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We study here, using the Mannheim-Kazanas solution of Weyl conformal theory, the mass decom-
position in the representative subsample of 57 early-type elliptical lens galaxies of the Sloan Lens
Advanced Camera for Surveys (SLACS) on board the Hubble Space Telescope. We begin by showing that
the solution need not be an exclusive solution of conformal gravity but can also be viewed as a solution of a
class of fðRÞ gravity theories coupled to nonlinear electrodynamics thereby rendering the ensuing results
more universal. Since lensing involves light bending, we shall first show that the solution adds to
Schwarzschild light bending caused by the luminous mass (M�) a positive contributionþγR contrary to the
previous results in the literature, thereby resolving a long-standing problem. The cause of the error is
critically examined. Next, applying the expressions for light bending together with an input equating
Einstein and Weyl angles, we develop a novel algorithm for separating the luminous component from the
total lens mass (luminous þ dark) within the Einstein radius. Our results indicate that the luminous mass
estimates differ from the observed total lens masses by a linear proportionality factor across the subsample,
which qualitatively agrees with the common conclusion from a number of different simulations in the
literature. In quantitative detail, we observe that the ratios of luminous over total lens mass (f�) within the
Einstein radius of individual galaxies take on values near unity, many of which remarkably fall inside or just
marginally outside the specified error bars obtained from a simulation based on the Bruzual-Charlot stellar
population synthesis model together with the Salpeter initial mass function favored on the ground of
metallicity [Grillo et al., Astron. Astrophys. 501, 461 (2009)]. We shall also calculate the average dark
matter density hρiav of individual galaxies within their respective Einstein spheres. To our knowledge, the
present approach, being truly analytic, seems to be the first of its kind attempting to provide a new
decomposition scheme distinct from the simulational ones.
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I. INTRODUCTION

Unlike for spiral galaxies, which appear to be embedded
in large dark matter “halos,” we cannot in general measure
rotation curves for elliptical galaxies, a vast majority of
which act as strong gravitational lenses. Only very rarely
have strong lenses been identified with spiral galaxies since
the observed lens properties suggest that they are produced
not by the galactic disk but solely by the elliptical galaxy
bulge. Thus, using gravitational lensing, one can study the
mass-to-light ratio of elliptical galaxies, which shows that
there is no sign of a large amount of darkmatter surrounding
these galaxies. If dark matter is present in these galaxies, it
has to be mixed in with the luminous matter giving a total
enclosed lens mass. We shall be concerned in this work with
the decomposition of this lens mass into dark and luminous
parts within the Einstein radius of elliptical galaxies.

A few lines about the dark matter hypothesis seems to be
in order. Early observations [1,2] on rotational data of spiral
galaxies, now reconfirmed by several observations extend-
ing well beyond the optical disk [3–14], indicate that they
do not conform to Newtonian gravity predictions. Doppler
emissions from stable circular orbits of neutral hydrogen
clouds in the halo allow measurement of tangential velocity
vtg of the clouds treated as probe particles. Contrary to
Newton’s laws, where v2tg should decay with radius r,
observations indicate that it approximately levels off with r
in the galactic halo region, which in turn calls for the
presence of additional nonluminous mass, the so-called
“dark matter.” Several well known theoretical models for
dark matter exist in the literature, and it is impossible to list
all of them here (only some are mentioned in [15–39]). The
most recent model, to our knowledge, seems to be the so-
called Eddington-inspired Born-Infeld theory, succinctly
called the “gravitational avatar of non-linear electrodynam-
ics” [40], developed by Bañados and Ferreira [41]. This
new, and more general, theory has led to many interesting
observable predictions about dark matter including the
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possibility of nonsingular cosmological models alternative
to inflation [42–49].
However, there is yet another variety of theories that do

not at all require dark matter for the interpretation of the
observed rotation curves associated with spirals. This class
of theories include, e.g., modified Newtonian dynamics
developed by Milgrom [50–52] and Bekenstein and
Milgrom [53]. [The theory is very widely discussed; see
e.g., [54,55], and other modified gravities such as devel-
oped in [56], fðRÞ gravity theories [57,58], and Weyl
conformal gravity1 [61].]
We shall consider below what we call the Mannheim-

Kazanas (MK) vacuum (meaning matter-free) solution
[61,62] of Weyl conformal gravity applying it to elliptical
lens galaxies.2 The solution has three universal constant
parameters, γ�, γ0, and k, that are associated with potentials
of cosmic origin. This implies that the Weyl vacuum is not
really empty but is an arena for the energetic interplay of
these potentials.3 To be specific, the constant γ0 is asso-
ciated with a universal linear potential term Vγ0ðrÞ ¼
γ0c2r=2 that is induced by the cosmic background and k
is associated with a de Sitter–like potential term VkðrÞ ¼
−kc2r2=2 that is induced by inhomogeneities in the cosmic
background. The value γ� is associated with the linear
potential of the Sun and is so small that there are no
modifications to standard solar system phenomenology.
The constants were used to successfully fit the rotation data
of individual spiral galaxies including possible noncircular
motions in the halo [65,66] and also to determine their halo

sizes from the condition of stability of circular orbits [67].
However, we are not considering rotation curves in this
paper but nevertheless using those universal constants for
the mass decomposition in lens elliptical galaxies.
The purpose of the present paper is twofold: First, we

show that the light bending in the MK solution enhances
the Schwarzschild bending by an amount þγR contrary to
the previous result of −γR in the literature. We shall point
out the causes for this discrepancy. The relative contribu-
tions to bending from different terms will also be worked
out. Second, we shall find an application of this light
bending. Using it in the lens equation together with a
certain logical input (explained below), we shall investigate
how far the MK solution can account for the mass
decomposition in the 57 Sloan Lens Advanced Camera
for Surveys (SLACS) early-type elliptical lens galaxies
[68], which provide an unbiased subsample representative
of the complete sample of early-type galaxies in the Sloan
Digital Sky Survey (SDSS) database of over 105 galaxies.
This part of the task means that we shall be trying to
quantify the effect of the cosmology induced potentials Vγ0
and Vk on the galactic matter distribution within the
Einstein radius observed in lensing measurements.
To reach our goals, we shall calculate, following Ishak

et al. [69], different contributions to light deflection in the
MK solution using the artifact of a vacuole that is assumed
to enclose the galaxy (lens) at its center. The predecessor
of the vacuole method is the Rindler-Ishak method [70],
developed for the asymptotically nonflat SdS metric of
general relativity (GR), that exposed the effect of cosmo-
logical constant Λ on light bending thereby debunking a
prevailing belief to the contrary [71]. Then we shall use a
logical input, already employed in the literature [48,49,72],
viz., that the observed value of the Einstein angle θE
(caused by the luminousþ dark matter) should be equal to
the Weyl angle θW (caused by the luminous matterþ
potentials), i.e., θEin ¼ θWeyl for a light ray having the same
impact parameter.4 Using the input, we shall develop a new
algorithm that would lead to the decomposition of the total
lens mass Mlens

tot within the observed Einstein (or Weyl)
radius into dark (Mdm) and luminous (M�) matter parts
and compare the mass ratios with known simulational
predictions.

1There has been much debate for and against the Weyl
conformal gravity. For instance, Flanagan [59] argues that if
the source has associated with it a macroscopic long range
scalar field breaking conformal symmetry, the theory does not
reproduce attractive gravity in the solar system. However,
subsequently, Mannheim [60] has counterargued that Schwarzs-
child tests of solar gravity could still be recovered even in the
presence of such macroscopic fields.

2The solution is called here the MK solution for easy reference.
Note that it is distinguished from the Schwarzschild–de Sitter
(SdS) solution by an extra linear term γr contributed exclusively
by conformal gravity and reminding us of Mach’s principle
(see [63]). However, we shall soon show that the MK solution
can occur in other theories such as in fðRÞ gravity as well (see
Sec. II C). The solution reduces to the familiar de Sitter form
BðrÞ ¼ 1 − kr2 in the limit M ¼ 0, γ ¼ 0 and to the SdS form
under γ ¼ 0.

3The approach involving potentials, though not necessarily of
cosmic origin, is not new. A potential determined by rotation
curves that led to strong constraints on dark matter, to our
knowledge, was first envisaged by Lake [23]. Conversely, a
modified gravitational potential Φ fitting rotation curves has been
suggested by Capozziello et al. [64] in the context of fðRÞ
gravity. The most commonly known potential is Newtonian,
whose strengthM� dictates the deflection of light rays grazing the
sun in the environment of the Schwarzschild vacuum. Likewise,
the Weyl vacuum has two potentials Vγ0ðrÞ and VkðrÞ making up
the MK metric, and the associated potential strengths γ0 and k
dictate the light deflection there.

4We wish to recall that Einstein and Weyl theories of gravity
are both metric theories but otherwise very different. Thus, by the
equality θEin ¼ θWeyl, we are not saying that the two theories are
merging into one another as a whole but only saying that logically
the deflection must have a unique value for a unique impact
parameter b, and that all competing theories must predict the
same numerical value. The true justification for the adopted
equality, however, has to come from other observable predictions
that the equality would possibly lead to. In fact, one such
prediction is the galactic mass decomposition that can be
compared with those obtained by independent simulations
available in the literature [73].
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The paper is organized as follows: To get a reasonable
view of what Weyl conformal gravity looks like, we start in
Sec. II from the action discussing certain pertinent issues
related to conformal symmetry. We further show that the
MK metric can occur in the fðRÞ gravity theory too, thus
making the metric more universal than thought heretofore.5

In Sec. III, we provide critical reappraisals of some steps
used previously in the literature for the calculation of light
deflection in the MK metric. Next, in Sec. IV, we derive the
light trajectory in the MK metric by perturbatively solving
the null geodesic equation and calculate in Sec. V the light
deflection by using the vacuole method of Ishak et al. [69].
In Sec. VI, the algorithm for mass decomposition in the
Sloan Lens Advanced Camera for Surveys (SLACS) lens
galaxies is developed and applied to the considered sub-
sample. The numerical results for light bending and mass
decomposition are shown in Tables I and II, respectively.
Section VII concludes the paper. We shall choose units in
which G ¼ 1, ℏ ¼ 1, the vacuum speed of light c ¼ 1
unless specifically restored, and the signature chosen
is (þ;−;−;−).

II. WEYL CONFORMAL GRAVITY

In recent times, it has increasingly been realized that
conformal gravity might hold the key to resolving many
outstanding problems of astrophysics. This possibility has
been advocated in a very recent article by ’t Hooft [74] in
which he specifically refers to the works of MK including
their 1989 paper that brought to focus anew the conformal
gravity.6 Further, it is well known that all the homogeneous
and isotropic space-times described by the Robertson-
Walker line element have zero Weyl tensor and are thus
solutions to the vacuum conformal gravity. Such a highly
symmetric empty space-time is a good candidate for the
creation of the universe “from nothing”—a possibility first
proposed by Vilenkin [76]. The idea that the initial state of
the universe should be conformally invariant was advocated
also by Penrose [77] and ’t Hooft [74]. However, this empty
universe might seem unrealistic unless it could be filled
with particles, but how could this happen? Spontaneous
breaking of conformal symmetry in the early hot universe

TABLE I. Different contributions to Schwarzschild light bend-
ing tSch with the associated impact parameter b. The last two
columns show that the positive contribution tγ is overtaken by the
negative contribution tk in all the cases. However, their combined
effect is 1 or 2 orders of magnitude less than the contribution tSch.
The overall bending is thus positive and toward the Galactic
center. The average dark matter density hρiMK

av over the Einstein
sphere of radius b is seen to be ∼106M⊙ðkpcÞ−3.
Galaxy hρiMK

av b tSch tγ tk

� � � ×106M⊙ðkpcÞ−3 (kpc) ×10−6 ×10−7 ×10−7

J0008 − 0004 5.77 6.59 9.98 4.40 −5.05
J0029 − 0055 0.93 3.49 6.58 1.03 −1.87
J0037 − 0942 5.51 4.97 11.09 2.85 −3.57
J0044þ 0113 0.17 1.71 10.11 0.42 −0.83
J0109þ 1500 2.15 3.03 8.21 0.94 −1.66
J0157 − 0056 6.70 4.88 10.07 2.55 −3.38
J0216 − 0813 17.84 5.53 16.54 4.93 −4.73
J0252þ 0039 2.48 4.41 7.78 1.73 −2.70
J0330 − 0020 3.88 5.44 8.72 2.76 −3.72
J0405 − 0455 0.00 1.14 5.05 0.16 −0.38
J0728þ 3835 3.27 4.22 9.04 1.80 −2.68
J0737þ 3216 8.16 4.67 11.76 2.68 −3.36
J0822þ 2652 5.02 4.45 10.26 2.19 −3.00
J0903þ 4116 7.93 7.23 11.59 5.97 −6.02
J0912þ 0029 12.70 4.58 16.51 3.46 −3.67
J0935 − 0003 25.07 4.27 18.04 3.27 −3.44
J0936þ 0913 2.15 3.45 8.31 1.19 −1.99
J0946þ 1006 5.94 4.93 11.15 2.83 −3.54
J0956þ 5100 10.26 5.04 13.86 3.55 −3.93
J0959þ 4416 3.21 3.61 9.01 1.36 −2.17
J0959þ 0410 0.00 2.23 6.87 0.51 −1.04
J1016þ 3859 2.57 3.13 9.18 1.07 −1.80
J1020þ 1122 8.80 5.12 12.56 3.35 −3.88
J1023þ 4230 3.96 4.48 9.77 2.13 −2.98
J1029þ 0420 0.00 1.93 5.97 0.37 −0.82
J1100þ 5329 8.39 7.03 12.49 6.04 −5.93
J1106þ 5228 0.08 2.18 7.89 0.53 −1.06
J1112þ 0826 9.89 6.21 13.59 5.15 −5.16
J1134þ 6027 1.71 2.92 8.52 0.91 −1.60
J1142þ 1001 3.36 3.50 9.27 1.32 −2.11
J1143 − 0144 3.80 3.26 11.14 1.34 −2.03
J1153þ 4612 0.65 3.18 6.62 0.88 −1.65
J1204þ 0358 2.55 3.68 8.82 1.39 −2.21
J1205þ 4910 5.86 4.25 11.18 2.16 −2.91
J1213þ 6708 1.72 3.13 8.54 1.02 −1.76
J1218þ 0830 2.25 3.47 8.82 1.25 −2.04
J1250þ 0523 2.62 4.18 8.22 1.64 −2.56
J1402þ 6321 7.05 4.54 12.13 2.61 −3.26
J1403þ 0006 0.53 2.62 7.32 0.68 −1.32
J1416þ 5136 7.03 6.08 11.45 4.27 −4.74
J1420þ 6019 0.00 1.26 6.08 0.20 −0.46
J1430þ 4105 1.31 6.53 15.41 6.34 −5.77
J1436 − 0000 3.97 4.81 9.09 2.29 −3.20
J1443þ 0304 0.00 1.92 5.98 0.37 −0.81
J1451 − 0239 0.00 2.33 6.58 0.53 −1.09
J1525þ 3327 11.08 6.56 13.64 5.74 −5.58
J1531 − 0105 4.84 4.71 10.89 2.55 −3.31
J1538þ 5817 0.07 2.51 6.87 0.61 −1.22

(Table continued)

5We thank an anonymous referee for suggesting this interest-
ing possibility and for advising some other major points relating
to conformal symmetry to be addressed in all the detail. Section II
is entirely devoted to these issues.

6A bit of curious history can be found in a recent article by
Berezin et al. [63]: Conformal gravity was invented by Weyl in
1918 with a motivation to combine the gravitational and
electromagnetic fields into one unified theory. However, the
theory was rejected by Einstein and Weyl because it was
recognized that the conformal symmetry at most allows only
massless particles to exist. But this obstacle can be overcome
today by means of the Higgs mechanism for generating particle
masses (for the latest account, see [75]).
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giving rise to a generation of particle masses is the answer
(see the classic works in [78–80]).

A. The action and spontaneous breaking
of conformal symmetry

We start from the vacuum conformal gravity action

IW ¼ −αg
Z

d4x
ffiffiffiffiffiffi
−g

p
CαβγδCαβγδ; ð1Þ

where αg is the coupling constant and Cαβγδ is the Weyl
tensor. This action is fully covariant with an additional
symmetry of conformal invariance under transformations
of the metric gμνðxÞ → Ω2ðxÞgμνðxÞ. Conformal gravity
thus possesses no fundamental scale (no intrinsic G or
fundamental Λ) at all, leading to an intrinsically scale-free
cosmology at sufficiently high enough temperatures [81].
Newton’s constant GN might be generated as a “macro-
scopic/low energy” limit (like the Fermi constant GF
generated in the electroweak theory) to be measured by
a Cavendish experiment in a universe decoupled from the
hot early stage.
We consider here conformal gravity exactly in this low

energy limit; that is, after spontaneous violation of sym-
metry has actually happened, particle masses have been
generated and galaxies formed as we see today. Conformal
gravity does not require elusive dark matter or dark energy
for interpreting (albeit in a different way) the astrophysical
observations, as well as provides singularity and a ghost-
free solution to some of the known problems plaguing
standard cosmology including the cosmological constant
[61,82] and the age problem [83] (that is, of course, not to
say that conformal gravity has no problems of its own,
though some seem to have been well answered; see,
e.g., [60,84]).
Variation of gμν in (1) leads to the field equations [61]

4αgWμν ¼ Tμν; ð2Þ

where

Wμν ≡Wð2Þ
μν −

1

3
Wð1Þ

μν ; ð3Þ

Wð2Þ
μν ¼ gμν

2
∇β∇βðRα

αÞ þ∇β∇βRμν −∇β∇νR
β
μ

−∇β∇μR
β
ν − 2RμβR

β
ν þ gμν

2
RαβRαβ; ð4Þ

Wð1Þ
μν ¼ 2gμν∇β∇βðRα

αÞ − 2∇μ∇νRα
α − 2Rα

αRμν þ
gμν
2

R2:

ð5Þ

∇β is the covariant derivative operator and Tμν is the
conformally invariant energy momentum tensor to be
supplied. Solving this intimidating system of equations,
MK [62] computed the solution exterior (Tμν ¼ 0) to a
static, spherically symmetric gravitating source, which is

dτ2 ¼ BðrÞdt2 − 1

BðrÞ dr
2 − r2ðdθ2 þ sin2θdφ2Þ; ð6Þ

BðrÞ ¼ 1 −
βð2 − 3βγÞ

r
− 3βγ þ γr − kr2; ð7Þ

where β, γ, k are dimensionful integration constants.

Defining the Schwarzschild mass M ¼ βð2−3βγÞ
2

, we can
rewrite the exact metric as

BðrÞexact ¼ α −
2M
r

þ γr − kr2; ð8Þ

where α≡ ð1 − 6MγÞ1=2. From the observed galaxy
(treated as lens) masses M and the rotation curve fitted
universal value of γ, the constant factor 6Mγ ≈ 10−15 and
can easily be neglected for simplicity. Thus, for the galactic
mass decomposition, we shall take the MK metric relevant
on the scales of the Einstein radius of lens mass M and
beyond to be7

BðrÞgalactic ¼ 1 −
2M
r

þ γr − kr2; ð9Þ

which has also been used for predicting flat rotation
curves in the galactic halo with universal values of γ and
k in the galactic halo region [65]. The emergence of the
Schwarzschild mass together with other dimensionful

TABLE I. (Continued)

Galaxy hρiMK
av b tSch tγ tk

J1621þ 3931 6.09 4.97 11.07 2.85 −3.57
J1627 − 0053 4.88 4.18 10.47 1.99 −2.78
J1630þ 4520 8.66 6.91 13.25 6.18 −5.92
J1636þ 4707 2.95 3.98 8.64 1.56 −2.43
J2238 − 0754 1.44 3.07 8.09 0.95 −1.69
J2300þ 0022 8.06 4.54 12.54 2.68 −3.30
J2303þ 1422 5.78 4.35 11.81 2.36 −3.05
J2321 − 0939 1.31 2.47 9.31 0.72 −1.32
J2341þ 0000 3.48 4.48 9.35 2.06 −2.94

7The reason why the BðrÞ are separately designated as exact
and galactic is that the metric (9) does not follow from (8) at the
exact value α ¼ 1 as it would then require eitherM or γ or both to
be exactly zero. However, one could technically say that (9)
follows from (8) only in the limit α → 1. Physically, it implies
that the metric (9) can apply to a distance scale, where effects of
both M and γ are nonzero, with the combined effect Mγ to be
negligibly small. Such a scale is naturally provided by the galactic
halo radius [67], which is intermediate between the Schwarzs-
child radius of M and the cosmological de Sitter radius.
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TABLE II. Lens mass decomposition by the algorithm Eq. (85) and the vacuole radius rb for individual galaxies.

Galaxy MMK� MMK
dm Mlens

tot rb fGrillo�Sal;BC fMK�

� � � (×1011M⊙) (×108M⊙) (×1011M⊙) (kpc)
J0008 − 0004 3.43 69.12 3.50 842.98 0.54þ0.10

−0.33 0.98
J0029 − 0055 1.19 1.65 1.20 590.01 0.76þ0.35

−0.23 0.99
J0037 − 0942 2.87 28.34 2.90 791.76 0.74þ0.17

−0.28 0.99
J0044þ 0113 0.89 0.03 0.90 536.05 0.55þ0.27

−0.15 0.99
J0109þ 1500 1.29 2.51 1.3 605.96 1.08þ0.29

−0.22 0.99
J0157 − 0056 2.56 32.85 2.6 763.46 1.21þ0.20

−0.52 0.98
J0216 − 0813 4.77 126.99 4.9 943.08 0.71þ0.19

−0.28 0.97
J0252þ 0039 1.79 8.97 1.8 675.39 0.52þ0.07

−0.24 0.99
J0330 − 0020 2.47 26.32 2.5 753.54 0.99þ0.11

−0.27 0.99
J0405 − 0455 0.30 0.00 0.3 371.68 0.73þ0.43

−0.23 1.00
J0728þ 3835 1.99 10.33 2.0 699.53 0.50þ0.25

−0.08 0.99
J0737þ 3216 2.86 34.99 2.90 791.76 0.77þ0.09

−0.17 0.98
J0822þ 2652 2.38 18.59 2.4 743.36 0.93þ0.10

−0.16 0.99
J0903þ 4116 4.37 126.14 4.5 916.64 0.87þ0.09

−0.31 0.97
J0912þ 0029 3.95 51.46 4 881.35 0.51þ0.11

−0.09 0.98
J0935 − 0003 4.01 82.12 4.1 888.64 0.52þ0.09

−0.12 0.98
J0936þ 0913 1.49 3.72 1.5 635.56 0.71þ0.21

−0.17 0.99
J0946þ 1006 2.87 30.02 2.9 791.76 0.51þ0.06

−0.11 0.99
J0956þ 5100 3.64 55.33 3.7 858.74 0.74þ0.11

−0.33 0.98
J0959þ 4416 1.69 6.33 1.7 662.64 0.82þ0.19

−0.20 0.99
J0959þ 0410 0.80 0.00 0.8 515.42 0.65þ0.13

−0.15 1.00
J1016þ 3859 1.49 3.31 1.5 635.56 0.63þ0.16

−0.18 0.99
J1020þ 1122 3.35 49.56 3.4 834.88 0.46þ0.19

−0.12 0.98
J1023þ 4230 2.28 15.01 2.3 732.89 0.71þ0.09

−0.15 0.99
J1029þ 0420 0.60 .0.00 0.6 468.29 0.81þ0.32

−0.27 1.00
J1100þ 5329 4.57 122.47 4.7 930.03 0.49þ0.32

−0.15 0.97
J1106þ 5228 0.89 0.04 0.9 536.05 1.01þ0.38

−0.29 0.99
J1112þ 0826 4.40 99.48 4.5 916.64 0.70þ0.10

−0.10 0.97
J1134þ 6027 1.29 1.79 1.3 605.96 0.65þ0.28

−0.25 0.99
J1142þ 1001 1.69 6.08 1.7 662.64 0.59þ0.24

−0.13 0.99
J1143 − 0144 1.89 5.53 1.9 687.67 0.46þ0.09

−0.06 0.99
J1153þ 4612 1.09 0.89 1.1 573.14 0.51þ0.34

−0.07 0.99
J1204þ 0358 1.69 5.37 1.7 662.64 0.43þ0.14

−0.12 0.99
J1205þ 4910 2.48 18.99 2.5 753.54 0.61þ0.19

−0.19 0.99
J1213þ 6708 1.39 2.23 1.4 621.12 0.71þ0.21

−0.18 0.99
J1218þ 0830 1.59 3.94 1.6 649.38 0.64þ0.21

−0.14 0.99
J1250þ 0523 1.79 8.03 1.8 675.39 1.04þ0.27

−0.33 0.99
J1402þ 6321 2.87 27.71 2.9 791.76 0.73þ0.13

−0.12 0.99
J1403þ 0006 0.99 0.40 1 555.22 0.84þ0.27

−0.30 0.99
J1416þ 5136 3.63 66.60 3.7 858.74 0.75þ0.09

−0.17 0.98
J1420þ 6019 0.40 0.00 0.4 409.08 1.01þ0.43

−0.36 1.00
J1430þ 4105 5.24 153.07 5.4 974.08 0.38þ0.07

−0.13 0.97
J1436 − 0000 2.28 18.57 2.3 732.89 0.77þ0.24

−0.30 0.99
J1443þ 0304 0.60 0.00 0.6 468.29 1.00þ0.32

−0.44 1.00
J1451 − 0239 0.80 0.00 0.8 515.42 0.97þ0.22

−0.48 1.00
J1525þ 3327 4.66 131.70 4.8 936.57 0.68þ0.09

−0.21 0.97
J1531 − 0105 2.68 21.34 2.7 773.13 0.70þ0.15

−0.14 0.99
J1538þ 5817 0.89 0.05 0.9 536.05 0.84þ0.08

−0.19 0.99

(Table continued)
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constants in the metric (8) already indicates the first
instance of local symmetry violation in the vacuum
Weyl gravity at the solution level. As a second instance
of symmetry violation, we consider conformal cosmology.

B. Conformal cosmology

Consider the action of the conformally coupled
matter [81]

IM ¼ −ℏ
Z

d4x
ffiffiffiffiffiffi
−g

p
"
1

2
∇μϕ∇μϕ −

1

12
ϕ2Rþ λϕ4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

scalar

þ iψ̄γμðxÞ½∂μ þ ΓμðxÞ�ψ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fermion

− gϕψ̄ψ|fflffl{zfflffl}
interaction

#
; ð10Þ

where ΓμðxÞ is the fermion spin connection, λ and g are the
dimensionless coupling constants, ϕðxÞ is the symmetry
breaking scalar field, and ψ is a fermionic field. The matter
energy momentum tensor following from the action (10) is

Tμν ¼ ℏ

�
iψ̄γμð∂μ þ ΓμÞψ þ 2

3
∇μϕ∇νϕ −

gμν

6
∇αϕ∇αϕ

−
ϕ

3
∇μ∇νϕþ gμνϕ∇α∇αϕ

3
−
ϕ2

6

�
Rμν −

1

2
gμνR

�

− gμνλϕ4

�
: ð11Þ

Defining the “density” ρ of a perfect fluid (with uμ being
the timelike four-velocity satisfying uμuμ ¼ 1)

ρuμuν ¼ iℏψ̄γμð∂ν þ ΓνÞψ þ ℏ
2
∇μϕ∇νϕ; ð12Þ

and isotropic “pressure” p

puμuν ¼ −
ℏ
3
ϕ∇μ∇νϕþ ℏ

6
∇μϕ∇νϕ; ð13Þ

the energy momentum tensor may be rewritten in a more
elegant form as

Tμν ¼ ðpþ ρÞuμuν þ pgμν −
ϕ2

6

�
Rμν −

1

2
gμνR

�
− gμνλϕ4: ð14Þ

This provides for the right hand side of Eq. (2). In an
isotropic and homogeneous universe, the left hand side of
Eq. (2) is identically zero (empty universe), thus leading to
Tμν ¼ 0. When the scalar field ϕðxÞ in IM obtains a nonzero
mass (which we are free to rotate to some “space-time
constant” ϕ0 due to conformal freedom), we get

ϕ2
0

6

�
Rμν −

1

2
gμνR

�
¼ ðpþ ρÞuμuν þ pgμν − gμνλϕ4

0:

ð15Þ
Thus conformal cosmology looks like the standard

cosmology with a “perfect fluid” source and a nonzero
cosmological constant Λ ¼ λϕ4

0 with the important excep-
tion that Newton’s constant GN has been replaced by an
“effective” constant of the form

Geff ¼ −
3

4πϕ2
0

; ð16Þ

just as has been advocated by ’t Hooft [74]. This is not the
low energy Newton’s constant GN that Cavendish mea-
sured, but instead a term which we identify to be the
negative gravitational constant Geff providing repulsion at
cosmological distances. Thus, in the isotropic and homo-
geneous case, we end up breaking conformal symmetry,
again recovering standard cosmology with a nonzero
cosmological constant Λ. Local gravity is fixed by small,
local variations in the background scalar field ϕðxÞ, with
such variations being completely decoupled from the
homogeneous, constant, cosmological background field
ϕ0 itself. It is the distinction between inhomogeneity on
the local scale and homogeneity on the global scale that

TABLE II. (Continued)

Galaxy MMK� MMK
dm Mlens

tot rb fGrillo�Sal;BC fMK�

J1621þ 3931 2.87 31.39 2.9 791.76 0.75þ0.12
−0.25 0.98

J1627 − 0053 2.28 15.03 2.3 732.89 0.61þ0.12
−0.13 0.99

J1630þ 4520 4.78 120.36 4.9 943.03 0.69þ0.07
−0.10 0.97

J1636þ 4707 1.79 7.80 1.8 675.39 0.59þ0.18
−0.12 0.99

J2238 − 0754 1.29 1.77 1.3 605.96 0.64þ0.25
−0.25 0.99

J2300þ 0022 2.97 31.68 3 800.76 0.60þ0.07
−0.11 0.98

J2303þ 1422 2.68 20.01 2.7 773.13 0.63þ0.13
−0.09 0.99

J2321 − 0939 1.19 0.83 1.2 590.01 0.90þ0.26
−0.18 0.99

J2341þ 0000 2.18 13.22 2.2 722.11 0.73þ0.13
−0.28 0.99
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provides the demarcation between local and global gravity,
respectively. Hence conformal gravity is attractive on local
galactic scales, while it is repulsive on cosmological scales,
a fact that has been explicitly demonstrated very recently by
Phillips [85].
Finally, we wish to point out that the MK metric (8) or

(9) differs from the SdS black hole by an important linear
term γr, which is a specific contribution from the fourth
order vacuum conformal gravity. Nonetheless, the metric
need not correspond exclusively to vacuum conformal
gravity. An alternative theory of which the MK metric
may again be a solution could be a similar fourth order
theory. The best candidates are the fðRÞ gravity theories
that have been very widely discussed in the literature (see
the review [86], [39,87–94]), notably in connection with
modeling dark matter and dark energy as curvature effects
[64], instability, and antievaporation of black holes [95,96].
For a full account of these and other effects, we refer the
reader to the excellent treatise [97]. We shall now show that
the MK metrics (8) and (9) could indeed be viewed as a
solution of fðRÞ gravity coupled to nonlinear electrody-
namics (NED), so that the results of the present paper are
actually more universal than thought heretofore, these now
being valid in a wider class of fðRÞ theories as well.

C. MK metric as f ðRÞ gravity solution

The fðRÞ gravity is more general than GR, the latter
recovered only when fðRÞ ¼ R. To reach our goal stated
above, we shall follow an algorithm developed by
Rodrigues et al. [98]. A similar algorithm was developed
much earlier by Capozziello et al. [99]. They have recently
obtained solutions of fðRÞ gravity coupled to NED that
may be viewed as generalizations of known solutions
within the GR theory. Here we are considering a known
solution of conformal gravity instead of GR. The action for
fðRÞ gravity with sources is given by [99]

IfðRÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðRÞ þ 2κ2Lm�; ð17Þ

where κ2 ¼ 8πG=c4 and Lm is the matter Lagrangian.
Varying the action with respect to the metric yields the field
equations

fRR
μ
ν −

1

2
δμνf þ ðδμν□ − gμβ∇β∇νÞfR ¼ κ2Θμ

ν ; ð18Þ

where fR ¼ dfðRÞ=dR,□≡gαβ∇α∇β is the D’Alembertian
and Θμ

ν is the source stress tensor. With Lm ¼ LNEDðFÞ,
where F ¼ 1

4
FμνFμν, Fμν ¼ ∂μAν − ∂νAμ is the Faraday

tensor [98], it follows that Θμ
ν ¼ δμνLNED − ∂LNEDðFÞ∂F FμαFνα.

Varying Aμ in (17), one has ∇μ½FμνLF� ¼ 0, where the two

Lagrangian densities are related by LF ¼ ∂LNEDðFÞ∂F ¼
∂LNEDðFÞ∂r ð∂F∂rÞ−1. Because of radial symmetry of the metrics,

the only nonzero component of the Faraday tensor is
F10ðrÞ ¼ q

r2 L
−1
F and F ¼ − 1

2
ðF10Þ2. The field equations

(18) can be rewritten in terms of the effective stress tensor of
GR (“curvature fluid” [64]),

Rμν −
1

2
gμνR ¼ f−1R

�
κ2Θμν þ

1

2
gμνðR − RfRÞ

− ðgμν□ −∇μ∇νÞfR
�
≡ κ2Teff

μν : ð19Þ

Rodrigues et al. [98] start from a radial mass function
MðrÞ which, for the metric (9), is obtained by rewriting

BðrÞ ¼ 1 − 2MðrÞ
r ,

MðrÞ ¼ M
�
1 −

γr2

2M
þ kr3

2M

�
; ð20Þ

where M is the constant Schwarzschild mass from the
metric (9). The Ricci scalar RðrÞ is independent of M,

R ¼ 6

r
ðγ − 2krÞ ⇒ rðRÞ ¼ 6γ

Rþ 12k
: ð21Þ

We give below only the final results for the galactic scale
metric (9). Following the algorithm in [98], it follows that
the class of fðRÞ gravity theories

fðRÞgalactic ¼ c0Rþ c1

Z
rðRÞdR

¼ c0Rþ 6c1γ ln ðRþ 12kÞ; ð22Þ

where c0 and c1 are arbitrary constants, would also produce
the MK solution (9). The NED sector gives

F10 ¼ −
2c0γrþ c1frð2þ 3γrÞ − 6Mg

2κ2q
; ð23Þ

LF ¼ −
2κ2q2

r2½2c0γrþ c1frð2þ 3γrÞ − 6Mg� ;

LNED ¼ −
c0γ þ c1ð1 − 3γr ln rÞ

κ2r
: ð24Þ

We see that fðRÞgalactic is a nice logarithmic function that
can be analyzed by choosing values of c0 and c1 and/or
solution constants γ and k. For instance, γ ¼ 0 gives the
SdS case with fðRÞ ¼ R ¼ −12k. For k ¼ 0, one obtains
fðRÞ ¼ c0Rþ 6c1γ lnR, which vividly shows the role of
fðRÞ beyond GR leading to the emergence of an extra
linear term γr in the metric (9), that has both Cauchy and
event horizons (see Sec. III), as a deviation from the SdS
black hole. The influence of γr on the antievaporation
phenomenon will be a challenging and interesting future
task. Exactly the same algorithm applies also to the exact
form (8) yielding
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fðRÞexact ¼ c0Rþ 2c1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9γ2 þ 2ðRþ 12kÞðα − 1Þ

q
þ 3γ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9γ2 þ 2ðRþ 12kÞðα − 1Þ

q
− 3γ

��
:

ð25Þ
The energy conditions, except the strong energy con-

dition, are satisfied by the Teff
μν for both the metrics (8) and

(9), now posed as solutions of fðRÞ gravity. The Dolgov-

Kawasaki [100] stability condition d2fðRÞ
dR2 ≥ 0 is satisfied

only when c1 ≤ 0 in both (22) and (25). It is interesting to
note that logarithmic fðRÞ ¼ lnðλRÞ, investigated in [95],
follow as special cases Eq. (22) under c0 ¼ 0, k ¼ 0.
A fuller analysis for both the fðRÞ gravities equivalent
to conformal solutions will be given elsewhere as they will
take us outside the scope of the present paper.

III. CRITICAL REAPPRAISALS

We shall here critically reexamine three issues that relate
to light deflection in the MK metric of Weyl gravity. Some
years ago, Edery and Paranjape [72] calculated the light
deflection in the asymptotically nonflat MKmetric (9) to be
Δϕ ¼ 4M

R − γR, whereM is the luminous mass of a galaxy, γ
is a constant parameter, and R is identified with the closest
approach distance r0. However, Edery and Paranjape had
already recognized that the negative sign in −γR was
discrepant requiring further investigation because, only for
γ < 0, the contribution becomes positive imitating the effect
of attractive dark matter, but then the problem is that the
rotation curve fit requires γ > 0, an exactly opposite sign.
We argue here that the discrepant sign is a result of an

illegitimate range of integration. To derive the above
deflection, Edery and Paranjape considered integration over
the radial coordinate r from R to ∞ arguing that the
incoming light followed a “straight line” path at infinity
associated with the metric functionB∞ðrÞ¼1þγr−kr2>0,
k > 0 [neglectingM=r inmetric (9)]. It is this reducedmetric
that, under transformation r → ρ [see Eq. (28) below], is
conformal to cosmological Robertson-Walker metric with

negative space curvature (K ¼ −k − γ2

4
) [62]. They further

argued that the straight line path was justified by the limit
dφ
dr → 0 as r → ∞. Wewish to point out that the limit r → ∞
does notmake sense because there is a finite horizon radius in
the metric, which limits the motion of light inside this radius.
Outside the horizon, at r → ∞, where the light ray has been
assumed to pass, the metric function B∞ðrÞ changes sign
leading to violation of the metric signature, which forbids a
meaningful integration from R to ∞.
To be more specific, the metric functionB∞ðrÞ ¼ 0 gives

the horizon radius

r ¼ rhor ¼
γ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kþ γ2

p
2k

: ð26Þ

For the special case γ ¼ 0 and k ¼ Λ
3
> 0, one simply

retrieves the de Sitter horizon radius rdShor ¼
ffiffiffi
3
Λ

q
. Outside

the horizon r > rhor, say at r ¼ 2rhor, B∞ð2rhorÞ becomes
generically negative no matter what the sign of γ is.8 This
can be seen from

B∞ð2rhorÞ ¼ −
3kþ γðγ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kþ γ2

p
Þ

k
< 0: ð27Þ

On the other hand, inside the horizon r < rhor, say at
r ¼ rhor=2, B∞ðrhor=2Þ > 0, which is consistent with the
required signature protection, thereby limiting the light
motion to only within r < rhor. If one changes from static r
to comoving radial coordinate ρ by [62]

ρðrÞ ¼ 4r

2ð1þ γr − kr2Þ1=2 þ 2þ γr
; ð28Þ

one obtains

ρhorðrhorÞ ¼
4ðγ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kþ γ2

p
Þ

4kþ γðγ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kþ γ2

p
Þ
; ð29Þ

which is just the redefined horizon radius. However, it can
easily be verified that ρðr ¼ 2rhorÞ is imaginary. Also, as
r → ∞, ρ → 4

2
ffiffiffiffi
−k

p þγ
, which too is imaginary for k > 0 and

so is physically meaningless.
Exactly the same arguments hold for the full MK

solution BðrÞ ¼ 1 − 2M
r þ γr − kr2 as well because there

now appear two horizons for k > 0 at radii given by (for
details, see Ref. [101])

r1hor ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kþ γ2

9k2

s
cos

�
θ þ 4π

3

�
þ γ

3k
; ð30Þ

r2hor ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kþ γ2

9k2

s
cos

�
θ

3

�
þ γ

3k
; ð31Þ

r2hor > r1hor; θ ¼ θðM; γ; kÞ; ð32Þ

where r1hor and r2hor are the radii of the inner Cauchy
horizon and the outer event horizon, respectively, and
away outward from the event horizon, the metric
function BðrÞ becomes negative. Thus, because of the
presence of horizons, the usual integration from R to ∞
does not make sense either in the mutilated version

8We understand that straight line on a curved geometry is
distinguished here from the Euclidean straight line on flat
geometry. However, the issue is not about this distinction but
about the validity of the limit r → ∞. The situation here is exactly
opposite to what one finds, e.g., in the Schwarzschild geometry,
where BðrÞ ¼ 1 − 2M=r > 0 for r > rhor ¼ 2M.
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(M ¼ 0) or in the full MK solution (M ≠ 0). Hence,
the resultant deflection Δϕ ¼ 4M

R − γR cannot be
accepted as valid. To find the valid light deflection, it
is necessary to find a new method that does not rely on
such integration. That very new method has been
developed by Rindler and Ishak [70], which is based
on the geometric invariant angle and is most suited to
the asymptotically nonflat space-times. We shall soon
see that the bending expression, apart from the term
þγR, yields also other terms in which γ couples with M,
k, and R in different combinations.
The second issue relates to two previous papers

[102,103] that unfortunately overlooked a practical con-
dition, viz., that the closest approach distance R must be
far greater than the Schwarzschild radius of the galaxy,
i.e., R ≫ 2M. This condition technically induces a certain
function jAj to assume a positive value, which is crucial
for obtaining the known expression for bending. For
instance, with r ¼ 1=u, Rindler and Ishak [70] defined
the function Aðr;φÞ≡ dr

dφ ¼ ð−r2Þ du
dφ but used only the

positive numerical value jAj ¼ r2 du
dφ ¼ R3

4M2 in their pre-
scription for bending that led to the correct Schwarzschild
deflection. The importance of their positivity prescription
is that without it even the known Schwarzschild deflec-
tion would not follow. Since this positivity was not
accommodated in [102,103], an erroneous two-way neg-
ative contribution −γR appeared there, supporting the
existing result of Edery and Paranjape [72]. We shall
respect this prescription in the present paper, which will
show that the two-way contribution in Weyl gravity
actually is þγR, thus enhancing the Schwarzschild
bending and imitating the effects of attractive dark matter,
as should be the case.
The third and final issue concerns the appropriate

setup needed for calculating the light deflection. Note
that the Rindler-Ishak method originally proposed in [70]
was based on a source and an observer located in a static
SdS background. On the other hand, given the environ-
ment of Mannheim-O’Brien [65] cosmological poten-
tials, it should be more appropriate to derive the
corresponding light bending equation in a cosmological
setup, that is, in the Friedmann-Lemaître-Robertson-
Walker (FLRW) background. To do that, Ishak et al.
[69] extended the original method in which the galaxy
(lens) is now placed at the center of a SdS vacuole
exactly embedded into the FLRW space-time using the
Einstein-Strauss [104] prescription and appropriate junc-
tion conditions. We shall follow this extended method in
this paper.

IV. LIGHT TRAJECTORY IN THE
MK SPACE-TIME

We restate the asymptotically nonflat spherically sym-
metric galactic MK solution as used in [65,72],

dτ2 ¼ BðrÞdt2 − 1

BðrÞ dr
2 − r2ðdθ2 þ sin2θdφ2Þ;

BðrÞ ¼ 1 −
2M
r

þ γr − kr2; ð33Þ

where M is the luminous central mass, and k and γ are
constants. Denoting u ¼ 1=r, we derive the path equation
for a test particle of mass m0 on the equatorial plane θ ¼
π=2 as follows:

d2u
dφ2

þ u ¼ 3Mu2 −
γ

2
þM
h2

þ 1

2h2u2

�
γ −

2k
u

�
; ð34Þ

where h ¼ J
m0
, the conserved angular momentum per unit

test mass. For photon,m0 ¼ 0 ⇒ h → ∞, and one ends up
with the null geodesic equation,

d2u
dφ2

þ u ¼ 3Mu2 −
γ

2
: ð35Þ

We shall perturbatively solve this equation. To zeroth
order, Eq. (35) gives

d2u0
dφ2

þ u0 ¼ −
γ

2
; ð36Þ

and its exact solution is

u0 ¼
cosφ
R

−
γ

2
; ð37Þ

where R is a constant related to the distance of closest
approach r0 to the origin. For transparency, we shall
consider only first order perturbation inM. Thus, following
the usual method of small perturbations, we want to derive
the solution as

u ¼ u0 þ u1; ð38Þ
where u1 satisfies

d2u1
dφ2

þ u1 ¼ 3Mu20: ð39Þ

The perturbative expansion holds only for small u or
large r. Thus we are considering galactic parameters M, R
and solution parameter γ such that the nondimensional
quantities 2M

R ≪ 1 and γR ≪ 1. The exact solution of
Eq. (39) is

u1 ¼
M
4R2

½6þ3R2γ2−6Rγ cosφ−2cos2φ−6Rγφsinφ�:
ð40Þ

When γ ¼ 0, it may be verified that one recovers
the equation for the light trajectory in first order in the
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Schwarzschild metric. Formally changing φ → π
2
− φ, the

final solution for the light trajectory up to first order in M
can be written as

u≡ 1

r
¼ sinφ

R
−
γ

2
þ M
4R2

½6þ 3R2γ2 − 3Rγðπ − 2φÞ cosφ
þ 2 cos 2φ − 6Rγ sinφ�: ð41Þ

The closest approach distance r0 is obtained from
Eq. (41) by putting φ ¼ π=2 and is given by

1

r0
¼ 1

R
þ
�
Mð4 − 6Rγ þ 3R2γ2Þ

4R2
−
γ

2

�
≃ 1

R
; ð42Þ

because for typical observed galactic values ofM, R, and γ,
which we shall soon see, it follows that 1

R ≈ 10−22 cm−1,
while the piece in the square bracket ≈10−30 cm−1; hence it
can be ignored.9 Thus, R can be identified with the closest
approach distance

R≃ r0: ð43Þ
Equation (41) is the desired equation to be used in the

sequel.

V. LIGHT DEFLECTION: ISHAK et al.
VACUOLE METHOD

The original method proposed by Rindler and Ishak [70]
did not require the concept of a vacuole because the source
and observer were assumed to be located in a static SdS
background. The work nonetheless contained the essential
ingredient for its vacuole extension: It combined the
standard perturbative solution with an invariant geometric
definition of the bending angle that took into account
the explicit effect of the metric BðrÞ that contains k,
which is formally similar to but not numerically exactly
the same as Λ.
The invariant geometric formula for the cosine of

the angle ψ between two coordinate directions d and δ
is given by

cosψ ¼ gijdiδj

ðgijdidjÞ1=2ðgijδiδjÞ1=2
: ð44Þ

Differentiating u with respect to φ, denoting
dr
dφ ¼ ð−r2Þ du

dφ ≡ Aðr;φÞ, and imposing the Rindler-Ishak
positivity condition on Aðr;φÞ [70], we get

jAðr;φÞj ¼ r2
du
dφ

: ð45Þ

For the light path Eq. (41), the function jAj reads

jAðr;φÞj

¼ ðr2Þ
�
3MRγðφ − 2πÞ sinφþ 4ðR − 2M sinφÞ cosφ

4R2

�
> 0: ð46Þ

The method of Ishak et al. [69] treats the light bending in
a cosmological setting that requires the concept of a
vacuole, which is not present in nature by itself but is
devised here only as an artifact of the investigative
procedure. The vacuole is assumed to be a large hypo-
thetical sphere that houses the lens galaxy at its center and
is exactly embedded into the FLRW space-time. It is further
assumed that all the light bending occurs inside the vacuole
and that once the light transitions out of the vacuole and
into FLRW space-time, all bending stops. The cutoff point,
where the transition occurs, is tailored to each individual
lens, namely the edge of the vacuole defined by its radius rb.
The vacuole concept as such is not used except for this one
purpose, viz., to obtain a realistic order-of-magnitude
estimate of the range of influence of the lens. Once we
are able to obtain the deflection angle, we can dismiss the
vacuole as redundant.
Assuming a small light entry angle φb at the vacuole

boundary radius r ¼ rb such that sinφb ≃ φb, and
cosφb ≃ 1, Eq. (41) gives

1

rb
¼ φb

R
þ 2M

R2
þ
�
M

�
3γ2

4
−
3πγ

4R

�
−
γ

2

�
; ð47Þ

or, equivalently,

φb ¼
�
R
rb

−
2M
R

�
þ
�
3πMγ

4
þ γR

2
−
3MRγ2

4

�
: ð48Þ

Note that we have only one equation (47) connecting two
unknowns φb and rb. Hence we need to specify any one of
them from independent considerations. Ishak et al. [69]
employed the Einstein-Strauss prescription [104,105] to
determine the boundary rb assuming that the SdS vacuole
has been matched to an expanding FLRW universe via the
Sen-Lanczos-Darmois-Israel junction conditions [106–
109]. In general, the vacuole radius rb would also change
due to cosmic expansion, but Ishak et al. [69] considered rb
at that particular instant t0 of the cosmic epoch, when the
light ray just happens to pass the point of closest approach
to the lens. The Einstein-Strauss prescription adapted to the
MK solution reads

rb inMK ¼ aðtÞrb in FLRW;

MMK ¼ 4π

3
r3b inMK × ρin FLRW; ð49Þ9The symbol “≈” means “of the order of.”
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where MMK is just the same luminous lens mass M
appearing in the metric (9).
We shall take theWMAP estimate of the observed density

of the universe that is the critical density ρc implying that
the universe is spatially flat. Thus, for our computation, we

take ρin FLRW¼ ρc ¼ 3H2
0

8π ¼ 9.47×10−30 gmcm−3¼ 7.03×
10−58 cm−2 [80]. Normalizing the scale factor to aðt0Þ ¼
1 and dropping suffixes, the above prescription translates to

rb ¼
�
3M
4πρc

�
1=3

; ð50Þ

where the luminous mass M is often expressed in units
of the Sun’s mass M⊙¼ 1.989×1033 gm ¼ 1.48×105 cm.
Equation (25) provides a vacuole boundary radius rb, where
the space-time transitions from a MK space-time to an
FLRW background. Evidently, by the prescription (50), rb
depends explicitly only on the observable cosmological
Hubble parameterH0 and on the galactic parameterM, none
ofwhich depends on the constant γ. So, for consistency, the γ
terms in Eq. (47) [or, in Eq. (48)] should be discarded. To
verify what it entails, let us once again note that, for typical
galactic values from rotation curve fit [65]

M≈1016 cm; R≈1022 cm; γ≈10−30 cm; ð51Þ

and for rb ≈ 1024 cm coming from the prescription (50), the
first piece in Eq. (48) turns out to be ðRrb − 2M

R Þ ≈ 10−2, while

the last piece in the square bracket is ≈10−8 and hence can
easily be ignored in comparison. Thus, to the leading order,
φb ≈ 10−2, which is consistent with the small angle approxi-
mation. Therefore, without any loss of rigor in what follows,
we can take

φb ≃ R
rb

−
2M
R

; ð52Þ

or, equivalently,

rb ≃
�
φb

R
þ 2M

R2

�
−1
: ð53Þ

Returning to Eq. (46), we get

jAbj≡ jAðrb;φbÞj

¼ ðr2bÞ ×
�
3MRγðφb − 2πÞφb þ 4ðR − 2MφbÞ

4R2

�

¼ r2b
R

�
1 −

2Mφb

R
þ 3Mπγφb

4
−
3Mγφ2

b

2

�
> 0: ð54Þ

This positivity is possible as the observed galactic data
M, R and the small values of φb from Eq. (52) render the
quantity in the square bracket positive.

The formula of Ishak et al. [69] for the bending angle ψ is

tanψ ¼ rb
ffiffiffiffiffiffiffiffiffiffiffi
BðrbÞ

p
jAbj

; ð55Þ

where

ffiffiffiffiffiffiffiffiffiffiffi
BðrbÞ

p ≃ 1 −
M
rb

þ 1

2
γrb −

1

2
kr2b; ð56Þ

since, for galactic values ofM, rotation curve-fitted values of
γ, k and the values of rb, the last three terms add to ≈10−6,
which is too small compared to unity justifying that the
higher power expansion terms in

ffiffiffiffiffiffiffiffiffiffiffi
BðrbÞ

p
be ignored. The

main thing to note is that k appears in the bending only
through

ffiffiffiffiffiffiffiffiffiffiffi
BðrbÞ

p
.

For small ψ , tanψ ≃ ψ , and for small entry angle,
tanφb ≃ φb, so that the one-way deflection ϵ for nonzero
φb is, by definition [70],

ϵ ¼ tanðψ − φbÞ≃ ψ − φb; ð57Þ

where

ψ ¼ 2R2½2M þ rbðkr2b − γrb − 2Þ�
r2b½8Mφb þ Rf3Mγφbð2φb − πÞ − 4g� : ð58Þ

Equation (57) is the exact one-way expression but is
rather unilluminating, so we shall expand it in the first
powers to see what it yields. Expanding Eq. (57) in the first
power of γ, we get, with ψ ≡ ϵ0 þ ϵ1,

ϵ ¼ ðϵ0 − φbÞ þ ϵ1

¼
�
2R2ð2M − 2Rrb þ kRr3bÞ

r2bð8Mφb − 4RÞ − φb

�
þ ϵ1; ð59Þ

ϵ1 ≡ 2γR2

r2b

�
r2b

4R − 8Mφb

þ 3MRð2M − 2rb þ kRr3bÞðπ − 2φbÞφb

16ðR − 2MφbÞ2
�
: ð60Þ

Expanding ϵ1 in the first power of M, we get

ϵ1 ≡ γR
2

þ M
8rb

½8γrbφb þ 3πkRγr2bφb

þ 12Rγφ2
b − 6kRγr2bφ

2
b − 6πRγφb� þOðM2Þ ð61Þ

≃ γR
2
; ð62Þ

since, for typical galactic values ofM, R, γ, k, rb, and φb, it
follows that γR

2
≈ 10−7, while the second term in Eq. (61)

leads to a value ≈10−16 and so is ignored here by
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comparison. Expressing rb in terms of φb using Eq. (52) in
the square bracket of the right hand side of Eq. (59), we get

ϵ0 − φb ≡
2ð2MR þ φbÞ2½2M − 2R2

2MþRφb
þ kR6

ð2MþRφbÞ3�
8Mφb − 4R

− φb:

ð63Þ

Expanding it in the first power of M, whence φb on the
right hand side cancels out, we find

ϵ0 − φb ¼
2M
R

−
kR2

2φb
þM

�
φ2
b

R
þ kR

φ2
b

− kR

�
þOðM2Þ:

ð64Þ

For typical galactic values mentioned above and for
k ≈ 10−54 cm−2, the relative strength of the terms in
Eq. (64) are as follows:

2M
R

≈ 10−6; −
kR2

2φb
≈ −10−7;

M

�
φ2
b

R
þ kR

φ2
b

− kR

�
≈ 10−11: ð65Þ

Hence, we can ignore the third term on the right hand
side of Eq. (64). Collecting the leading order terms from
Eqs. (61) and (65), the result is

δ ¼ 2ϵ ¼ 2½ðϵ0 − φbÞ þ ϵ1� ¼
4M
R

þ γR −
kR2

φb
: ð66Þ

In the limit, γ ¼ 0, one recovers the known bending
expression for the SdS metric [69]. The last cosmological
term is expectedly repulsive and looks familiar if one
formally chooses k ¼ Λ=3 so that, using Eq. (52), one finds

−
kR2

φb
≃ −

ΛRrb
3

; ð67Þ

which is exactly the contribution obtained by Ishak et al.
[69]. Further notice that the term þγR in Eq. (66) enhances
the Schwarzschild bending 4M

R , contrary to previous results,
which is what we wanted to prove.
Expressing R in terms of the impact parameter b, and

using Eq. (43), we get10

1

R
≃ 1

r0
≃ 1

b
þ Λb

6
; ð68Þ

so we obtain, to leading order, from Eq. (66)

δ ¼ 4M
b

þ 2MΛb
3

þ γb −
Λbrb
3

ð69Þ

≡ tSch þ tSereno þ tγ þ tΛ: ð70Þ

The term 2MΛb
3

has been obtained by Sereno [111], and he
called it a local coupling term. There is also another term

proportional to M2 adding to δ, viz., 15M2γ
b derived pre-

viously [112] but not shown here. However, for galactic
lenses their values are too minute to be of any interest, e.g.,
tSereno ≈ 10−15, as well as the still smaller other term,
15M2γ

b ≈ 10−20, so we ignore them here. But the remaining
terms are nearly of comparable magnitude, so we preserve
them. Restoring k, we therefore have

δ ¼ 4M
b

þ γb − kbrb ≡ tSch þ tγ þ tk: ð71Þ

This is our final expression for light bending in the MK
solution to be used in our analysis of the galactic mass
decomposition.

VI. ALGORITHM FOR MASS DECOMPOSITION

The luminous mass M in the metric (9) will hereafter be
denoted by M� for more notational clarity. Thus, the MK
light deflection δ, Eq. (71), can be rewritten as

δ ¼ 4M�
b

þ ~γb; ð72Þ

¼ tSch þ tγ þ tk; ð73Þ
where

tSch ¼
4M�
b

; tγ ¼ γb ¼ ðN�γ� þ γ0Þb;
tk ¼ −kbrb; M� ¼ N�β�; ð74Þ

γ ¼ N�γ� þ γ0; ð75Þ

~γ ≡ γ − krb; ð76Þ

where the solar mass is β� ¼ 1.48 × 105 cm, and the
universal constants in the MK solution are γ� ¼ 5.42×
10−41 cm−1, γ0¼3.06×10−30 cm−1, and k ¼ 9.54×
10−54 cm−2. Table I below shows the values of different
contributions to δ in the case of 57 lens galaxies as well as
the corresponding values of b and rb.
On the other hand, the Schwarzschild deflection α in

Einstein theory is

10The impact parameter b for the metric (9) is defined by [110]:
b ¼ ð 1

umax
Þ½ 1
BðumaxÞ�1=2, where umax ¼ 1=rmin ¼ 1=r0. Hence,

b ¼ r0½ 1
Bðr0Þ�1=2 ≃ r0 þM − γr2

0

2
þ Λr3

0

6
. Ignoring M compared to

r0 (as M=r0 ≈ 10−6) and inverting, one obtains 1
b ≃ 1

r0
þ γ

2
− Λr0

6
.

Solving for 1
r0
, we get 1

r0
¼ ð6−3bγÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð6−3bγÞ2þ24b2Λ

p
12b . Since

3bγ ≪ 6, we can write 1
r0
≃ 6þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36þ24b2Λ

p
12b ¼ 1

b þ Λb
6
þOðb2Þ,

which is just our Eq. (68). It also follows by expanding R≃ r0 ¼
ð1b þ Λb

6
Þ−1 in powers of b that R ¼ bþOðb2Þ.
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α ¼ 4Mlens
tot

b
; ð77Þ

where Mlens
tot is the total projected lens mass enclosed

within the Einstein radius REin defined by REin ¼ dolθEin,
which is nothing but the impact parameter b. We shall
imbed the deflection expressions into the lens equa-
tion [113], which is

θdos ¼ βdos þ αdls; ð78Þ

where dos, dls, dol are the angular diameter distances
between observer-source, lens-source, and observer-lens.
The Einstein angle θ ¼ θEin is defined by the case when the
source, lens, and observer stay in a line, that is, when
β ¼ 0. Thus

θ ¼ α

�
dls
dos

�
¼ 4Mlens

tot

b

�
dls
dos

�
¼ 4Mlens

tot

θdol

�
dls
dos

�
ð79Þ

⇒ θ ¼ θEin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4Mlens

tot

D

r
; ð80Þ

D≡ doldos
dls

: ð81Þ

Note that θEin is caused by the total mass (luminous
M� þ dark) enclosed within the Einstein radius b.
The Weyl angle, for the same impact parameter

b ¼ θdol is

θ ¼ δ

�
dls
dos

�
¼

�
4M�
θdol

þ ~γðθdolÞ
��

dls
dos

�
ð82Þ

⇒ θ ¼ θWeyl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M�

D − ~γd2ol

s
: ð83Þ

Note that θWeyl is caused by the luminous mass M� plus
cosmology induced potentials within the same radius b
(i.e., same lensing geometry, same impact parameter).
Following Edery and Paranjape [72], and later works
[48,49], we use the input θEin ¼ θWeyl, which yields

~γ ¼ dos
dlsdol

�
1 −

M�
Mlens

tot

�
: ð84Þ

Using Eq. (50) for rb in Eq. (76), Eq. (84) can be
explicitly written as

N�γ� þ γ0 ¼
dos
dlsdol

�
1 −

N�β�

Mlens
tot

�
þ kð3πÞ1=3

25=3

�
N�β�

ρc

�
1=3

;

ð85Þ

where [114]

ρc ¼
3H2

0

8π
¼ 9.47 × 10−30 gm cm−3 ¼ 7.03 × 10−58 cm−2:

Equation (85) is a cubic equation in N� and is central to
our mass decomposition scheme.
Our algorithm is the following: In the above Eq. (85), the

galaxy independent universal MK constants (γ0, γ�, k) are
known [62,65], the distances dls, dol, dos (≡dol þ dls) and
the total mass Mlens

tot are provided by the observed SLACS
data for each individual galaxy [73,115]. Plugging these
values into Eq. (85), we first have to find the numerical
value of N� specific to each galaxy. The resultant cubic
equation in N� fortunately yields only one positive root,
which then enables us to find the value of the luminous
component M� ¼ N�β�. We henceforth call it MMK� to
distinguish it from the luminous mass values obtained from
other independent simulations. Subtracting MMK� from the
observed total mass of the lens Mlens

tot , we obtain the dark
matter component Mdm as well as the mass ratios fMK� ¼
ðMMK� =Mlens

tot Þj≤REin
.

As to the existing mass ratios in the literature, we note
that simulations depending on different stellar-population
models and initial mass functions (IMFs) have thrown up
rather widely different values with error bars. This can be
seen from the work of Grillo et al. [73], who fitted the lens
spectral energy distributions with a three-parameter grid of
Bruzual and Charlot’s (indexed BC) [116] and Maraston’s
(indexed M) [117] composite stellar-population models,
computed by adopting solar metallicity and various IMFs.
They obtained the mass decomposition within the Einstein
radius and found that a Salpeter IMF (indexed Sal) [118]
was better suited than either a Chabrier (Cha) [119] or
Kroupa (Kro) IMF [120] for describing the considered
subsample of 57 lenses. It was concluded that in all the
models, the observed total mass Mlens

tot is linearly propor-
tional to the estimated luminous mass of the lenses denoted
by MSal;BC� , MSal;M� , MCha;BC� , and MKro;M� . However, the
dark matter component was found to be considerably
higher for the two models [(Cha,BC), (Kro,M)] than for
the models [(Sal,BC), (Sal,M)].
Our results on mass decomposition are shown in

Table II below. We find that the mass ratios generated
from the better suited model (Sal,BC), viz., fGrillo et al:� ¼
ðMSal;BC� =Mlens

tot Þj≤REin
[73], come closer to our computed

ratios than those from other models. For the 57 galaxies, the
values of fGrillo et al:� range from 0.43 to 1.21, which can be
compared with the ratios fMK� that are seen to take on values
very near unity (fMK� ∼ 0.98 on the average) for all these
galaxies (Table II). These values show that the matter
content within the Einstein radius of the lens is not
dominated by dark matter. However, it is evident from
Table II that Mlens

tot is linearly proportional to MMK� across
the entire subsample, which is in complete agreement with
the common prediction of average linearity by other models
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(Figs. 1 and 2) illustrated by a line parallel to the one-to-one
line defined by M�=Mlens

tot ¼ 1, where M� could be MMK� ,
MSal;BC� , or MCha;BC� , etc.11 Figure 1 compares the average
linear profile of the model fGrillo et al:� with the more exact
linearity of fMK� denoted by dots sitting just above the one-
to-one line.
In detail, we find that 17 galaxies show mass ratios that

fall within the (Sal,BC) projected error bars shown in [73].
Interestingly, out of these 17, we find that 5 galaxies exhibit
very little dark matter, 4 of which are supported by the (Sal,
BC) model, which yield fMK� ¼ fGrillo et al:� ≈ 1, marked as
the coincident points in Fig. 1(a). The remaining one galaxy
(J0959þ 0410) falls outside the one-to-one line by the
margin of an additive factor 0.28. The ratios for the 22
galaxies fall marginally outside the error bar, while for the
remaining 18 galaxies the ratios fall outside by a maximum
margin 0.52. Figure 2 shows linearity profiles for the two
other models [(Cha,BC), (Kro,M)] that throw up higher
amounts of dark matter within the Einstein radius (the
higher is the average line over the one-to-one line, and the
more is the dark matter). The profiles can be compared by
noting that the linear fit by Grillo [121], his Eq. (7) is

Log10½Mlens
tot ðREinÞ� ¼ −0.58þ 1.09 � Log10½M�ðREinÞ�:

ð86Þ

There is an average difference of about 0.36 with our
line, which fits to

Log10½Mlens
tot ðREinÞ� ¼ −0.94þ 1.09 � Log10½M�ðREinÞ�:

ð87Þ

In view of the above, our prediction of nondominance of
dark matter within the Einstein radius suggests that the
present analytic approach is more akin to models [(Sal,BC),
(Sal,M)] that provide relatively low dark matter inside the
Einstein radius though all of their predicted ratios do not
exactly coincide with, but do not stray far away from either,
those from our approach. Given the model-dependent
varying mass decompositions in the literature and lack
of any direct experimental support yet, we can regard our
model-independent analytic approach as an alternative
scheme for deriving mass decompositions.
The mean density hρiMK

av is obtained by averaging the
dark matter mass MMK

dm ¼ Mlens
tot ð≤REinÞ −MMK� ð≤REinÞ

over the Einstein sphere of radius REin centered at the
galactic origin,

hρiMK
av ¼ 3MMK

dm

4πb3
: ð88Þ

Table I includes the values of hρiMK
av together with

the values of the impact parameter and the relevant
deflection components. Table II gives the estimates of

FIG. 1. The linear plot (black dots) of observed total lens massMlens
tot ð≤REinÞ for the 57 lens galaxies of the SLACS survey versus the

luminous mass MMK� ð≤REinÞ within the Einstein radius REin obtained from our algorithm (Table II). The best-fit correlation line from
different composite stellar-population models [Bruzual and Charlot (BC)–panel (a) and Maraston (M)–panel (b)] and IMFs [Salpeter
(Sal)] and the one-to-one relation lineM�=Mlens

tot ¼ 1 are shown by solid and dotted lines, respectively (taken from [73]). Our linear plot
and the best-fit correlation line are parallel and can be merged into one another by a small constant numerical shift.

11It should be mentioned that the exact equalityM�=Mlens
tot ¼ 1

is inconsistent with SDSS data. For the subsample under study,
photometric and spectroscopic data are available. By using the
SDSS multicolor photometry and lens modeling, Grillo et al. [73]
studied the luminous and dark matter composition in the sample.
It is possible for the data to be consistent with M�=Mlens

tot ≈ 1
allowing for dark matter however little, as is the case with a few
galaxies [Fig. 1(a)] lying almost on the one-to-one line.
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stellar and dark matter masses together with fMK� . Data
for distances dos, dol, and Mlens

tot are taken from [115].
The conversions used are the following: 1 arcsec ¼
ð1=206265Þ rad, 1Mpc¼3.085×1024 cm, 1 cm−2¼ 1.98×
1059M⊙ðkpcÞ−3.

VII. CONCLUSIONS

We started with an outline of Weyl conformal gravity
focusing in particular on the local and global spontaneous
breakdown of conformal symmetry. Next, we showed that
the MK metric need not be an exclusive solution of
conformal gravity but can alternatively be viewed as a
solution of a class of fðRÞ gravity theories coupled to a
nonlinear electrodynamic source. This possibility endows
our galactic mass decomposition scheme, and the derived
results, with more universality than thought heretofore.
We achieved two other goals in the foregoing work. First,

we calculated light deflection in the MK solution of
Weyl conformal theory explicitly bringing out the effect
of the parameters γ and k appearing in the metric (9). The
calculation based on the vacuole method reveals that the
effect of γ is to enhance two-way Schwarzschild bending
(4M�=b) by an amount þγb (noting R≃ b), while the
effect of k is to reduce it by an amount −kbrb. The positive
contribution þγb is contrary to the previously obtained
result −γb in the literature [72,102,103]. Only for γ < 0,
the latter becomes positive and truly imitates the effect of
attractive dark matter, but then the problem is that the
negative sign before γ is opposite to that required to fit the
rotation curves [72]. This long-standing problem with

the MK solution has now been solved with the contribution
þγb that is positive for γ > 0, the sign required to fit the
rotation curves. Notably, we required the same γ > 0 for
our mass decomposition as well [see Eqs. (75) and (85)].
We argued in Sec. II that the cause leading to erroneous
−γb lay in the illegitimate range of integration leading to a
metric signature change and an incomplete use of the
Rindler-Ishak method not respecting their prescribed pos-
itivity condition on jAj.
The contribution −kbrb completely agrees with the

expression obtained by Ishak et al. [69]. Let us for the
moment notationally identify k≡ Λ=3 so that tΛ ¼ − Λbrb

3

and recall a bit of curious history here. There has been a
prevailing belief that light deflection in the SdS space-time
is uninfluenced by the cosmological constant Λ appearing
in the metric. The reason is that Λ cancels out of the second
order null geodesic equation as probably first shown by
Islam [71]—naturally, the light bending expression also
does not contain it. This fact can be seen in the second order
null geodesic Eq. (35) from where the constant k has
disappeared, even though k does influence the non-null
geodesic as seen in the exact deflection Eq. (59). Eddington
[122] was the first to examine one possible manifestation of
the latter in the perihelion advance of the planets and
derived a limit Λ ≤ 10−42 cm−2. On the other hand, Λ
appears in the first order null geodesic equation, only its
further differentiation removes it from the second order
equation. Obviously, for the sake of logical consistency, the
perturbative solution of the second order equation must also
satisfy the first order equation, which would then yield a
relation among the involved constants, one of which is the

FIG. 2. The linear plot (black dots) of observed total lens massMlens
tot ð≤REinÞ for the 57 lens galaxies of the SLACS survey versus the

luminous mass MMK� ð≤REinÞ within the Einstein radius REin obtained from our algorithm (Table II). The best-fit correlation line from
different composite stellar-population models [Bruzual and Charlot (BC)–panel (a) and Maraston (M)–panel (b)] and IMFs [Chabrier
(Cha), Kroupa (Kro)] and the one-to-one relation lineM�=Mlens

tot ¼ 1 are shown by solid and dotted lines, respectively (taken from [73]).
Our linear plot and the best-fit correlation line are parallel and can be merged into one another by a constant but a bit larger numerical
shift than in Fig. 1, which indicates the presence of comparatively more dark matter.
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impact parameter b. An explicit calculation should in turn
imply that the removed Λ would reappear in the light
bending as well. This is exactly what we have found
happening—a reflection of which is tΛ and the Sereno term
tSereno [see Eq. (70) and the expression for b derived in
footnote 10].
Table I shows contributions to light bending coming

from different factors as well as the estimates of the average
dark matter density hρiMK

av over the Einstein sphere. We see
from the last two columns that the positive contribution tγ is
overtaken by the negative contribution tk in all the cases.
However, the combined effect is still 1 or 2 orders of
magnitude less than the contribution tSch. Only future
measurement of higher order corrections to tSch could
detect this combined effect, if any. For the moment, the
contributions in Eq. (71) to light deflection directly impact
the mass decomposition calculated in this paper.
Second, we applied the light deflection Eq. (71) together

with a logical input θEin ¼ θWeyl to obtain the mass decom-
position into luminous and dark components of the lens
galaxy within its Einstein radius. The idea behind this input
is that Weyl theory without dark matter and Einstein theory
with dark matter both should logically predict exactly the
same numerical value for the angle of the observed ring
image of a background source if the former theory has to be
in the reckoning at all as a competing theory. This input
automatically implies that Weyl vacuum need not truly be a
vacumm but an arena of cosmic potentials Vγ0 and Vk

bringing about quantitatively the same lensing effect as
would the darkmatter in Einstein’s theory. In our opinion, an
estimate of the dark matter component thus provides an
observable quantification of the strength of such potentials
symbolized by the associated constants.

Table II shows mass decomposition in a representative
subsample of 57 lens galaxies and that the observed total
lens mass Mlens

tot (luminousþ dark) is linearly proportional
to our derived luminous mass MMK� across the subsample,
which qualitatively agrees with the existing conclusion in
the literature as shown in Figs. 1 and 2. Table II provides
the exact ratios from our analysis showing that those 57
lens galaxies are low in dark matter content within their
Einstein radii. Therefore, the ratios appear to be more akin
to the simulation based on (Sal,BC) than to others. Our
ratios fall within the (Sal,BC) simulational error bars for
many individual galaxies, and for a minority of cases the
ratios fall slightly outside the error bars in varying degrees.
Since in the literature [73] these ratios are also seen to vary
rather significantly depending on the choice of stellar
population models and the IMFs, one could equally regard
the present analytic approach as yet another addition to the
existing scheme for decompositions.
Finally, it should be mentioned that there is some

controversy about the presence of dark matter halos around
elliptical galaxies [123,124]. However, massive ellipticals
are generally considered as the result of fusion of spiral
galaxies. It is thus hard to understand how dark matter halos
would be present around spirals and absent after their
fusion. The aim of the present paper was, however, to focus
on the inside of the Einstein radius and not on the distant
halo region.
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