
x = ¢/r, bringing g to the form

N 2dx?
xAf(ex)
= x20%(—(e = px* + O(x"))A%do?

g = f(tx 202 da? +2x2h

— (e + Bx® + O(x"))dx® + h). (6.12)

We see explicitly that the conformal class of metrics
induced by x?g on the boundary at infinity,

T={x=0}~S"xN,
is Lorentzian if ;z i1s Lorentzian and if € = —1.
2. =0, n=3

In [33] Horowitz and Myers consider the case n + 1 = 4,

e = —1,° and choose h=—¢2d + dg?, with ¢ being a
2r-periodic coordinate on S'. Thus

o= -Tar 4 f(PRdR + 2 4 Pag.
¢ f(r)
Equation (6.12) shows that timelike infinity Z ~ R x S' x
St is conformally flat:

(6.13)

2G>, —dt? + £H(22da? + dx* + dg?).  (6.14)

Some comments about factors of Z are in order: if
we think of r as having a dimension of length, then 7, ¢,
and y also have dimensions of length, m has dimension
length”~!, while f, x, and the x*’s (and thus ¢) are
dimensionless.

A uniqueness theorem for the metrics (6.13) has been
established in [34].

3.p=+x1,n=3
We consider the metric (6.8) with® e = —1 and ;z of the
form
p=1
d&” + sinh?(0)dg*, B =-—1.

(6.15)

; { do? + sin?(0)dg?,

In regions where f is positive, one obtains a Lorentzian
metric after a “double Wick rotation”

®The case # = 0 and & = 1 leads to a signature (4 — ——) for
large r; our signature (— + ++) is recovered by multiplying the
metric by —1, but then one is back in the case ¢ = —1 after

renaming m to —m.
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0 =it @ =i,
resulting in
2 2
_ e 224
g= z,”zdt +f(r) + f(r)¢* A da

Yy 2 _ 1.
rz{smh (¢ r)dg?, p=1; (6.16)

sin? (£~ 1t)d¢?, p=-—1.

Taking a and ¢ periodic one obtains again a conformal
infinity diffeomorphic to R x T2. Note that the conformal
metric at the conformal boundary is not conformally
stationary anymore, as opposed to the HM metrics
(6.14). We have not attempted to study the nature of the
singularities of g at sinh(£7'¢) = 0 or at sin(#~'t) = 0.

4. Negative coordinate mass

For completeness, we show that the metric (6.8) has the
striking property that its total coordinate mass is negative
when m is positive; the latter is needed for regularity of the
metric. This has already been observed in [33] in space-
dimension 3 with a toroidal Scri. Here we check that this
remains correct in higher dimensions, for a large class of
topologies of Scri.

Before continuing, we note that Lorentzian HM-type
metrics with a smooth conformal compactification at
infinity exist only with negative A: indeed, to obtain the
right signature for large r when € > 0, one needs to
multiply the metric by —1. But then the resulting metric
has a negative Ricci scalar and hence solves FEinstein
equations with a negative cosmological constant.

Somewhat more generally, consider those metrics of the
form (6.8) for which

N=R,xN,

where (N,h) is a compact Riemannian manifold, and
where

h=—¢£-2ds + h, (6.17)

so that

dr?

f(r)

The question arises, how to define the mass of such a
metric.

To avoid ambiguities, let us write f,, for the function f
of (6.9).

To assign a coordinate mass to a metric (6.18), we need
to check whether metrics satisfying (6.8)—(6.9) and (6.17)
can be written in the form (6.7) by setting r = r(p):

g=f(r)dy* +——+r*(=¢2d> +h).  (6.18)
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dr 2 r2
FulD

r? dr\? dp?
:——dt2+< )
fz fnl( )

+ (1 + O(Br2) + O(mr=))i2da? + ),

9= fu(r)?22da® + £°h)

( —dr* +

(6.19)

where the error terms have to be understood for large r. We
will have

dp?
fulp) "

for some parameter M possibly different from m, provided
that

g~ =fulp)dr® + p*(A2da® + 1),

r?=2fu(p)(1 +o(p™)).

(d”) FulP) = Fu@)(1 +0(p™).  (6.20)

The first equation determines r as a function of p up to
correction terms o(p™"). Inserting the result into the second
equation determines M, provided that the asymptotic
expansion of the left-hand side is compatible with that
of the right-hand side. However, it is straightforward to
check that these equations are compatible if and only if

B=0.

We conclude that for metrics satisfying (6.8)—(6.9)
and (6.17) the coordinate mass is only defined if g = 0.

Assuming (6.21), after asymptotically solving the first
equation in (6.20) and inserting the result into the second
one, we find that

(6.21)

M
p=r+——+ O(r=(n=1), (6.22)
r
and that the coordinate mass equals
m
M=- . 6.23

In particular M is negative for positive m.

VII. EXAMPLES

Throughout this section we allow arbitrary space-time
dimension n + 1 > 4. We show that the numerical value of
the Trautman-Bondi mass, as generalized to higher dimen-
sions below, and which coincides with the characteristic
mass defined in Sec. V in dimension 3 + 1, is proportional
to the “coordinate mass” for the metrics considered in
Sec. VL. This, in itself, is not surprising, since these metrics
have only the mass parameter m as a free parameter, so
whatever we will calculate must be a function of m. The
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main conclusion here appears to be that mrg is a linear
function of m, with a strictly positive proportionality factor.
A full agreement will be obtained in the analysis of the
Hamiltonian mass in Sec. VIII below, where the propor-
tionality factors will also be matched.

In what follows, we seek to write the metrics under
consideration in the form (2.2),

g = Guudu® —2e*drdu — 2r*U 4dx*du + r*hypdx*dx®,
_.h
(7.1)

where the determinant of /1,5 is r-independent. By analogy
with (5.1)—(5.2), in space-time dimension n + 1 we set

mTB:_lm/ guu _oduy,. (7-2)

87[ r—0o

This definition is motivated by the fact that, when solving
the characteristic constraint equations on a null hypersur-
face, the (g,,),_,-coefficient in the expansion of g,, arises
as a global integration function.

A. Birmingham metrics

Consider, first, the original Birmingham metrics (6.1),

e
g=—f(rdt + 1 2,

70 (7.3)

with f given by (6.2). Introducing a new coordinate
u=1— [ f~'(s)ds, for some conveniently chosen r,,
brings ¢ to the desired form

g:—f(r)(du+%>2+;l(—2)+ *h

R 2m r?
:_<m_ﬁ_ 52>du —2dudr+r2h

(7.4)

where ¢ € {£1} is the sign of the cosmological constant
A= , which we allow to be either positive or negative.

1. Mass and volume

The coordinate r provides obviously a radial Bondi
coordinate. Moreover, the equality 0, = —Vu implies that r
is also an affine parameter along the radial null outgoing
geodesics of g. When m = 0 we have the explicit formulas
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£tan™! (;) e=—1,

Fanh(5), e =1, }

u=t-— —e%z, p=0;

—/tanh™! (L%) e=—1, } P

~fan (1), e=1,

Equation (7.2) leads to a Bondi-Trautman-type mass

m p: (N)
mTB—E//ifdﬂ;lEmhﬂ .

[Here the normalization factor 8z in (7.2) is clearly

(7.5)

convenient only when N is a unit round two-dimensional
sphere, but this issue will be of no concern to us here.] We
conclude that the characteristic mass of null hypersurfaces
asymptotic to the level sets of ¢ is indeed proportional to the
coordinate mass, with a positive proportionality factor. We
will see in Sec. VIII A that the proportionality factor is the
same as the one occurring in the Hamiltonian definition of
mass; see (8.34) below.

2. The balance equation for Birmingham metrics
Consider metrics of the form
dr?

g=—f(r)dtf* + —+ rzilAdeAde.
e ——

) 7:6)

::;1

Recall (7.4): setting u =t — ", f~'(s)ds, for some con-
veniently chosen r,, brings g to a Bondi form provided that

det is r-independent:

g = —fdu® —2dudr + h.

The inverse metric reads
¢ = 70,0, = [0} 20,0, + 1},

o °AB . . . o
where hLI =h 0405 is the metric inverse to h.
Similarly to the previous section, the integral curves of
the vector field
-Vu =0, (7.7)
are affinely parametrized geodesics. Whenever det/ is r-
independent, the function r is therefore both an area

coordinate and an affine parameter along the generators
of the null hypersurfaces {u = const}.
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Recall that V., is defined as the limit, as r approaches
infinity, of the volume V(r) of the light cone minus all
diverging terms in an asymptotic expansion of V(r):

1{ 2
Vien = lim< V(r) + = —r3/c du- +r2/c Todu:
e 20 30 St i h

1
2 2
+ r/ﬁ[ <|0'|4 _572> du;
1
+ - log r/ (lo)2 - 2|0|372)d,uu} } < o0 (7.8)
3 N h

[for simplicity, a metric vacuum to sufficiently high order
has been assumed in (7.8)].
For the Birmingham metrics

(6.13) we have

T,=0=S=0c=¢(=1,, R= 2, and the volume func-
tion is straightforward:

V(r) :/r/n \/det g, pd*xds
re JN

(N
=l (P = V= 3 .

The mass formula (5.10) reduces to

1 ° . AV
MTB = Joo <4ﬂ)((N)V*+r1LHrl /{/Cd/,t';}) +T;'

Note that this holds for any value of r,. A natural choice
would be to choose r, to be the location of the outermost
past horizon, but we allow r, to be arbitrary.

Specializing to the Birmingham metrics we find, in
space-time dimension n + 1 = 4,

o o

16zmrg = 4my(N)r.+limp: (N)

r—=r,

p 2m r 2AF3
x (‘”(}‘77) 3

= 4y (N)r g, (W) (<2, + 4m)

= 4/,5}01(./\/')m, (7.9)

where we have used the Gauss-Bonnet theorem to cancel

the term containing the Euler characteristic y(N) of N
with the term involving f.

B. HM-type metrics

We pass now to the metrics (6.8) with h given by (6.17)
and y replaced by AZa, with 4 given by (6.11), and where
is 2z-periodic:
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dr? .
+ 7 + ffzﬂzdaz + r2h

2 2
= ——d[Z +d—r+ rzl:l 12 ff

ALty —“ﬂ(‘i Tf’)

=:F;
r-independent determinant

(7.10)

2
7
g = ——zdtz

We want f to be positive for large r, and hence we need to
assume that A < 0.

1. Bondi coordinates, characteristic mass
Setting du = dt — £f~'/?r~'dr we obtain

———dz 2r dudr + 13 f22d2+——h
9= l’ﬂz fl/zf "Bo rBo rBo

:—r—2d2 2r

dr
7 u fl/zf ( >dudrBo
222
+ 73, (f do* + —h)
rs

Bo rBo

(7.11)

Note that we have obtained Bondi coordinates only if

the determinant h is t-independent, as otherwise the
replacement of ¢ by its expression in terms of u and r
introduces back r-dependence in the determinant of g,p.
Equation (6.16) clearly shows that this requires f = 0 in
dimension n + 1 = 4. Nevertheless we continue our cal-
culations without assuming the vanishing of f.

In space-time dimension n + 1 =4 we find

ﬁfz l/ﬂ2 5
— 40
T 4r 272 +0(™)
pe* *m 5
& r=rg——+-—5+0(rz, 7.12
b gy o FOUR) (712)
leading to
2 2 2
"Bo ﬁ m ﬁ 14 ) -3
uu = — -=+ + +0)‘0. 7.13
(I/ﬂz 2 I'Bo 167'230 ( B ) ( )
Equation (7.2) gives
i(S'x N
Mg = _M’ (7.14)
8

where pj, is the measure induced on S ' x N by the metric

. 722 2 5
h = lim (f s—da? + rTh> = 2*da* +h. (7.15)
e "Bo "Bo
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In all dimensions, when f vanishes we find

_ mu (S x N)
e = Adn—1)z ’ (7.16)

and the above remains true whether or not  vanishes in odd
space-dimensions n. We see that in these cases the
characteristic mass coincides with the coordinate mass,
up to a volume normalization factor related to the integrals
involved. We will see in Sec. VIII B that, similarly to the
Birmingham metrics, in space-time dimension 4 the pro-
portionality coefficient is the same as that for the
Hamiltonian mass; see (8.51) below.

In even space-dimensions n = 2k, when f does not
vanish, a calculation shows that the definition (7.2) gives
instead the curious formula

(m + e )u; (ST x N)
4(n-1)x '

mrmg = — (717)

where ¢, € R* is a numerical coefficient depending upon k.
For example, we have

1 2 3
276 BT T25 YT g6
644 7735
= 719683 6 = 320102 (7.18)
2. Renormalized volume
With the choice
wo = 2180, (7.19)

where 4 is given by (6.11), the curves obtained by letting y
vary from zero to y, while keeping ¢ fixed and r = r,
where f(ry) =0 with f given by (6.9), are closed geo-
desics for the metric (6.8): this follows from the fact that the
manifold {r = ry} is the fixed-point set of the group of
isometries generated by the Killing vector field d,, and is
therefore totally geodesic. Those geodesics will be referred
to as “core geodesics” or “emission curves.”
From the definition of r, we have

r3 2m
:_¢>r0:

ﬁ " (2mf2)?

(7.20)

It is remarkable that the null surfaces issuing normally
from those geodesics are smooth away from the emission
curves, and their union covers the whole space-time.
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The contravariant metric ¢* associated to (7.11) equals
204/

gt = f0? — 7rf(r) 0,0, + 17227202 + r‘z(?i.

The vector field

_y, _ OV

r

9, (7.21)

has vanishing Lorentzian length, and a standard argument
shows that its integral curves are affinely parametrized
geodesics. Hence the parameter s defined as

ds r £\ f(r)
B — a\‘ =
ar- e Jim T

is an affine parameter along the generators of the null
hypersurfaces {u# = const}. (An explicit expression for s in
terms of elliptic integrals in space-time dimension n + 1 =
4 can be given, which again does not appear to be very
useful.)

We are ready to calculate the renormalized volume V.
We have

V(s’):/‘Y / \/detg,pd®xds
s=0JN

s’ d
- / / e/ Frdadp = dr
s=0JN N dr ,

M

o, (1.22)

N/ f(r)

o [r() 1o
=) [ Pr= A0 () 1),

0)

(7.23)

Here one should keep in mind that 7*(s’) needs to be
reexpressed in terms of the affine parameter s’ before
removing the singular part of V(s’). For this, integration of
(7.22) gives, for large r,

s:r—ro—l—/:o (f—\r/]_c—l>dr

=5,

m 36m?

_ymoovm -8
272 10° +00™),

(7.24)

with 0 < 5, < oo for m > 0.

It is convenient to introduce a dimensionless variable x
through the formula s = rox = (2m¢?)3x and set
s, = (2m£?)'3x,. After inverting (7.24) one obtains

1
rP-r= 5,fzm(4x3 —12x%(x, — 1) + 12x(x, — 1)2 — 4x3

41222 — 12x, + 3). (7.25)
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Inserting into (7.23) leads to

1 o
—?m(—4x3 +12x2 — 12x, + 3)pu;(N)

Vren = 6
1 o
= gfzm(4(l - x*)3 - l)y,g(/\/), (7.26)
———
~—0.6793
where we have used
00 1
X, = / —1 | dx~0.568815. (7.27)
1 1=41

More information on the null geometry of HM metrics,
as well as a term-by-term analysis of the balance equation,
can be found in the Appendix.

VIII. HAMILTONIAN MASS, A <0

Until specified otherwise, we allow arbitrary space-time
dimension n + 1 > 4.

The calculations of the mass so far might appear to be
ad hoc. In particular one wonders why the coordinates
approach of Sec. VIB 4 appears to allow only the f =0
case for HM-type metrics. As such, a systematic way of
obtaining an expression for the energy of a field configu-
ration is to use a Hamiltonian approach. Now, both families
of metrics (6.1) and (6.18), with f given by (6.2), are
asymptotic, as r — oo, to a background metric b obtained
by setting m = 0 in f (with different backgrounds for each
family). When A < 0 one can therefore use,7 in each case,
the formalism of [36] (as already done in [30] for (3 + 1)-
dimensional asymptotically Kottler metrics), to define the
mass of g relative to b. Indeed, the Hamiltonian analysis in
[36] shows that to every spacelike hypersurface S and b-
Killing vector X one can associate a Hamiltonian mass
H(X,S) through the formula

1
H(X,S) = 545 UdsS,, (8.1)

where the integral over JS is understood as the limit of
integrals over a family of well-behaved boundaries

of sets that exhaust S. Here dS,; is defined as

0 0
Ox® 1 9yF 4

and U? is given by

dx°A -+ Adx", with | denoting contraction,

1
U = [UMﬁXﬂ + g Al x4 s (82)

2| detb,,|
£ gﬁy(ezgy[vgﬂl();w

lUu/lﬂ —
167 /| det g,,|

(8.3)

"When A > 0, a Hamiltonian definition of mass requires
somewhat different considerations; see [35].
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where a semicolon denotes covariant differentiation with
respect to the background metric b, while

det
o iz V19eL9| (8.4)

|deth,,|

ol

A = \% |detg/m| gav — b,

8.5
|det ba/)’| ( )

A. Asymptotically Birmingham metrics

We wish, first, to calculate (8.1) for (n 4+ 1)-dimensional
metrics with Birmingham asymptotics, with a negative
cosmological constant A [equivalently, in (6.2) we take
e=—1], with the Killing vector 0, and with
Y = {r = const}. For this, it is useful to introduce the
following b-orthonormal frame:

1 r? 1
66:7230, e = ﬁ+ﬁar, eA:;lAv
ptsa V

fz

(8.6)

where 13 is an orthonormal (ON) frame for the metric /. To
avoid ambiguities, we state that the contravariant form of
the background metric is, by definition,

b’”’({?ﬂ ® 0, := —¢y ® eyt ey Qeq+ ZEA ® e;. (8.7)

A=2

Here and in what follows in the current section

we use
A€e{2,3,....,n},

and we shall use hatted indices to denote the components of
a tensor field in the frame e; defined in (8.6). The

connection coefficients, defined as Veﬂ e, =’ a€p with
V associated with b, read

r 1 1
@y = — == ===+ 007,
OB+ 5 o+ ¢*
p+5 71
Wiap T T, b=~ ﬁ"' f2bAB

(8.8)

The remaining possibly nonvanishing connection coeffi-
cients, not obtained from the above by permutations of
indices, are the wj 5 &’s, with A #+ B. For example, in space-
time dimension 3 + 1, if we use a coordinate system 6, ¢ on

/</ in which & takes, locally, the form d6” + sinh? Odg? for
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k= -1, d&* + d¢g* for k=0, and d6* + sin®>@dep* for
k=1, we find

(8.9)

However, the exact form above, and the one of wj ¢ in
general, is not needed for what follows.
We further have

r2 r 1
X(): ﬂ—l—ﬁ:?—l-O(r ), (810)
r
ei(Xp) = (Xp).i = X1 = Xip= > (8.11)

%

with the third equality in (8.11) following from the Killing
equations X, + X,., = 0; all the remaining X;’s and
Xj,p's are zero.
Let the tensor field ¢*” be defined by the formula
et = g — b, (8.12)
As already mentioned, we use hatted indices to denote the
components of a tensor field in the frame e;; e.g., e#?

ot
denotes the coefficients of e#* with respect to that frame:

e, ® 0, =e'"e; @ e,

Let the 4’ form a coframe dual to the e 41’s. Then

ON...NO = /| detbag|dxOA... AdX",

and so on the level sets of ¢ intersected with those of r we
have

UPdS pl,—p = U eq]ep] (dx"A...Adx")|,_p

v’ 0 it
:WEaJeﬁJ(e A NG )|r:R
af
w0l ;
T PALA|

\/ | detbaﬂ|

From (8.1) we thus find

[UIO

——_O’A...NO.
|detbaﬂ|

H(X,S) = lim
R—o0 Jsn{r=R}

(8.13)

We wish to analyze when the above limit exists. Since every

04 comes with a multiplicative factor of r in local
coordinates on the level sets of R within S, again in local
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coordinates the integrand in (8.13) behaves as p=1ylio,
Now,

PN A A A rn N
rn—l[ul Oﬂxﬁ — rn—l[ul()ﬁxo ~ 7@100’

and hence in the calculations we only need to keep track of

those terms in U! 0() /+/| det b, that decay slower than r~",
or at that rate. Similarly one sees from (8.10)—(8.11) that
only those terms in

AYD — /| detgf,;, g&ﬁ — par

[compare (8.5)] that are O(r™"), or that are decaying
slower, will give a nonvanishing contribution to the term
involving the derivatives of X in the integral (8.13).

We will say that a metric is “asymptotically
Birmingham” if there exists € > 0 such that in the frame
(8.6) it holds

/ UdS,, =2 /
{x0=0.r=R} {x9=0.Ry<r<R}

with

PHYSICAL REVIEW D 93, 124075 (2016)
eﬁﬁ — 0(,,.—}1/2—6)’ ef,(ef“j) — 0(,,.—}1/2—5)’

det(e”?) — 1 = O(r 7). (8.14)

We note that we have imposed the volume-element con-
dition to guarantee convergence of mass integrals; see
(8.16)—(8.17) below.

Recall that we only consider vector fields X which are b-
Killing vector fields, and therefore their tetrad components
satisfy

X?| + |V, X?| < Cr. (8.15)

We claim that Eqs. (8.14) guarantee a finite total energy
in vacuum. Indeed, this follows from the standard integral
identity (cf., e.g., [36]),

o

V,UPdS, + / U 4S5, (8.16)
{x°=0,r=R,}

162V,U% = (v/[det glg — \/[detb|b®)b,,XP + (T", — T%)X* + 2A(y/| detb] — /] det g )X

°p
+ /[detb](Q7XP + 0%, V' X7),

where Q% is a quadratic form in e,(e*), and Q%, is
bilinear in e, (e”¢) and ¢, both with bounded coefficients.
Finally,

1
877:7’/1,( =4/ | detg| (R/IK - EgaﬂRaﬂéi + Aéi) B (818)

with TJK defined as in (8.18), with g replaced by b.
Passing with R to infinity in (8.16), under (8.14) the
right-hand side converges to a finite limit in vacuum, and
one finds indeed that the resulting Hamiltonians are finite.
If the metric is not vacuum, the same argument applies if
one moreover assumes that there exists € > 0 such that

\Tr, —T",| < C(1+r)'=. (8.19)

We note that for the calculations of the boundary term the
following, slightly weaker, conditions suffice:

et = o(r/?), ep(e?) = o(r=/?). (8.20)

The boundary conditions (8.20) ensure that one needs to

keep track only of those terms in U'C that are linear

(8.17)

and e,(e?), when U0 is Taylor-expanded

in ¥ 5
around b.

For example, if g has the same leading-order terms as a
Birmingham metric (6.1)-(6.2), we find, writing f, for

Slineo and using (8.6),

n—1
gn = gf“:eﬁe,; :—?(60)24-;;(61)2%-2(6;‘)2, (8.21)
A=2
which yields
00 = —]%—l- 1 —f}fo = —2’:,152 (1+0(r)),
i1 Sfo=f  2me? _
ell = T (1+0(r2)),
e = oo, (1210) =22 (14 0,
el(el) :f08,<f;0f0> = 2”:;1f(l +0(r2), (8.22)
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with the remaining e#”’s and e;(e#?)’s vanishing, so that Eqgs. (8.20) are satisfied for metrics with leading Birmingham
asymptotics.
Rather generally, under (8.20) one obtains, using b, = diag(—1,+1, ..., +1),

Ga» = bas — bﬁ&bﬁﬁe&ﬂ +o(r ™), (8.23)
1 an as
VIdetgul = /I detb,,| (1 +5(eP0—ell —bipeq5) + o(r—">), (8.24)
1671’[U10() o 2 |detbﬂv| R (ezg}?[ig()]f()‘k

VIdethy | \/Tdetg,,| 7
= 4%?97[196}:%@;& + 2696?@7[196};%);,%
= —2g'%e, + 2e%7((b?[i + M) (0% 4 eé]k));k
=—2¢; + 2[’6?(1’?[%6]'% + b7 Ok - p7li 0k e?[ieﬁ]k);k +o(rm)
— —26;1 + 2b66(b6[ie()]l’% + e()[ib()]l%)’k _|_ o(r—n)
= —2e; — (—b0el% 4 01p0% — O0p1R) ot o(r)

= —2ej— eif‘;;( + em;() + eﬁé;i +o(r™m). (8.25)

This can be further rewritten as

162010, S
e —2e4 — e“.i - elA.A + 600.1 +o(r ™)
/| det bl ’ : : :
A~ 1 [e]
=ei(bagean) +wiipeas —@izeii = Daeia+o(r™)
g1 "
=ej(bigeap) + p"‘ﬁ(bABeAB_(”_l)eu) Djejs +o(r™), (8.26)

Here D; denotes the covariant derivative on (A, ), with elA being understood as a vector field on A, with A, B running
from 2 to n.
We also have

o 1 o r i
7Aa[1 XO] L= All _ AOO XO _ 11 _ AOO
r P
- —WbAEeAB +o(r ™). (8.27)

Inserting all this into (8.13) one is finally led to the following simple expression for the Hamiltonian mass of asymptotically
Birmingham metrics:

o 1 B (ro(bspe?) i1\, P AB| et
Myam = 1%1_{1010 1671'/5m{rR} [(fz+r’2> <ar— (n - l)e +pb;”§€ d ,u;l (828)

In space-time dimension n + 1 = 4 this simplifies to the expression given in [30]:

R3 0e22 933 T
= lim —— —_ =2 d .. 8.29
MHam Rl—r>rolo 1672 [Sﬁ{rR} [I‘ or r or ¢ :| Hi ( )

If in addition to (8.14) we assume that
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et =0(r™), e(ef?) =0(r™)  (8.30)

(this is actually the falloff rate for Birmingham metrics),
then (8.28) can be rewritten in a form similar to (8.29) in
higher dimensions as well:

n

lim —
Koo 16722

" / Kra(b/&ge”) ~
SN{r=R} or

As an example, if ¢ is the (3 + 1)-dimensional
Birmingham metric (6.1), we find

Myam =

(n— 1)eii>:|d"_1,u;l.

(8.31)

pi (N)m
MHam b Ax ’ (832)
where
i (N) = / s (8.33)
N

We conclude that the Hamiltonian mass is proportional to
m, with the same proportionality factor as the characteristic
mass of null hypersurfaces asymptotic to level sets of
t [see (7.5)]:

(8.34)

mrg = Myam-

When N = T? (equivalently, # = 0) with area normal-
ized to 4z, we obtain myy,,, = m. For f = +1 it follows
from the Gauss-Bonnet theorem that y; (N') = 4z|1 — g.|,

where g, is the genus of N, and hence

Myam = |1 _goo|m' (835)

One recovers My, = m for N' = §2, but this will be true

only up to a positive proportionality factor for A’s of
higher genus.

B. Asymptotically HM-type metrics

The aim of this section is to derive a formula analogous
to (8.31) for metrics with HM-type asymptotics. For this
consider, as before, the background metric

b==—€6®86+61®€i—|—zel;‘®€;‘,

A=2

where now instead of (8.6) we set
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4 r?
66 :;80, 61 = ﬂ—{—ﬁ@,,
1 1
ep=-1 €= O (8.36)

B+ 5

Here 1; is an ON frame for the metric h as in the first line of
(7.10), and in this section we let

ABe{23,..n-1}, (8.37)

and similarly for hatted indices.

A metric g will be said to be “asymptotically HM along
S, or simply “asymptotically HM,” if there exists a
coordinate system (z,7,x*) and € > 0 such that at S :=
{r =0} we have

detg,,

— 14 0(r ),
deth, (=)

(8.38)

and if the frame components of g with respect to the frame
(8.36) satisty

(e&ﬁ) = o(r/77°),
(8.39)

e = gﬁ’[} — pih — o(r™/2-¢), e

This is formally the same as (8.14), but both the frame and
the background metric are different. (As before, the
volume-element condition is added to guarantee conver-
gence of mass integrals.)

The identity (8.16) shows as before that conditions
(8.38)-(8.39) guarantee a finite Hamiltonian mass in
vacuum. We expect that the arguments of [37] can be
adapted to this case to show that the mass is independent of
the freedom of choice of coordinates and frames satisfying
our conditions above, but we have not attempted to
check this.

Similarly to the Birmingham case, our calculations of the
boundary integral will be done with (8.39) replaced by the
slightly weaker conditions

b — o(rm/?), eﬁ(e&i}) =o(r?), e=1+o(r"?).
(8.40)

The connection coefficients w;;
metric b read

, of the background
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P+ 1 1
Doio =T =T\ 2T 2 _?+0(,»—2)’
p+i
®ipp=—"" " bag
1 1
Wq 55 = L +0(r 2).

2B+ 5 pater

(8.41)

The remaining possibly nonvanishing connection coeffi-
cients, which are not obtained from the above by permu-
tations of indices, are the w; 3¢’s, with A # B. As in the
previous section, the exact values of the w; 3¢’s are not
needed in what follows. We further have

N
x0=", 8.42
2 (8.42)
0 0 1 r_r -1
ei(X0)=(X0); =~Xo1 =Xi0=\|F+ 5=+ 007),
(8.43)

where all the remaining X*’s and X j:pS Are Zero.
Writing f for f|,,_o, from (8.6) we see that the HM-type
metrics can be written as

162U'% i

\/ |det baﬁ|
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n—1
Qn:—€0®€()+i€1 ®€1+Z€A®€A +&6’ﬁ®€ﬁ-
fO A—2 f
(8.44)

This leads to

eii:gii_bn:i_l:f—fo

fo So
2me?
== (1+0(r?)),

D0 — 0= AB, e =0 foru#v,

. - 2me?

¢ ZfOff: T (1+0(mY), (8.45)

which satisfies the decay conditions set forth above.
Quite generally, for metrics satisfying (8.40), we find as
before

and note that (8.38) implies that the underbraced term is
also o(r™"). Equation (8.25) still applies and, taking into
account (8.37), gives

(8.47)

Here YV)Ae] 4 is understood as the covariant divergence of the vector field e'4e; with respect to the metric h.

Furthermore,
LA&[T(X(A)]) - L(Aﬁ _ AGO)(X()) A
87 @ 16n 2

1 . sa 2 1 U .
= 67 (All - AOO) ﬁ+ﬁ+ ()(r_n) = ~l6n7 (bABeAB + enn) ﬂ+ﬁ+ o(r ™). (848)

Inserting all the results into (8.13) we finally find the following expression for the Hamiltonian mass for asymptotically
HM metrics, where we have used the fact that some terms integrate out to zero:
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o e _ eii ﬂfz
= lim —— RS EPY ) I s
Rl—wo 1672 /gn{,R} B2 + + r2

r2

Myam

ro(b; Be;“? + efth)
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5 —(n=2)ell = eﬁﬁ) ", (8.49)
.

where d"~!y; is the measure element associated with the metric (7.15). In space-time dimension n + 1 = 4, this coincides

formally with (8.29):

Myym = lim

As an example, if ¢ is the (3 + 1)-dimensional HM
metric, we find

wj,(N)m
mHam:_%’

(8.51)

where

o

(N = lim

dn_l//t”.
R—co Jsn{r=R} "

(8.52)

This coincides with what we found for the coordinate mass
of HM metrics, where however we had to restrict ourselves
to the case f = 0. We see that no such restriction arises for
the Hamiltonian mass.

C. Fefferman-Graham asymptotics with
an ultrastatic conformal infinity

In this section we assume that n = 3 and A < 0, unless
explicitly indicated otherwise. We consider a vacuum
space-time with a smooth conformal completion; thus both
the background metric b and g have a Fefferman-Graham
expansion as in (2.12) in a suitable coordinate system such
that x =0 at Z:

b = x262(dx? + by (x, x)dxdx?),

g = x722(dx* + G (x, x¢)dxdx?), (8.53)
where (x%) = (¢, x), and with the coordinate components

b, asymptotic to g,, as O(x*). Here we have used the
same compactifying factor

Q=x/¢

to pass from g to § = Q2g as from b to b = Q2b.
For simplicity we will assume an ultrastatic form of the
conformal-boundary metric

3
—— X
R—co 16762 [S‘ﬂ{r:R} [

r8(eji+e§§) 111 e
T—Ze“ ;. (8.50)
|
b = by,dxdx? = by, _odx*dx®
= Gun|odx?dxt = Gpdxdx® =G, (8.54)
namely,
Z)OA(O,XC) :0, 8al~)00(0,xc) :O, 8OIN?AB(O,XC) :0

(8.55)

[compare the discussion after (2.35)]. Note that this is
compatible both with asymptotically Birmingham and
asymptotically HM metrics. More general metrics and
sections of 7 will be considered in future work.

Let (b,,), denote the coefficient of x" in a Taylor
expansion of b,, at x =0, and similarly for (g,;),. [The
reader is warned that these coefficients do not translate as
such to expansion coefficients in, e.g., Bondi coordinates,
as rg, # 1/x in general even if £ = 1; see (8.78) below.] It
follows from Sec. II B that

(Bas)y = Ga)ye 1€4{0,1,2} and (by), = 0.
(8.56)

In the calculations below we will assume that

(bap)s = 0. (8.57)

If this is not the case, in all the formulas below it suffices to

replace (gab)S by (gab>3 - (bah)3‘
We wish to determine the characteristic mass of a null

hypersurface asymptotic to a section of Z with constant x°,
and compare it with the Hamiltonian mass myy,,. Without
loss of generality, after choosing a conformal gauge

appropriately, we can assume that b,p|,_odx*dx® has
constant scalar curvature f. It then follows from (2.15) that
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(bOA)Z =0 f=4 bOA = O(X3). (858)

We pass now to the calculation of the Hamiltonian mass of g. Using e!' =0 = el1 and the first line of (8.26) (which
applies here), we find quite generally in dimension n, without assuming (8.55),

167U %

z\/ | det b(l/,'|

Returning to the three-dimensional ultrastatic case, we choose the b-orthonormal frame e, as

= ej(bzpet?) + (201 —@'53)e"t —w' 5 et P+ o(x"). (8.59)

X X

eI :—ax’ 66:7"
24/ |bool

is an ON frame for b,zdx*dxB. Let us denote by 6 the coframe dual to e,; then

0o ex="(yz+0(*)0p + O(x*)y). (8.60)

N =

where {w;}is

i_? 0 Lﬂ\/|l~)00| 0 2 7, A i_C A 2
0' = —dx, 0 = ———dx" + O(x*)dx", 0% =—(1* + O(x*)dx"), (8.61)
x x x

where 7 is a coframe dual to v ;- The components g;; of the metric g with respect to this frame read

gii =1, 9is =0, 95 = —1+ (g~00)3 x>+ o(x?), (8.62)
|bool
M_(f]oA)3 3 3 s = b a4 (T 83 3 6
964 = —X + o(x?), i =baip + (G3p):% +o(x°), (8.63)
|bool

where (,;)5 denotes the i-component of (gg4);dx?, as defined through the formula

@0A)3dxA = @OA)31A§ similarly (§A3)3dxAde = @Aé)ﬂ .

This leads to

B = —bAébBﬁ@éb)3x3 +o(x%) = =(G3)5%° +o(x), (8.64)
eli =0, 00 — —7(990)3 x* + o(x?), A = (9023 X+ o(x?), (8.65)
|bool |boo

where, of course, bj 5 = pAB = 52. Note that the condition e = 1 + o(x?), which is equivalent to the l;ab—tracelessness of
(ap)5» reads

(.600)3
|bool

_ (900)3
[bool

L 2AB
+ 048 (G35)3 = +b (gap)s =0. (8.66)

Setting byp = bypl,_o, and using w?;; = 0%(e;;), we find
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o

b . 1 ;
Ty =—2+0().  0i=_bip+0(). o' =0(x). (8.67)
o= 00", wlg; = 0. (8.68)
This leads to the following rewriting of (8.59):
167010, x a1 - 2
— 2 0.(brseABY — —p. . oAB 3N = _ZpAB(E. ) x3 3. 8.69
[Qetby] 7 (bige?) 7Vane + o(x’) 7 (9a)sx° +o(x) (8.69)

Next, we choose X to be 9y, so that

24/ |b X A \/|b )
X =0y = oo =X0e;, X0, | 00‘+0(x) = X1, (8.70)

x 0% 1= B
X, =00, Xx0,=0(x. All=pu3), ali=o, (8.71)
A0 = 00 1 o(x3), AR =04 4 o(x), (8.72)
I 5os \ |boo - \V Dol (9o0)
Al X0 — 00 2y — _ ~00 3.2 2y 8.73
87 T e T T (8.73)

Hence, using (8.1)—(8.3), for any hypersurface S intersecting Z in a section {x° = const}, after taking into account an
overall minus sign because of the change of orientation when replacing r by x =¢/r 4 -+,
l/(zbf*f*(g;“@)3 + (g~°°>3> detbpd®x

N cacl . 2 21/ |boo
Myam — —)lcl_)m()? Ul() det bAdex = 167 |b00|
RIZY |1~900| Iy = 5

It is clearly convenient to normalize the asymptotic time coordinate x° so that [compare (2.17)]

° - - 200
Joo = bool,mg = 07 & § =7, (8.75)

leading finally to

3 o 2
Migam = E/bAB(gAE% det bygd®x. (8.76)

Note that this coincides formally with both (8.31) and (8.49), but it was not a priori clear to us that it should.

We wish to compare (8.74) with the characteristic mass as defined by (5.1)—(5.2). For this, we need to determine the mass
aspect function M of (5.2). If the zero-level set of up, is asymptotic to the zero-level set of ¢, an asymptotic expansion of the
solutions of the equations which determine the Bondi coordinates shows that

- 1 -
(Jo0)ox> + O(x*), xt =y + 2 C(bop)yx® + O(x*).

1
ZIMBO—KX—@ 3

The above solution is obtained after imposing the condition that « is a retarded null coordinate; hence ¢ is an increasing
function of r at fixed u, and hence decreasing in x at fixed u.
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Changing coordinates, one finds

X2(=1 4 2(Goo)ax* + % (Joo)3 ¥ + O(x*)).
(8.77)

guBo”Bn =

It remains to replace x by a Bondi coordinate, defined
through the formula

detgAB 1/4
IBo — B .
det bAB

A MATHEMATICA calculation gives

BAB( ) 33AB( )

1 rge b (gap)y €°b (Gas)s -3
Z—IBo_ — 0] .
x 4rg, 4r3 +0(r5,)

(8.78)

Inserting into (8.77), one finds that the mass aspect is

(gu olU 0)1 1 ~ 1 s ~
ME%:E £*(G00)s +§bAB(9Ai;)3
3 a4
=230, (8.79)

where we have used (8.65). Comparing (8.76) and (5.1), we
conclude that

Myam = MTB,

as desired.

IX. CONCLUSIONS

We have introduced a natural notion of total mass for
characteristic hypersurfaces in space-times with nonvanish-
ing cosmological constant. The mass is a natural gener-
alization of the Trautman-Bondi mass, as defined for
A = 0. We have proved a generalization of the positivity
identity of [11]. The identity introduces the renormalized
volume as a new global quantity associated to characteristic
initial data sets. In the simplest case of light cones in
vacuum this is the identity (5.58), which we rewrite as

A1 2 |of?
mrg — = (—/ 7 (52 - %) dﬂ;l + Vren)
2 zﬁ 2
— | /< 62 + lofe ) >d,ugdr ©0.1)

The left-hand side involves the renormalized volume
together with objects that can be determined by looking
at the asymptotic behavior of the fields. This provides a
new global positivity statement, proving indeed that the
left-hand side of (9.1) is positive. It follows from [27] that
the left-hand side vanishes if and only if the space-time is
de Sitter or anti—de Sitter to the future of the light cone.
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The balance formula (9.1) raises the question of the right
definition of mass when A # 0. Recall that we used (5.1)—
(5.2) to define mrg:

1

iy = g [ (@) 92)

A first naive idea would be to define instead the left-hand
side of (9.1) as the mass, obtaining positivity as a corollary
of (9.1). But the calculations in the Appendix strongly
suggest that a splitting of the left-hand side of (9.1) in a
renormalized-volume contribution and a mass contribution
is meaningful.

The next idea would be to define the characteristic
mass as

AL [ (B lf
m, = mrp —g (12//(\)/’[2 (2—3> dﬂ;), (93)

leading to the more elegant identity

A 1 o 1 07— 1~
A ~1ef + |oPel TF ) duyar.
me ’r ren 16”A /./(/<2|§ + |0| € /’t!l r

(9.4)

Alternatively, one could add an integral expression
involving 7, and |o]|, to the definition of mrg, adjusting
(9.1) accordingly. Recall that (9.2) is equivalent to (5.11),
which for a smooth conformal completion reads

(%) 9.5)

mrp = 16

In the asymptotically flat case and with spherical cross
sections of Z, the gauge-invariant version of this
formula is [11]

1

= 9.6)

(Cz +72)dy;.

and one could use this formula as a definition of character-
istic mass. (Whether or not, and in which sense, this is
gauge invariant when A # 0 remains to be seen.) Recall that
we have seen [cf. (5.31) in vacuum and with a smooth
conformal completion] that (9.5) translates instead into

1 A
my = e /(Cz+ 72)du; + on /072|0|42xdﬂ;l (9.7)

(note that the multiplicative factor R /2 in front of 7, in our
formula equals 1 for a sphere), when A # 0 and an affine
parameter r is used.

As seen in the Appendix, we have 7, # 0 for asymp-
totically HM metrics, which suggests strongly that using
73-terms to redefine the mass is not a good idea. Whether or
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not adding some 7, |o|3-terms is meaningful requires further
analysis. We plan to return to this question in the future.

Yet another alternative is to define the renormalized
volume as the whole expression in brackets in the left-hand
side of (9.1),

1
Vren = Vren = Vren + 12/ (E - T) dﬂfl’ (98)

leading similarly to a nicer identity:

A - 1 © 1 ©i=2 17
mTB_&TVrenzl&[/) /j\o/<2|§|2+|0|2€fr 7 )d/’tZ]dr

(9.9)

Possibly, a mixture of the above will provide the most
meaningful definitions.

Incidentally, V., can be obtained by replacing r in the
original definition of V(r), where r is the affine coordinate
normalized as before, by

. T, a 2nofj
B R T

9.10)

where a is any function of the angular coordinates. In other
words, set

. . 7 a 2o
VR =v(it 2+ 2 .
®) <r+ 2 TR o

Then V,, is the limit, as 7 goes to infinity, of V(7) minus
the sum of the terms with positive powers of 7 and the In 7
term. In fact, a change of variables of the form

. loli 2zoli | lofi
= = 1 2 9.11
rr+2 2 o7 3@ nitel) O.11)
gives
dr .
V(r) = Ed 7+ Vien +o(F1). (9.12)

One wonders about the nature of (9.11). The naive guess
would be that 7 is the Bondi coordinate. However, in our
case we have (in vacuum, but allowing |o|s # 0)

|0|4 1 |0|§ —i|a|42172 1
Bo 2+4r+6 2 +0 ) (9.13)

with inverse transformation

o} | |ofiz —|ol3 1
- 2_ o[—). (914
ety T T e, O\a (9-14)
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We see that 7 coincides with the Bondi coordinate at order
zero, but differs at the next order.

Which definition is most relevant, or indeed whether
there exists a most relevant definition at all, requires
further study.

In any case, we have shown in some well-understood
general cases with A <0, as well as in specific examples,
that the characteristic mass mrg defined by (9.7) coincides
with previously accepted definitions of mass.

We emphasize that both the definition of mass and the
balance formula (9.1) have a clear, geometric, and gauge-
independent meaning; compare Remark 5.1.
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APPENDIX: NULL GEOMETRY OF
HM METRICS AND
THE BALANCE EQUATION

The mass identity (5.56) can be viewed as a balance
formula. It is instructive to work out the contribution of
each of the terms appearing there to the total mass for the
HM metrics. For this we need to derive the asymptotics
both for small and large r of the fields appearing there. We
consider the metric (6.8) with f given by (6.9) and # = 0 in
space-dimension equal to 3.

Choosing s(rg) = 0, where r is the largest zero of f,
from (7.22) we obtain a small-r expansion, for r > ry:

s=—0 i+ O((r—ry)i) forr—ry>0 small,

f\/()

(A1)

where we have assumed that f'(ry) # 0. This implies, for
small s,

2 ¢l r
r—ryg= ‘ ﬁr(% 0) 52+ 0(s%), (A2)
(. 2
fr) = #f (o))" 4320)) 2+ 0(sY). (A3)
0

Recall that the large-s behavior of r has been derived in
(7.24)—(7.25).

As in Sec. III, we denote by g the metric induced by g on
the level sets of u and r:

= f(r)*22da’® + r’de?. (A4)
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Let x* denote the coordinates a and ¢. In the affine
parametrization and in the region where f is non-negative
it holds that®

Vdetgap=riA/ f( A )

(s+0(s?)) forsmalls,

(A5)
vy =0, (A6)
&4 =0, (A7)
- lasg 7 2f ") o, (p(n2ede + rdg?)
=2\ f(r) ( ") 2202 +dy ) (A8)

sz«mw+ouﬂ(f<>

2%da? +de? | forsmalls,
2)"0 2"0

(A9)

vi= gy = (2?&

W rim) e

_ {s‘1 +0(s), for small s;

All
257 4+2(s, —rg)s 2+ O(s (Al1)

—3), forlarges,

with s, = (2m¢)!'/3x,, where x, is given by (7.27). Further

1
c: —)(—ETgAdeAdx =C\/f ( )/lzﬂd —|—dq0>

_1 9,f(r) ) r) 222002 4 2 do?
2/<2r f(r)+ f(r) ) (fA22da* + r*de?)

(A12)

ZZ(M_
2

2 \2ry/f(r) _ZW> (f2e2da = r*de?),

(A13)

o* = ACocp0, @ dxP
5 <2rm f( )) (0, ® da—0, ® do)

(Al14)

*We use the notation of [18], except that we denote here by g
the tensor field denoted by g there.
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(HO (8, ® da - d, ® dy), for small s;
(%2'";4?(8 ® da -0, ® dp), for larges,
(A15)
2
0] =2 x (ﬂ”) -rVEm) e
f(r)
(120%2)), for small s;
) o (A1)
( '”;8 =) for large s,

ds Os ds r\* r

v = =—. (Al8
=7 Ox# Ox* =9 (dr> f(f\/_> £? (AL8)
We will also need the following objects from [18], denoting

by V the derivative operator associated with g, when g is
viewed as a metric on the level sets of u and r:

91 (ng''Vdety) 1

= VO!_}ABvBVA - = VogABaogAB
detg 2
1 .
+§V0§1130911,
dr r dr
Vo= Gus = Gur 5- = — e
0=4 g ds A/ f(r) ds
£/
' f(r):_l, (A19)
e\ f(r) T
1
0 _—= —1, A20
o= (A20)
= (Uog 5 tdet 9 _ -1 — 0,5 (A21)
e

From the definition of { [compare [[18], Egs. (10.33) and
(10.36)],” and note that k = I, =T}, vanishes in affine
parametrization] we have

¢ = (20, + 208, +1)g* + 21 = 15
rd, f(r
=" + A22
@om)
—r§t™2 s+ O(s), for small s;

=S =2rf2—mr 24+ 0(r7)
==2(s+ry—s,)0>=2ms™2+0(s7), forlarges.

(A23)

Note a missing term zg''/2 in the right-most term of
[[18], Eq. (10.36)], which however does not affect the formula
we use.
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Recall that the vacuum Raychaudhuri equation with
affine parameter s,

2
Oyt + % +lo2 =0, (A24)
can be solved as
2 oo [Cpgae
(s) =——s°U lo|*Ws?ds, (A25)
S 0
where
©57(S, W, ) —2
U(s,y,p) =exp| — fds . (A20)
N S

As s tends to zero, the integral in (A26) approaches infinity
as %ln s; hence the weight-factor U behaves as a constant
times s~'/2. This, together with the 1/(2s?)-behavior of
|o)? for small s, leads in (A25) to the required 1/s-behavior
of 7 for s approaching zero.

An alternative derivation of (A22) proceeds by solving
(3.15) directly:

1 - y _ _
(85 + T)C = E |f|2 - VAfA —R + Sﬂ(gABTAB - T) + 2A
(A27)
In the current case (A27) reads
dr
— =2A. A2
(ds 0, + T) ¢ (A28)
It follows from (A28) that
(CV detd) _oa/dets. (A29)

Integrating in s, we find

(¢V/detg)(s) = lim(¢y/det)(s) + 24 /0 " \/detgds

—_———
—3mA

2A
— /1<—3m + 3 (r* - r%))

= /1<—3m + Z?A (P - 2mf2)> : (A30)

which coincides indeed with (A22):
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£y/det = 2 <m—7r2> :/1<m+ 3r >

We are ready now to check the contribution of various
terms to the mass identity (5.56) for the Horowitz-
Myers metrics (6.13). For these metrics we have T, =

O=R=¢é=|o)2= |62 [compare Eq. (A17)], and from
(7.14) and (5.56) we find

o

—Zm,ufl(./\/-) = 16ﬂ'mTB
—hm/ {duy + 12/0 3duj, + 2AV ey
(A31)

Recall that ¢ is defined as the angular part of the metric on
the light cone,

§ = gapdxdx® = f22da® + r*de?,
and that the limiting metric h defined in (7.15) is

h = limr 2§ = 22da® + dg?.

Keeping in mind that the measure associated with 7 is
duj, = Adadg,

(A5) and (A23) lead to

2 / °
}Lrg/ {duy = —— fz( ro) x pup(N)
72 £*f'(ro) 1
= 7‘; X —5 % <2£f’(r0) X (27:)2).
(A32)

Equation (7.20) gives

1/ 3 2m\ 6m 3(2mf*)s
f'(ro) = <2 ot ) Elia (A33)
We can thus rewrite (A32) as
lim / Cduy = =3m x pj(N)
r—ry
212t 272 (¢ \3
=-3mx c=-3mx— (=
3( mfz)i 3 2m
(A34)

The relation A = -3/#? and (A31) give the balance
formula
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o o

1
2m&*u;(N) =3mE?pj(N) + 6V ey +Z/J§’/T%dm" (A35)

We note that (A11) gives 7, = 2(s, — ro) and that (7.26)
can be rewritten as

PHYSICAL REVIEW D 93, 124075 (2016)

Vren = _é <mf2,“fl(-/§/-) + 2/&’ (S* - V0)3d/l;l>, (A36)

in agreement with (A35).
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